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RESUMO

Desvendando associagfes genéticas importantes e perfis de metilacéo diferenciais
utilizando sequenciamento reduzido do genoma da galinha

A galinha é um organismo modelo ideal para melhorar o entendimento de diversas
areas da pesquisa como: filogenetica, embriologia, biomedicina, pecuéria, e tem sido
recentemente sugerida como um modelo promissor para estudos em epigenética. Na pecuaria,
as galinhas s&o fonte de proteina para os seres humanos e tem sido alvo de selecéo para alcancar
um alto padrdo de producdo com base no melhoramento genético tradicional. Mas agora,
estamos na era gendmica e epigendmica e as atencdes devem ser voltadas para o0 uso de novas
ferramentas para melhorar a selecdo ndo s6 pensando em producdo, mas também na saude e
bem-estar dos animais. O uso de abordagens moleculares, tem sido uma ferramenta
fundamental para compreender modelos bioldgicos e melhorar as estratégias de selecdo
baseadas na informacgédo gendmica em programas de melhoramento. Abordagens moleculares,
também tem contribuido para a compreensdo da historia evolutiva desses modelos e 0s
mecanismos genéticos e epigenéticos envolvidos no processo de evolucdo e diversificacdo
genética das galinhas. Neste contexto, tecnologias evoluiram para producdo de dados de
sequenciamento de alto rendimento por sequenciamento de proxima geracdo (NGS). NGS
forneceu uma grande quantidade de informacao a ser utilizado para diversos fins, como para
detectar polimorfismos de nucleotideo Unico (SNPs) e perfis de metilacdo diferencial do DNA
em galinhas. NGS tem permitido também o desenvolvimento de painéis de SNP para testes de
associaces gendmica ampla (GWAS) com fenotipos especificos de interesse. Embora NGS
tem poder suficiente para detectar polimorfismos informativos, o seu elevado custo o torna
impraticavel para ser utilizado em GWAS ou estudos de metilacdo diferencial por
sequenciamento de DNA metilado por imunoprecipitacdo (MeDIPseq). A procura de um
método de genotipagem eficiente, simples, econémico e confiavel para descoberta,
caracterizacdo e validacdo de SNPs, foi a razdo para o desenvolvimento deste estudo.
Utilizamos sequenciamento do genoma reduzido por enzima de restricdo (RE) que cliva o
genoma alvo para identificacdo de SNPs nestas bibliotecas reduzidas e aplicacdo deste método
em GWAS. Em seguida, para combinar a representacdo reduzida do genoma com o método
MeDIPS, desenvolvemos uma nova abordagem para a realizacdo de estudos de metilacéo
diferencial utilizando as bibliotecas reduzidas. Estes trabalhos permitiram a identificacdo de
SNPs associados com caracteristicas de desempenho e janelas de metilagdo diferencial
relacionados a diferentes condi¢des de manejo em galinhas.

Palavras-chave: Galinha; GWAS; MeDIPS; Melhoramento animal; Saude e hem-estar animal
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ABSTRACT

Unraveling important genetic associations and differential methylation profiles in
chickens using reduced genome sequencing approach

Chickens are ideal model organism to improve understanding of several research areas
as phylogenetic, embryology, biomedicine, livestock, and have recently been suggested as a
promising model for epigenetic studies. In the livestock area, chickens are source of protein to
humans and had been selected to achieve a high production standards based on genetic breeding
by the traditional selection. We are now in the genomics and epigenomics era and it is time be
concern about the use of new tools to improve selection not only thinking about production, but
also in the health and welfare of animals. The use of molecular approaches, have been a
fundamental tool to understand biological models and improve selection strategies based on
genomic information in breeding programs. Molecular approaches have also contributed to
understanding of the evolutionary history of these models and the genetics and epigenetics
mechanisms involved in evolution process and genetic diversification of chickens. In this
context, many technologies have emerged to produce high-throughput data using Next-
generation sequencing (NGS) approaches. NGS provided a large amount of information for
diverse purposes such as to detect single nucleotide polymorphisms (SNPs), and methylated
DNA profiles in chickens. In addition, NGS has allowed the development of pre-designed SNP
arrays for genome-wide association studies (GWAS) with specific phenotypes of interest.
Moreover, although NGS has enough power to detect informative polymorphisms, its high cost
makes it impractical to be used in GWAS and Methylated DNA immunoprecipitation
sequencing (MeDIPseq) studies. The demand for an economical, efficient, simple-step and
reliable genome-wide method of SNPs discovery, validation and characterization, was the
reason for the development of this study. We applied reduced representation sequence by
restriction enzyme (RE) cleavage of target chicken genome to be applied in GWAS. Thereafter,
to combine the reduced representation of the genome with MeDIPseq method, we developed a
novel approach to perform differential methylation studies using reduced libraries. These works
allowed us to identify SNPs associated with performance traits and differential methylation
windows related to different stress conditions in chickens.

Keywords: Animal breeding; Animal health and welfare; Chicken; GWAS; MeDIPS
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1 INTRODUCTION

Chicken is an ideal model organism for phylogenetic, embryology (BURT, 2007) studies
and biomedical research (WU; KAISER, 2011). The chicken protein is known to has low-fat,
high unsaturation degree of fatty acids and low sodium and cholesterol levels that responds to
the current consumer demand (PETRACCI; CAVANI, 2011). Therefore, the domestic chicken
(Gallus gallus domesticus) has been one of the main sources of high-quality protein to humans
(MIAO et al., 2013). To achieve this high-quality of meat production standards, great advances
in nutrition, management and genetic selection in animal breeding programs has been applied
(JORGE et al., 2008). In the genetic background, the use of molecular approaches, has been a
fundamental tool to understand genes that control traits of commercial interest to improve
selection strategies based on genomic information in breeding programs (JORGE et al., 2008).
Molecular approaches also have contributed to understanding the evolutionary history of
chickens and the genetics and epigenetics mechanisms involved in evolution process and
genetic diversification of this species (RUBIN et al., 2010). This understanding is important in
a humanitarian context to improve the animal’s needs and their rearing environments
(ROSTAGNO, 2009).

To understand the molecular mechanisms governing these interested traits, especially
from the last decade, high-throughput data by Next-generation sequencing (NGS) approaches
have emerged providing a large amount of information to be used for diverse purposes such as
to detect single nucleotide polymorphisms (SNPs) (GROENEN et al., 2009) and methylated
DNA profiles (GUERRERO-BOSAGNA, 2013) in chickens. These markers can be responsible
for functional alterations in the chicken genome (GHEYAS et al., 2015), or they can be located
at neutral genomic regions being fundamental in many gene processes and activities
(BIEMONT:; VIEIRA, 2006). Also, NGS has allowed the development of pre-designed SNP
arrays, to widespread testing of associations of SNPs with specific phenotypes of interest
(KRANIS et al., 2013). However, pre-designed SNP arrays have limited coverage on
functionally important genomic regions in experimental populations (LI et al., 2008).
Moreover, although NGS has enough power to detect informative polymorphisms, its high cost
makes it impractical to be used in animal breeding, genome-wide association studies (GWAS)
(PETERSON et al., 2012; DE DONATO et al, 2013) and Methylated DNA
immunoprecipitation (MeDIPS) (GUERRERO-BOSAGNA, 2013) studies.

The demand for a high cost-effective genotyping method was the reason for the

development of the second chapter presented here that is titled “High-throughput and Cost-
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effective chicken genotyping using Next-Generation Sequencing”. The idea was to combine an
economical, efficient, simple-step and unbiased genome-wide method of SNP discovery,
validation and characterization using reduced representation sequence by restriction enzyme
(RE) cleavage of target chicken genome (GLAUBITZ et al., 2014; ZHAI et al., 2015). Thus,
from a previously described CornellGBS approach in maize (ELSHIRE et al., 2011), we
performed a detailed step-by-step description of the complete reproducible protocol
optimization based on the reduced chicken genome sequencing using Pstl RE. From 462
animals genotyped using this protocol, we carried out the preparation of the third chapter that
deals with the manipulation of SNP database generated by CornellGBS approach, SNP
imputation, validation and GWAS with performance traits. This third chapter was titled
“Genome-wide association study for performance traits in chickens using genotyping by
sequencing approach”.

For our surprise, the results from the second chapter presented here indicates that the
CornellGBS approach showed a pattern of SNP profiling that makes it unique in comparison
with other approaches. Such profiling includes not only an enrichment of different functional
regions, but also a high interrogation of microchromosomes that are CpG-rich regions
(MCQUEEN et al., 1996; SMITH; BURT, 1998; SMITH et al., 2000; HABERMANN et al.,
2001) and higher gene density than macrochromosomes (SMITH; BURT, 1998; SMITH et al.,
2000; HABERMANN et al., 2001). This leads us to strongly consider using this methodology
for the development of another studies involving access of methylation profiles of individuals.
This was the part of the PhD process from where it was originated the forth chapter of this thesis
and that was held at Linkdping University (LIU), Sweden.

The forth chapter of this thesis was titled “Epigenetic marks of rearing conditions detected
in red blood cells of adult hens”. In this paper, we presented one application in animal welfare
area, considering that chickens have recently been suggested as a promising model for
epigenetic studies (FRESARD et al., 2013). Due to the need for sequencing cost reduction and
the advantages in reducing the genome with Pstl RE in the epigenetic scope, we created a new
approach that combines the CornellGBS approach, described here and MEDIP approach
previously described elsewhere (GUERRERO-BOSAGNA; JENSEN, 2015). This new
approach was named GeDl (Genome Digestion) MeDIP (Methylated DNA
Immunoprecipitation) sequencing and, it was performed to handle with differential methylation
profile among animal reared in different environmental conditions as an ethical issue in the
research. The ethical issue of inducing unnecessary stress in animals and detrimental practices

in animal industry has consequences from a human health perspective (ROSTAGNO, 2009).
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Therefore, we collected samples from chickens submitted to different stress levels generated by
these raring conditions (cage-reared chickens vs aviary reared-chickens) that had long term
effects in the blood epigenome. For that, we investigated epigenetic marks of stress in red blood
cells of chickens reared in cages, in which social isolation stress occurs, versus a complex
condition of open aviary.

This thesis refers to the optimization of an approach to generate specific genic and CpG
enriched profiles of sequenced fragments. This special profile led us the creation of a new
method using the reduced representation libraries to epigenetics studies. Therefore,
CornellGBS and GeDI MeDIP methods that enriches both, genes and CpGs, allowed us their
application in two situations. First, to detect SNPs to be applied in GWAS with performance
traits in chicken and second, to detect genomic windows enriched with methylated DNA to

perform differential methylation profile in different rearing conditions of chickens.
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2 HIGH-THROUGHPUT AND COST-EFFECTIVE CHICKEN GENOTYPING USING
NEXT-GENERATION SEQUENCING

Abstract

Chicken genotyping is becoming common practice in conventional animal breeding
improvement. Despite the power of high-throughput methods for genotyping, their high cost
limits large scale use in animal breeding and selection. In the present paper we optimized the
Cornell GBS, an efficient and cost-effective genotyping by sequence approach developed in
plants, for its application in chickens. Here we describe the successful genotyping of a large
number of chickens (462) using CornellGBS approach. Genomic DNA was cleaved with the
Pstl enzyme, ligated to adapters with barcodes identifying individual animals, and then
sequenced on Illumina platform. After filtering parameters were applied, 134,528 SNPs were
identified in our experimental population of chickens. Of these SNPs, 67,096 had a minimum
taxon call rate of 90%. Interestingly, 20.7% of these SNPs have not been previously reported
in the dbSNP. Moreover, 92.6% of these SNPs were concordant with a previous Whole Chicken-
genome re-sequencing dataset used for validation purposes. The application of CornellGBS in
chickens showed high performance to infer SNPs, particularly in exonic regions and
microchromosomes. This approach represents a cost-effective (~US$50/sample) and powerful
alternative to current genotyping methods, which has the potential to improve whole-genome
selection (WGS), and genome-wide association studies (GWAS) in chicken production.

Keywords: Chicken; GBS; GWAS; Next-generation sequencing; Pstl; Restriction enzyme

2.1 Introduction

Next-generation sequencing (NGS) analyses have been increasingly employed in
production animals, particularly in chickens. NGS generates large amounts of
genomic information that can be used to detect genetic variants related to functional alterations
(GHEYAS et al., 2015). Single Nucleotide polymorphisms (SNPs) are the most abundant type
of molecular markers and their high genomic density facilitates their interrogation by different
genetic approaches. These include large-scale genome association analyses, genetic analysis of
simple and complex disease states, and population genetic studies (BROOKES, 1999).

The use of NGS has enabled to identify SNPs across genomes and allowed the
development of pre-designed SNP chips for widespread testing of SNP associations with
specific phenotypes of interest (KRANIS et al., 2013). However, pre-designed SNP chips have
limited coverage on functionally important genomic regions in experimental populations. SNP
chips generally contain a limited number of SNPs in coding or regulatory regions, rarely contain
SNPs with significant effects (LI et al., 2008), and include non-polymorphic SNPs, which
difficults tracking their inheritance in specific pedigrees (BURT, 2004). On the other hand,
although NGS has enough power to detect informative polymorphisms, its high cost makes its
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use impractical in animal breeding and genome-wide selection (ELSHIRE et al., 2011a;
GLAUBITZ et al., 2014).

The use of an economical, efficient, and simple-step method of SNPs discovery,
validation and characterization that uses reduced representation sequencing generated by
restriction enzyme cleavage of target genomes can provide an unbiased genome-wide set of
SNP markers in different genomes (GLAUBITZ et al., 2014), including chickens (ZHAI et al.,
2015). Reduced representation methods can be grouped in three classes: (1) reduced-
representation sequencing, which includes methods such as reduced-representation libraries
(RRLs) and complexity reduction of polymorphic sequences (CROPS); (2) restriction-site-
associated DNA sequencing (RAD-Seq); and (3) low coverage genotyping, which includes
methods such as multiplexed shotgun genotyping (MSG), genotyping by sequencing from
Cornell (CornellGBS) (DAVEY et al., 2011), and genome reducing and sequencing (GGRS)
(LIAO et al., 2015). Of these reduced representation methods, RAD-Seq (ZHAI et al., 2015)
and GGRS (LIAO et al., 2015) have been employed in chickens (DAVEY et al., 2011). The
possibility to reduce the genome complexity using restriction enzymes that generate DNA
fragments of specific ranges (KUMAR; YOU; CLOUTIER, 2012) expedite re-sampling and
produces coverage levels that are acceptable for solid SNP calling (ALTSHULER et al., 2000).

CornellGBS is a simple reproducible method based on the Illumina sequencing platform
(DE DONATO et al., 2013) that requires low input of DNA (100 ng). This method allows for
a highly multiplexed approach, which is achieved through the incorporation of unique barcodes
that identify individual samples in a DNA pool to be sequenced. This approach avoids the low
sequence diversity in which the restriction enzyme overhangs appear at the same position in
every read, by employing barcodes of variable lengths (DAVEY et al., 2011). In addition to the
methodological simplicity of simultaneously discovering and characterizing polymorphisms,
the availability of an open-source analysis tool is a major advantage of the CornellGBS
approach (DE DONATO et al., 2013). This methodology is currently being successfully applied
in numerous species by a large number of researchers (GLAUBITZ et al., 2014). However, to
the best of our knowledge this method has not been applied in chicken.

The present study aims at constructing reduced genome representation sequencing
libraries using the CornellGBS approach in chickens. In order to optimize the use of
CornellGBS in chickens, cleavage of the chicken genome was tested with two different
restriction enzymes, Pstl and Sbfl. Two different experimental animal populations were used in
the present study: 444 chickens from five families of the EMBRAPA F, Chicken Resource

Population (Concordia, SC, Brazil), 8 chickens from the F1 generation and 18 chickens from
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the parental line (FO). In the present article, we have optimized the use of CornellGBS in
chickens, which was achieved in part by using the Pstl restriction enzyme for genomic cleavage.
We also provide a new set of chicken SNPs that were detected by using this approach. The
application of this methodology will open many possibilities for downstream applications in
chickens and facilitate SNP discovery in specific populations of chickens. The relevance of
applying a cost-effective genotyping method in chickens is enormous, given their world-wide
economic relevance as production animal (UNITED STATES DEPARTMENT OF
AGRICULTURE - USDA, 2015).

2.2 Methods

All experimental protocols employed in the present study that relate to animal
experimentation were performed in accordance with the resolution number 010/2012 approved
by the Embrapa Swine and Poultry Ethics Committee on Animal Utilization, in order to ensure

compliance with international guidelines for animal welfare.

2.2.1 Sample selection and preparation

This study was conducted using 464 chickens from an experimental population originated
and maintained at the dependencies of the Brazilian Agricultural Research Agency, from
EMBRAPA; Concordia, SC, Brazil. The population includes 446 chickens from five F, families
of the EMBRAPA F, Chicken Resource Population, 10 chickens from their parental lines (5
from each line), and 8 chickens from the F1 generation.

The F1 generation individuals were originated from a cross between a parental broiler line
(TT) and a layer line (CC), both developed at EMBRAPA. To generate the F. population
(TCTC), one F1 male (TC) and three F; females (TC) were selected from different F1 families
and were randomly mated with non-related animals. A more detailed description of the
population has been previously provided (NONES et al., 2006; ROSARIO et al., 2009).

Genomic DNA was extracted from blood samples following proteinase K digestion
(Promega), DNA precipitation in absolute ethanol, DNA washing in 70% ethanol and
resuspension in ultrapure water. DNA samples were quantified in a fluorometer (Qubit®
Fluorometric Quantitation). Sample quality was assessed using the Nanodrop®2000c
spectrophotometer and DNA integrity was checked in 1% agarose gel.
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2.2.2 Restriction enzymes selection and adapters design

In silico cleavage of DNA with Pstl and Sbfl was performed in R using the following
Bioconductor (HUBER et al., 2015) packages: Biostrings, BSgenome.Ggallus.UCSC.galGal4,
plyr, ggplot2, reshape2 and scales (https://github.com/) (see Supplementary Fig. S1 online).
The in silico cleavage was used to generate a dataset of fragments mapped against the galGal4
genome. The dataset of fragments that are predicted to be generated after in silico genomic
cleavage with Pstl was named ‘Predicted Pstl-Tags . The dataset of fragments that are predicted
to be generated after in silico genomic cleavage with Sbfl was named ‘Predicted Sbfl-Tags .
The dataset of fragments that were obtained from the in vitro cleavage of the DNA from all the
462 individuals analyzed was named ‘Sequenced Pstl-Tag’ and was generated using sam2bed
from BEDOPS v2.4.15 tool. All the fragments either from in silico or in vitro analyses were
aligned against the chicken reference genome (Gallus gallus 4.0, NCBI).

We also performed in vitro genomic cleavage of chicken DNA samples with the
abovementioned restriction enzymes (see Supplementary Fig. S2 online), according to the New
England BioLabs® manufacturer’s protocol.

The adapters were designed using the GBS Barcode Generator tool (Deena
Bioinformatics) taking into consideration the barcode sequence, in order to maximize the
balance of the bases at each position in the defined set (ELSHIRE et al., 2011a).

2.2.3 Preparation of sequencing libraries

After Pstl digestion, adapters were linked to the cohesive ends of the digested DNA with
T4 DNA ligase (New England BioLabs®). Approximately 24 samples were polled and purified
using QIAquick PCR Purification Kit® (Quiagen). The fragments of each library were amplified
by PCR using specific primers for sequencing in the Illumina platform. The purification of
PCR reactions was performed using the Agencourt AMPure XP PCR purification kit® (Beckman
Coulter) (see Supplementary Fig. S3 online). Each library was quantified by quantitative PCR
using the KAPA Library Quantification Kit (KAPA Biosystems). Two pools of ~24 samples
containing equal concentration of DNA were sequenced per flowcell lane totaling ~48 samples
sequenced with different barcodes in each flowcell lane. Sequencing libraries were diluted to
16 pM and clustered using the cBOT (Illumina) equipment. Paired-end sequencing with a read
length of 100 bp was performed using the HiSeq2500 instrument from Illumina. For the analysis

we used the HiSeq Illumina real-time analysis (RTA) software v1.18.61 update. This software
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generates a color matrix for the correction of the reads. This is important because HiSeq
sequencer uses different lasers to detect G/T and A/C nucleotides. In each cycle, at least one of
two nucleotides for each color channel must be read in order to maintain the color balance for
each base in the index read sequenced. With this upgrade the color matrix still uses the first
four cycles to generate data, like the last version of RTA. However, in the current version the
initial matrix is discarded after the template generation is complete. Then, the first 11 cycles of
intensity data are used for final estimation of the correction matrix. In order to minimize the
issues related to the construction of this matrix, we optimized our protocol using barcodes larger
than 4 bp to avoid imbalance between the first bases. The complete laboratory procedures are
provided in Supplementary Data S1 online.

2.2.4 Sequence processing

Quality trimming was performed in short sequences with SeqyClean tool v. 1.9.10
(ZHBANNIKOV, 2013) using a Phred quality score >24 and a fragment size >50. The quality
of the reads was checked before and after the cleaning by FastQC v.0.11.3 (ANDREWS, 2010).

The Tassel v.3.0 program was used to process the data (GLAUBITZ et al., 2014). For
each sample stored in a FASTQ file there is one identification map key file. This key file has
the matching information for the sample, flowcell and lane. The reads that begin with one of
the expected barcodes (found in the key map) are immediately followed by the expected cut
site remnant (CTGCA for Pstl). Fragments are then trimmed to 64 bases and grouped into a

single list called "master" by the TASSEL-GBS Discovery Pipeline.

2.2.5 Alignment and Genetic variants identification

The alignment of quality-trimmed reads was performed using Bowtie2 tool v.2.2.5
(LANGMEAD; SALZBERG, 2012) against the current chicken reference sequence
(Gallus_gallus 4.0, NCBI). The aligned reads were then imputed in the Tassel v.3.0 default
pipeline (GLAUBITZ et al., 2014) for SNP identification. We filtered the polymorphisms
initially identified based on the sequencing quality criteria and on the bases identified. The
following filters were applied: i) minimum taxon call rate (mnTCov) of 20%, which is a
minimum SNP call rate for a taxon to be included in the output, with the call rate being the
proportion of the SNP genotypes for a non-N taxon (where N=missing); ii) minimum site

coverage (mnScov) of 90%, which is a minimum taxon call rate for a SNP to be included in the
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output, with the taxon call rate being the proportion of the taxa with non-N genotypes for that
SNP; iii) mismatch rate (misMat) of 5% to minimize the appearance of duplicated SNPs; iv)
minimum minor allele frequency (mnMAF) of 0.01. A more detailed description of the default
filters has been provided by Glaubitz et al. (2014).

The coverage depth of the “unique sequence tags” file was determined using Samtools
v.0.1.19 (LI et al., 2009) with the “depth” option.

2.2.6 Genotyping methods comparison and CornellGBS data validation

We compared the chromosomal positions of the SNPs obtained using the CornellGBS
approach with the positions obtained using the following SNP platforms for chickens: lllumina
Chicken 60K Beadchip (GROENEN et al., 2011) and 600K HD Affymetrix®Axion®
genotyping array for chicken (KRANIS et al., 2013). Bioconductor (HUBER et al., 2015)
(GEOquery) and CRAN (data.table, rdrop2 and reshape) repository packages for R were used
for the bioinformatics analysis. We validated our method comparing the SNPs obtained
(59,205) against a SNP dataset of Whole Chicken-genome re-sequencing (WCGR) dataset
(BOSCHIERO et al., unpublished results) previously generated with Illumina sequencing with
~11X of sequencing coverage. This dataset contained 12,357,602 filtered SNPs and was
generated from the same 10 chickens used in this study (TT and CC parental lines). The
comparison between these two datasets was performed using CRAN (data.table and reshape?2)
repository packages for R. More details of the sequencing process of WCGR SNP data can be
found in recent publications (GODOY et al., 2015; MOREIRA et al., 2015).

2.2.7 Functional annotation

The set of unique SNPs obtained from 462 chickens using the Tassel v.3.0 tool was
annotated using the Variant Effect Predictor (VEP) tool v.71 (MCLAREN et al., 2010). The
SIFT (sorting intolerant from tolerant) scores for the SNPs (NG; HENIKOFF, 2003) were used
to predict whether a substitution of an amino acid affects protein function, which is based on
sequence homology and the physical properties of amino acids. If the SIFT score lies at or

below the 0.05 threshold, the substitution causing the amino acid was considered non tolerated.
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2.2.8 Mendelian inheritance of the SNPs

The Mendelian error testing was performed using SNP & Variation Suite v8.4
(BOZEMAN, 2016).

2.2.9 Genetic map construction

SNPs present in all families were filtering using Tassel program (GLAUBITZ et al.,
2014). A pseudo-testcross population was used to construct the F1 linkage map. For the linkage
analysis, the SNPs were first tested against the expected segregation ratio. The informative
genotypes combination were selected for the map construction. Markers with significant
segregation distortion (P < 0.001, %2 test) were removed.

The genetic map was constructed using R/OneMap package (MARGARIDO; SOUZA;
GARCIA, 2007) and JoinMap v.4.1 (VAN OOIJEN, 2011). The R/OneMap was used to join
the markers in the linkage groups (LGs). The minimum LOD values of 8 and a maximum
recombination fraction of 0.35 were used to organize the markers in each LG with the regression
mapping algorithm and the Kosambi mapping function (KOSAMBI, 1943).

The R/OmicCircus package (HU et al., 2014) was used to plot the relationship between
the chromosomal and linkage marker groups formed by the abovementioned genetic map

2.3 Results

2.3.1 Enzyme selection and library fragment size distribution

The selection of the appropriate restriction enzyme was based on relevant literature
information and took into consideration the number of expected fragments, the fraction of the
diploid genome sampled, and the expected number of reads required to obtain a sequencing
coverage of ~7X of sequencing coverage (PETERSON et al., 2012b). The library complexity
depends on the relation between the enzyme selected and the species’ genome under
investigation. Therefore, the level of DNA methylation sensitivity and recognition site size in
relation to the genome under study had to be tested (POLAND; RIFE, 2012).

We initially selected two enzymes that are insensitive to dam, dcm and CpG methylation
according to the manufacturer (NEB BioLabs). These enzymes were Pstl and Sbfl. In silico
cleavage of the chicken genome was performed with both Pstl and Sbfl enzymes. Genome
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cleavage with Pstl generated 811,951 fragments, while Sbfl generated 45,116 fragments.
Fragment size distribution obtained with Pstl showed a low amount of discreet size, which is
indicative of low repetitive fragments (DE DONATO et al., 2013) (Figure 2.1). Each enzyme
generated a different distribution of fragment lengths across the entire genome.

Fragments ranging between 200-500 bp were generated and mapped against chromosome
locations in the chicken genome (galGal 4; GGA). Pstl in silico digestion generated 159,673
fragments, which were evenly distributed across all the chromosomes, while Sbfl cleavage
generated 1,186 fragments (Supplementary Fig. S1 online). There is a tendency with the Pstl
cleavage to generate clusters with similar range of fragment lengths, particularly between 200
and 500 bp, which is an appropriate length for sequencing by the HiSeq Illumina platform
(QUAIL et al., 2012). Cleavage with Sbfl, however, generated fragments of a variety of sizes
and in lower quantity compared to Pstl (134.6 times less then Pstl cleavage) (Figure 2.1).
Importantly, 40% of the fragments generated by Sbfl are outside the range showed on Figure
2.1, representing fragments larger than 15 Mbps.
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Figure 2.1 - Comparison of patterns of genomic cleavage using Pstl or Sbfl restriction enzymes. For cleavage with
Pstl both the predicted (in silico) and the obtained pattern after sequencing are shown. Only the
predicted (is silico) pattern of cleavage is shown for Sbfl since the pattern generated did not satisfy
the requirements for being used in the CornellGBS. The region framed with dashed lines contain
fragments in the 200-500 bp length range, which is the range of interest for further Illumina
sequencing
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We also performed a comparison between the mapping of fragments (tags) generated
by the in silico cleavage (Predicted Pstl-Tags) and the tags generated after the in vitro cleavage
(Sequenced Pstl-Tags) of 462 individuals (Figure 2.1). In both cases the tags were aligned
against the chicken reference genome (Gallus gallus 4.0, NCBI). The number of Predicted Pstl-
Tags obtained was 811,951, while the Sequenced Pstl-Tags obtained were 287,819. Detailed
information on the size categories of the Predicted Pstl-Tags that were actually sequenced is
provided in Supplementary Table S1 online.

Agarose gel electrophoresis of the chicken genomic DNA digested with the Pstl and
Sbfl restriction enzymes revealed a more efficient cleavage with Pstl (see Supplementary Fig.
S2 online).

2.3.2 Sequencing and alignment

The 48-plex Pstl-digested libraries were run in 10 lanes of Illumina flow cells.
Approximately 3.6 x 10° short reads (100 bp) were generated. After quality trimming by the
SeqyClean tool (ZHBANNIKOV, 2013) approximately 1.8 x 10° reads (52%) were retained. A
high number of short fragments (< 50bp) sequenced were eliminated in the fragment size
filtering (37%), as well as contaminants (11%). Approximately 1.4 billion reads were retained
after application of the Tassel filter (reads > 64 bp and properly identified with barcodes).These
reads were distributed at an average of 145.6 (x26.5) million reads per lane (Figure 2.2). These
results represent 3.1 (£1.7) million reads per individual chicken, of which 3.0 (£1.7) million
reads were successfully mapped (plots including read count per animal are provided in
Supplementary Figure S4 online).
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Figure 2.2 - Distribution of the number of sequenced reads counted and mapped per flowcell lane
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The number of unique sequence tags (from 464 individuals altogether) that aligned
against the chicken reference genome (Gallus gallus 4.0, NCBI) was ~5.4 million and 92.8%
of them could be mapped. The average sequencing coverage depth was ~264 reads per tag
(locus) in these ~5.4 million unique tags.

These ~5.4 million unique sequence tags represent a 4.66% coverage of the whole
chicken-genome (~50 million bp). The average coverage for the 464 chickens was 5.6 X for the

targeted regions.

2.3.3 SNP discovery

From these ~5.4 million unique sequence tags, 327,240 SNPs were identified
considering a minimum minor allele frequency (mNMAF) of 1%. Two of the 464 individuals
showed a minimum taxon coverage (mnTCov) of less than 20% and were eliminated from the
analysis. The minimum site coverage (mnScov) filter was used to evaluate the taxon call rate.
The number of remaining Pstl-derived SNPs was 134,528 after applying a mnScov filter of
70%, and 67,096 SNPs after applying a mnScov filter of 90%. After filtering with a mnScov of
90% the average taxon call rate per individual was 97% (Figure 2.3).
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Figure 2.3 - Distribution of the 462 taxon call rates representing the percentage of total SNPs called. The x-axis
represents the 462 individuals (taxon) and the y-axis represents the taxon call rate

Additionally, we also tested a mnMAF of 0.05, which generated 300,777 SNPs, as well

as a combination of mnTCov of 20% and mnScov of 90%, which generated 61,618 SNPs.
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2.3.4 Comparison of genotyping methods and CornellGBS validation

When considering a mnMAF of 1% and mnScov filter of 90% the Pstl-derived SNPs are

shown to be separated by a distance of 15 Kb in average, with a median of 55 bp. This indicates

clusters of SNPs in regions represented by the cleaved areas (tags). A comparison among the

different genotyping methods is shown on Table 2.1, Figure 2.4 and Supplementary Table S4

online. The distances between SNPs ranged between 1 bp - 1.8 Mb (Table 2.1), and the majority

of the SNPs were separated by distances <1 Kb (Figure 2.4).

Table 2.1 - Basic statistical parameters of SNPs distance. SNPs were mapped against chromosome locations of the
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chicken genome after being detected with 600K Affymetrix, CornellGBS or 60K Illumina

Platform Mean (Kb) Median (Kb)  Min (bp) Max (Mb)

600K Affymetrix 1.7 1.2 1 1.4

CornellGBS 15 0.05 1 1.8

60K Illumina 21 18 1 2
Method

|| Affymetrix Chicken 600K
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Ilumina Chicken 0K
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Figure 2.4 - Distribution of distance ranges between SNPs. SNPs were mapped against chromosome locations of

the chicken genome after being detected with Affymetrix 600K, CornellGBS or Illumina Chicken
60K Beadchip. The x-axis represents the distances between adjacent SNPs (Kb) and the y-axis
represents the fraction of the total SNPs called
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Differences were found between SNP numbers and density (SNP/Mbp) inferred by the
three methods used for SNP detection, namely Affymetrix 600K, Cornell GBS and Illumina
chicken 60K bead chip (Supplementary Table S4 online). In order to test for differential
representation of the SNPs obtained across the chromosomes, the chicken genome was divided
into three categories: large chromosomes (GGAL-5, Z), corresponding to ~68% of the chicken
genome; medium-size chromosomes (GGAG6-10) corresponding to 15% of the chicken genome,
and microchromosomes corresponding to 17% of the chicken genome (HABERMANN et al.,
2001). The representation of SNPs in each chromosomal category is shown in Table 2.2.

The set of 67,096 SNP chromosomal positions obtained with the CornellGBS (mnMAF
1% and mnScov 90%) was compared to the 12,357,602 filtered SNPs from a WCGR dataset in
order to perform a validation of the method since both sets were obtained from the same 10
animals (TT and CC lines). The SNPs with more than one alternative allele (less frequent) were
eliminated from this analysis. A concordance of 83.91% (49,680) in the chromosomal positions
of the SNPs detected was observed between the two methods. We found that 92.64% of these
concordant markers had concordant genotypes between CornellGBS and WCGR datasets. Also,
the consistency in the calls of heterozygosity was tested between these two approaches. This
test was performed due to the general assumption that reduced representation methods, like
CornellGBS, have limitations in the calling of heterozygous SNPs (GLAUBITZ et al., 2014).
It was observed that 71.32% of all heterozygous SNPs evaluated here (149,741 genotype
comparisons) were validated against the WCGR dataset. However, 86.88% of the non-
concordant genotypes occurred because the CornellGBS considered the genotype as
homozygotic, and WCGR as heterozygtic. In addition, we found that when both methodologies
were able to call heterozygous (106,906 genotype comparisons), 99.90% of the genotypes were
in agreement. Interestingly, the number of heterozygous calls in the region assessed was similar
between the CornellGBS (112,435) and the WCGR (144,112) approaches, corresponding to
24.15% and 29.18%, respectively, of all the genotype comparisons.

Table 2.2 - Proportion of SNPs detected in each chromosomal size category after using three different genotyping
platforms: 600K Affymetrix, CornellGBS and 60K Illumina

Platform Large GGA% Medium GGA% Micro GGA %
600K Affymetrix 54.81 17.00 28.19
CornellGBS 33.50 16.37 50.13

60K Illumina 50.30 17.00 32.70
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2.3.5 Homozygous and heterozygous genetic variants

Out of 31 million possible genotypes (462 taxon x 67,096 sites), the proportion of
heterozygous SNPs was 31%, with 3.1% being missing data (see Supplementary Table S2
online). The average heterozygosity observed ranged between 9.7 - 48.5%, with 18% of
coefficient of variation (CV).

A lower proportion of heterozygous SNPs was found in both parental lines CC
(0.20+0.01) and TT (0.26+0.01), followed by the F, (0.31+ 0.05) and the F: generations
(0.32£0.10) (Table 2.3). The F1 generation had the highest CV due to the fact that it represents
a heterozygous population. The family F»>-7816 had a higher CV (25%) compared with the
other F> families due to the low heterozygous call rate for some individuals (25 from 94) in this

family.

Table 2.3 - SNP heterozygosity of the genotyped populations (parental, F; and F, generations)

Population Numper of Number Proportion cv
individuals Heterozygous SNPs heterozygous (SD)
Paternal CC 5 11888 0.20 (%0.01) 3%
Paternal TT 5 15244 0.26 (x0.01) 4%
Fi 8 20101 0.32 (x0.10) 30%
F2-7765 72 21658 0.33 (x0.03) 8%
F»-7810 82 20323 0.31 (x0.03) 11%
F»-7816 94 22016 0.34 (%0.09) 25%
Fo-7971 100 18865 0.29 (%0.05) 16%
F,-7978 96 19982 0.30 (%0.03) 11%

2.3.6 Functional Annotation

The unique set of 67,096 Pstl-derived SNPs (after filtering) from the 462 chickens were
annotated against the known genes from the ENSEMBL database (see the graphical
representation of SNPs distributed in genic and intergenic regions of the chicken genome on
Figure 2.5). Among the variants found, 20.7% (13,918) were new, while 79.3% (53,178) were
already described. Functional annotation of these novel SNPs was performed using the
chromosomal positions of the most recent update of chicken genome (Gallus gallus 4.0, NCBI)
as a reference. The results are available in the supplementary materials (Supplementary
Spreadsheet S1).
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Figure 2.5 - Karyotype of the SNP distribution in genic (red) and intergenic (blue) regions of the Gallus gallus
genome. The x-axis represents the chromosome size (Mbp). The y-axis represents the chromosomes

From these 67,096 Pstl-derived SNPs, 11,372 SNPs had multiple annotations (totalizing
78,399 annotations) as they could be considered into multiple variant classifications (Table 2.4).
The non-synonymous SNPs were analyzed by the SIFT algorithm, which predicts whether
genetic variants can affect protein function. This is performed by assessing the level of
conservation in homologous protein sequences (NG, 2003). The program predicted the SIFT
score for 650 SNPs from the 907 non-synonymous SNPs. From these 650 SNPs, 155 SNPs
(23.8%) were non-tolerated variants (SIFT score < 0.05) (see Supplementary Table S3 online).
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Table 2.4 - Annotation results of the complete set of 67,096 Pstl-derived SNPs (after filtering) obtained after
genotyping 462 chickens

Variants Totalno. %

All variants 78,399 100
Intronic 28,181 35.95
Intergenic 22,116 28.21
Exonic 2,590 3.30
Splicing 256 0.11
ncRNA 6 001
5-UTR 268 0.34
3-UTR 1,328 1.69
Upstream (1kb) 11,516 14.69
Downstream (1kb) 12,306 15.70

Exonic
Synonymous 1,671 64.52
Non-synonymous 907 35.02
Startlost 5 019
Stopgain 3 012
Stoplost 4 0.15

2.3.7 Mendelian inheritance of the SNPs

In addition to the SNP validation we also tested for Mendelian errors in the markers
obtained in each population used in this study. This test was performed in the complete dataset
of 67,096 Pstl-derived SNPs, as well as in the subset of 13,543 novel SNPs. The results are

shown in Table 2.5.

Table 2.5 - Assessment of Mendelian errors in the dataset of 67,096 Pstl-derived SNPs (after filtering) and in the
subset of 13,434 novel SNPs identified. Results are shown separately for each generation of animals
studied and for the different families within the F, generation population

N° of % of Mendelian Errors % of

Family Individuals Mendelian Errors markers (novelSNPs) markers
F1 8 6,488 + 2,835 9.7 1,313 + 567 9.7
F2 444 5947 + 1,169 8.9 1,216 + 609 9.0
F2-7765 72 5060 =+ 1,527 7.5 1,039 + 633 7.7
F2-7810 82 5,464 + 1,084 8.1 1,124 + 695 8.3
F2-7816 94 7,872 + 919 11.7 1,575 + 757 11.6
F2-7971 100 5,125 + 471 7.6 1,075 + 907 7.9
F2-7978 96 6,212 + 918 9.3 1,268 + 71 9.4

TotalAnalysed 452 67,096 13,543
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2.3.8 Genetic map construction

We performed a linkage analysis in which the SNPs were tested against the expected
segregation ratio. Three genotype combinations in the parental lines were informative for the
construction of a genetic map: two combinations when one parent was heterozygous and the
other was homozygous (AA x AB or AB x AA) and one combination when both parents were
heterozygous (AB x AB). The SNPs following each of these segregation patterns in the parents
were retained and markers with significant segregation distortion (P < 0.001, y2 test) were
removed from the map construction. A total of 6,037 SNPs were retained for linkage map
construction after filtering, with 387 of these SNPs being classified as female heterozygous,
2,143 SNPs classified as male heterozygous, and 3,507 SNPs classified as heterozygous in both
genders.

From the retained 6,037 Pstl-derived SNPs, 5,982 generated 53 linkage groups (LG)
that corresponded to the chromosomes GGA1-28 and Z (see Supplementary Fig. S5). We had
no informative markers for chromosomes GGA32 and GGAW LGs. From these 5,982 SNPs
that originated LGs, 5,842 markers formed 29 non-fragmented LGs, i.e. markers in agreement
with their respective described chromosomes (shown in the physical map, Figure 2.6). Of the
remaining markers, 140 formed fragmented LGs, while 55 were considered unlinked. Within
these 29 LGs originated, 73 markers were in disagreement with their respective LGs (Figure
2.6).
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Figure 2.6 - Whole-genome synteny between the physical maps obtained from 5,842 Pstl-derived SNPs that
formed non-fragmented LGs. Each line represents a connection between the chromosomal placement
of a particular marker in our linkage map (black; scale in cM) and a homologous sequence in the
physical map (non-black colors; scale in Mb)
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2.4 Discussion

CornellGBS is a widely employed method for genotyping large genome species because
it is simple, fast, specific, reproducible, and interrogates important regions of the genome that
are inaccessible to sequence capture approaches (HE et al., 2014). Although this methodology
was first reported in maize (ELSHIRE et al., 2011a), its application was recently expanded to
bovine (DE DONATO et al., 2013). Moreover, a similar technique called GGRS was recently
applied in chickens (LIAO et al., 2015). In the present study we have adapted the CornellGBS
successfully to be applied in chickens using a restriction enzyme that generates an appropriate
genomic shearing range for this species. This work describes for the first time the application
of the CornellGBS method for chicken genotyping. This is a cost-effective genotyping method
that was performed here in a large number of individuals (462 chickens).

The GBS approach involves four steps: (1) genomic DNA cleavage, (2) adapter ligation
with specific barcodes, (3) sequencing of short reads, and (4) bioinformatics analysis.

The first step in the method adaptation for its use in chickens is the selection of an
appropriate restriction enzyme to shear the chicken genome in a suitable range of fragments for
sequencing by the Illumina platform. We performed in silico (Figure 2.1) and in vitro (see
Supplementary Fig. S2 online) genomic fragmentation tests to compare the digestion profiles
of two restriction enzymes, Pstl and Sbfl.

The CornellGBS approach is flexible enough to be applied on different genomes.
However, the choice of a restriction enzyme that cleaves the DNA generating a suitable
fragment length range is of particular importance. Moreover, genomes of different species will
produce distinct cleavage patterns with the same enzyme, reason why optimization is required
for the genomic cleavage in each species (GLAUBITZ et al., 2014). It is also important to
consider whether the restriction enzyme is sensitive to DNA methylation in its restriction site
(POLAND; RIFE, 2012; GUERRERO-BOSAGNA, 2013). Pstl showed here the best
fragmentation profile among the two enzymes tested for cleaving the chicken genome, both in
vitro and in silico. The next step after the selection of the appropriate restriction enzyme was to
optimize the binding reactions between the fragments, adapters and barcodes.

After sequencing of the CornellGBS libraries the next step was the bioinformatics
analysis. Using the Tassel pipeline ~5.3 million of unique tags were obtained and aligned
against the last chicken reference genome (Gallus_gallus_4.0, NCBI). Although 48% of the
reads were discarded, which can be considered a drawback of CornellGBS approach (LIAO et

al., 2015), the number of unique tags obtained (1.4 billion) is sufficient for an accurate
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identification of SNPs. As a matter of comparison, a similar study generated ~0.5 million unique
tags using 47 individuals (DE DONATO et al., 2013). The multiplexing capability is an
advantage of the CornellGBS approach that increases the catalog size of unique tags.

Most of genotyping methods have limitations when it comes to detection of
heterozygous SNPs, due to the low coverage of these sites (QUAIL et al., 2012). For a coverage
of less than 5X per site per individual the probability that only one of the two chromosomes of
a diploid individual is sampled for a particular site is generally high (NIELSEN et al., 2011).
The tassel-GBS pipeline compensates low coverage data and under-calling of heterozygotes
with the redundant coverage of haplotypes at high marker density, which facilitates imputation
of missing genotypes (GLAUBITZ et al., 2014). This is possible because in the Tassel-GBS
pipeline the tag catalog is created from individuals pooled altogether, rather than from separate
individuals. The latter is the case for the Stacks software, a program commonly used to handle
GBS data (CATCHEN et al., 2011).

Different filtering parameters on SNP calling were tested in the present study. Since
using a mnMAF of 5% (Tassel default) generated 5,478 less SNPs than using a mnMAF of 1%,
we proceeded with a mnMAF of 1%. Moreover, because parental pure lines featuring only 5
individuals per strain were used, the previous mnMAF > 5% would eliminate many important
SNPs that might be present in the parental lines.

When considering a mnMAF of 1% and mnScov filter of 90%, our study generated a
reliable SNP dataset of 67,096 Pstl-derived SNPs, out of which 20.7% have not been previously
described in the dbSNP (based on the last update of the doSNP, NCBI, September 2015). A
previous study that used RAD-Seq in chickens (ZHAI et al., 2015) found 28,895 Hindlll-
derived SNPs candidates with 53.3% of them newly reported (based on a previous version of
dbSNP database, which contains fewer SNPs). Therefore, a reasonable number of novel SNPs
were obtained here using the CornellGBS approach (13,434).

In spite of the different SNP calling methodologies used (Stacks vs Tassel), the number
of Pstl-derived SNPs reported here was higher than HindllI-derived SNPs previously reported
(ZHAI et al., 2015). This is probably explained by the difference in the number of ‘tag counts’
observed after cleavage (in silico) by Hindlll (~700 K, as previously reported (ZHAI et al.,
2015)) and Pstl (~ 1.2 million, reported here), or by the larger number of genotyped animals in
the present study.

The chromosomal position of the SNPs identified in this study (using CornellGBS and
considering a mnMAF of 1% and mnScov filter of 90%) was compared with the Illumina
chicken 60K Beadchip (GROENEN et al., 2011) and with the 600K HD Affymetrix® Axion®
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genotyping array for chicken (KRANIS et al., 2013). We found that the average distances
between markers obtained using the CornellGBS or the 60K approaches were similar (15 and
21 Kb, respectively), although lower than with the 600K (1.7 Kb), which showed less distance
between markers.

Differences between mean and median were detected only using the CornellGBS
approach. This indicates that SNP cluster formation occurs in spite of the markers obtained by
the CornellGBS being well spread throughout the genome (Figure 2.5). With the 60K or the
600K panel, however, uniform SNP distribution occurs without cluster formation. Also,
differences between mean and median are not observed (Table 2.1). The detection of SNP
clusters by the Cornell GBS approach lead us to perform functional annotation of the markers
and compare the results between the methodologies tested. When the distribution of SNP
distances was evaluated (Figure 2.4) we noticed that the GBS and 600K approaches had a
similar proportion of SNPs that corresponded to the fraction of <1 Kb SNP distance between
markers. Within GBS clusters the SNP density was higher and approximately 76% of SNPs
were <5 Kb apart.

We also investigated SNP density differences related to chromosome size (see
Supplementary Table S4 online) using the three methodologies (CornellGBS, 60K Illumina and
600K Affymetrix). CornellGBS detected about one-third more SNPs than the other two
methods in regions of the microchromosomes GGA11-32 and W. The microchromosome
GGA16 showed a higher representation of SNPs using the CornellGBS approach compared to
the 60K panel (0.19% - 0.05%). The GGAW microchromosome in the CornellGBS approach
had two-thirds of SNP representation compared to the 600K Illumina panel. Interestingly,
SNPs in this microchromosome are not detected by the 60K panel. SNPs in the GGA32
microchromosome were detected only by the CornellGBS approach. Interestingly,
microchromosomes have 2-4 times higher gene density than macrochromosomes (SMITH et
al., 2000; HABERMANN et al., 2001) and ~48% of genes in microchromosomes have a high
CpG island content (MCQUEEN et al., 1996; MCQUEEN; SIRIACO; BIRD, 1998; SMITH,;
BURT, 1998; SMITH et al., 2000; HABERMANN et al., 2001). This suggests Pstl RE genomic
cleavage would be appropriated for DNA methylation profiling, since it apparently enriches for
regions of high CpG content.

A set of SNPs from the CornellGBS dataset obtained in our study was compared with a
WCGR SNPs dataset obtained from sequencing the same 10 animals. Substantial chromosomal
position (~84%) and genotype (~93%) concordances were observed between the two methods.

However, the concordance was reduced to ~71% when considering only the heterozygous
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SNPs. In spite of this, 99.90% of the genotypes were concordant in regions where both
methodologies were able to call heterozygous. Therefore, although the CornellGBS had fewer
calls of heterozygous in comparison with WCGR, those genotypes that are called are quite
reliable.

We also tested for Mendelian errors in the markers obtained in each population used in
this study. Mendelian inheritance errors are likely to result from erroneous genotype calls
(PILIPENKO et al., 2014). The errors found were <10% between the parental (Fo) and the F1
generation, and the same between the F1 and the F, generations. The exception is, family Fo-
7816 that presented slightly higher Mendelian errors (11.9%). These error rates are in
agreement with the low heterozygous call rate (0.90>call rate>0.95) and high heterozygous CV
(>15%) observed in individuals from this family (25 from 94) when compared to the others
four families (0.95>call rate>1.0). Therefore, the Mendelian errors observed were minimal and
do not compromise the quality of the genotyping performed in the present study. In addition,
the linkage map obtained from markers with Mendelian segregation obtained from the five F,
families were grouped in LGs. This grouping generated a fairly dense linkage map. These
markers (~99% of them) grouped according to their respective described chromosomes (Figure
2.6 and Supplementary Fig. S5).

We also found a small increase in the proportion of SNPs (3.3%) in exonic regions
compared to a recent functional classification of 15 million SNPs detected from diverse chicken
populations (2.2%) (GHEYAS et al., 2015), or when compared to the WCGR. These newly
discovered SNPs in exonic regions include a QTL region on chromosome 3 associated with
fatness in chickens (0.98%) (MOREIRA et al., 2015) and another on chromosome 2 associated
with muscle deposition (0.59%) (GODOQY et al., 2015). These exonic variants (2,590) were
classified into functional categories due to their potential to alter the tri-dimensional structure
and function of the translated protein (NG; HENIKOFF, 2003). These exonic variants detected
in the present study were classified as non-synonymous, startlost, startgain or stopgain (Table
2.4).

When comparing the CornellGBS and the 60K Illumina approaches (which have similar
SNP density), it was observed that 60K Illumina detects half (51.6%) of the exonic variants
detected by CornellGBS. However, that difference is reduced when only non-synonymous
SNPs are considered (907 SNPs detected by CornellGBS; 888 SNPs detected by 60K Illumina).
When comparing CornellGBS and 600K Illumina, the proportions of SNPs in exonic regions
are similar (3.3% and 3.5%, respectively). This shows that Cornell GBS is as powerful as the
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600K panel in detecting SNPs in exonic regions, which is remarkable considering that the 600K
panel was designed prioritizing coding regions (KRANIS et al., 2013).

On the downside, CornellGBS seems to be less powerful in detecting SNPs in intergenic
regions compared to either the 60K Illumina or the 600K Affymetrix approaches (28.21%,
43.68% and 41.77% respectively). On the other hand, CornellGBS presents a high proportion
of SNPs in regions 1kb up- or downstream from UTR compared to either the 60K Illumina or
the 600K Affymetrix approaches (14.69 and 15.70; 7.94 and 7.54; 7.58 and 7.28; respectively).
This is interesting because UTR regions are highly relevant for transcriptional regulation (CHO
etal., 1998).

These results indicate that the Cornell GBS approach shows a pattern of SNP profiling
that is unique in comparison with other approaches. The unique characteristics of Cornell GBS
include better interrogation of specific functional regions, of microchromosomes and of CpG-
rich regions compared to other methodologies (60K Illumina or 600K Affymetrix). In
particular, we believe that the restriction enzyme used in the present study (Pstl) is responsible
for enriching the cleaved genome for microchromosomic or CpG-rich regions.

The present study shows for the first time the application of CornellGBS in chickens,
which will allow for the use of a cost-effective (~US$50/sample) genotyping approach in
poultry. The method described is capable of performing a reliable SNP profiling in chickens
using a large number of animals. In the present study a number of SNPs were discovered, which
were well spread throughout all the chromosomes of the chicken genome (Figure 2.5). This
study describes a highly multiplexed sequencing method in chicken, with potential for

application in studies involving genome-wide association and genomic selection.
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