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RESUMO 

 

Desvendando associações genéticas importantes e perfis de metilação diferenciais 

utilizando sequenciamento reduzido do genoma da galinha 

 

A galinha é um organismo modelo ideal para melhorar o entendimento de diversas 

áreas da pesquisa como: filogenética, embriologia, biomedicina, pecuária, e tem sido 

recentemente sugerida como um modelo promissor para estudos em epigenética. Na pecuária, 

as galinhas são fonte de proteína para os seres humanos e tem sido alvo de seleção para alcançar 

um alto padrão de produção com base no melhoramento genético tradicional. Mas agora, 

estamos na era genômica e epigenômica e as atenções devem ser voltadas para o uso de novas 

ferramentas para melhorar a seleção não só pensando em produção, mas também na saúde e 

bem-estar dos animais. O uso de abordagens moleculares, tem sido uma ferramenta 

fundamental para compreender modelos biológicos e melhorar as estratégias de seleção 

baseadas na informação genômica em programas de melhoramento. Abordagens moleculares, 

também tem contribuído para a compreensão da história evolutiva desses modelos e os 

mecanismos genéticos e epigenéticos envolvidos no processo de evolução e diversificação 

genética das galinhas. Neste contexto, tecnologias evoluíram para produção de dados de 

sequenciamento de alto rendimento por sequenciamento de próxima geração (NGS). NGS 

forneceu uma grande quantidade de informação a ser utilizado para diversos fins, como para 

detectar polimorfismos de nucleotídeo único (SNPs) e perfis de metilação diferencial do DNA 

em galinhas. NGS tem permitido também o desenvolvimento de painéis de SNP para testes de 

associações genômica ampla (GWAS) com fenótipos específicos de interesse. Embora NGS 

tem poder suficiente para detectar polimorfismos informativos, o seu elevado custo o torna 

impraticável para ser utilizado em GWAS ou estudos de metilação diferencial por 

sequenciamento de DNA metilado por imunoprecipitação (MeDIPseq). A procura de um 

método de genotipagem eficiente, simples, econômico e confiável para descoberta, 

caracterização e validação de SNPs, foi a razão para o desenvolvimento deste estudo. 

Utilizamos sequenciamento do genoma reduzido por enzima de restrição (RE) que cliva o 

genoma alvo para identificação de SNPs nestas bibliotecas reduzidas e aplicação deste método 

em GWAS. Em seguida, para combinar a representação reduzida do genoma com o método 

MeDIPS, desenvolvemos uma nova abordagem para a realização de estudos de metilação 

diferencial utilizando as bibliotecas reduzidas. Estes trabalhos permitiram a identificação de 

SNPs associados com características de desempenho e janelas de metilação diferencial 

relacionados a diferentes condições de manejo em galinhas. 

 

Palavras-chave: Galinha; GWAS; MeDIPS; Melhoramento animal; Saúde e bem-estar animal 
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ABSTRACT 

 

Unraveling important genetic associations and differential methylation profiles in 

chickens using reduced genome sequencing approach 

 

Chickens are ideal model organism to improve understanding of several research areas 

as phylogenetic, embryology, biomedicine, livestock, and have recently been suggested as a 

promising model for epigenetic studies. In the livestock area, chickens are source of protein to 

humans and had been selected to achieve a high production standards based on genetic breeding 

by the traditional selection.  We are now in the genomics and epigenomics era and it is time be 

concern about the use of new tools to improve selection not only thinking about production, but 

also in the health and welfare of animals. The use of molecular approaches, have been a 

fundamental tool to understand biological models and improve selection strategies based on 

genomic information in breeding programs. Molecular approaches have also contributed to 

understanding of the evolutionary history of these models and the genetics and epigenetics 

mechanisms involved in evolution process and genetic diversification of chickens. In this 

context, many technologies have emerged to produce high-throughput data using Next-

generation sequencing (NGS) approaches. NGS provided a large amount of information for 

diverse purposes such as to detect single nucleotide polymorphisms (SNPs), and methylated 

DNA profiles in chickens. In addition, NGS has allowed the development of pre-designed SNP 

arrays for genome-wide association studies (GWAS) with specific phenotypes of interest. 

Moreover, although NGS has enough power to detect informative polymorphisms, its high cost 

makes it impractical to be used in GWAS and Methylated DNA immunoprecipitation 

sequencing (MeDIPseq) studies. The demand for an economical, efficient, simple-step and 

reliable genome-wide method of SNPs discovery, validation and characterization, was the 

reason for the development of this study. We applied reduced representation sequence by 

restriction enzyme (RE) cleavage of target chicken genome to be applied in GWAS. Thereafter, 

to combine the reduced representation of the genome with MeDIPseq method, we developed a 

novel approach to perform differential methylation studies using reduced libraries. These works 

allowed us to identify SNPs associated with performance traits and differential methylation 

windows related to different stress conditions in chickens. 

 

Keywords: Animal breeding; Animal health and welfare; Chicken; GWAS; MeDIPS  
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1 INTRODUCTION 

Chicken is an ideal model organism for phylogenetic, embryology (BURT, 2007) studies 

and biomedical research (WU; KAISER, 2011). The chicken protein is known to has low-fat, 

high unsaturation degree of fatty acids and low sodium and cholesterol levels that responds to 

the current consumer demand (PETRACCI; CAVANI, 2011). Therefore, the domestic chicken 

(Gallus gallus domesticus) has been one of the main sources of high-quality protein to humans 

(MIAO et al., 2013). To achieve this high-quality of meat production standards, great advances 

in nutrition, management and genetic selection in animal breeding programs has been applied 

(JORGE et al., 2008). In the genetic background, the use of molecular approaches, has been a 

fundamental tool to understand genes that control traits of commercial interest to improve 

selection strategies based on genomic information in breeding programs (JORGE et al., 2008). 

Molecular approaches also have contributed to understanding the evolutionary history of 

chickens and the genetics and epigenetics mechanisms involved in evolution process and 

genetic diversification of this species (RUBIN et al., 2010). This understanding is important in 

a humanitarian context to improve  the animal´s needs and their rearing environments 

(ROSTAGNO, 2009). 

To understand the molecular mechanisms governing these interested traits, especially 

from the last decade, high-throughput data by Next-generation sequencing (NGS) approaches 

have emerged providing a large amount of information to be used for diverse purposes such as 

to detect single nucleotide polymorphisms (SNPs) (GROENEN et al., 2009) and methylated 

DNA profiles (GUERRERO-BOSAGNA, 2013) in chickens. These markers can be responsible 

for functional alterations in the chicken genome (GHEYAS et al., 2015), or they can be located 

at neutral genomic regions being fundamental in many gene processes and activities 

(BIÉMONT; VIEIRA, 2006). Also, NGS has allowed the development of pre-designed SNP 

arrays, to widespread testing of associations of SNPs with specific phenotypes of interest 

(KRANIS et al., 2013). However, pre-designed SNP arrays have limited coverage on 

functionally important genomic regions in experimental populations (LI et al., 2008). 

Moreover, although NGS has enough power to detect informative polymorphisms, its high cost 

makes it impractical to be used in animal breeding, genome-wide association studies (GWAS) 

(PETERSON et al., 2012; DE DONATO et al., 2013) and Methylated DNA 

immunoprecipitation (MeDIPS) (GUERRERO-BOSAGNA, 2013) studies.  

The demand for a high cost-effective genotyping method was the reason for the 

development of the second chapter presented here that is titled “High-throughput and Cost-
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effective chicken genotyping using Next-Generation Sequencing”. The idea was to combine an 

economical, efficient, simple-step and unbiased genome-wide method of SNP discovery, 

validation and characterization using reduced representation sequence by restriction enzyme 

(RE) cleavage of target chicken genome (GLAUBITZ et al., 2014; ZHAI et al., 2015). Thus, 

from a previously described CornellGBS approach in maize (ELSHIRE et al., 2011),  we 

performed a detailed step-by-step description of the complete reproducible protocol 

optimization based on the reduced chicken genome sequencing using PstI RE. From 462 

animals genotyped using this protocol, we carried out the preparation of the third chapter that 

deals with the manipulation of SNP database generated by CornellGBS approach, SNP 

imputation, validation and GWAS with performance traits. This third chapter was titled 

“Genome-wide association study for performance traits in chickens using genotyping by 

sequencing approach”.  

For our surprise, the results from the second chapter presented here indicates that the 

CornellGBS approach showed a pattern of SNP profiling that makes it unique in comparison 

with other approaches. Such profiling includes not only an enrichment of different functional 

regions, but also a high interrogation of microchromosomes that are CpG-rich regions 

(MCQUEEN et al., 1996; SMITH; BURT, 1998; SMITH et al., 2000; HABERMANN et al., 

2001) and higher gene density than macrochromosomes (SMITH; BURT, 1998; SMITH et al., 

2000; HABERMANN et al., 2001). This leads us to strongly consider using this methodology 

for the development of another studies involving access of methylation profiles of individuals. 

This was the part of the PhD process from where it was originated the forth chapter of this thesis 

and that was held at Linköping University (LIU), Sweden. 

The forth chapter of this thesis was titled “Epigenetic marks of rearing conditions detected 

in red blood cells of adult hens”. In this paper, we presented one application in animal welfare 

area, considering that chickens have recently been suggested as a promising model for 

epigenetic studies (FRÉSARD et al., 2013). Due to the need for sequencing cost reduction and 

the advantages in reducing the genome with PstI RE in the epigenetic scope, we created a new 

approach that combines the CornellGBS approach, described here and MEDIP approach 

previously described elsewhere (GUERRERO-BOSAGNA; JENSEN, 2015). This new 

approach was named GeDI (Genome Digestion) MeDIP (Methylated DNA 

Immunoprecipitation) sequencing and, it was performed to handle with differential methylation 

profile among animal reared in different environmental conditions as an ethical issue in the 

research. The ethical issue of inducing unnecessary stress in animals and detrimental practices 

in animal industry has consequences from a human health perspective (ROSTAGNO, 2009). 
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Therefore, we collected samples from chickens submitted to different stress levels generated by 

these raring conditions (cage-reared chickens vs aviary reared-chickens) that had long term 

effects in the blood epigenome. For that, we investigated epigenetic marks of stress in red blood 

cells of chickens reared in cages, in which social isolation stress occurs, versus a complex 

condition of open aviary.  

This thesis refers to the optimization of an approach to generate specific genic and CpG 

enriched profiles of sequenced fragments. This special profile led us the creation of a new 

method using the reduced representation libraries to epigenetics studies. Therefore, 

CornellGBS and GeDI MeDIP methods that enriches both, genes and CpGs, allowed us their 

application in two situations. First, to detect SNPs to be applied in GWAS with performance 

traits in chicken and second, to detect genomic windows enriched with methylated DNA to 

perform differential methylation profile in different rearing conditions of chickens.  
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2 HIGH-THROUGHPUT AND COST-EFFECTIVE CHICKEN GENOTYPING USING 

NEXT-GENERATION SEQUENCING 

 

Abstract 

Chicken genotyping is becoming common practice in conventional animal breeding 

improvement. Despite the power of high-throughput methods for genotyping, their high cost 

limits large scale use in animal breeding and selection. In the present paper we optimized the 

CornellGBS, an efficient and cost-effective genotyping by sequence approach developed in 

plants, for its application in chickens. Here we describe the successful genotyping of a large 

number of chickens (462) using CornellGBS approach. Genomic DNA was cleaved with the 

PstI enzyme, ligated to adapters with barcodes identifying individual animals, and then 

sequenced on Illumina platform. After filtering parameters were applied, 134,528 SNPs were 

identified in our experimental population of chickens. Of these SNPs, 67,096 had a minimum 

taxon call rate of 90%.   Interestingly, 20.7% of these SNPs have not been previously reported 

in the dbSNP. Moreover, 92.6% of these SNPs were concordant with a previous Whole Chicken-

genome re-sequencing dataset used for validation purposes. The application of CornellGBS in 

chickens showed high performance to infer SNPs, particularly in exonic regions and 

microchromosomes. This approach represents a cost-effective (~US$50/sample) and powerful 

alternative to current genotyping methods, which has the potential to improve whole-genome 

selection (WGS), and genome-wide association studies (GWAS) in chicken production. 

  

Keywords: Chicken; GBS; GWAS; Next-generation sequencing; PstI; Restriction enzyme 

 

2.1 Introduction 

Next-generation sequencing (NGS) analyses have been increasingly employed in 

production animals, particularly in chickens. NGS generates large amounts of 

genomic information that can be used to detect genetic variants  related to functional alterations 

(GHEYAS et al., 2015). Single Nucleotide polymorphisms (SNPs) are the most abundant type 

of molecular markers and their high genomic density facilitates their interrogation by different 

genetic approaches. These include large-scale genome association analyses, genetic analysis of 

simple and complex disease states, and population genetic studies (BROOKES, 1999). 

The use of NGS has enabled to identify SNPs across genomes and allowed the 

development of pre-designed SNP chips for widespread testing of SNP associations with 

specific phenotypes of interest (KRANIS et al., 2013). However, pre-designed SNP chips have 

limited coverage on functionally important genomic regions in experimental populations. SNP 

chips generally contain a limited number of SNPs in coding or regulatory regions, rarely contain 

SNPs with significant effects (LI et al., 2008), and include non-polymorphic SNPs, which 

difficults tracking their inheritance in specific pedigrees (BURT, 2004). On the other hand, 

although NGS has enough power to detect informative polymorphisms, its high cost makes its 
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use impractical  in animal breeding and genome-wide selection  (ELSHIRE et al., 2011a; 

GLAUBITZ et al., 2014). 

The use of an economical, efficient, and simple-step method of SNPs discovery, 

validation and characterization that uses reduced representation sequencing generated by 

restriction enzyme cleavage of target genomes can provide an unbiased genome-wide set of 

SNP markers in different genomes (GLAUBITZ et al., 2014), including chickens (ZHAI et al., 

2015). Reduced representation methods can be grouped in three classes: (1) reduced-

representation sequencing, which includes methods such as reduced-representation libraries 

(RRLs) and complexity reduction of polymorphic sequences (CRoPS); (2) restriction-site-

associated DNA sequencing (RAD-Seq); and (3) low coverage genotyping, which includes 

methods such as multiplexed shotgun genotyping (MSG),  genotyping by sequencing from 

Cornell (CornellGBS) (DAVEY et al., 2011), and genome reducing and sequencing (GGRS) 

(LIAO et al., 2015). Of these reduced representation methods, RAD-Seq (ZHAI et al., 2015) 

and GGRS (LIAO et al., 2015) have been employed in chickens (DAVEY et al., 2011). The 

possibility to reduce the genome complexity using restriction enzymes that generate DNA 

fragments of specific ranges (KUMAR; YOU; CLOUTIER, 2012) expedite re-sampling and 

produces coverage levels that are acceptable for solid SNP calling (ALTSHULER et al., 2000). 

CornellGBS is a simple reproducible method based on the Illumina sequencing platform  

(DE DONATO et al., 2013) that requires low input of DNA (100 ng). This method allows for 

a highly multiplexed approach, which is achieved through the incorporation of unique barcodes 

that identify individual samples in a DNA pool to be sequenced. This approach avoids the low 

sequence diversity in which the restriction enzyme overhangs appear at the same position in 

every read, by employing barcodes of variable lengths (DAVEY et al., 2011). In addition to the 

methodological simplicity of simultaneously discovering and characterizing polymorphisms, 

the availability of an open-source analysis tool is a major advantage of the CornellGBS 

approach (DE DONATO et al., 2013). This methodology is currently being successfully applied 

in numerous species by a large number of researchers (GLAUBITZ et al., 2014). However, to 

the best of our knowledge this method has not been applied in chicken. 

The present study aims at constructing reduced genome representation sequencing 

libraries using the CornellGBS approach in chickens. In order to optimize the use of 

CornellGBS in chickens, cleavage of the chicken genome was tested with two different 

restriction enzymes, PstI and SbfI. Two different experimental animal populations were used in 

the present study: 444 chickens from five families of the EMBRAPA F2 Chicken Resource 

Population (Concórdia, SC, Brazil), 8 chickens from the F1 generation and 18 chickens from 
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the parental line (F0). In the present article, we have optimized the use of CornellGBS in 

chickens, which was achieved in part by using the PstI restriction enzyme for genomic cleavage. 

We also provide a new set of chicken SNPs that were detected by using this approach. The 

application of this methodology will open many possibilities for downstream applications in 

chickens and facilitate SNP discovery in specific populations of chickens. The relevance of 

applying a cost-effective genotyping method in chickens is enormous, given their world-wide 

economic relevance as production animal (UNITED STATES DEPARTMENT OF 

AGRICULTURE - USDA, 2015).  

 

2.2 Methods 

 

All experimental protocols employed in the present study that relate to animal 

experimentation were performed in accordance with the resolution number 010/2012 approved 

by the Embrapa Swine and Poultry Ethics Committee on Animal Utilization, in order to ensure 

compliance with international guidelines for animal welfare.  

 

2.2.1 Sample selection and preparation 

 

This study was conducted using 464 chickens from an experimental population originated 

and maintained at the dependencies of the Brazilian Agricultural Research Agency, from 

EMBRAPA; Concórdia, SC, Brazil. The population includes 446 chickens from five F2 families 

of the EMBRAPA F2 Chicken Resource Population, 10 chickens from their parental lines (5 

from each line), and 8 chickens from the F1 generation. 

The F1 generation individuals were originated from a cross between a parental broiler line 

(TT) and a layer line (CC), both developed at EMBRAPA. To generate the F2 population 

(TCTC), one F1 male (TC) and three F1 females (TC) were selected from different F1 families 

and were randomly mated with non-related animals.  A more detailed description of the 

population has been previously provided (NONES et al., 2006; ROSÁRIO et al., 2009).  

Genomic DNA was extracted from blood samples following proteinase K digestion 

(Promega), DNA precipitation in absolute ethanol, DNA washing in 70% ethanol and 

resuspension in ultrapure water. DNA samples were quantified in a fluorometer (Qubit® 

Fluorometric Quantitation). Sample quality was assessed using the Nanodrop®2000c 

spectrophotometer and DNA integrity was checked in 1% agarose gel. 
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2.2.2 Restriction enzymes selection and adapters design 

 

In silico cleavage of DNA with PstI and SbfI was performed in R using the following 

Bioconductor (HUBER et al., 2015) packages: Biostrings, BSgenome.Ggallus.UCSC.galGa14, 

plyr, ggplot2, reshape2 and scales (https://github.com/) (see Supplementary Fig. S1 online).  

The in silico cleavage was used to generate a dataset of fragments mapped against the galGal4 

genome.  The dataset of fragments that are predicted to be generated after in silico genomic 

cleavage with PstI was named ‘Predicted PstI-Tags’. The dataset of fragments that are predicted 

to be generated after in silico genomic cleavage with SbfI was named ‘Predicted SbfI-Tags’. 

The dataset of fragments that were obtained from the in vitro cleavage of the DNA from all the 

462 individuals analyzed was named ‘Sequenced PstI-Tag’ and was generated using sam2bed 

from BEDOPS v2.4.15 tool. All the fragments either from in silico or in vitro analyses were 

aligned against the chicken reference genome (Gallus gallus 4.0, NCBI).   

We also performed in vitro genomic cleavage of chicken DNA samples with the 

abovementioned restriction enzymes (see Supplementary Fig. S2 online), according to the New 

England BioLabs® manufacturer´s protocol.  

The adapters were designed using the GBS Barcode Generator tool (Deena 

Bioinformatics)  taking into consideration the barcode sequence, in order to maximize the 

balance of the bases at each position in the defined set (ELSHIRE et al., 2011a).  

 

2.2.3 Preparation of sequencing libraries 

 

After PstI digestion, adapters were linked to the cohesive ends of the digested DNA with 

T4 DNA ligase (New England BioLabs®). Approximately 24 samples were polled and purified 

using QIAquick PCR Purification Kit® (Quiagen). The fragments of each library were amplified 

by PCR using specific primers for sequencing in the Illumina platform.  The purification of 

PCR reactions was performed using the Agencourt AMPure XP PCR purification kit® (Beckman 

Coulter) (see Supplementary Fig. S3 online). Each library was quantified by quantitative PCR 

using the KAPA Library Quantification Kit (KAPA Biosystems). Two pools of ~24 samples 

containing equal concentration of DNA were sequenced per flowcell lane totaling ~48 samples 

sequenced with different barcodes in each flowcell lane. Sequencing libraries were diluted to 

16 pM and clustered using the cBOT (Illumina) equipment. Paired-end sequencing with a read 

length of 100 bp was performed using the HiSeq2500 instrument from Illumina. For the analysis 

we used the HiSeq Illumina real-time analysis (RTA) software v1.18.61 update. This software 
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generates a color matrix for the correction of the reads. This is important because HiSeq 

sequencer uses different lasers to detect G/T and A/C nucleotides. In each cycle, at least one of 

two nucleotides for each color channel must be read in order to maintain the color balance for 

each base in the index read sequenced. With this upgrade the color matrix still uses the first 

four cycles to generate data, like the last version of RTA. However, in the current version the 

initial matrix is discarded after the template generation is complete. Then, the first 11 cycles of 

intensity data are used for final estimation of the correction matrix. In order to minimize the 

issues related to the construction of this matrix, we optimized our protocol using barcodes larger 

than 4 bp to avoid imbalance between the first bases. The complete laboratory procedures are 

provided in Supplementary Data S1 online. 

 

2.2.4 Sequence processing 

 

Quality trimming was performed in short sequences with SeqyClean tool v. 1.9.10 

(ZHBANNIKOV, 2013) using a Phred quality score ≥24 and a fragment size ≥50. The quality 

of the reads was checked before and after the cleaning by FastQC v.0.11.3 (ANDREWS, 2010). 

The Tassel v.3.0 program was used to process the data (GLAUBITZ et al., 2014). For 

each sample stored in a FASTQ file there is one identification map key file. This key file has 

the matching information for the sample, flowcell and lane. The reads that begin with one of 

the expected barcodes (found in the key map) are immediately followed by the expected cut 

site remnant (CTGCA for PstI). Fragments are then trimmed to 64 bases and grouped into a 

single list called "master" by the TASSEL-GBS Discovery Pipeline.  

 

2.2.5 Alignment and Genetic variants identification 

 

The alignment of quality-trimmed reads  was performed using Bowtie2 tool v.2.2.5 

(LANGMEAD; SALZBERG, 2012) against the current chicken reference sequence 

(Gallus_gallus 4.0, NCBI). The aligned reads were then imputed in the Tassel v.3.0 default 

pipeline (GLAUBITZ et al., 2014) for SNP identification. We filtered the polymorphisms 

initially identified based on the sequencing quality criteria and on the bases identified. The 

following filters were applied: i) minimum taxon call rate (mnTCov) of 20%, which is a 

minimum SNP call rate for a taxon to be included in the output, with the  call rate being the 

proportion of the SNP genotypes for a non-N taxon (where N=missing);  ii) minimum site 

coverage (mnScov) of 90%, which is a minimum taxon call rate for a SNP to be included in the 
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output, with the taxon call rate being the proportion of the taxa with non-N genotypes for that 

SNP; iii) mismatch rate (misMat) of 5% to minimize the appearance of duplicated SNPs; iv) 

minimum minor allele frequency (mnMAF) of 0.01. A more detailed description of the default 

filters has been provided by Glaubitz et al. (2014). 

The coverage depth of the “unique sequence tags” file was determined using Samtools 

v.0.1.19 (LI et al., 2009) with the “depth” option. 

 

2.2.6 Genotyping methods comparison and CornellGBS data validation 

 

We compared the chromosomal positions of the SNPs obtained using the CornellGBS 

approach with the positions obtained using the following SNP platforms for chickens: Illumina 

Chicken 60K Beadchip (GROENEN et al., 2011) and 600K HD Affymetrix®Axion® 

genotyping array for chicken (KRANIS et al., 2013). Bioconductor (HUBER et al., 2015) 

(GEOquery) and CRAN (data.table, rdrop2 and reshape) repository packages for R were used 

for the bioinformatics analysis. We validated our method comparing the SNPs obtained 

(59,205) against a SNP dataset of Whole Chicken-genome re-sequencing (WCGR) dataset 

(BOSCHIERO et al., unpublished results) previously generated with Illumina sequencing with 

~11X of sequencing coverage. This dataset contained 12,357,602 filtered SNPs and was 

generated from the same 10 chickens used in this study (TT and CC parental lines). The 

comparison between these two datasets was performed using CRAN (data.table and reshape2) 

repository packages for R. More details of the sequencing process of  WCGR SNP data can be 

found in recent publications (GODOY et al., 2015; MOREIRA et al., 2015). 

 

2.2.7 Functional annotation 

 

The set of unique SNPs obtained from 462 chickens using the Tassel v.3.0 tool was 

annotated using the Variant Effect Predictor (VEP) tool v.71 (MCLAREN et al., 2010). The 

SIFT (sorting intolerant from tolerant) scores for the SNPs (NG; HENIKOFF, 2003) were used 

to predict whether a substitution of an amino acid affects protein function, which is based on 

sequence homology and the physical properties of amino acids. If the SIFT score lies at or 

below the 0.05 threshold, the substitution causing the amino acid was considered non tolerated. 
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2.2.8 Mendelian inheritance of the SNPs  

 

The Mendelian error testing was performed using SNP & Variation Suite v8.4 

(BOZEMAN, 2016). 

 

2.2.9 Genetic map construction 

 

SNPs present in all families were filtering using Tassel program (GLAUBITZ et al., 

2014). A pseudo-testcross population was used to construct the F1 linkage map. For the linkage 

analysis, the SNPs were first tested against the expected segregation ratio. The informative 

genotypes combination were selected for the map construction. Markers with significant 

segregation distortion (P < 0.001, χ2 test) were removed.  

The genetic map was constructed using R/OneMap package (MARGARIDO; SOUZA; 

GARCIA, 2007) and JoinMap v.4.1 (VAN OOIJEN, 2011). The R/OneMap was used to join 

the markers in the linkage groups (LGs). The minimum LOD values of 8 and a maximum 

recombination fraction of 0.35 were used to organize the markers in each LG with the regression 

mapping algorithm and the Kosambi mapping function (KOSAMBI, 1943). 

The R/OmicCircus package (HU et al., 2014) was  used to plot the relationship between 

the chromosomal and linkage marker groups formed by the abovementioned genetic map  

 

2.3 Results 

 

2.3.1 Enzyme selection and library fragment size distribution 

 

The selection of the appropriate restriction enzyme was based on relevant literature 

information and took into consideration the number of expected fragments, the fraction of the 

diploid genome sampled, and the expected number of reads required to obtain a sequencing 

coverage of ~7X of  sequencing coverage (PETERSON et al., 2012b). The library complexity 

depends on the relation between the enzyme selected and the species’ genome under 

investigation. Therefore, the level of DNA methylation sensitivity and recognition site size in 

relation to the genome under study had  to be tested (POLAND; RIFE, 2012).  

We initially selected two enzymes that are insensitive to dam, dcm and CpG methylation 

according to the manufacturer (NEB BioLabs). These enzymes were PstI and SbfI. In silico 

cleavage of the chicken genome was performed with both PstI and SbfI enzymes. Genome 
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cleavage with PstI generated 811,951 fragments, while SbfI generated 45,116 fragments. 

Fragment size distribution obtained with PstI showed a low amount of discreet size, which is 

indicative of low repetitive fragments (DE DONATO et al., 2013) (Figure 2.1). Each enzyme 

generated a different distribution of fragment lengths across the entire genome.  

Fragments ranging between 200-500 bp were generated and mapped against chromosome 

locations in the chicken genome (galGal 4; GGA). PstI in silico digestion generated 159,673 

fragments, which were evenly distributed across all the chromosomes, while SbfI cleavage 

generated 1,186 fragments (Supplementary Fig. S1 online). There is a tendency with the PstI 

cleavage to generate clusters with similar range of fragment lengths, particularly between 200 

and 500 bp, which is an appropriate length for sequencing by the HiSeq Illumina platform 

(QUAIL et al., 2012). Cleavage with SbfI, however, generated fragments of a variety of sizes 

and in lower quantity compared to PstI (134.6 times less then PstI cleavage) (Figure 2.1). 

Importantly, 40% of the fragments generated by Sbfl are outside the range showed on Figure 

2.1, representing fragments larger than 15 Mbps.  

 

 

Figure 2.1 - Comparison of patterns of genomic cleavage using PstI or SbfI restriction enzymes. For cleavage with 

PstI both the predicted (in silico) and the obtained pattern after sequencing are shown. Only the 

predicted (is silico) pattern of cleavage is shown for SbfI since the pattern generated did not satisfy 

the requirements for being used in the CornellGBS. The region framed with dashed lines contain 

fragments in the 200-500 bp length range, which is the range of interest for further Illumina 

sequencing 
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We also performed a comparison between the mapping of fragments (tags) generated 

by the in silico cleavage (Predicted PstI-Tags) and the tags generated after the in vitro cleavage 

(Sequenced PstI-Tags) of 462 individuals (Figure 2.1). In both cases the tags were aligned 

against the chicken reference genome (Gallus gallus 4.0, NCBI). The number of Predicted PstI-

Tags obtained was 811,951, while the Sequenced PstI-Tags obtained were 287,819. Detailed 

information on the size categories of the Predicted PstI-Tags that were actually sequenced is 

provided in Supplementary Table S1 online.  

Agarose gel electrophoresis of the chicken genomic DNA digested with the PstI and 

SbfI restriction enzymes revealed a more efficient cleavage with PstI (see Supplementary Fig. 

S2 online).  

 

2.3.2 Sequencing and alignment 

 

The 48-plex PstI-digested libraries were run in 10 lanes of Illumina flow cells. 

Approximately 3.6 x 109 short reads (100 bp) were generated. After quality trimming by the 

SeqyClean tool (ZHBANNIKOV, 2013) approximately 1.8 x 109 reads (52%) were retained. A 

high number of short fragments (< 50bp) sequenced were eliminated in the fragment size 

filtering (37%), as well as contaminants (11%). Approximately 1.4 billion reads were retained 

after application of the Tassel filter (reads > 64 bp and properly identified with barcodes).These 

reads were distributed at an average of 145.6 (±26.5) million reads per lane (Figure 2.2). These 

results represent 3.1 (±1.7) million reads per individual chicken, of which 3.0 (±1.7) million 

reads were successfully mapped (plots including read count per animal are provided in 

Supplementary Figure S4 online).  

 

 

Figure 2.2 - Distribution of the number of sequenced reads counted and mapped per flowcell lane 
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The number of unique sequence tags (from 464 individuals altogether) that aligned 

against the chicken reference genome (Gallus gallus 4.0, NCBI) was ~5.4 million and 92.8% 

of them could be mapped. The average sequencing coverage depth was ~264 reads per tag 

(locus) in these ~5.4 million unique tags.  

These ~5.4 million unique sequence tags represent a 4.66% coverage of the whole 

chicken-genome (~50 million bp). The average coverage for the 464 chickens was 5.6 X for the 

targeted regions.  

 

2.3.3 SNP discovery 

 

From these ~5.4 million unique sequence tags, 327,240 SNPs were identified 

considering a minimum minor allele frequency (mnMAF) of 1%. Two of the 464 individuals 

showed a minimum taxon coverage (mnTCov) of less than 20% and were eliminated from the 

analysis. The minimum site coverage (mnScov) filter was used to evaluate the taxon call rate. 

The number of remaining PstI-derived SNPs was 134,528 after applying a mnScov filter of 

70%, and 67,096 SNPs after applying a mnScov filter of 90%. After filtering with a mnScov of 

90% the average taxon call rate per individual was 97% (Figure 2.3).  

 

 

Figure 2.3 - Distribution of the 462 taxon call rates representing the percentage of total SNPs called. The x-axis 

represents the 462 individuals (taxon) and the y-axis represents the taxon call rate 

 

Additionally, we also tested a mnMAF of 0.05, which generated 300,777 SNPs, as well 

as a combination of mnTCov of 20% and mnScov of 90%, which generated 61,618 SNPs. 
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2.3.4 Comparison of genotyping methods and CornellGBS validation 

 

When considering a mnMAF of 1% and mnScov filter of 90% the PstI-derived SNPs are 

shown to be separated by a distance of 15 Kb in average, with a median of 55 bp. This indicates 

clusters of SNPs in regions represented by the cleaved areas (tags). A comparison among the 

different genotyping methods is shown on Table 2.1, Figure 2.4 and Supplementary Table S4 

online. The distances between SNPs ranged between 1 bp - 1.8 Mb (Table 2.1), and the majority 

of the SNPs were separated by distances <1 Kb (Figure 2.4).  

 

Table 2.1 - Basic statistical parameters of SNPs distance. SNPs were mapped against chromosome locations of the 

chicken genome after being detected with 600K Affymetrix, CornellGBS or 60K Illumina 

Platform Mean (Kb) Median (Kb) Min (bp) Max (Mb) 

600K Affymetrix 1.7 1.2 1 1.4 

CornellGBS 15 0.05 1 1.8 

60K Illumina  21 18 1 2 

 

 

Figure 2.4 - Distribution of distance ranges between SNPs. SNPs were mapped against chromosome locations of 

the chicken genome after being detected with Affymetrix 600K, CornellGBS or Illumina Chicken 

60K Beadchip. The x-axis represents the distances between adjacent SNPs (Kb) and the y-axis 

represents the fraction of the total SNPs called 
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Differences were found between  SNP numbers and density (SNP/Mbp) inferred by the 

three methods used for SNP detection, namely Affymetrix 600K, Cornell GBS and Illumina 

chicken 60K bead chip (Supplementary Table S4 online). In order to test for differential 

representation of the SNPs obtained across the chromosomes, the chicken genome was divided 

into three categories: large chromosomes (GGA1-5, Z), corresponding to ~68% of the chicken 

genome; medium-size chromosomes (GGA6-10) corresponding to 15% of the chicken genome, 

and microchromosomes corresponding to 17% of the chicken genome (HABERMANN et al., 

2001). The representation of SNPs in each chromosomal category is shown in Table 2.2.  

The set of 67,096 SNP chromosomal positions obtained with the CornellGBS (mnMAF 

1% and mnScov 90%) was compared to the 12,357,602 filtered SNPs from a WCGR dataset in 

order to perform a validation of the method since both sets were obtained from the same 10 

animals (TT and CC lines). The SNPs with more than one alternative allele (less frequent) were 

eliminated from this analysis. A concordance of 83.91% (49,680) in the chromosomal positions 

of the SNPs detected was observed between the two methods. We found that 92.64% of these 

concordant markers had concordant genotypes between CornellGBS and WCGR datasets. Also, 

the consistency in the calls of heterozygosity was tested between these two approaches. This 

test was performed due to the general assumption that reduced representation methods, like 

CornellGBS, have limitations in the calling of heterozygous SNPs (GLAUBITZ et al., 2014). 

It was observed that 71.32% of all heterozygous SNPs evaluated here (149,741 genotype 

comparisons) were validated against the WCGR dataset. However, 86.88% of the non-

concordant genotypes occurred because the CornellGBS considered the genotype as 

homozygotic, and WCGR as heterozygtic. In addition, we found that when both methodologies 

were able to call heterozygous (106,906 genotype comparisons), 99.90% of the genotypes were 

in agreement. Interestingly, the number of heterozygous calls in the region assessed was similar 

between the CornellGBS (112,435) and the WCGR (144,112) approaches, corresponding to 

24.15% and 29.18%, respectively, of all the genotype comparisons.  

 

Table 2.2 - Proportion of SNPs detected in each chromosomal size category after using three different genotyping 

platforms: 600K Affymetrix, CornellGBS and 60K Illumina 

Platform Large GGA% Medium GGA% Micro GGA % 

600K Affymetrix 54.81 17.00 28.19 

CornellGBS 33.50 16.37 50.13 

60K Illumina  50.30 17.00 32.70 
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2.3.5 Homozygous and heterozygous genetic variants 

Out of 31 million possible genotypes (462 taxon x 67,096 sites), the proportion of 

heterozygous SNPs was 31%, with 3.1% being missing data (see Supplementary Table S2 

online). The average heterozygosity observed ranged between 9.7 - 48.5%, with 18% of 

coefficient of variation (CV). 

A lower proportion of heterozygous SNPs was found in both parental lines CC 

(0.20±0.01) and TT (0.26±0.01), followed by the F2 (0.31± 0.05) and the F1 generations 

(0.32±0.10) (Table 2.3). The F1 generation had the highest CV due to the fact that it represents 

a heterozygous population. The family F2-7816  had a higher CV (25%) compared with the 

other F2 families due to the low heterozygous call rate for some individuals (25 from 94) in this 

family.  

 

Table 2.3 - SNP heterozygosity of the genotyped populations (parental, F1 and F2 generations) 

Population 
Number of 

individuals 

Number 

Heterozygous SNPs 

Proportion 

heterozygous (SD) 
CV 

Paternal CC 5 11888 0.20 (±0.01) 3% 

Paternal TT 5 15244 0.26 (±0.01) 4% 

F1 8 20101 0.32 (±0.10) 30% 

F2-7765 72 21658 0.33 (±0.03) 8% 

F2-7810 82 20323 0.31 (±0.03) 11% 

F2-7816 94 22016 0.34 (±0.09) 25% 

F2-7971 100 18865 0.29 (±0.05) 16% 

F2-7978 96 19982 0.30 (±0.03) 11% 

 

2.3.6 Functional Annotation 

 

The unique set of 67,096 PstI-derived SNPs (after filtering) from the 462 chickens were 

annotated against the known genes from the ENSEMBL database (see the graphical 

representation of SNPs distributed in genic and intergenic regions of the chicken genome on 

Figure 2.5). Among the variants found, 20.7% (13,918) were new, while 79.3% (53,178) were 

already described. Functional annotation of these novel SNPs was performed using the 

chromosomal positions of the most recent update of chicken genome (Gallus gallus 4.0, NCBI) 

as a reference. The results are available in the supplementary materials (Supplementary 

Spreadsheet S1). 
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Figure 2.5 - Karyotype of the SNP distribution in genic (red) and intergenic (blue) regions of the Gallus gallus 

genome. The x-axis represents the chromosome size (Mbp). The y-axis represents the chromosomes 

 

From these 67,096 PstI-derived SNPs, 11,372 SNPs had multiple annotations (totalizing 

78,399 annotations) as they could be considered into multiple variant classifications (Table 2.4). 

The non-synonymous SNPs were analyzed by the SIFT algorithm, which predicts whether 

genetic variants can affect protein function. This is performed by assessing the level of 

conservation in homologous protein sequences (NG, 2003). The program predicted the SIFT 

score for 650 SNPs from the 907 non-synonymous SNPs. From these 650 SNPs, 155 SNPs 

(23.8%) were non-tolerated variants (SIFT score ≤ 0.05) (see Supplementary Table S3 online). 
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Table 2.4 - Annotation results of the complete set of 67,096 PstI-derived SNPs (after filtering) obtained after 

genotyping 462 chickens 

Variants Total no. % 

All variants 78,399 100 

     Intronic 28,181 35.95 

     Intergenic 22,116 28.21 

     Exonic 2,590 3.30 

     Splicing 256 0.11 

     ncRNA 6 0.01 

     5'-UTR 268 0.34 

     3'-UTR 1,328 1.69 

     Upstream (1kb) 11,516 14.69 

     Downstream (1kb) 12,306 15.70 

Exonic   

     Synonymous 1,671 64.52 

     Non-synonymous 907 35.02 

     Startlost 5 0.19 

     Stopgain 3 0.12 

     Stoplost 4 0.15 

 

2.3.7 Mendelian inheritance of the SNPs  

 

In addition to the SNP validation we also tested for Mendelian errors in the markers 

obtained in each population used in this study. This test was performed in the complete dataset 

of 67,096 PstI-derived SNPs, as well as in the subset of 13,543 novel SNPs. The results are 

shown in Table 2.5.  

 

Table 2.5 - Assessment of Mendelian errors in the dataset of 67,096 PstI-derived SNPs (after filtering) and in the 

subset of 13,434 novel SNPs identified. Results are shown separately for each generation of animals 

studied and for the different families within the F2 generation population 

Family 

No of 

Individuals Mendelian Errors 

% of 

markers 

Mendelian Errors 

(novelSNPs) 

% of 

markers 

F1 8 6,488 ± 2,835 9.7 1,313 ± 567 9.7 

F2 444 5,947 ± 1,169 8.9 1,216 ± 609 9.0 

      F2-7765 72 5,060 ± 1,527 7.5 1,039 ± 633 7.7 

      F2-7810 82 5,464 ± 1,084 8.1 1,124 ± 695 8.3 

      F2-7816 94 7,872 ± 919 11.7 1,575 ± 757 11.6 

      F2-7971 100 5,125 ± 471 7.6 1,075 ± 907 7.9 

      F2-7978 96 6,212 ± 918 9.3 1,268 ± 71 9.4 

TotalAnalysed 452 67,096       13,543       
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2.3.8 Genetic map construction 

 

We performed a linkage analysis in which the SNPs were tested against the expected 

segregation ratio. Three genotype combinations in the parental lines were informative for the 

construction of a genetic map: two combinations when one parent was heterozygous and the 

other was homozygous (AA × AB or AB × AA) and one combination when both parents were 

heterozygous (AB × AB). The SNPs following each of these segregation patterns in the parents 

were retained and markers with significant segregation distortion (P < 0.001, χ2 test) were 

removed from the map construction. A total of 6,037 SNPs were retained for linkage map 

construction after filtering, with 387 of these SNPs being classified as female heterozygous, 

2,143 SNPs classified as male heterozygous, and 3,507 SNPs classified as heterozygous in both 

genders. 

From the retained 6,037 PstI-derived SNPs, 5,982 generated 53 linkage groups (LG) 

that corresponded to the chromosomes GGA1-28 and Z (see Supplementary Fig. S5). We had 

no informative markers for chromosomes GGA32 and GGAW LGs. From these 5,982 SNPs 

that originated LGs, 5,842 markers formed 29 non-fragmented LGs, i.e. markers in agreement 

with their respective described chromosomes (shown in the physical map, Figure 2.6). Of the 

remaining markers, 140 formed fragmented LGs, while 55 were considered unlinked. Within 

these 29 LGs originated, 73 markers were in disagreement with their respective LGs (Figure 

2.6). 

 
Figure 2.6 - Whole-genome synteny between the physical maps obtained from 5,842 PstI-derived SNPs that 

formed non-fragmented LGs. Each line represents a connection between the chromosomal placement 

of a particular marker in our linkage map (black; scale in cM) and a homologous sequence in the 

physical map (non-black colors; scale in Mb) 
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2.4 Discussion 

 

CornellGBS is a widely employed method for genotyping large genome species because 

it is simple, fast, specific, reproducible, and interrogates important regions of the genome that 

are inaccessible to sequence capture approaches (HE et al., 2014). Although this methodology 

was first reported in maize (ELSHIRE et al., 2011a), its application was recently expanded to 

bovine (DE DONATO et al., 2013). Moreover, a similar technique called GGRS was recently 

applied in chickens (LIAO et al., 2015). In the present study we have adapted the CornellGBS 

successfully to be applied in chickens using a restriction enzyme that generates an appropriate 

genomic shearing range for this species. This work describes for the first time the application 

of the CornellGBS method for chicken genotyping. This is a cost-effective genotyping method 

that was performed here in a large number of individuals (462 chickens). 

The GBS approach involves four steps: (1) genomic DNA cleavage, (2) adapter ligation 

with specific barcodes, (3) sequencing of short reads, and (4) bioinformatics analysis.  

The first step in the method adaptation for its use in chickens is the selection of an 

appropriate restriction enzyme to shear the chicken genome in a suitable range of fragments for 

sequencing by the Illumina platform. We performed in silico (Figure 2.1) and in vitro (see 

Supplementary Fig. S2 online) genomic fragmentation tests to compare the digestion profiles 

of two restriction enzymes, PstI and SbfI.  

The CornellGBS approach is flexible enough to be applied on different genomes. 

However, the choice of a restriction enzyme that cleaves the DNA generating a suitable 

fragment length range is of particular importance. Moreover, genomes of different species will 

produce distinct cleavage patterns with the same enzyme, reason why optimization is required 

for the genomic cleavage in each species (GLAUBITZ et al., 2014). It is also important to 

consider whether the restriction enzyme is sensitive to DNA methylation in its restriction site 

(POLAND; RIFE, 2012; GUERRERO-BOSAGNA, 2013). PstI showed here the best 

fragmentation profile among the two enzymes tested for cleaving the chicken genome, both in 

vitro and in silico. The next step after the selection of the appropriate restriction enzyme was to 

optimize the binding reactions between the fragments, adapters and barcodes. 

After sequencing of the CornellGBS libraries the next step was the bioinformatics 

analysis. Using the Tassel pipeline ~5.3 million of unique tags were obtained and aligned 

against the last chicken reference genome (Gallus_gallus_4.0, NCBI). Although 48% of the 

reads were discarded, which can be considered a drawback of CornellGBS approach (LIAO et 

al., 2015), the number of unique tags obtained (1.4 billion) is sufficient for an accurate 
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identification of SNPs. As a matter of comparison, a similar study generated ~0.5 million unique 

tags using 47 individuals (DE DONATO et al., 2013). The multiplexing capability is an 

advantage of the CornellGBS approach that increases the catalog size of unique tags.  

Most of genotyping methods have limitations when it comes to  detection of 

heterozygous SNPs, due to the low coverage of  these sites (QUAIL et al., 2012). For a coverage 

of less than 5X per site per individual the probability that only one of the two chromosomes of 

a diploid individual is sampled  for a particular site is generally high (NIELSEN et al., 2011). 

The tassel-GBS pipeline compensates low coverage data and under-calling of heterozygotes 

with the redundant coverage of haplotypes at high marker density, which facilitates imputation 

of missing genotypes (GLAUBITZ et al., 2014). This is possible because in the Tassel-GBS 

pipeline the tag catalog is created from individuals pooled altogether, rather than from separate 

individuals. The latter is the case for the Stacks software, a program commonly used to handle 

GBS data (CATCHEN et al., 2011).  

Different filtering parameters on SNP calling were tested in the present study. Since 

using a mnMAF of 5% (Tassel default) generated 5,478 less SNPs than using a mnMAF of 1%, 

we proceeded with a mnMAF of 1%. Moreover, because parental pure lines featuring only 5 

individuals per strain were used, the previous mnMAF ≥ 5% would eliminate many important 

SNPs that might be present in the parental lines. 

When considering a mnMAF of 1% and mnScov filter of 90%, our study generated a 

reliable SNP dataset of 67,096 PstI-derived SNPs, out of which 20.7% have not been previously 

described in the dbSNP (based on the last update of the dbSNP, NCBI, September 2015). A  

previous study that used RAD-Seq in chickens (ZHAI et al., 2015) found 28,895 HindIII-

derived SNPs candidates with 53.3% of them newly reported (based on a previous version of 

dbSNP database, which contains  fewer SNPs). Therefore, a reasonable number of novel SNPs 

were obtained here using the CornellGBS approach (13,434). 

In spite of the different SNP calling methodologies used (Stacks vs Tassel), the number 

of PstI-derived SNPs reported here was higher than HindIII-derived SNPs previously reported 

(ZHAI et al., 2015). This is probably explained by the difference in the number of ‘tag counts’ 

observed after cleavage (in silico) by HindIII (~700 K, as previously reported (ZHAI et al., 

2015)) and PstI (~ 1.2 million, reported here), or by the larger number of genotyped animals in 

the present study.  

The chromosomal position of the SNPs identified in this study (using CornellGBS and 

considering a mnMAF of 1% and mnScov filter of 90%)  was compared with the Illumina 

chicken 60K Beadchip (GROENEN et al., 2011) and with the 600K HD Affymetrix®Axion® 
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genotyping array for chicken (KRANIS et al., 2013). We found that the average distances 

between markers obtained using the CornellGBS or the 60K approaches were similar (15 and 

21 Kb, respectively), although lower than with the 600K (1.7 Kb), which showed less distance 

between markers.  

Differences between mean and median were detected only using the CornellGBS 

approach. This indicates that SNP cluster formation occurs in spite of the markers obtained by 

the CornellGBS being well spread throughout the genome (Figure 2.5). With the 60K or the 

600K panel, however, uniform SNP distribution occurs without cluster formation. Also, 

differences between mean and median are not observed (Table 2.1). The detection of SNP 

clusters by the Cornell GBS approach lead us to perform functional annotation of the markers 

and compare the results between the methodologies tested. When the distribution of SNP 

distances was evaluated (Figure 2.4) we noticed that the GBS and 600K approaches had a 

similar proportion of SNPs that corresponded to the fraction of <1 Kb SNP distance between 

markers. Within GBS clusters the SNP density was higher and approximately 76% of SNPs 

were <5 Kb apart. 

We also investigated SNP density differences related to chromosome size (see 

Supplementary Table S4 online) using the three methodologies (CornellGBS, 60K Illumina and 

600K Affymetrix). CornellGBS detected about one-third more SNPs than the other two 

methods in regions of the microchromosomes GGA11-32 and W. The microchromosome 

GGA16 showed a higher representation of SNPs using the CornellGBS approach compared to 

the 60K panel (0.19% - 0.05%). The GGAW microchromosome in the CornellGBS approach 

had two-thirds of SNP representation compared to the 600K Illumina panel.  Interestingly, 

SNPs in this microchromosome are not detected by the 60K panel. SNPs in the GGA32 

microchromosome were detected only by the CornellGBS approach. Interestingly, 

microchromosomes have 2-4 times higher gene density than macrochromosomes (SMITH et 

al., 2000; HABERMANN et al., 2001) and ~48% of genes in microchromosomes  have a high 

CpG island content (MCQUEEN et al., 1996; MCQUEEN; SIRIACO; BIRD, 1998; SMITH; 

BURT, 1998; SMITH et al., 2000; HABERMANN et al., 2001). This suggests PstI RE genomic 

cleavage would be appropriated for DNA methylation profiling, since it apparently enriches for 

regions of high CpG content.  

A set of SNPs from the CornellGBS dataset obtained in our study was compared with a 

WCGR SNPs dataset obtained from sequencing the same 10 animals. Substantial chromosomal 

position (~84%) and genotype (~93%) concordances were observed between the two methods. 

However, the concordance was reduced to ~71% when considering only the heterozygous 
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SNPs. In spite of this, 99.90% of the genotypes were concordant in regions where both 

methodologies were able to call heterozygous. Therefore, although the CornellGBS had fewer 

calls of heterozygous in comparison with WCGR, those genotypes that are called are quite 

reliable.  

We also tested for Mendelian errors in the markers obtained in each population used in 

this study. Mendelian inheritance errors are likely  to result from  erroneous genotype calls 

(PILIPENKO et al., 2014). The errors found were <10% between the parental (F0) and the F1 

generation, and the same between the F1 and the F2 generations. The exception is, family F2-

7816 that presented slightly higher Mendelian errors (11.9%). These error rates are in 

agreement with the low heterozygous call rate (0.90>call rate>0.95) and high heterozygous CV 

(>15%) observed in individuals from this family (25 from 94) when compared to the others 

four families (0.95>call rate>1.0). Therefore, the Mendelian errors observed were minimal and 

do not compromise the quality of the genotyping performed in the present study. In addition, 

the linkage map obtained from markers with Mendelian segregation obtained from the five F2 

families were grouped in LGs. This grouping generated a fairly dense linkage map. These 

markers (~99% of them) grouped according to their respective described chromosomes (Figure 

2.6 and Supplementary Fig. S5). 

We also found a small increase in the proportion of SNPs (3.3%) in exonic regions 

compared to a recent functional classification of 15 million SNPs detected from diverse chicken 

populations (2.2%) (GHEYAS et al., 2015), or when compared to the WCGR. These newly 

discovered SNPs in exonic regions include a  QTL region on chromosome 3 associated with 

fatness in chickens (0.98%) (MOREIRA et al., 2015) and another  on chromosome 2 associated 

with muscle deposition (0.59%) (GODOY et al., 2015). These exonic variants (2,590) were 

classified into functional categories due to their potential  to alter the tri-dimensional structure 

and function of the translated protein (NG; HENIKOFF, 2003). These exonic variants detected 

in the present study were classified as non-synonymous, startlost, startgain or stopgain (Table 

2.4).  

When comparing the CornellGBS and the 60K Illumina approaches (which have similar 

SNP density), it was observed that 60K Illumina detects half (51.6%) of the exonic variants 

detected by CornellGBS.  However, that difference is reduced when only non-synonymous 

SNPs are considered (907 SNPs detected by CornellGBS; 888 SNPs detected by 60K Illumina).  

When comparing CornellGBS and 600K Illumina, the proportions of SNPs in exonic regions 

are similar (3.3% and 3.5%, respectively). This shows that Cornell GBS is as powerful as the 
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600K panel in detecting SNPs in exonic regions, which is remarkable considering that the 600K 

panel  was designed prioritizing coding regions (KRANIS et al., 2013).  

On the downside, CornellGBS seems to be less powerful in detecting SNPs in intergenic 

regions compared to either the 60K Illumina or the 600K Affymetrix approaches (28.21%, 

43.68% and 41.77% respectively). On the other hand, CornellGBS presents a high proportion 

of SNPs in regions 1kb up- or  downstream  from UTR compared to either the 60K Illumina or 

the 600K Affymetrix approaches (14.69 and 15.70; 7.94 and 7.54; 7.58 and 7.28; respectively). 

This is interesting because UTR regions are highly relevant for transcriptional regulation (CHO 

et al., 1998).  

These results indicate that the Cornell GBS approach shows a pattern of SNP profiling 

that is unique in comparison with other approaches. The unique characteristics of Cornell GBS 

include better interrogation of specific functional regions, of microchromosomes and of CpG-

rich regions compared to other methodologies (60K Illumina or 600K Affymetrix). In 

particular, we believe that the restriction enzyme used in the present study (PstI) is responsible 

for enriching the cleaved genome for microchromosomic or CpG-rich regions. 

The present study shows for the first time the application of CornellGBS in chickens, 

which will allow for the use of a cost-effective (~US$50/sample) genotyping approach in 

poultry. The method described is capable of performing a reliable SNP profiling in chickens 

using a large number of animals. In the present study a number of SNPs were discovered, which 

were well spread throughout all the chromosomes of the chicken genome (Figure 2.5). This 

study describes a highly multiplexed sequencing method in chicken, with potential for 

application in studies involving genome-wide association and genomic selection.  
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3 GENOME-WIDE ASSOCIATION STUDY FOR PERFORMANCE TRAITS IN 

CHICKENS USING GENOTYPE BY SEQUENCING APPROACH 

 

Abstract 

Performance traits are economically important and are targets for selection in breeding 

programs, especially in the poultry industry. To identify regions on the chicken genome 

associated with performance traits, different genomic approaches have been applied in the last 

years. The aim of this study was the application of CornellGBS approach (134,528 SNPs 

generated from a PstI restriction enzyme) on Genome-Wide Association Studies (GWAS) in an 

outbred F2 chicken population. We have validated 91.7% of these 134,528 SNPs after 

imputation of missed genotypes.  Out of those, 20 SNPs were associated with feed conversion, 

one was associated with body weight at 35 days of age (P<7.86E-07) and 93 were suggestively 

associated with a variety of performance traits (P <1.57E-05). The majority of these SNPs 

(86.2%) overlapped with previously mapped QTL for the same performance traits and some of 

the SNPs also showed novel potential QTL regions. The results obtained in this study have 

indicated their importance as basis for further refinements of regions controlling performance 

traits. 

 

Keywords: Chicken; GBS; GWAS; Next-generation sequencing; PstI; Restriction enzyme; 

Selection 

 

3.1 Introduction 

 

Production efficiency in the poultry industry is constantly improving as a result of 

selection for growth rate, feed efficiency and carcass traits for broilers, and egg production and 

quality traits for layers (BLACKBURN, 2006; FULTON, 2012). The understanding of genomic 

information of loci controlling those traits are important to improvement of selection 

efficiencies of  breeding programs (FULTON, 2012). 

Therefore, the population used in this study was developed in 1999 for QTL mapping 

by Embrapa Suínos e Aves. Several studies have been conducted in this population using 

markers randomly distributed in the genome (microsatellites), which have allowed the 

identification of several QTLs for production traits (NONES et al., 2006, 2012; AMBO et al., 

2008, 2009; CAMPOS et al., 2009). Following these, some of the studies have focused their 

attention on the identification of SNPs in functional and positional candidate genes and to test 

their association on target QTL regions (BOSCHIERO et al., 2013; FELÍCIO et al., 2013a, 

2013b; PÉRTILLE et al., 2015) . With the advent of next-generation sequencing (NGS), it was 

possible to identify a global SNP profile and to perform genome-wide association studies 

(GWAS) to find novel QTL regions and also to refine the previously published regions 

(GODOY et al., 2015; MOREIRA et al., 2015). Parallel to our group researches, several 
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manuscripts have been published in this field related with: QTLs mapping (TATSUDA; 

FUJINAKA, 2001; KONING et al., 2003; IKEOBI et al., 2004; ZHOU et al., 2006; NASSAR; 

GORAGA; BROCKMANN, 2012, 2013), SNP identification in candidate genes (NIE; 

ZHANG; LEI, 2003; SHEN et al., 2012),  SNP identification in target QTLs (AHSAN et al., 

2013; ROUX et al., 2014; LI et al., 2015) and GWAS (XIE et al., 2012; LUO et al., 2013a, 

2013b; MORRIS et al., 2013; PARK et al., 2013; SUN et al., 2013, 2014) using the chicken as 

a model. 

Despite the high-throughput data generation by NGS, which have facilitated the 

identification of SNPs in several populations, the use of this method for GWAS is still a 

limitation. This is caused by the high cost involved with the generation of data to be applied in 

a large number of individuals. To solve this high cost problem, SNPs panels and arrays were 

designed to be applied in GWAS (GROENEN et al., 2011; KRANIS et al., 2013). However, 

some important regions in the genome are inaccessible to sequence capture approaches (HE et 

al., 2014) mainly because they are based on predesigned SNP profiles. To overcome those 

limitations, and to present a unique SNP profile, we used the PstI-derived SNPs dataset from 

CornellGBS optimized approach. This dataset was originated from a SNP call from the reduced 

representation of the sequenced genome (~5%) through  PstI restriction enzyme (PÉRTILLE et 

al., 2016). This SNP dataset is reliable and reproducible, showing a unique profile of SNPs with 

microchromosome enrichment (PÉRTILLE et al., 2016) that contains 2-4 times higher gene 

density than macrochromosomes (SMITH et al., 2000; HABERMANN et al., 2001).   

The aim of this study was to identify genetic markers using PstI-derived SNPs dataset, 

and further use that information to conduct a GWAS with performance traits in chickens. In 

addition, we have performed a linkage disequilibrium (LD) analyses in the parental, F1 and F2 

generations, to better understand the segregation of haplotype blocks, and the population 

structure, from the associated and suggestively associated SNPs identified. Finally, we have 

compared the location of these mentioned SNPs with known QTLs, with the objective to 

validate and to refine the regions known QTLs. 

 

3.2 Methods 

 

All experimental protocols employed in the present study that relate to animal 

experimentation were performed in accordance with the resolution number 010/2012 approved 

by the Embrapa Swine and Poultry Ethics Committee on Animal Utilization to ensure 

compliance with international guidelines for animal welfare.  
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3.2.1 Animals and Phenotypes 

 

This study was conducted using 464 chickens from a F2 populations originated from a 

reciprocal cross-experimental population from Embrapa Swine and Poultry National Research 

Center, Concórdia, SC, Brazil. We also included in the analysis, 10 chickens from their parental 

lines TT and CC (5 from each one), and eigth from the F1 generation. This F2 population was 

developed for QTL mapping studies, and was originated from the crossing of seven males from 

a broiler line (TT) and seven females from a layer line (CC), resulting in seven full-sib families 

(F1 generation). Then, twenty-one F1 females were artificially inseminated with seven F1 males 

(3:1 ratio) to generate the F2. The F2 population comprised seven paternal half-sib families 

composed of three full-sib families of approximately 100 individuals each, produced in 17 

hatches, totaling 2,063 F2 chickens (ROSÁRIO et al., 2009). . For this study, we selected the 

five most informative families based on the previously QTL studies (AMBO et al., 2009; 

PÉRTILLE et al., 2015; BARON et al., 2011).  

The TT broiler line was selected over six generation to improve body weight, feed 

conversion, carcass and breast yields, viability, fertility, eclodibility, reduction of abdominal 

fat and metabolic syndromes (ROSÁRIO et al., 2009). The CC layer line was selected over 

eight generation to improve egg production, egg weight, feed conversion, viability, sexual 

maturity, fertility, eclodibility, egg quality and reduction of body weight (ROSÁRIO et al., 

2009). 

The F2 chickens were reared as broilers with free access to corn and soybean meal-based 

diet and water up to 42 days of age. From 35 to 41 days, they were transferred to cages to collect 

feed intake, and to computate the conversion and efficiency. Body weight was recorded at 1 

(birth weight), 35, 41 and 42 (after fasting) days of age. The body weight (BW) at 41 days of 

age was collected at the end of the conversion measurement and, BW42 days was collected 

after 6-h fasting period and transportation to the slaughterhouse. More details were previously 

provided (NONES et al., 2006; ROSÁRIO et al., 2009; PÉRTILLE et al., 2015).  We analysed 

these six performance traits in this study (feed conversion, feed intake and feed efficiency 

between 35 to 41 days, birth weight, and body weight at 35 and 41 days of age).  A total of 23 

missed values from the selected traits were imputed by mean using Tassel v.5.2.26 tool 

(GLAUBITZ et al., 2014) among the 446 F2 animals selectect to be evaluated in this study. 
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3.2.2 DNA, genotypic data and imputation 

 

Genomic DNA was cleaved with the PstI enzyme, ligated to adapters with barcodes 

identifying individual animals, and then sequenced on Illumina platform. After filtering 

parameters were applied, 134,528 SNPs were identified from 462 individuals in our 

experimental population of chickens using minimum minor allele frequency (mnMAF) of 1%, 

minimum taxon coverage (mntCov) of 20% of and minimum site coverage (mnScov) of 70% 

filter parameters. All procedures to obtain the data were previously described (PÉRTILLE et 

al., 2016). After filtering parameters, the number of missing genotypes increased from 0.9 to 

5.8 million. This number represents SNPs identified multiplied for the number of individuals 

genotyped (67,096 derived PstI-SNPs x 462 individuals using 90% of loci call rate and 134,528 

derived PstI-SNPs x 462 individuals using 70% of loci call rate). The imputation of missing 

genotypes was performed using Beagle 4.1 software (BROWNING; BROWNING, 2007) using 

default parameters, which uses empirical LD model. This model adapts to the local structure in 

the data using iterative approach to haplotype phasing in which an initial prediction of haplotype 

phase is made, then the model is fit, and improved estimates of haplotype phase are obtained 

and the model is refit (BROWNING; BROWNING, 2007). 

 

3.2.3 SNPs validation 

 

The validation was performed by the comparison of the filtered 134,528 PstI-derived 

SNPs dataset with the 600K Affymetrix® HD genotyping array SNP dataset using five 

individuals from F2-7810 family. The SNPs in both datasets were located on GGA1-28, 32, W 

and Z chromosomes on the Gallus-gallus-4.0 reference genome. The validation standards used 

in this study were based on a methodology previously proposed (ECK et al., 2009) considering 

chromosomal positions and genotype concordances. With these concordances, we estimate the 

accuracy for homozygous and heterozygous SNPs. 

 

3.2.4 Principal component analysis 

 

The principal component analyses (PCA) of imputed genotype data were performed using 

Tassel v.5.2.26 (GLAUBITZ et al., 2014) considering five principal components. This tool 

transforms a set of correlated variables into successive orthogonal PCs accounted for the 

maximum variance providing a way to highlight groups of individuals differing at the level of 
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minor allele frequency (GLAUBITZ et al., 2014). The PCA graph was produced using the plot 

function in R 2.13.2 software (http://www.r-project.org/). 

 

3.2.5 Genome-Wide Association Study 

 

The compressed mixed linear model (MLM) implemented in TASSEL v.5.2.26 software 

(BRADBURY et al., 2007) was used for GWAS. The statistical model is represented by the 

following form: 

 

𝑦 = 𝑿𝛽 + 𝒁𝑢 + 𝑒                                                                                                                    (1) 

 

where y is the vector of the dependent variables, 𝛽  is the vector containing fixed effects, 

including the sex (male/female), hatch (1-17) and SNP effects, and the covariate body weight 

at 35 days for traits measured from 35 to 41 days of age (feed intake, feed efficiency and feed 

conversion); 𝑢  is the vector of random additive genetic effects from background QTL for 

individuals, 𝑋 and Z are design matrices, and e is the vector of random residuals.  We assumed 

that  𝑢 and 𝑒 vectors are normally distributed with null mean and variance of 

 

𝑉𝑎𝑟 (
𝑢
𝑒

) = (
𝐺 0
0 𝑅

)                                                                                                                 (2) 

 

where 𝐺 =  𝜎𝑎
2𝐾 ; 𝜎𝑎

2 is an unknown additive genetic variance and 𝐾  is the kinship (co-

ancestry) matrix calculated from SNPs and provided by the same software using centered 

identity by state (IBS) method. For the residual effect, homogeneous variance was assumed, 

with 𝑅 = 𝐈𝜎𝒆
𝟐 , where I is an identity matrix and 𝜎𝒆

𝟐 is the unknown residual variance. The 

Restricted Maximum Likelihood (REML) estimates of  𝜎𝑎
2   and 𝜎𝒆

𝟐    were obtained by the 

Efficient Mixed-Model Association (EMMA) algorithm 70.  Heritability (h2) was calculated as 

the ratio of the additive genetic variance (𝜎𝑎
2 ) to the phenotypic variance (𝜎𝑎

2 +𝜎𝒆
𝟐 ). Tassel 

program does not provide the standard errors of the estimates. Thus, standard errors were 

estimated using the REML method with an average information (AI) algorithm by AIREMLF90 

software. Standard errors for additive genetic and residual variance were computed as square 

roots of diagonal elements of the inverse of the average information matrix. For Heritability, 

standard deviations obtained from the repeated sampling approach were considered as their 

standard errors. Each SNP allele was fit as a separate class with heterozygotes fit as additional 
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SNP classes. And also, the total SNP effect was not decomposed in additive and dominance 

effects but tested for overall significance (BRADBURY et al., 2007).  

Quantile-quantile (Q-Q) plots for each trait and Manhattan plots of genome wide 

association analyses were performed in R using ggd.qqplot and Manhattan functions. The 

thresholds were corrected for multiple testing (Bonferroni) established by the estimated number 

of independent SNPs and LD blocks (pairwise r2 values> 0.40)(NICODEMUS et al., 2005) that 

was 63,640 SNPs. We set two thresholds from our data: P < 1.57E-05 (1/ 63,640) for suggestive 

significance and P < 7.86E-07 (0.05/63,640) for genome-wise significance for  5% genome-

wise significance level (GU et al., 2011; LIU et al., 2013). 

 

3.2.6 Linkage disequilibrium analysis 

 

The linkage disequilibrium (LD) analysis was performed with Haploview 4.2 

(BARRETT et al., 2005) as well as the LD graphs. To perform the pairwise comparison of ours 

SNPs considering 1Mb apart, we selected 94 genome-wise associated and suggestively 

associated SNPs with the traits analyzed in this study (feed conversion, feed intake, feed 

efficiency, and weight gain between 35-41 days of age, birth weight and body weight at 35 and 

41 days).  We have defined the haplotype blocks by the solid spine of LD and the family 

structure of parental lines (CC and TT pure lines), F1 and F2 generations (Figure 3.3) using 

Haploview 4.2. 

 

3.2.7 QTL overlapping with SNPs 

 

The QTL data was obtained from QTLdb (HU et al., 2013) and the overlapping test was 

performed using the GenomicRanges package from R 3.3.1 software (http://www.r-

project.org/). For the data presentation, we designed a figure using ggplot2 package karyogram 

layout from R 3.3.1 software. 
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3.3 Results 

 

3.3.1 Animals and Phenotypes 

 

The descriptive statistics for the eight performance traits analyzed can be observed in 

Table 3.1. Detailed description of these animals and traits were provided elsewhere (CAMPOS 

et al., 2009; PÉRTILLE et al., 2015). The large variability is expected since the animals are 

from a broiler x layer F2 population. 

 

Table 3.1 - Means, standard deviations (SD), maximum (max) and minimum (min) values for 

performance traits of 444 individuals from the F2 population 
Traits     Average (SD) max min 

feed conversion  from 35-41 days 2.87 ± 0.71 7.55 1.52 

feed intake from 35-41 days (g) 603.43 ± 139.74 1176.00 258.00 

feed efficiency from 35-41 days 0.36 ± 0.07 0.66 0.13 

birth weight (g) 44.96 ± 4.15 55.50 34.60 

body weight at 35 days (g) 789.86 ± 138.60 1309.00 480.00 

body weight at 41 days (g) 1006.82 ± 188.34 1686.00 407.00 

                   * g is the weight measured in grams 

 

3.3.2 Genotypes 

 

In our previously work (PÉRTILLE et al., 2016), using a minimum taxon call rate of 90%,  

we have identified 67,096 SNPs originated from 462 chickens using the GBS approach. 

However, in this study, different filter parameters were applied. We have reduced the loci call 

rate filtering criteria to 70%. %. This parameter is the minimum threshold of individuals call 

rate for each loci to be included in the output. This reduction had minimal impact on sample 

call rate (proportion of missing genotypes per individual) and large impact on number of SNPs. 

The sample call rate reduced from 99.96% ± 0.04% to 99.90% ± 0.1% and the number of SNPs 

increased from 67,096 to 134,528. This allowed us to capture more SNPs, but the number of 

missing genotypes increased. To overcome this, we have imputed the missing genotypes using 

Beagle 4.1 software (BROWNING; BROWNING, 2007). This approach resulted in a panel of 

134,528 derived PstI-SNPs present in all animals. 
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3.3.3 SNPs validation 

 

The dataset of 134,528 SNP chromosomal positions obtained with the CornellGBS before 

and after the imputation analysis was compared with the 600K Affymetrix® HD genotyping 

array dataset in order to perform a method validation, since both sets were obtained from the 

same animals (5 individuals from F2-7810 family). The genotype concordance of the SNPs with 

concordant chromosomal positions detected between the two methods is shown in Table 3.2. 

On average, 91.80%, and 91.66% of the SNPs had concordant genotypes between the 

CornellGBS and 600K datasets before and after imputation, respectively. The accuracy of the 

heterozygous genotypes was slightly lower after the imputation. Reduced representation 

methods, like CornellGBS, has limitations calling the heterozygous markers (GLAUBITZ et 

al., 2014). In our study, we have observed that 82.14 and 82.30% of heterozygous SNPs, while 

97.97 and 97.65% of all homozygous SNPs were validated before and after imputation, 

respectively  

 

 

Table 3.2 - Assessment of genotype concordance between 134,528 PstI-derived filtered SNPs before and after 

imputation and genotyped SNPs dataset from 600K Affymetrix® HD genotyping array from five F2 

individuals (F2-7810 family); and genotype validation percentages for homozygous and heterozygous 

SNPs 

    Before Imputation After Imputation Total validated genotypes* 

F2-7810 

family 

SNP 

type  

Concordant 

physical 

position† 

Validated 
genotypes

* (%) 

Concordant 

physical 

position† 

Validated 
genotypes 

*(%) 

Before 

Imputation 

*(%) 

After 

Imputation 

*(%) 

ID-1209 
homoz1 2,410 97.67 2,493 97.47 

93.08 92.93 
heteroz2 1,323 85.56 1,370 85.47 

ID-1786 
homoz1 2,379 97.73 2,427 97.65 

94.04 93.96 
heteroz2 1,422 88.60 1,440 88.47 

ID-1787 
homoz1 2,296 97.99 2,356 97.87 

93.72 93.42 
heteroz2 1,470 87.68 1,512 87.17 

ID-2301 
homoz1 1,589 98.48 2,409 97.50 

87.62 87.67 
heteroz2 948 70.25 1,457 72.06 

ID-786 
homoz1 2,383 97.98 2,438 97.74 

90.57 90.33 
heteroz2 1,395 78.63 1,422 78.34 

1homozygous genotype; 2heterozygous genotype; † number of concordant physical positions between both datasets 

used for validation (from CornellGBS vs 600K Affymetrix® HD genotyping array); *is the percentage of † that 

had concordant genotypes. 
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3.3.4 Homozygous and heterozygous SNPs  

 

Out of 62 million possible genotypes (462 samples x 134,528 sites), the average 

frequency of heterozygous SNPs was 25.32% (± 5.6%) before the imputation and after the 

imputation, it increased to 27.70% (± 5.2%). The average heterozygosity observed per chickens 

before imputation ranged from 8.30- 44.69% and after the imputation between 11.38-44.67%. 

The proportion of heterozygous SNPs remained virtually unchanged before and after 

imputation among the lines/generations (Table 3.3). 

 

Table 3.3 - SNP heterozygosity of genotyped populations (parental, F1 and F2 generations) after and before 

imputation 

Population  
Number of 

individuals 

Proportion of heterozygous (SD) 

Before Imputation After Imputation 

Parental CC 5 0.16 ± 0.01 0.17 ± 0.01 

Parental TT 5 0.21 ± 0.01 0.22 ± 0.01 

F1 8 0.28 ± 0.09 0.29 ± 0.08 

F2-7765 72 0.29 ± 0.03 0.29 ± 0.03 

F2-7810 82 0.28 ± 0.04 0.28 ± 0.04 

F2-7816 94 0.30 ± 0.08 0.30 ± 0.08 

F2-7971 100 0.25 ± 0.05 0.26 ± 0.04 

F2-7978 96 0.26 ± 0.04 0.27 ± 0.03 

 

3.3.5 Principal component analyses  

 

From the list of imputed genotypes we have conducted a principal component analysis 

(PCA), based on covariance, using Tassel v.5.2.26 (GLAUBITZ et al., 2014) to check the F2 

population structure. This plot was useful for visualizing internal structure explained by the 

variance from PstI-derived SNPs dataset of 134,528 SNPs using eigenvector-based multivariate 

analyses. Each individual lies in its proper group (Figure 3.1).  
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Figure 3.1 - The 444 chickens from five F2 families and18 chickens from the parental lines (P.female and P.male 

- N=10) and F1 generation (N=8) shown in the 2D plane spanned by their first two principal 

components 
 

3.3.6 Descriptive Statistics of Heritability 

 

The genetic and residual variance for each trait, and their genomic heritability are shown 

in Table 3.4. Heritabilities ranging from moderate to high, as is expected  (GAYA et al, 2006; 

ROVADOSCKI, et al., 2016), were observed for feed intake and body weights traits, 

respectively. Low heritabilities were observed for the traits evaluated in short period (between 

35 and 41 days) as feed conversion, and feed efficiency, because they are complex traits 

influenced by several environmental factors (ROVADOSCKI, et al., 2016). 

 

Table 3.4 - Genetic and residual variances, and genomic heritability for each trait analyzed in this study 

Traits Var_genetic ± SE Var_error ± SE Heritability ± SE 

feed conversion 35adj 0.0045 ± 0.00282 0.4363 ± 0.01797 0.01 ± 0.006 

feed intake from 35adj 1492.3  ± 855.94 7296.0 ± 830.22 0.17 ± 0.094 

feed efficiency 35adj 0.0005 ± 0.00002 0.0036 ± 0.00002 0.11 ± 0.005 

birth weight 2.5719 ± 0.50599 3.1009 ± 0.33925 0.45 ± 0.073 

body weight at 35 days 10403 ± 1575.9 1879.9 ± 785.7 0.85 ± 0.073 

body weight at 41 days 16790 ± 2936.7 5639 ± 1701.1 0.75 ± 0.087 

35adj is adjusted to body weight at 35 days 
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3.3.7 Genome-wide association study 

 

We have identified 20 significant SNPs (P < 7.86E-07) associated with feed conversion  

adjusted to body weight at 35 days (adj35) and one significant SNP associated with body weight 

at 35 days of age (Figure 3.2). We also have identified 92 suggestive (P <1.57E-05)  SNPs 

associated with feed conversion adj35, feed intake adj35, feed efficiency adj35, birth weight, 

and body weight at 35 and 41 days of age (see APPENDIX A for the effects of associated SNPs; 

Manhattan and QQ plots are available on APPENDIX B). 

 

(a) 

   
(b) 

 

Figure 3.2 - SNPs associated with feed conversion adj35 (a) and body weight at 35 days (b) are presented by 

Manhattan (left side) and QQ (right side) plots. The y-axis is shown as –log10 (p-value). On the left, 

the red line indicates genome-wise association (P<7.86E-07) and the blue line, suggestive genome-

wise association (P <1.57E-05) with the respective trait. On the right side, the QQ-plots show the 

relation of normal theoretical quantiles of the probability distributions between expected (x-axis) and 

observed (y-axis) p-values from each respective associated trait (feed conversion adj35 and body 

weight at 35 days) 
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3.3.8 Linkage disequilibrium analysis 

 

Seventeen haplotype blocks were generated from the associated and suggestively 

associated SNPs from the F2 population (see Figure 3.3, APPENDIX C for haplotypes details 

and APPENDIX E to SNPs´ Mendelian descriptions).  We noticed a standard block pattern 

between the SNPs that matched with the F2 population structure (Figure 3.3). Interestingly, we 

have checked the genotype frequency of blocks formed by LD analysis to determine if the 

blocks were fixed or not in the parental lines.  From the haplotype blocks, we checked the origin 

of the haplotype variation (fixed or variable) and haplotype frequency of each block from F2 

generation in the parental lines (APPENDIX C and APPENDIX F for a more detailed 

description of frequencies). We also determined the advantageous haplotype for each trait in 

the F2 generation (Table 3.5). This information enabled us to identify from which parental line 

(TT or CC) comes the genotypic variation observed in F2 for each block. All blocks with r2> 

0.56 had the most frequent haplotype agreeing with the advantageous phenotype in the F2 

individuals (Figure 3.3; APPENDIX C and Supplementary and APPENDIX F), and this 

advantageous haplotype (lower feed conversion and higher values of other evaluated traits) was 

fixed in one of the parental lines, except in blocks 2 and 13. This information is also available 

for each genome-wide suggestive and/or associated SNPs in APPENDIX A, as well as the 

number of genotype observations obtained per SNP. 

 

 

Figure 3.3 - Haplotype blocks obtained by the solid spine of LD and family structure using Haploview 4.2. The 

header represents the physical position of each 94 SNPs selected on chicken genome (Gallus gallus 

4.0, NCBI). The family structure is disposed as: maternal CC (a) and paternal TT (b) parental pure 

lines, F1 (c) and F2 (d) generations. The black filled squares indicate r2 = 1 and square numbers 

represents r2*100 with black color gradient accordingly 
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3.3.9 QTL overlapping SNPs 

 

Through Animal QTLdb, we have selected all the 1,458 known QTLs (HU et al., 2013) 

mapped for body weight, feed efficiency, feed conversion and growth, all evaluated in different 

chicken lines and ages. Out of those, we have observed that 253 QTLs overlapped with 81 of 

the 94 associated and suggestively associated SNPs with performance traits obtained from 

GWAS in this study: 206 QTLs associated with body weight, 39 with postnatal growth, 4 with 

feed intake, 3 with feed conversion, and 1 with feed efficiency. The complete QTL list that 

overlapped with these regions can be seen in the APPENDIX G and the graphical representation 

of the suggestive and significant SNPs distribution in relation to the QTLs can be observed in 

Figure 3.4. 

 

  

Figure 3.4 - Karyotype of the QTLs (from Animal QTLdb) distribution regions of the chicken genome 

overlapping suggestive and significant SNPs associated with performance traits (black marks). 

These QTLs were mapped for body weight (bw), postnatal growth (grow), feed intake (f.intake), 

feed conversion (f.conv), and feed efficiency (effic). The colors becoming denser according to the 

number of QTL previously mapped superposing each other.
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Table 3.5 - TagSNP significance levels from MLM analyses of each 17 blocks obtained by solid spine of LD in the F2 population using Haploview 4.2 

HaplotypeNº 

(GGA) 
Haplotype 

Haplotype Frequency (%) 
Trait p-value  add p-

value 
 dom p-

value 
 

Parental CC Parental TT F1 F2 

1 (2) AC † 50 100 75 84 
eff.adj35 1.36E-05 * 2.46E-03 * 2.11E-05 * 

f.conv.adj35 5.11E-09 ** 2.04E-07 ** 1.05E-09 ** 

2 (4) 
CAGAATG † 

AGTGTCA 

0 

80 

60 

0 

31 

0 

42 

40 

bw35 6.19E-06 * 3.26E-05 * 1.13E-02 * 

bw41 4.70E-06 * 5.31E-06 * 1.25E-02 * 

bw42 4.26E-06 * 5.85E-06 * 9.54E-03 * 

3 (4) 
TAG † 

CGA 

0 

90 

80 

0 

31 

0 

44 

38 

bw35 3.08E-07 ** 1.95E-07 ** 8.31E-02 * 

bw41 1.40E-06 * 1.16E-06 * 6.62E-02 * 

bw42 1.24E-06 * 1.11E-06 * 5.91E-02 * 

4 (7) GC † 100 70 94 94 f.conv.adj35 1.94E-06 * 3.38E-07 ** 7.30E-07 ** 

5 (7) AG 100 80 88 93 
bw35 9.91E-06 * 3.63E-06 * 4.53E-03 * 

f.conv.adj35 3.70E-06 * 6.96E-07 ** 1.18E-06 * 

6 (11) GGA † 100 90 88 93 f.conv.adj35 1.94E-06 * 3.98E-07 ** 7.29E-06 * 

7 (13) CC † 80 90 75 78 f.conv.adj35 3.67E-06 * 5.76E-07 ** 9.02E-07 * 

8 (13) TC † 90 100 88 90 f.conv.adj35 3.63E-06 * 7.39E-07 ** 7.51E-07 ** 

9 (14) TGC † 100 60 68 85 f.conv.adj35 3.31E-07 ** 8.88E-08 ** 6.11E-08 ** 

10 (17) CGT † 70 100 88 85 f.conv.adj35 3.15E-06 * 5.18E-07 ** 1.48E-06 * 

11 (17) CC † 100 90 94 95 f.conv.adj35 2.94E-06 * 7.38E-07 ** 6.73E-07 ** 

12 (18) ACC † 90 70 94 93 f.conv.adj35 3.31E-06 * 5.16E-07 ** 3.09E-06 * 

13 (20) TC † 70 90 75 78 f.conv.adj35 3.45E-06 * 5.45E-07 ** 1.07E-06 * 

14 (26) CA † 100 60 75 79 
f.conv.adj35 3.12E-07 ** 4.54E-08 ** 1.75E-06 * 

f.int.adj35 1.04E-05 * 1.36E-04 * 1.73E-06 * 

15 (27) 
CAGGGAACCA 

† 
100 90 88 95 f.conv.adj35 9.00E-07 * 3.26E-07 ** 1.77E-05 * 

16 (27) CG † 100 80 63 94 f.conv.adj35 2.15E-07 ** 1.38E-07 ** 4.91E-08 ** 

17 (28) 

CA † 70 10 44 35 bw41 2.22E-06 * 4.57E-07 ** 1.58E-01 * 

TG 20 50 31 30 bw42 3.16E-06 * 6.73E-07 ** 1.77E-01 * 

CG 10 40 25 34        

(GGA) is the Gallus gallus chromosome number; †Most frequent haplotype in the population; bolded is the advantage haplotype to individuals compared to the assessed trait; 

additive (add) and dominant (dom) p-values; * suggestive genome-wise significance (P < 1.57E-05) and ** genome-wise significance (P < 7.86E-07). Abbreviations: eff.adj35 

(feed efficiency adjusted for body weight at 35 days), f.conv.adj35 (feed conversion adjusted for body weight at 35 days), f.int.adj35 (feed intake adjusted for body weight at 

35 days), all between 35 and 41 days of age and adjusted for 35 days; bw35, bw41, bw42 is body weight at 35, 41 and 42 days of age, respectively 
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3.4 Discussion 

 

For better understanding of complex traits control in a segregating F2 population, our 

research group have focused the attention on genetic association and linkage analyses using 

different approaches, as: candidate genes (BOSCHIERO et al., 2013; FELÍCIO et al., 2013a, 

2013b; PÉRTILLE et al., 2015) and QTL mapping (NONES et al., 2006, 2012; AMBO et al., 

2008, 2009; CAMPOS et al., 2009), respectively, and more recently, NGS approaches 

(GODOY et al., 2015; MOREIRA et al., 2015). We have presented here the first study using a 

higher density of SNPs in this F2 population with GWAS purpose. Therefore, we have 

optimized a method called CornellGBS in chickens (PÉRTILLE et al., 2016) to overcome the 

concept of pre-designed panels, since we planned a method for genotyping efficiently a specific 

dataset of SNPs in our specific population.  

CornellGBS is a widely employed method to genotype large genomes of model and non-

model species exploring important regions in the genome (HE et al., 2014) as 

microchromosomes previously mentioned. This is due to the high coverage of tags (contigs) 

depending on the number of sequenced individuals of the reduced genome by restriction 

enzyme cleavage providing a specific SNP profile (PÉRTILLE et al., 2016). The CornellGBS 

technique was previously developed for inbreeding population and it is known by its general 

low sequencing coverage, which can cause significant loss of SNPs, mainly heterozygous 

(GLAUBITZ et al., 2014). For our outbreed population, we used a reasonable multiplex of 

individuals (~48 animals per lane of Illumina flowcell) to maintain a reasonable sequencing 

coverage per individual (~5X). We also reduced the loci call rate and use imputation to increase 

the number of SNPs genotyped. The reduction in the loci call rate was also applied in a recent 

study that used the same PstI restriction enzyme to cleave the cattle genome (DE DONATO et 

al., 2013). Furthermore, it was already mentioned that the combination of GBS and imputation 

of missing internal SNPs in haplotype blocks procedures can promote a cost reduction by 

allowing further reduction of the filtering criteria or sequencing coverage without causing losses 

in SNP calls (HE et al., 2014). Using this strategy, we doubled the number of SNPs, successfully 

imputing all lost genotypes (increasing the individual call rate to 100%), the validation ratio 

remained >90%, and the percentage of heterozygous genotypes in our population had an 

increase of approximately 2% after the imputation.   

The use of the GBS SNP panel for  GWAS in our outbred F2 crosses resulted in 20 SNPs 

associated (P < 7.86E-07) with feed conversion adj.35, one SNP associated with body weight 

at 35 days (BW35) and other 93 SNPs suggestively associated (P < 1.57E-05) with different 
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performance traits (Table 3.1). Additionally, we noticed that all the evaluated traits, presented 

an up deviation of the theoretical quantiles (Figure 3.2 and APPENDIX B) of the probability 

distributions between expected and observed p-values, indicating the existence of QTLs. These 

results corroborated the Manhattan plot peaks of associated SNPs, indicating that these traits 

had part of the phenotypic variation significantly explained by the genetic component 

(BRADBURY et al., 2007). Interestingly, we detected association for several new QTLs located 

in microchromosomes (GGA11-28). This was only possible because of the distribution of the 

SNPs used. From our set of SNPs, 38.93% are located in large chromosomes (GGA1-5), 

14.15% in intermediate size (GGA6-10), and most, 46.90% are located in microchromosomes 

(GGA11-28), confirming the microchromosome enrichment mentioned before (PÉRTILLE et 

al., 2016). Feed conversion, for exemple, had a high number of significant SNPs (P < 7.86E-

07), mainly located in microchromosomes (GGA8, 10, 14, 18, 23, 26, and 27). However, for 

this trait, the SNP peaks observed by Manhatan plot, in large and intemediate size chromosomes 

(Figure 3.2a), were not well defined, as is usually observed for QTLs peaks (FRAGOMENI, et 

al., 2014). We believe that this is explained by the SNP profile used in this study, which has a 

lower density of SNPs on large chromosomes compared to microchromosomes (PÉRTILLE et 

al., 2016). Moreover, feed intake is a complex trait subject to a high residual effect and 

controlled by several genes with a small effect, which require a large sample size to detect 

associations (YANG et al., 2011; YUAN, et al., 2015). This small effect also was previously 

attributed to the short period used to measure this trait (between 35 and 41 days of age) 

impairing the animal adaptation to the new enviromental condiction (AMBO et al., 2009). On 

this account, reliable QTLs for this trait were detected in studies that used a larger sampling 

size (1,534 individuals) for a longer feed intake evaluation period (~ 4 weeks) (TUISKULA-

HAAVISTO et al., 2004, 2011) than used in this study.  

The GBS strategy can result in clusters of SNPs next to each other (PÉRTILLE et al., 

2016) that can indicate genomic regions sheltering possible causal mutations (LEDUR et al., 

2010). In order to better define the QTL regions we performed LD analysis. The block pattern 

between the SNPs matched with our F2 population structure (Figure 3) (ROSÁRIO et al., 2009). 

This allowed us to define plenty of possibilities for genetic selection of the lines that did not 

present the genotype fixed giving attention to the different phenotypic abilities between the CC 

layer line and  the TT broiler line (NONES et al., 2006; ROSÁRIO et al., 2009). As for the 

blocks 2 and 13, which had variable genotypes for both the CC and the TT lines, and the paternal 

line presented the favorable genotype most frequent in both cases (Appendix C and Figure 3.3). 
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 Also is important to check if these SNPs are within QTL regions previously published. In the 

past years, many studies identified QTLs associated with performance traits in different 

chickens populations (TATSUDA; FUJINAKA, 2001; KONING et al., 2003; IKEOBI et al., 

2004; ZHOU et al., 2006; NONES et al., 2006, 2012; AMBO et al., 2008, 2009; BOSCHIERO 

et al., 2013; NASSAR; GORAGA; BROCKMANN, 2012, 2013) (1,458 QTLs described in the 

Animal QTLdb) aiming to map loci that control these traits. Recently, to better understand these 

loci, studies have also applied GWAS with performance traits in chickens  (ZHOU et al., 2006; 

GU et al., 2011; XIE et al., 2012). The validation of single SNP position obtained by GWAS 

overlapping with QTL regions can confirm interesting genomic regions to explore. From the 

94 genome-wise associated and suggestively associated SNPs with the performance traits 

analyzed in this study, most of them were fairly distributed in mapped QTL regions in the 

chicken genome (Figure 3.4). Only 13 SNPs did not overlap with QTL regions previously 

mapped. From these 13 SNPs, one was located on chromosome 1, one in chromosome 8 (GGA1 

and 8), one in the Z sex chromosome (GGAZ) and 10 were located in microchromosomes 

(GGA17, 18, 20, 25, 27 and 28), which confirms the microchromosome enrichment profile 

obtained by this approach (PÉRTILLE et al., 2016) and suggests novel QTLs to be explored in 

these regions. It is also important to mention that most of these 13 SNPs (those located on 

GGA1, 8, 18, 20, 25 and 27) were associated (P < 7.86E-07) or suggestively associated (P < 

1.57E-05) with feed conversion adj35, one with feed efficiency adj35 (GGA17), and two with 

body weight at 41 days (GGA27) (see APPENDIX A for details). The genes where these SNPs 

are located are mainly related with cell cycle and metabolic pathways (according to the 

Reactome pathways - http://www.reactome.org/PathwayBrowser) and were within introns, 

upstream and downstream of these genes (see APPENDIX H for functional annotation).  

Despite the importance of the overlap test performed here, previous studies in QTL mapping 

usually had large confidence intervals (>1Mbps) and often encompassing several genes, making 

difficult the selection of candidate genes (LEDUR et al., 2010). Therefore, we also checked the 

overlap of these SNPs only with QTLs mapped using specifically the same traits and the same 

F2 population (NONES et al., 2006; AMBO et al., 2009; BOSCHIERO et al., 2013; FELÍCIO 

et al., 2013b) used in this study. From 23 different QTL intervals, we identified 12 SNPs 

overlapping with seven of them (see the QTLs bolded in APPENDIX G and I to check the QTL 

list). It is worth mentioning the SNPs located near the QTL regions, or flanking regions 

(APPENDIX D). On GGA1, for exemple one SNP (marker 6, APPENDIX A) associated with 

feed intake (P=3,83E-07) overlaped with one QTL mapped for the same trait (TUISKULA-

HAAVISTO et al., 2004) in another population, and also with 6 QTLs mapped for body weight 

http://www.reactome.org/PathwayBrowser
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at different ages (LIU et al., 2007)  and one with feed efficiency (HANSEN et al., 2005). On 

the other hand, on GGA4, a well studied chromosome in chickens (KONING et al., 2003; 

RABIE et al., 2005;  AMBO et al., 2009; BARON et al., 2011; GU et al., 2011; LIU et al.,  

2013, NASSAR; GORAGA; BROCKMANN, 2012, 2013;  SUN et al., 2013; LUO et al., 

2013a; PÉRTILLE et al., 2015), we identified three SNPs composing the haplotype 3 (markers 

21-23), in which one was associated with BW35 (P < 7.86E-07) and suggestively associated 

with BW41 (P < 1.57E-05), and two SNPs suggestively associated with BW41 (P < 1.57E-05). 

These three SNPs overlapped with one QTL region previously mapped in this same population 

for these same traits (AMBO et al., 2009) (QTL_IDs from ChickenQTLdb = 7157; 7162 and 

7185). The boundary SNPs from haplotypes 2 and 3 are separated by a short distance (less than 

4 Mbps), but these QTLs are not linked, beside they have effect on the same traits (BW35 and 

BW41) (Figure 3) in our F2 population. It is worth to mention, the haplotype 2 that overllaped 

with QTLs mapped for different BW in different ages (SEWALEM et al., 2002; CARLBORG 

et al., 2004; PODISI et al., 2011; PODISI et al., 2013; NASSAR et al., 2015) and growth 

(CARLBORG et al., 2004; ZHOU et al., 2006; NASSAR et al., 2015) traits in different 

populations. 

To the best of our knowledge, we showed the application of the CornellGBS PstI-derived 

SNPs to a GWAS for the first time in chickens. We showed a strategy, changing filtering criteria 

and subsequent genotype imputation, to increase the number of reliable SNPs to be analyzed.  

We found 13 SNPs indicating new regions associated with performance traits, mainly in 

microchromosomes, that have not been previously reported. We improved the available 

information about loci controlling performance traits and we refined these regions to discover 

novel candidate regions to be explored. Finally, by demonstrating that GBS is a valid strategy 

for QTL mapping in a species that has genome sequence and SNP panel available, we can argue 

the validity of GBS in species without genome resources. 
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4 DNA METHYLATION PROFILES DETECTED IN RED BLOOD CELLS OF ADULT 

HENS CORRELATE TO THEIR REARING CONDITIONS 

 

Abstract 

Stressful conditions are common in the environment where production animals are 

raised. Stress in animals is usually determined by the levels of stress-related hormones.  A big 

challenge, however, is in determining the history of exposure of an organism to stress, because 

the release of stress hormones can show an acute (and recent) but not a sustained exposure to 

stress. Epigenetic tools provide an alternative option to evaluate past exposure to long-term 

stress. Chickens provide a unique model to study stress effects in the epigenome of red blood 

cells (RBC), a cell type of easy access and nucleated in birds. The present study investigates in 

chickens whether two different rearing conditions can be identified by looking at DNA 

methylation patterns in their RBCs later in life. These conditions are rearing in open aviaries 

versus in cages, which are likely to differ regarding the amount of stress they generate. Our 

comparison revealed 115 genomic windows with significant change in RBCs DNA methylation 

between experimental groups, which were located around 53 genes and within 22 intronic 

regions. Our results set the ground for future detection of long-term stress in live production 

animals by measuring DNA methylation in a cell type of easy accessibility. 

  

 

Keywords: Stress; Red blood cells; Epigenetics; Chicken; DNA methylation; Animal welfare 

 

4.1 Introduction 

 

 Stress in production animals generated by unsustainable production methods is a frequent 

issue of concern. Besides the ethical issue of inducing unnecessary stress in animals, 

detrimental practices in the animal production industry have consequences from a human health 

perspective (ROSTAGNO, 2009). The environment where production animals are reared 

influences not only their later health and wellbeing but also the quality of the food originating 

from them (BROOM, 2010). Stressful conditions to which production animals can be subjected 

include extreme illumination patterns (MORGAN; TROMBORG, 2006; OLANREWAJU et 

al., 2006), social isolation or crowding (GOERLICH et al., 2012), food restriction (SAVORY; 

LARIVIERE, 2000; MORGAN; TROMBORG, 2006), too high or too low temperatures, 

restriction of movement, barren environments, and lack of appropriate substrates for foraging, 

exploration and manipulation (MORGAN; TROMBORG, 2006).  

 Stress in animals is associated with a cascade of hormonal responses (HENRY, 1992). 

The primary physiological stress response observed is an increase in the hypothalamic-

pituitary-adrenal (HPA) axis activity, which results in elevated levels of the glucocorticoids 

(FALLAHSHAROUDI et al., 2015). Initially, increases in testosterone levels related to 

increased anxiety are observed (HENRY, 1992). Subsequently, decreases in the 



 

 

72 

noradrenaline/adrenaline ratio are observed, concomitant with increases in adrenaline, prolactin 

and fatty acids (HENRY, 1992). In conditions of further distress, adrenocorticotropic hormone 

and cortisol levels will increase (HENRY, 1992). Due to this plethora of hormonal changes 

generated by stressful conditions, stress in animals is usually determined by the levels of stress-

related hormones such as cortisol and adrenaline (ISHIBASHI et al., 2013; MULLER et al., 

2013). A big challenge, however, is in determining the history of the exposure of an organism 

to stress, given that the release of stress hormones can show an acute (and recent) but not a 

sustained exposure to stressful conditions (HENRY, 1992).  

 An alternative option to the use of hormonal measurements to evaluate past exposure to 

long-term stress could be to utilize epigenetic tools instead. Epigenetics involves studying how 

environmental exposures affect gene regulation during the lifetime of organisms. Epigenetic 

changes are defined as accessory chemical modifications of the DNA that regulate gene 

expression and are mitotically stable (SKINNER et al., 2010). These modifications include 

DNA methylation or hydroxymethylation of CG dinucleotides, chemical modifications of 

histones, interaction of DNA with small RNAs, or states of chromatin condensation (FEIL; 

FRAGA, 2011;TEPEREK-TKACZ et al., 2011; DENHAM et al., 2014). Altering epigenetic 

states can lead to distinguishable phenotypic consequences such as changes in the coat color 

(DOLINOY et al., 2007) or increased propensity to diseases (GUERRERO-BOSAGNA; 

SKINNER, 2012). A variety of organism models has been used in epigenetic research, 

including laboratory rodents (DOLINOY et al., 2007; GUERRERO-BOSAGNA et al., 2008; 

SUSIARJO et al., 2013), flies (SEONG et al., 2011), honey bees (LYKO et al., 2010; 

DICKMAN et al., 2013), plants (CUBAS et al., 1999; MANNING et al., 2006) and yeast 

(ZHANG et al., 2013). However, in spite of the importance of epigenetic mechanisms in 

biology in general, epigenetic studies in production animals are scarce. Among production 

animals, chickens have been suggested as a promising model for epigenetic studies (FRESARD 

et al., 2013). Two important reasons for this are that chickens have had their genome extensively 

sequenced (RUBIN et al., 2010) and have historically been an important model for translational 

research with implications for human health and physiology (KAIN et al., 2014).  

 Long term stress is known to generate life-long changes in stress susceptibility that is 

correlated to epigenetic changes (JENSEN, 2014). Thus, it is expected that if animals are 

constantly subjected to stress and systemic hormonal changes, this exposure will imprint the 

epigenome of blood cells. Epigenetic changes in blood cells will then serve as markers of past 

exposure to stress. Research in humans (MALAN-MULLER et al., 2014) and monkeys 

(PROVENCAL et al., 2012) have shown that stress affects DNA methylation in  blood cells. 



 

 

73 

The epigenome of blood cells  can provide a meaningful assessment of biological processes 

involved in stress because disruptions of the HPA-axis have systemic consequences (ZANNAS; 

WEST, 2014). Since different practices in the production environment will generate different 

levels of stress in animals, it is practical (from the perspective of evaluation of long term stress) 

to understand how stress correlates with specific profiles in production animals. 

 The present study aims at investigating in chickens whether two different rearing 

conditions can be identified by looking at epigenetic patterns in their red blood cells (RBCs) 

later in life. It is important to point out that unlike mammals, birds contain nucleated RBCs. 

The conditions tested are rearing in a system of open aviaries versus rearing in cages. These 

two different rearing conditions are likely to differ with regards to the amount of stress to which 

birds are exposed, as suggested by the observation that they cause long-term differences in 

fearfulness (BRANTSAETER et al., 2016) and cognitive function (TAHAMTANI et al., 2015). 

The objective of using this model is to generate a proof-of-concept for future detection of long-

term stress in production animals using epigenetic measurements in cell types of easy 

accessibility in live animals. The identification of a correlation between RBCs epigenetic 

profiles and long-term stress will overcome limitations that exist when evaluating stress through 

hormonal levels or visual health assessments, which do not provide reliable accounts of long-

term stress. 

 In order to identify DNA methylation profiles related to different rearing conditions in 

chickens, we compared RBCs DNA methylation in a group of birds reared in cages (a common 

housing system, with low environmental complexity) with that of birds reared in open aviaries 

(which represents a complex environment). Previous studies have shown that chickens reared 

in a complex aviary system are less fearful, use elevated areas of the pen more often as adults 

(BRANTSAETER et al., 2016), and have better spatial working memory (TAHAMTANI et al., 

2015) than laying hens reared in a simpler cage environment (BRANTSAETER et al., 2016). 

The present study  tests whether  the different rearing conditions applied, which associate with 

different levels of environmental complexity, stimulation of cognitive capabilities and 

responses to stress, will have long term effects in the blood methylome of chickens. Our 

comparison revealed 115 genomic windows with significant change in RBCs DNA methylation 

between experimental groups, which were located within or in the vicinity of 53 genes and 

within 22 intronic regions. Our results set the ground for future detection of long-term stress in 

live production animals by measuring DNA methylation in a cell type of easy accessibility.  The 

present results can be used as a proof-of-concept for the future identification of epigenetic 

marks related to past stress conditions that occur in the production environment. 
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4.2 Methods 

 

4.2.1 Subjects and rearing treatments 

 

 The study was conducted using non beak-trimmed, female Dekalb white chickens (Gallus 

gallus domesticus), aged 0–23 weeks with normal health status. Birds were hatched at a 

commercial hatchery and immediately brought to a rearing farm. All birds were housed within 

the same room. Initially, all birds were kept confined inside the aviary row, with access to food 

and water. When the birds were four weeks of age, access to the aviary corridors was given to 

half of them, as this is the normal procedure in aviary rearing systems. This group was named 

“aviary reared-birds” (AV). The other half of the birds was kept under confinement at the aviary 

row for the entire rearing period. The group of birds staying inside the cages was named “cage-

reared birds” (CG). These two rearing conditions were maintained until the birds were 16 weeks 

of age. After the rearing period had ended, a random subset of birds from each treatment was 

moved to the experimental facilities for blood sampling, which occurred at 24 weeks of age. A 

schematic representation of the experimental design is shown in Figure 4.1. 

 

 

Figure 4.1 - Schematic representation of the housing conditions in the two experimental treatments 
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4.2.2 Rearing system conditions 

 

 The housing system in the single room in which all birds were housed was Natura Primus 

1600 (Big Dutchman; http://www.bigdutchmanusa.com) designed for aviary-rearing of laying 

hen pullets. This system consisted of cages stacked in three tiers placed on either side of a 

corridor for allowing inspection by the caretaker. Cage dimensions were 120 cm × 80 cm × 60 

cm (length × width × height). Each aviary cage contained a 120 cm feed trough, one 120 cm 

perch, and five drinking nipples. All the cages could be opened at the front, allowing the birds 

to move freely between each tier and the floor of the corridor. Ramps run from the floor to the 

second tier to increase ease of access for pullets. When cage doors are in the open position, 

perches extend from the front of the first and second tiers. The density was 25 birds/m2 for both 

treatments during the first four weeks of life. Chick paper covered 30% of the wire mesh floor 

of the cages in sufficient amounts to last until the birds were released out in the corridors.  

 During rearing, all birds were exposed to the same light intensity, light schedule, and 

temperatures, as recommended by the General Management Guide for Dekalb White 

Commercial Layer (HENDRIX, 2015). They were provided with ad libitum access to feed 

using a chain dispersal system and ad libitum access to water. The feed type was conventional 

pullet feed produced and sold by Felleskjøpet, Norway (“Kromat oppdrett 1” for 0- to 6-week-

old birds, “Kromat avl egg 1” for 6- to 8-week-old birds, and “Kromat oppdrett 2” for 8- to 15-

week-old birds). 

   

4.2.3 Blood collection and DNA extraction 

 

 Blood samples were collected from 21 individuals (9 AV and 12 CG) of 24 weeks of age. 

Before blood sampling chickens were sedated using 0.5 ml/Kg Zoletil mix, which contains 10 

ml Rompun (Xylazine 20 mg/ml) and 0.75 ml Butomidor (Butorphanol 10 mg/ml) mixed with 

Zoletil powder (Tiletamine HCL 125 mg and Zolazepam HCL 125 mg). Blood samples were 

collected as soon as the birds were considered unconscious, which occurred within a maximum 

timeframe of 10 minutes. After the birds were considered unconscious they were humanely 

euthanized by cervical dislocation. Each blood sample was collected using a 1 ml syringe and 

a BD Microlance cannula (21G x ½”, 0.80 x 40 mm). A total of 160 µg of blood was then 

transferred from each sample into two heparinized glass capillaries, which were then 

centrifuged at 3000 RPM for 5 minutes. After centrifugation, the tubes were manually broken 
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into two pieces, one of them containing the hematocrit fraction, which was placed inside 1.5 

mL micro-centrifuge tubes and stored in a -80°C freezer until further analyses. 

 DNA extraction was performed through proteinase K digestion. Initially 10 µL of the 

hematocrit fractions were incubated with 200 µl of extraction buffer (1M Tris-HCL, 0.5 M 

EDTA, 10% SDS) and 20 µL of 0.1 M DTT at 65°C for 15 min. Then, incubation with 20 µL 

of proteinase K (20mg/mL) was performed overnight at 55°C under rotation. After proteinase 

K digestion samples were incubated with Protein Precipitation Solution (Promega) for 15 min 

on ice and centrifuged for 20 min at 13000 rpm and 4°C in a benchtop microcentrifuge.  The 

supernatants (1 mL) were transferred to new tubes and DNA was precipitated with equal 

amounts of 100% isopropanol. In addition, 3 µL of glycogen (5 mg/mL) was added to improve 

further visualization of DNA pellets. After 30 min of incubation at 4°C the samples were 

centrifuged at 13000 rpm and 4°C for 30 min. The supernatants were discarded and the DNA 

pellets were washed with ice cold 70% ethanol, followed by centrifugation at 13000 rpm and 

4°C for 10 min. The supernatants were discarded again and the pellets in the tubes were dried 

out in a heating block at 55°C for 5 min. DNA pellets were re-suspended in 200 uL of ultrapure 

water.  

 

4.2.4 DNA methylation analyses 

 

 In order to perform DNA methylation analyses in a cost effective manner, we have 

combined a Genotyping by Sequencing method (PÉRTILLE et al., 2016) with the technique of 

Methylated DNA immunoprecipitation (GUERRERO-BOSAGNA; JENSEN, 2015). We have 

recently described the optimization of each of these two methodologies separately for its use 

with chicken DNA (GUERRERO-BOSAGNA; JENSEN, 2015; PÉRTILLE et al., 2016).  This 

combination of methods was needed because current methods that assess DNA methylation in 

reduced genomes perform such a reduction through enzymatic digestion targeting restriction 

sites that contain CpG sites (GU et al., 2011). Moreover, such an approach is highly biased 

towards CpG islands (GU et al., 2011). Our approach, instead, reduces the genome by digesting 

on restriction sites unrelated to CpGs and is unbiased towards CpG islands. 

 We first digested the genome with PstI as previously described (PÉRTILLE et al., 2016). 

After this fragmentation had generated a significantly reduced genome (approximately 2% of 

its original size) and enrichment of small fragments in a suitable range for Illumina sequencing 

(200-500 bp) (PÉRTILLE et al., 2016), the methylated fraction was captured by an anti-methyl-

cytosine antibody (MeDIP) as previously described (GUERRERO-BOSAGNA; JENSEN, 
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2015). The output of the MeDIP was used as the input of GBS. The GBS method uses ligation 

steps in which a barcode adapter (identifying individual samples) and a common adapter for 

Illumina sequencing barcoding system are ligated at each end of the digested DNA fragments 

(POLAND; RIFE, 2012).  Due to the barcoding system, the GBS technique enables the creation 

of a sequencing library with DNA pooled from several individuals (ELSHIRE et al., 2011; 

POLAND; RIFE, 2012). Once the barcodes and adaptors are ligated, PCR is performed 

followed by clean-up of primer dimers and unbound adapters (ELSHIRE et al., 2011; 

POLAND; RIFE, 2012). A detailed description of the method for its use in chickens has been 

previously reported (PÉRTILLE et al., 2016). The use of the present approach, in which these 

two methodologies are combined, allowed us to scan the RBCs methylome of 21 chickens using 

only half of an Illumina sequencing lane. Sequencing was performed paired-end with read 

length of 125 bp on the Illumina HiSeq2500 platform. 

 

4.2.5 Bioinformatic analyses 

 

 For the methylated DNA sequencing, data quality trimming was performed in paired-end 

short reads with the SeqyClean tool v. 1.9.10 (ZHBANNIKOV et al., 2013) using a Phred 

quality score ≥24 and a fragment size ≥50. The quality of the reads was checked before and 

after the cleaning by FastQC v.0.11.3 (ANDREW, 2010). The Stacks v.1.39 program was used 

for data de-multiplexing (CATCHEN et al., 2011). For each sample stored in a FASTQ file 

there is one identification map key file. This key file contains the matching information for the 

respective sample, flow-cell and lane. The expected reads begin with one of the individual 

barcodes and are followed by the cut site remnant for PstI, which contains the sequence 

CTGCA.  Fragments are then grouped into lists, which correspond to individuals identified by 

their respective barcodes. The alignment of quality-trimmed reads was performed using the 

Bowtie2 tool v.2.2.5 (LANGMEAD; SALZBERG, 2012) against the chicken reference 

sequence Gallus_gallus 4.0 (NCBI).  The coverage depth of each sample was checked using 

Samtools v.0.1.19 (LI et al., 2009) with the “depth” option.  

 Because low methylated DNA material is obtained after MeDIP of the PstI-reduced 

genome, some samples will contribute with very low DNA amounts to be sequenced. These 

individuals will show low total number of reads distributed in a few genomic regions, 

generating a skewed distribution of methylated sites along the genome. This will result in an 

overestimation of the coverage values in those CpG sites that happened to be covered by reads. 

To prevent this, we defined a minimum cut-off in order to select high quality sequenced samples 



 

 

78 

for further testing of differences between experimental groups. We established a cut-off index, 

which was defined by dividing the ‘percentage of the Chicken Genome covered’ by the 

‘sequencing coverage average for each sample’. Individuals showing index below 1.1 were 

discarded from further analyses. 

 Following read alignment, all analyzes were performed using bioinformatics packages 

from the “R” Bioconductor repository. The Medips package was used for basic data processing, 

quality controls, normalization, and identification of differential coverage. The 

BSgenome.Ggallus.UCSC.galGal4 package was uploaded as the reference genome. The edgeR 

and heatmap.2 packages (and extensions) were used for the confection of plots.  

 The internet-based tool Consensus PathDB (KAMBUROV et al., 2013) 

(http://cpdb.molgen.mpg.de) was used to perform an analysis of biological pathways enriched 

by the genes with differentially methylated regions found in our study, as well as gene ontology 

analyses of these genes. Consensus PathDB (KAMBUROV et al., 2013) integrates interaction 

networks based on published information in humans. These interaction networks include 

complex protein-protein, genetic, metabolic, signaling, gene regulatory and drug-target 

interactions, as well as biochemical pathways (KAMBUROV et al., 2013). Another internet-

based tool used in this study to identify over -represented pathways related to our gene list was 

Reactome (CROFT et al., 2011), which is an open source curated bioinformatics database of 

human pathways and reactions (http://www.reactome.org). The advantage of Consensus 

PathDB over Reactome is that it is capable of accessing a variety of databases that contain 

previously described biological pathways (e.g., Kegg, Biocarta, Reactome, Wikipathways). 

However, for using Consensus PathDB the genes in the chicken genome had to be extrapolated 

to humans, since it does not accept the ENSEMBL chicken genome annotation. Therefore 

Reactome, which did accept the input of chicken genes with the ENSEMBL identifier, was also 

used. These two tools therefore provided complementary information about our gene list. 

 

4.3 Results 

 

The present experiment compared the RBCs methylome of chickens reared in open 

aviaries versus in cages, to detect whether epigenetic profiles in RBCs could be identified as 

correlating to each of these rearing conditions. The experimental procedures are summarized in 

Figure 4.2. RBCs of 21 chickens were extracted in total, being 9 reared in open aviaries and 12 

reared in cages. A combination of the Genotype by Sequencing (GBS) and MeDIP methods 

was used to identify genome-wide changes in DNA methylation.  

http://cpdb.molgen.mpg.de/
http://www.reactome.org/
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Figure 4.2 - Diagram summarizing the processing of samples from individuals in each treatment group 

  

 After sequencing of the reduced-methylated DNA fraction from RBCs of these animals, 

bioinformatic analyzes were performed and filter parameters were applied. Our quality control 

procedure selected sequencing data from 4 AV and 6 CG animals for further statistical analyses. 

Our method interrogated changes in DNA methylation of 810,186 CpG sites per individual, 

which corresponds to ~7.6% of all CpGs in the chicken genome. An MA plot showing the log-

fold change of AV/CG counts per 300 bp genomic windows, which represents changes in DNA 

methylation, against the normalized window counts is shown in Figure 4.3. Genomic windows 

with significant changes in DNA methylation between groups (P < 0.0005) are depicted in red 

dots.  A principal components analysis (PCA) performed using the windows with significant 

differences in counts (P < 0.0005) between the AV and CG groups confirmed that all individuals 

in the analysis match the initial experimental group separation (Figure 4.4). Our comparison 

revealed that 115 windows showed significant change in DNA methylation between 

experimental groups (APPENDIX J). A heat map showing the windows with significant 

changes is shown in Figure 4.5. Nearby windows were merged into differentially methylated 

regions (DMR) between the experimental groups, which were located within or in the vicinity 

of 53 genes and within 22 intronic regions. APPENDIX K describes the chromosomal location 
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of all DMR, the number of CpGs within them, their annotation, as well as their location within 

or in the vicinity of genes. Figure 4.6 6 summarizes the location of these regions regarding 

genes (Figure 4.6a), as well as their chromosomal location (Figure 4.6b). The fold changes in 

DNA methylation of the DMR and the direction of these, e.g. hyper- or hypo-methylation of 

CG reared versus AV, are shown in Figure 4.7. 

 

Figure 4.3 - MA plot showing the log-fold change of AV/CG counts (changes in DNA methylation) per 300 bp 

genomic windows against the normalized window counts. Windows with significant changes (P < 

0.0005) between experimental groups are depicted as red dots 
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Figure 4.4 - Principal components analysis (PCA) performed using the genomic windows with significant 

differences in counts (P < 0.0005) between the AV and CG groups 

 

 

 

 

 

Figure 4.5 - Heat map showing the genomic windows with significant changes in DNA methylation between 

experimental groups 
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Figure 4.6 - Location of DMRs regarding (a) nearby or associated genes, and (b) chromosomes.  
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Figure 4.7 - Fold change representation of DMR-associated genes or intergenic regions between the experimental groups 
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 A network analysis performed with the DMR associated genes in Consensus PathDB, 

which connects biological pathways and gene ontology information, is shown in Figure 4.8 and 

APPENDIX L. A simplified pathway is shown in Figure 4.8, where redundant information was 

discarded (e.g., same biological processes showing as being affected by different databases). 

This analysis shows that DMR associated genes are mainly enriched in biological processes 

such as G-protein activation (comprising ~10% of the genes in that pathway), mitogen-activated 

protein kinase (MAPK) signaling (where five genes in our list participate) and purine 

ribonucleotide binding (where 14 genes in our list participate). P-and q- values of all 

significantly affected pathways are shown in APPENDIX L.  In addition to these main affected 

pathways, less enriched pathways are shown in APPENDIX L. Of interest is also the appearance 

in the network of processes such as ‘visual photo-transduction’, ‘opioid signaling’, mRNA 

processing and cytoskeleton organization.  

 The network analysis performed with Reactome, in turn, shows that genes with altered 

DNA methylation in our list primarily target pathways in the immune system (Figure 4.9a), 

followed by signal transduction pathways involved in opioid signaling, regulation of the photo-

transduction cascade and G-protein activation (Figure 4.9b). A less affected pathway was the 

‘metabolic’, which showed some effects in the sub-pathways ‘inhibition of insulin secretion by 

adrenaline and noradrenaline’ and ‘metabolism of Abacavir’ (Figure 4.9c). 

 
Figure 4.8 - Network analysis performed with Consensus PathDB showing how the DMR associated genes relate 

to biological pathways and gene ontology information. Significantly enriched pathways and GO terms 

are shown. The numbers within circles correspond to DMR-associated genes within a specific affected 

biological pathway (circles with blue annotations) or GO terms (circles with pink annotations). The 

size of the circles correspond to the total number of genes in database for that specific pathway 
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Figure 4.9 - Network analysis performed with Reactome showing how the DMR associated genes relate to 

biological pathways. Significantly enriched pathways are shown for (a) the immune system, (b) 

signal transduction, and (c) metabolism 
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4.4 Discussion 

 

 Stress has been reported to associate with DNA methylation specific alterations in brain. 

For example, infant rats exposed to parental maltreatment present long term DNA methylation 

and gene expression changes in the BDNF (brain-derived neurotrophic factor) gene in the 

frontal cortex (ROTH et al., 2009). However, from the perspective of using epigenetic tools to 

determine the history of stress in live animals, it is of interest to determine whether epigenetic 

changes can also be observed in cell types of easy access such as blood cells.   

 A few studies have reported epigenetic changes in blood related to stress. For example, 

adult rats previously exposed to traumatic conditions during early life exhibit altered microRNA 

profile in the blood, brain and spermatozoids compared to non-traumatized individuals (GAPP 

et al., 2014). In humans (MALAN-MULLER et al., 2014) and monkeys (PROVENCAL et al., 

2012) DNA methylation in peripheral blood cells has been shown to be altered in correlation 

with previous stress. Since birds have nucleated RBCs, they represent an organism model in 

which DNA methylation can be measured in live individuals, and in an easily accessible and 

simple to purify cell-type.  

The present study evaluates the effects of early life conditions on adult DNA methylation 

patterns in a farm animal. This was performed in RBCs of adult hens after they had been reared 

in groups exposed to different levels of environmental complexity. Avian RBCs contain 

nucleated RBCs, which allows for accurate epigenetic profiling because it is simple to purify 

this cell type that can be obtained from live animals. The aim was to identify in adult hens 

epigenetic profiles in RBCs associated with different rearing conditions. The rearing conditions 

to which hens were subjected in the current study cause long-term differences in fearfulness as 

indicated by differences in inhibition of behavior and avoidance of a human and a novel object 

in a novel test arena (BRANTSAETER et al., 2016). Although we have not documented stress-

related physiological differences between the treatment groups during the rearing phase (first 

16 weeks of age), the fact that fear responses are per definition associated with physiological 

stress suggests that the rearing treatments induce distinct long-term alterations in the stress 

response. On the one hand, birds in the complex aviary environment are likely to be exposed to 

a higher degree of mild intermittent stress. On the other hand, confinement in the more barren 

cage environment may generate a sustained and long-term stress due to deprivation.  

Interestingly, evidence indicates that the aviary environment may be harsher and more 

challenging than the cage environment, as indicated by the fact that mortality of aviary-housed 

birds is normally twice as high as that of cage-housed birds (JANCZAK; RIBER, 2015). In 
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addition to fear responses, these rearing conditions also associate with different levels of 

cognitive capabilities observed later in life in birds from the same groups as in the present 

experiment (TAHAMTANI et al., 2015). 

 A number of genomic regions presented changes in RBCs DNA methylation between the 

different rearing conditions tested. These DMR are more present in regulatory regions and less 

present in intergenic regions (figure 4.6a). DMR were only absent in chromosomes 3, 9, 14, 18, 

23, 32 and W. All other chromosomes presented a fairly even distribution of DMRs, although 

chromosome 25 is the one that contained the higher number (figure 4.6b). The genes associated 

to these DMR were tested in pathway network analyses to determine whether they would 

significantly affect biological processes. 

 We used Consensus PathDB and Reactome to inquire for biological pathways enriched 

by the genes found associated to the DMRs reported here. For this, we tested whether at least 

two of the genes in our list would belong to a single biological pathway previously described 

in the associated databases. Within Consensus PathDB we also performed a Gene Ontology 

analysis to determine possible common functional roles of these genes. Consensus PathDB 

analyses demonstrate that differentially methylated genes are involved in pathways related to 

G-protein activation (in particular, involved in opioid response and the photo-transduction 

cascade), MAPK signaling and purine ribonucleoside binding (related to post-transcriptional 

processes). MAPK are known to regulate a wide array of cell functions relating to regulation of 

gene expression in cellular processes such as proliferation, differentiation, mitosis, apoptosis 

and survival (PEARSON et al., 2001). Interestingly, MAPKs such as p38, MK2 and MK3 are 

known to mediate stress response, regulating the transcriptional activation of so-called 

‘immediate early genes’ in mammalian cells (RONKINA et al., 2011). The involvement of 

purine ribonucleoside (i.e., AMP and GMP) binding has been given minor attention in research 

investigating stress responses. However, of interest is recent data showing the mediation of 

purine ribonucleoside binding in the antidepressant side-effects of phosphodiesterase inhibitors 

(i.e., etazolate, an anxiolytic drug; sildenafil, a drug used in the treatment of erectile 

dysfunction) in mice (WANG et al., 2014). 

 Pathway analysis with Reactome gave similar results, since equivalent signal transduction 

pathways were shown to be affected. In addition, many sub-pathways were affected within the 

immune system. Altered signal transduction pathways include opioid signaling, regulation of 

the photo-transduction cascade, and G-protein activation. Interestingly, opioid signaling has for 

a long time been related to housing conditions in farm animals. For example, in pigs opioid 

receptor density is affected by the housing conditions and is inversely correlated to stereotypic 
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behavior duration (ZANELLA et al., 1996). Also in pigs, the expression of opioid receptors in 

the amygdala is substantially different between individuals maintained in enriched versus 

conventional housing environment (KALBE; PUPPE, 2010). Although not much research has 

been done on the role of opioids in chickens, it has been reported that opioid systems modulate 

social attachment and isolation stress (SUFKA et al., 1994; WARNICK et al., 2005). This is 

concordant with finding in rats showing that social isolation increases the responsiveness of the 

kappa opioid receptor (KARKHANIS et al., 2016). What emerges as an interesting finding in 

the present paper is that the opioid system could be affected not only in the central nervous 

system but also in peripheral cells. Further research needs to be done to understand the role of 

peripheral opioids systems in the modulation of stress response. Although not many studies 

have focused on the correlation between photo-transduction and stress, research in chickens has 

shown that immune response varies with light cycles in a circadian fashion, controlled in part 

by the pineal gland, which among other cell types contain B-lymphocytes (BAILEY et al., 

2003). Vasotocin receptors, which belong to the G-protein receptor family, have been reported 

to mediate stress response in chickens. The recently characterized neuropeptides in this family 

(VT2R and VT4R) are known to be involved in stress response, particularly within the cephalic 

lobe of the anterior pituitary (KUENZEL et al., 2013). Again, how these neuronal effects 

translate to peripheral signaling is an interesting matter of future investigation.  

 In addition, the Reactome metabolic pathway showed some effects in the inhibition of 

insulin secretion by adrenaline and noradrenaline, and in the metabolism of Abacavir. 

Experiments with perfused (canine) pancreas show that insulin secretion is strongly inhibited 

by adrenaline or noradrenaline (IVERSEN, 1973).  In turn, adrenaline and norepinephrine 

levels are known to vary not only due to stress (HENRY, 1992; ISHIBASHI et al., 2013; 

MULLER et al., 2013) but also in connection with the conditions under which animals are kept 

in captivity (MULLER et al., 2013). For example in porpoises, free-ranging animals present 

higher blood levels of both adrenaline and noradrenaline than animals in rehabilitation or under 

human care (MULLER et al., 2013). It is not surprising that high adrenaline or noradrenaline 

levels in free-ranging animals will lead to the inhibition of insulin and a concomitant rapid 

increase in circulatory glucose levels, concordant with the high energy demands of animals 

living in free-ranging conditions. However, it is intriguing that such a mechanisms could be 

epigenetically regulated.  

 The effects in the pathway ‘metabolism of Abacavir’ (a drug used for HIV treatment in 

humans) point towards immune responses being affected. For example, Abacavir 

hypersensitivity syndrome involves changes in immunological tolerance and activation of 
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specific T cells (ILLING et al., 2012). This is concordant with the main pathway affected in 

Reactome, which was the immune system. A reason for this effect in the immune system could 

be that animals living in a confined space would exhibit higher levels of stress, which are known 

correlate with altered immune response. In humans, for example, individuals with history of 

post-traumatic stress have compromised immune systems, with reduced number of 

lymphocytes and T cells, reduced natural killer cells activity, and reduced production of 

interferon gamma and interleukin-4 (KAWAMURA et al., 2001). Also, housing conditions 

have been correlated to decreased immune response in farm animals. For example, dairy calves 

housed in smaller stalls present reduced lymphocyte proliferation in comparison with calves in 

larger stalls (FERRANTE et al., 1998). In mice, the bedding type is shown to influence the 

intestinal immune system (SANFORD et al., 2002). 

 An interesting suggestion from our data is that a compromised immune system response 

could be imprinted in the epigenome of RBCs after animals are reared under specific conditions 

of stress. Since DNA methylation patterns are altered, it is suggested that the different rearing 

conditions leave an epigenetic mark in the red blood cells that will in turn affect the functioning 

of biological processes such as immune response, maybe in a permanent manner. Further 

experiments are needed to elucidate whether altered physiological measures of immune 

responses can correlate to developmentally-altered epigenetic patterns in farm animals. 

 The aim of the current study was to identify epigenetic profiles of early developmental 

stress-related environmental effects in RBCs. We identified distinguishable DNA methylation 

profiles relating to each treatment. A future goal is that the present results can be used as a 

proof-of-concept for the identification of epigenetic marks related to past stress conditions that 

occur in the production environment. Future experiments should evaluate whether sets of 

DMRs could constitute reliable ‘epigenetic signatures’ of specific and controlled stress 

conditions in extended populations of animals. The present study reports for the first time DNA 

methylation changes in RBCs of adult hens when reared in conditions of differing 

environmental complexity. We describe that these changes in DNA methylation associate with 

genes involved in biological functions such as immune response, and cell signaling related to 

MAPK, G-protein and opioid pathways. These results open interesting questions regarding the 

role of early life stimuli in altering epigenetic patterns that could be involved in these 

mechanisms. Moreover, questions also arise regarding the role RBCs play in G-protein and 

opioid pathways in stress response.  
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Appendix A - Association SNPs stats for each of the 94 markers with genome-wise significance (P < 7.86E-07) in pink highlight color and suggestive genome-wise association 

(P < 1.57E-05) to the others with the respective trait described in column M. Where: eff.adj35 (feed efficiency), f.conv.adj35 (feed conversion), f.int.adj35 (feed 

intake), all between 35 and 41 days of age and adjusted for body weight at 35 days; bw35, bw41 is body weight at 35 and 42 days of age, respectively, and 

birthW is birth weight. Markers overlapping with QTL (TRUE) or not overlapping with QTL (FALSE) regions are indicated in the “overlapping QTLs” column 

# Marker Name Chr Pos F p 

add 

effect 

add

F add p 

dom 

effect 

dom 

F dom p Trait Allele Obs1 Obs2 Obs3 
BlockNo 

Most frequent 

Haplotype 
overlapping 

QTLs 

1 S1_3706 1 3706 11,4 1,55E-05 -1,8 22,7 2,57E-06 -1,7 21,4 5,06E-06 f.conv.adj35 C/G/S 349 1 94 

  

FALSE 

2 S1_25041791 1 25041791 16,9 8,89E-08 -1,4 31,6 3,42E-08 -1,2 22,6 2,69E-06 f.conv.adj35 C/T/T 346 2 96 TRUE 

3 S1_45468342 1 45468342 12,9 3,72E-06 1,7 25,7 6,05E-07 -1,7 23,4 1,85E-06 f.conv.adj35 T/C/Y 392 1 51 TRUE 

4 S1_53749693 1 53749693 13,4 2,37E-06 1,7 26,3 4,38E-07 -1,6 20,9 6,46E-06 f.conv.adj35 G/A/R 397 1 46 TRUE 

5 S1_82575973 1 82575973 12,9 3,74E-06 1,7 25,6 6,22E-07 -1,7 25,4 6,98E-07 f.conv.adj35 T/C/Y 207 1 236 TRUE 

6 S1_102944294 1 102944294 15,3 3,83E-07 -1,3 29,9 7,71E-08 -1,4 29,2 1,11E-07 f.conv.adj35 A/C/M 335 2 107 TRUE 

7 S1_178184151 1 178184151 12,9 3,68E-06 1,7 25,5 6,70E-07 -1,7 24,1 1,28E-06 f.conv.adj35 G/A/R 389 1 54 TRUE 

8 S1_194726625 1 194726625 13,2 2,68E-06 -1,7 26,2 4,65E-07 -1,6 22,8 2,51E-06 f.conv.adj35 A/C/M 351 1 92 TRUE 

9 S2_33436237 2 33436237 11,5 1,36E-05 0,1 9,3 2,46E-03 0,1 18,5 2,11E-05 eff.adj35 A/T/W 4 308 132 
    

TRUE 

9 S2_33436237 2 33436237 20,0 5,11E-09 -1,0 27,9 2,04E-07 -1,2 39,0 1,05E-09 f.conv.adj35 A/T/W 308 4 132 
1  AC 83.6% 

TRUE 

10 S2_33437336 2 33437336 15,5 3,12E-07 -1,7 24,3 1,21E-06 -1,8 29,1 1,17E-07 f.conv.adj35 C/G/S 304 1 139 
    

TRUE 

11 S2_138815862 2 138815862 13,0 3,33E-06 0,9 25,9 5,35E-07 -0,8 13,9 2,14E-04 f.conv.adj35 G/A/R/ 401 39 4 

 

TRUE 

12 S3_77435334 3 77435334 12,9 3,49E-06 -1,7 25,8 5,65E-07 -1,7 22,9 2,37E-06 f.conv.adj35 C/T/Y 386 57 1 TRUE 

13 S4_3514658 4 3514658 13,3 2,60E-06 -1,7 26,2 4,68E-07 -1,6 22,4 2,95E-06 f.conv.adj35 G/T/K 369 1 74 TRUE 

14 S4_68623163 4 68623163 11,4 1,47E-05 -37,7 18,3 2,37E-05 19,4 4,9 2,80E-02 bw35 C/A/M 103 112 229 

2 
f.conv.adj35G

AATG 41,5% 

TRUE 

15 S4_68882750 4 68882750 11,6 1,29E-05 35,9 17,4 3,59E-05 21,0 5,5 1,91E-02 bw35 A/G/R 102 130 212 TRUE 

16 S4_68882765 4 68882765 11,5 1,38E-05 35,5 17,2 4,14E-05 21,4 5,7 1,72E-02 bw35 G/T/K 103 130 211 TRUE 

17 S4_69297525 4 69297525 12,3 6,19E-06 33,4 17,6 3,26E-05 22,8 6,5 1,13E-02 bw35 A/G/R 112 140 192 TRUE 

18 S4_69370079 4 69370079 12,3 6,42E-06 27,4 12,6 4,29E-04 34,7 15,1 1,20E-04 bw35 A/T/W 144 110 190 TRUE 

19 S4_69372005 4 69372005 11,7 1,14E-05 -36,1 17,2 4,07E-05 24,5 7,8 5,45E-03 bw35 T/C/Y 124 103 217 TRUE 

15 S4_68882750 4 68882750 11,7 1,08E-05 52,7 20,3 8,66E-06 21,8 3,0 8,27E-02 bw41 A/G/R 102 130 212 TRUE 

16 S4_68882765 4 68882765 11,6 1,29E-05 51,7 19,7 1,16E-05 22,8 3,3 7,06E-02 bw41 G/T/K 103 130 211 TRUE 

17 S4_69297525 4 69297525 12,6 4,78E-06 48,0 19,7 1,18E-05 28,1 5,0 2,62E-02 bw41 A/G/R 112 140 192 TRUE 

18 S4_69370079 4 69370079 13,4 2,19E-06 43,5 16,9 4,73E-05 46,0 13,3 3,05E-04 bw41 A/T/W 144 110 190 TRUE 

19 S4_69372005 4 69372005 12,6 4,98E-06 -53,6 20,6 7,39E-06 30,6 6,1 1,39E-02 bw41 T/C/Y 124 103 217 TRUE 

20 S4_69372065 4 69372065 12,6 4,70E-06 -55,2 21,3 5,31E-06 31,4 6,3 1,25E-02 bw41 G/A/R 127 98 219 TRUE 

21 S4_73210325 4 73210325 15,5 3,08E-07 -38,9 28,0 1,95E-07 15,4 3,0 8,31E-02 bw35 T/C/Y 121 137 186 
3 TAG 44.4% 

TRUE 
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21 S4_73210325 4 73210325 13,9 1,40E-06 -49,9 24,4 1,16E-06 23,0 3,4 6,62E-02 bw41 T/C/Y 121 137 186 

  

TRUE 

22 S4_73407243 4 73407243 12,2 7,28E-06 60,0 23,2 2,07E-06 28,2 4,4 3,71E-02 bw41 A/G/R 159 82 203 TRUE 

23 S4_73407249 4 73407249 12,2 7,28E-06 -60,0 23,2 2,07E-06 28,2 4,4 3,71E-02 bw41 G/A/R 159 82 203 TRUE 

24 S4_75842191 4 75842191 12,4 5,97E-06 -35,4 10,1 1,55E-03 43,5 11,2 8,70E-04 bw41 C/A/M 90 167 187 

 

TRUE 

25 S4_79707389 4 79707389 11,5 1,36E-05 -22,6 4,5 3,49E-02 48,6 13,2 3,18E-04 bw41 G/C/S 210 162 72 TRUE 

26 S5_54401932 5 54401932 13,3 2,45E-06 -1,7 24,9 8,63E-07 -1,8 26,6 3,82E-07 f.conv.adj35 C/T/Y 358 1 85 TRUE 

27 S6_2997851 6 2997851 11,4 1,53E-05 -0,7 2,9 8,71E-02 -1,1 5,5 1,95E-02 birthW G/A/R 370 11 63 TRUE 

28 S6_5492179 6 5492179 11,4 1,56E-05 0,8 21,2 5,59E-06 0,4 2,7 1,01E-01 birthW A/C/M 127 99 218 TRUE 

29 S6_28967516 6 28967516 13,2 2,87E-06 -1,7 25,2 7,71E-07 -1,8 26,3 4,51E-07 f.conv.adj35 G/T/K 315 1 128 TRUE 

30 S6_31436207 6 31436207 13,1 3,14E-06 1,7 24,6 1,00E-06 -1,7 26,1 4,92E-07 f.conv.adj35 T/C/Y 260 1 183 TRUE 

31 S7_6904443 7 6904443 13,4 2,20E-06 1,8 26,9 3,38E-07 -1,6 22,2 3,28E-06 f.conv.adj35 G/A/R 24 1 419 TRUE 

32 S7_22092999 7 22092999 13,6 1,94E-06 1,7 26,9 3,38E-07 -1,8 25,3 7,30E-07 f.conv.adj35 G/C/S 393 1 50 
4 GC 94.1% 

TRUE 

33 S7_22093009 7 22093009 13,6 1,94E-06 -1,7 26,9 3,38E-07 -1,8 25,3 7,30E-07 f.conv.adj35 C/T/Y 393 1 50 TRUE 

34 S7_26252164 7 26252164 13,0 3,45E-06 -1,7 25,1 7,91E-07 -1,7 25,0 8,23E-07 f.conv.adj35 C/T/Y 384 1 59 

 

TRUE 

35 S7_34668134 7 34668134 11,8 9,91E-06 131,5 22,0 3,63E-06 88,7 8,1 4,53E-03 bw35 A/C/M 393 4 47 
5 AG 93.2% 

TRUE 

36 S7_34855716 7 34855716 12,9 3,70E-06 1,7 25,4 6,96E-07 -1,7 24,3 1,18E-06 f.conv.adj35 G/A/R 385 1 58 TRUE 

37 S8_5848411 8 5848411 12,9 3,74E-06 1,7 25,7 6,09E-07 -1,7 25,0 8,53E-07 f.conv.adj35 T/C/Y 312 1 131  FALSE 

38 S8_27651130 8 27651130 16,7 1,04E-07 1,4 31,4 3,80E-08 -1,2 20,8 6,80E-06 f.conv.adj35 T/C/Y 375 2 67 TRUE 

39 S9_15349595 9 15349595 13,1 2,99E-06 1,7 24,8 9,22E-07 -1,8 25,8 5,67E-07 f.conv.adj35 G/A/R 389 1 54 

 

TRUE 

40 S9_21971358 9 21971358 11,4 1,54E-05 -1,8 22,7 2,56E-06 -1,7 21,5 4,78E-06 f.conv.adj35 C/T/Y 350 1 93 

 

TRUE 

41 S10_9890328 10 9890328 21,7 1,04E-09 -2,2 43,4 1,33E-10 -2,2 41,8 2,77E-10 f.conv.adj35 A/G/R 297 1 146  TRUE 

42 S10_17086845 10 17086845 13,6 1,93E-06 1,8 27,0 3,11E-07 -1,7 24,9 8,89E-07 f.conv.adj35 G/A/R 389 1 54 TRUE 

43 S11_1249418 11 1249418 13,6 1,94E-06 1,7 26,5 3,98E-07 -1,6 20,6 7,29E-06 f.conv.adj35 G/A/R 396 1 47 

6 GGA 93.2% 

TRUE 

44 S11_1997302 11 1997302 13,3 2,46E-06 1,7 26,4 4,24E-07 -1,6 21,5 4,78E-06 f.conv.adj35 G/A/R 392 1 51 TRUE 

45 S11_2149223 11 2149223 13,4 2,23E-06 -1,7 26,5 4,06E-07 -1,6 21,1 5,68E-06 f.conv.adj35 A/G/R 392 1 51 TRUE 

46 S13_1958055 13 1958055 11,5 1,31E-05 -1,8 23,0 2,28E-06 -1,7 21,3 5,34E-06 f.conv.adj35 C/T/Y 317 1 126 

 

TRUE 

47 S13_9894951 13 9894951 12,9 3,67E-06 -1,7 25,8 5,76E-07 -1,7 24,9 9,02E-07 f.conv.adj35 C/T/Y 252 1 191 
7 CC 78.3% 

TRUE 

48 S13_9894952 13 9894952 12,9 3,67E-06 -1,7 25,8 5,76E-07 -1,7 24,9 9,02E-07 f.conv.adj35 C/T/Y 252 1 191 TRUE 

49 S13_12804655 13 12804655 11,6 1,30E-05 0,6 23,1 2,17E-06 -0,6 17,5 3,47E-05 f.conv.adj35 T/C/Y 285 8 151 

 

TRUE 

50 S13_15109350 13 15109350 12,9 3,63E-06 1,7 25,3 7,39E-07 -1,7 25,2 7,51E-07 f.conv.adj35 T/C/Y 356 1 87 
8 TC 90% 

TRUE 
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51 S13_15109354 13 15109354 12,9 3,63E-06 -1,7 25,3 7,39E-07 -1,7 25,2 7,51E-07 f.conv.adj35 C/T/Y 356 1 87 

  

TRUE 

52 S14_2918142 14 2918142 14,1 1,18E-06 1,0 23,1 2,09E-06 -0,8 12,5 4,59E-04 f.conv.adj35 C/A/M 345 3 96  TRUE 

53 S14_4019669 14 4019669 11,6 1,19E-05 -1,8 22,7 2,57E-06 -1,7 20,1 9,45E-06 f.conv.adj35 G/T/K 326 1 117 TRUE 

54 S14_12043802 14 12043802 15,5 3,31E-07 1,3 29,6 8,88E-08 -1,4 30,4 6,11E-08 f.conv.adj35 T/C/Y 313 2 129 

9 TGC 84.7% 

TRUE 

55 S14_12127914 14 12127914 12,9 3,69E-06 1,7 25,6 6,34E-07 -1,7 24,8 9,07E-07 f.conv.adj35 G/A/R 356 1 87 TRUE 

56 S14_12127934 14 12127934 12,9 3,69E-06 -1,7 25,6 6,34E-07 -1,7 24,8 9,07E-07 f.conv.adj35 C/T/Y 356 1 87 TRUE 

57 S15_6942668 15 6942668 13,8 1,52E-06 1,7 24,9 8,71E-07 -1,8 27,4 2,62E-07 f.conv.adj35 R/A/G 245 1 198 

 

TRUE 

58 S15_9763685 15 9763685 12,9 3,52E-06 1,7 25,3 7,32E-07 -1,7 25,3 7,40E-07 f.conv.adj35 C/A/M 318 1 125 TRUE 

59 S17_1976385 17 1976385 12,6 4,75E-06 0,0 2,7 1,04E-01 0,0 16,2 6,69E-05 eff.adj35 C/G/S 246 66 132 FALSE 

60 S17_4917070 17 4917070 13,1 3,15E-06 -1,7 26,0 5,18E-07 -1,7 23,9 1,48E-06 f.conv.adj35 C/G/S 312 1 131 

10 CGT 85% 

TRUE 

61 S17_4917071 17 4917071 13,1 3,15E-06 -1,7 26,0 5,18E-07 -1,7 23,9 1,48E-06 f.conv.adj35 G/T/K 312 1 131 TRUE 

62 S17_4917072 17 4917072 13,1 3,15E-06 1,7 26,0 5,18E-07 -1,7 23,9 1,48E-06 f.conv.adj35 T/G/K 312 1 131 TRUE 

63 S17_5621341 17 5621341 13,1 2,94E-06 -1,7 25,3 7,38E-07 -1,8 25,5 6,73E-07 f.conv.adj35 C/T/Y 398 1 45 
11 CC 94.7% 

TRUE 

64 S17_5621374 17 5621374 13,1 2,94E-06 -1,7 25,3 7,38E-07 -1,8 25,5 6,73E-07 f.conv.adj35 C/T/Y 398 1 45 TRUE 

65 S17_5986188 17 5986188 13,3 2,43E-06 -1,7 25,0 8,30E-07 -1,8 26,6 3,91E-07 f.conv.adj35 C/T/Y 194 1 249  TRUE 

66 S18_4390068 18 4390068 15,4 3,52E-07 -1,4 30,8 5,09E-08 -1,3 23,7 1,56E-06 f.conv.adj35 C/T/Y 397 2 45 TRUE 

67 S18_9253828 18 9253828 13,0 3,31E-06 -1,7 26,0 5,16E-07 -1,7 22,4 3,09E-06 f.conv.adj35 A/C/M 391 1 52 
12 ACC 93.4% 

FALSE 

68 S18_9551090 18 9551090 13,2 2,66E-06 -1,7 26,3 4,46E-07 -1,6 21,5 4,75E-06 f.conv.adj35 C/T/Y 393 1 50   FALSE 

69 S18_9554600 18 9554600 15,4 3,64E-07 -1,4 30,7 5,33E-08 -1,3 24,4 1,16E-06 f.conv.adj35 C/T/Y 392 2 50 FALSE 

70 S20_11847031 20 11847031 13,0 3,45E-06 1,7 25,9 5,45E-07 -1,7 24,5 1,07E-06 f.conv.adj35 T/C/Y 249 1 194 
13 TC 77.9% 

FALSE 

71 S20_11847038 20 11847038 13,0 3,45E-06 -1,7 25,9 5,45E-07 -1,7 24,5 1,07E-06 f.conv.adj35 C/T/Y 249 1 194 FALSE 

72 S21_725260 21 725260 13,1 3,02E-06 1,7 26,1 4,87E-07 -1,7 23,4 1,87E-06 f.conv.adj35 G/A/R 345 1 98 

16.5K b  

TRUE 

73 S23_2109713 23 2109713 13,1 3,03E-06 1,7 25,1 7,90E-07 -1,8 26,1 4,92E-07 f.conv.adj35 G/A/R 339 1 104 TRUE 

74 S23_4929597 23 4929597 16,5 1,29E-07 -1,6 30,1 6,91E-08 -1,7 32,9 1,84E-08 f.conv.adj35 A/G/R 356 2 86 TRUE 

75 S25_601833 25 601833 13,8 1,51E-06 1,7 25,0 8,28E-07 -1,8 27,5 2,52E-07 f.conv.adj35 T/C/Y 305 1 138 FALSE 

76 S26_534090 26 534090 15,5 3,12E-07 -1,0 31,0 4,54E-08 -0,9 23,5 1,75E-06 f.conv.adj35 C/T/Y 359 4 81 
14 

f.conv.adj35 

79.4% 

TRUE 

77 S26_1249195 26 1249195 11,8 1,04E-05 -82,6 14,8 1,36E-04 -118,3 23,5 1,73E-06 cr A/G/R 355 5 84 TRUE 

78 S27_1587217 27 1587217 14,4 9,00E-07 1,8 26,9 3,26E-07 -1,5 18,9 1,77E-05 f.conv.adj35 C/A/M 400 1 43 
15 

f.conv.adj35G

GGAACf.conv.

adj35 94.8 

TRUE 

79 S27_1587218 27 1587218 14,4 9,00E-07 -1,8 26,9 3,26E-07 -1,5 18,9 1,77E-05 f.conv.adj35 A/C/M 400 1 43 TRUE 

80 S27_1587219 27 1587219 14,4 9,00E-07 1,8 26,9 3,26E-07 -1,5 18,9 1,77E-05 f.conv.adj35 G/A/R 400 1 43 

  

TRUE 
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# Marker Name Chr Pos F p 

add 

effect 

add

F add p 

dom 

effect 

dom 

F dom p Trait Allele Obs1 Obs2 Obs3 
BlockNo 

Most frequent 

Haplotype 
overlapping 

QTLs 

81 S27_1587220 27 1587220 15,3 3,78E-07 -1,8 27,3 2,73E-07 -1,5 17,7 3,12E-05 f.conv.adj35 G/T/K 399 1 44 

  

TRUE 

82 S27_1587221 27 1587221 15,3 3,78E-07 1,8 27,3 2,73E-07 -1,5 17,7 3,12E-05 f.conv.adj35 G /C/S 399 1 44 TRUE 

83 S27_1587222 27 1587222 15,3 3,78E-07 -1,8 27,3 2,73E-07 -1,5 17,7 3,12E-05 f.conv.adj35 A/C/M 399 1 44 TRUE 

84 S27_1587224 27 1587224 15,3 3,78E-07 -1,8 27,3 2,73E-07 -1,5 17,7 3,12E-05 f.conv.adj35 A/C/M 399 1 44 TRUE 

85 S27_1587226 27 1587226 15,3 3,78E-07 1,8 27,3 2,73E-07 -1,5 17,7 3,12E-05 f.conv.adj35 C/A/M 399 1 44 TRUE 

86 S27_1587227 27 1587227 15,3 3,78E-07 -1,8 27,3 2,73E-07 -1,5 17,7 3,12E-05 f.conv.adj35 C/G /S 399 1 44 TRUE 

87 S27_1587228 27 1587228 15,3 3,78E-07 -1,8 27,3 2,73E-07 -1,5 17,7 3,12E-05 f.conv.adj35 A /G /M 399 1 44 TRUE 

88 S27_3798382 27 3798382 15,9 2,15E-07 -1,3 28,7 1,38E-07 -1,5 30,9 4,91E-08 f.conv.adj35 C/G/S 389 2 53 
16 CG 93.6% 

TRUE 

89 S27_3798470 27 3798470 13,0 3,39E-06 1,7 25,2 7,56E-07 -1,8 25,0 8,44E-07 f.conv.adj35 G/A/R 392 1 51 TRUE 

90 S27_4784671 27 4784671 12,9 3,55E-06 1,7 25,8 5,57E-07 -1,7 24,5 1,08E-06 f.conv.adj35 G/A/R 275 1 168 

 

FALSE 

91 S28_788219 28 788219 11,5 1,41E-05 -50,6 15,7 8,88E-05 24,1 2,6 1,08E-01 bw41 T/C/Y 53 214 177 
17 

f.conv.adj35 

34.5 CG 33.6 

TG 30.3 

FALSE 

92 S28_1252731 28 1252731 13,4 2,22E-06 -66,0 26,2 4,57E-07 20,4 2,0 1,58E-01 bw41 G/A/R 171 48 225 FALSE 

93 S28_2986566 28 2986566 13,2 2,86E-06 1,7 26,1 4,81E-07 -1,7 23,8 1,55E-06 f.conv.adj35 G/A/R 298 1 145  TRUE 

94 S33_9064309 Z 9064309 15,2 4,04E-07 -1,3 29,8 8,08E-08 -1,4 28,6 1,47E-07 f.conv.adj35 A/G/R 350 2 92 FALSE 
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Appendix B – Suggestively associated SNPs with feed intake (a), and feed efficiency (b) both adjusted for body 

weight at 35 days and body weight at 41 (c) days of age and birth weight (d) are presented by 

Manhattan (left side) and QQ (right side) plots. The y-axis is shown as -log10 (p-value) for both 

graphs. On the left, the blue line indicates suggestive genome-wise association (P < 1.57E-05) with 

the respective trait. On the right side, the QQ-plots show the relation of normal theoretical quantiles 

of the probability distributions between expected (x-axis) and observed (y-axis) p-values from each 

respective associated trait 

(a) 

 

(b) 

 

(c) 
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(d) 
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Appendix C – Haplotype blocks obtained by the solid spine of LD and family structure using Haploview 4.2. The header represents the block number and tagSNP for each 17 

blocks obtained from 94 markers in LD presented in Figure 3.3 of the manuscript (r2>0.6 except block 17, r2>0.2) in 444 F2 individuals (a). The other letters 

represent the frequency of the F2 blocks in the 8 F1 (b), 5 CC maternal parental line (c) and, 5 TT paternal parental line (d) 
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Appendix D – Karyotype of the QTLs (from Animal QTLdb) distribution regions of the chicken genome 

overlapping suggestive and significant SNPs associated with performance traits (black marks). 

We subset only QTLs mapped for birth weight (BW1), body weight at 35 (BW35), 41 (BW41) 

and 42 (BW42) days of age, and feed intake (f.intake) traits performed in the same F2 population 

used in the presented manuscript and published before 
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Appendix E – Mendelian descriptions for suggestive (P < 1.57E-05) and/or genome-wise associated (P < 7.86E-

07) 94 markers from 444 F2 individuals 

# 
Markers 

Chr_pos 
ObsHET PredHET HWpval  MAF Alleles 

1 1_3706 0.21 0.19 4.71E-02  0.11 C:G 

2 1_25041791 0.22 0.20 1.21E-01  0.11 C:T 

3 1_45468342 0.12 0.11 1.00E+00  0.06 T:C 

4 1_53749693 0.10 0.10 1.00E+00  0.05 G:A 

5 1_82575973 0.53 0.39 7.40E-18 * 0.27 T:C 

6 1_102944294 0.24 0.22 3.81E-02  0.13 A:C 

7 1_178184151 0.12 0.12 9.36E-01  0.06 G:A 

8 1_194726625 0.21 0.19 5.82E-02  0.11 A:C 

9 2_33436237 0.30 0.27 1.25E-02  0.16 A:T 

10 2_33437336 0.31 0.27 5.87E-05 * 0.16 C:G 

11 2_138815862 0.09 0.10 5.43E-02  0.05 G:A 

12 3_77435334 0.13 0.12 8.16E-01  0.07 C:T 

13 4_3514658 0.17 0.16 2.90E-01  0.09 G:T 

14 4_68623163 0.52 0.50 5.79E-01  0.49 A:C 

15 4_68882750 0.48 0.50 4.25E-01  0.47 G:A 

16 4_68882765 0.48 0.50 3.69E-01  0.47 T:G 

17 4_69297525 0.43 0.50 6.80E-03  0.47 G:A 

18 4_69370079 0.43 0.50 4.20E-03  0.46 A:T 

19 4_69372005 0.49 0.50 7.21E-01  0.48 T:C 

20 4_69372065 0.49 0.50 9.01E-01  0.47 G:A 

21 4_73210325 0.42 0.50 9.00E-04 * 0.48 C:T 

22 4_73407243 0.46 0.49 2.58E-01  0.41 A:G 

23 4_73407249 0.46 0.49 2.58E-01  0.41 G:A 

24 4_75842191 0.42 0.49 7.00E-03  0.41 A:C 

25 4_79707389 0.37 0.45 8.06E-05 * 0.35 C:G 

26 5_54401932 0.19 0.18 1.16E-01  0.10 C:T 

27 6_2997851 0.14 0.17 1.60E-03  0.10 G:A 

28 6_5492179 0.49 0.50 8.21E-01  0.47 A:C 

29 6_28967516 0.29 0.25 4.00E-04 * 0.15 G:T 

30 6_31436207 0.41 0.33 1.58E-09 * 0.21 T:C 

31 7_6904443 0.94 0.50 2.00E-97 * 0.47 G:A 

32 7_22092999 0.11 0.11 1.00E+00  0.06 G:C 

33 7_22093009 0.11 0.11 1.00E+00  0.06 C:T 

34 7_26252164 0.13 0.13 7.40E-01  0.07 C:T 

35 7_34668134 0.11 0.12 1.54E-01  0.06 A:C 

36 7_34855716 0.13 0.13 7.78E-01  0.07 G:A 

37 8_5848411 0.30 0.26 3.00E-04 * 0.15 T:C 

38 8_27651130 0.15 0.15 9.07E-01  0.08 T:C 

39 9_15349595 0.12 0.12 9.36E-01  0.06 G:A 

40 9_21971358 0.21 0.19 5.24E-02  0.11 C:T 

41 10_9890328 0.33 0.28 1.46E-05 * 0.17 A:G 

42 10_17086845 0.12 0.12 9.36E-01  0.06 G:A 

43 11_1249418 0.11 0.10 1.00E+00  0.06 G:A 

44 11_1997302 0.12 0.11 1.00E+00  0.06 G:A 

45 11_2149223 0.12 0.11 1.00E+00  0.06 A:G 

46 13_1958055 0.28 0.25 6.00E-04 * 0.14 C:T 

47 13_9894951 0.43 0.34 1.43E-10 * 0.22 C:T 

48 13_9894952 0.43 0.34 1.43E-10 * 0.22 C:T 

49 13_12804655 0.34 0.31 2.00E-02  0.19 T:C 

50 13_15109350 0.20 0.18 9.60E-02  0.10 T:C 

51 13_15109354 0.20 0.18 9.60E-02  0.10 C:T 

52 14_2918142 0.22 0.20 2.74E-01  0.12 C:A 

53 14_4019669 0.26 0.23 2.50E-03  0.13 G:T 

54 14_12043802 0.29 0.26 1.90E-03  0.15 T:C 

55 14_12127914 0.20 0.18 9.60E-02  0.10 G:A 

56 14_12127934 0.20 0.18 9.60E-02  0.10 C:T 
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# 
Markers 

Chr_pos 
ObsHET PredHET HWpval  MAF Alleles 

57 15_6942668 0.55 0.40 1.22E-19 * 0.28 G:A 

58 15_9763685 0.28 0.25 7.00E-04 * 0.14 C:A 

59 17_1976385 0.30 0.42 4.25E-09 * 0.30 C:G 

60 17_4917070 0.30 0.26 3.00E-04 * 0.15 C:G 

61 17_4917071 0.30 0.26 3.00E-04 * 0.15 G:T 

62 17_4917072 0.30 0.26 3.00E-04 * 0.15 T:G 

63 17_5621341 0.10 0.10 1.00E+00  0.05 C:T 

64 17_5621374 0.10 0.10 1.00E+00  0.05 C:T 

65 17_5986188 0.56 0.41 1.79E-20 * 0.28 C:T 

66 18_4390068 0.10 0.10 7.77E-01  0.06 C:T 

67 18_9253828 0.12 0.11 1.00E+00  0.06 A:C 

68 18_9551090 0.11 0.11 1.00E+00  0.06 C:T 

69 18_9554600 0.11 0.11 9.82E-01  0.06 C:T 

70 20_11847031 0.44 0.34 5.59E-11 * 0.22 T:C 

71 20_11847038 0.44 0.34 5.59E-11 * 0.22 C:T 

72 21_725260 0.22 0.20 3.02E-02  0.11 G:A 

73 23_2109713 0.23 0.21 1.47E-02  0.12 G:A 

74 23_4929597 0.19 0.18 2.86E-01  0.10 A:G 

75 25_601833 0.31 0.27 7.10E-05 * 0.16 T:C 

76 26_534090 0.18 0.18 1.00E+00  0.10 C:T 

77 26_1249195 0.19 0.19 1.00E+00  0.11 A:G 

78 27_1587217 0.10 0.10 1.00E+00  0.05 C:A 

79 27_1587218 0.10 0.10 1.00E+00  0.05 A:C 

80 27_1587219 0.10 0.10 1.00E+00  0.05 G:A 

81 27_1587220 0.10 0.10 1.00E+00  0.05 G:T 

82 27_1587221 0.10 0.10 1.00E+00  0.05 G:C 

83 27_1587222 0.10 0.10 1.00E+00  0.05 A:C 

84 27_1587224 0.10 0.10 1.00E+00  0.05 A:C 

85 27_1587226 0.10 0.10 1.00E+00  0.05 C:A 

86 27_1587227 0.10 0.10 1.00E+00  0.05 C:G 

87 27_1587228 0.10 0.10 1.00E+00  0.05 A:G 

88 27_3798382 0.12 0.12 1.00E+00  0.06 C:G 

89 27_3798470 0.12 0.11 1.00E+00  0.06 G:A 

90 27_4784671 0.38 0.31 9.31E-08 * 0.19 G:A 

91 28_788219 0.40 0.43 1.02E-01  0.32 C:T 

92 28_1252731 0.51 0.46 5.19E-02  0.36 G:A 

93 28_2986566 0.33 0.28 1.79E-05 * 0.17 G:A 

94 Z_9064309 0.21 0.19 1.75E-01  0.11 A:G 

*HW p-value cutoff: 0.001, Chr – chromosome, pos – marker position on chromosome 
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Appendix F – The table is rating who has the advantageous alleles from the parental lines (mother/father) (adv. 

parental) for the trait evaluated from each of the 17 LD blocks. The first column indicates the block 

number, the second and third indicate whether this haplotype is fixed in the father/mother and the 

fourth column indicates the parental which concentrates more frequently the advantageous allele 

Block Father Mother adv. parental 

1 fixed variable father 

2 variable variable father 

3 fixed variable father 

4 variable fixed mother 

5 variable fixed mother 

6 variable fixed mother 

7 fixed variable father 

8 fixed variable father 

9 variable fixed mother 

10 fixed variable father 

11 variable fixed mother 

12 variable fixed mother 

13 variable variable father 

14 variable fixed mother 

15 variable fixed mother 

16 variable fixed mother 

17 variable variable father/mother 
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Appendix G – List of 253 QTLs overlapping 81 markers obtained from overlapping test of 94 associated (P < 7.86E-07) and/or suggestive (P < 1.57E-05) associated markers 

from 444 F2 individuals in this study against 1,458 QTLs obtained from the Animal QTLdb 
 

chr start end QTL_ID Trait Abrev 

chr1 2329958 64931354 QTL_ID=9406 Body_weight_(63_days) Bw 

chr1 7010437 27734493 QTL_ID=6752 Body_weight_(70_days) Bw 

chr1 23286118 25486484 QTL_ID=6751 Body_weight_(63_days) Bw 
chr1 23286118 25486484 QTL_ID=6753 Body_weight_(77_days) Bw 

chr1 25275933 48175152 QTL_ID=1775 Body_weight Bw 

chr1 25275933 48175152 QTL_ID=9739 Body_weight_(21_days) Bw 

chr1 25275933 48175152 QTL_ID=9740 Body_weight_(42_days) Bw 
chr1 25275933 48175152 QTL_ID=9741 Body_weight_(63_days) Bw 

chr1 28436329 63038738 QTL_ID=1807 Body_weight Bw 

chr1 28436329 63038738 QTL_ID=1808 Body_weight bw 
chr1 33174045 134863919 QTL_ID=17076 Body_weight_(140_days) bw 

chr1 33279320 47367912 QTL_ID=6675 Feed_conversion_ratio f.conv 

chr1 33279320 47367912 QTL_ID=6674 Residual_feed_intake f.intake 

chr1 42474406 52428237 QTL_ID=1788 Body_weight bw 
chr1 45111848 45996329 QTL_ID=24950 Body_weight bw 

chr1 50511472 82050274 QTL_ID=55913 Body_weight_(105_days) bw 

chr1 50511472 71471379 QTL_ID=55933 Growth_(35-70_days) grow 
chr1 50722023 68558759 QTL_ID=55902 Body_weight_(35_days) bw 

chr1 50722023 69541330 QTL_ID=55908 Body_weight_(70_days) bw 

chr1 50722023 67611281 QTL_ID=55927 Growth_(0-35_days) grow 
chr1 51977644 195276750 QTL_ID=1797 Body_weight bw 

chr1 51977644 55261640 QTL_ID=24872 Body_weight_(168_days) bw 

chr1 51977644 55261640 QTL_ID=24839 Body_weight_(21_days) bw 

chr1 51977644 53798691 *QTL_ID=3324 Body_weight_(35_days) bw 
chr1 51977644 55261640 QTL_ID=24848 Body_weight_(42_days) bw 

chr1 51977644 53798691 QTL_ID=3325 Body_weight_(42_days) bw 

chr1 51977644 55261640 QTL_ID=14462 Body_weight_(day_of_f.intakerst_egg) bw 
chr1 51977644 55261640 QTL_ID=14467 Body_weight_(day_of_f.intakerst_egg) bw 

chr1 57051322 152887033 QTL_ID=55937 Growth_(70-105_days) grow 

chr1 59332289 134126991 QTL_ID=55919 Body_weight_(140_days) bw 
chr1 81804631 84531095 QTL_ID=9110 Growth_(post-challenge) grow 

chr1 90354029 123032393 QTL_ID=1821 Feed_efficience effic 

chr1 92255503 108492449 QTL_ID=6813 Body_weight_(56_days) bw 

chr1 92255503 108492449 QTL_ID=6814 Body_weight_(56_days) bw 
chr1 92255503 108492449 QTL_ID=6815 Body_weight_(63_days) bw 

chr1 92255503 108492449 QTL_ID=6812 Body_weight_(7_days) bw 

chr1 92255503 108492449 QTL_ID=6816 Body_weight_(77_days) bw 
chr1 92255503 108492449 QTL_ID=6817 Body_weight_(84_days) bw 

chr1 94157976 113198023 QTL_ID=1822 Feed_intake f.intake 

chr1 143677314 191778894 QTL_ID=6583 Body_weight_(112_days) bw 

chr1 143677314 191778894 QTL_ID=6584 Body_weight_(200_days) bw 
chr1 143677314 191778894 QTL_ID=6582 Body_weight_(46_days) bw 

chr1 143677314 191778894 QTL_ID=6579 Body_weight_(8_days) bw 

chr1 143677314 191778894 QTL_ID=6588 Growth_(112-200_days) grow 
chr1 143677314 191778894 QTL_ID=6585 Growth_(1-8_days) grow 

chr1 143677314 191778894 QTL_ID=6587 Growth_(46-112_days) grow 

chr1 143677314 191778894 QTL_ID=6586 Growth_(8-46_days) grow 
chr1 156472083 191778894 QTL_ID=1855 Body_weight bw 

chr1 156472083 191778894 QTL_ID=1858 Body_weight bw 

chr1 156472083 195276750 QTL_ID=24873 Body_weight_(168_days) bw 

chr1 156472083 191778894 QTL_ID=9750 Body_weight_(21_days) bw 
chr1 156472083 191778894 QTL_ID=9751 Body_weight_(42_days) bw 

chr1 178182301 178252485 QTL_ID=16642 Body_weight_(28_days) bw 

chr1 178182301 178252485 QTL_ID=16667 Body_weight_(28_days) bw 
chr1 178182301 178252485 QTL_ID=16643 Body_weight_(35_days) bw 

chr1 178182301 178252485 QTL_ID=16644 Body_weight_(42_days) bw 

chr1 178182301 178252485 QTL_ID=16669 Body_weight_(42_days) bw 
chr1 178182301 178252485 QTL_ID=16645 Body_weight_(49_days) bw 

chr1 178182301 178252485 QTL_ID=16670 Body_weight_(49_days) bw 

chr1 178182301 178252485 QTL_ID=16646 Body_weight_(56_days) bw 

chr1 178182301 178252485 QTL_ID=16671 Body_weight_(56_days) bw 
chr1 178182301 178252485 QTL_ID=16647 Body_weight_(63_days) bw 

chr1 178182301 178252485 QTL_ID=16672 Body_weight_(63_days) bw 

chr1 178182301 178252485 QTL_ID=16648 Body_weight_(70_days) bw 
chr1 178182301 178252485 QTL_ID=16673 Body_weight_(70_days) bw 

chr1 178182301 178252485 QTL_ID=16649 Body_weight_(77_days) bw 

chr start end QTL_ID Trait Abrev 

chr1 178182301 178252485 QTL_ID=16674 Body_weight_(77_days) bw 

chr1 178182301 178252485 QTL_ID=16650 Body_weight_(84_days) bw 

chr1 178182301 178252485 QTL_ID=16675 Body_weight_(84_days) bw 
chr2 578373 37938317 QTL_ID=1871 Body_weight bw 

chr2 578373 37938317 QTL_ID=1872 Body_weight bw 

chr2 2452503 37938317 QTL_ID=1873 Body_weight bw 

chr2 15053040 37938317 QTL_ID=1874 Body_weight bw 
chr2 17958970 37831227 QTL_ID=6848 Body_weight_(42_days) bw 

chr2 21441194 71328860 QTL_ID=55934 Growth_(35-70_days) grow 

chr2 29064142 108449411 QTL_ID=55909 Body_weight_(70_days) bw 
chr2 29345262 65036736 QTL_ID=55914 Body_weight_(105_days) bw 

chr2 103056068 144263101 QTL_ID=9415 Body_weight_(63_days) bw 

chr2 129556328 148809762 QTL_ID=1928 Body_weight_(test_end) bw 

chr3 2811981 103804757 QTL_ID=1979 Body_weight bw 
chr3 2811981 103804757 QTL_ID=1980 Body_weight bw 

chr3 6645961 106970113 *QTL_ID=7180 Body_weight_(35_days) bw 

chr3 6841859 102661494 QTL_ID=55904 Body_weight_(35_days) bw 
chr3 6841859 99827114 QTL_ID=55929 Growth_(0-35_days) grow 

chr3 24160710 79800194 QTL_ID=1957 Body_weight bw 

chr3 37579996 108174898 QTL_ID=1961 Body_weight bw 
chr3 37579996 108174898 QTL_ID=1962 Body_weight bw 

chr3 45203763 84080722 QTL_ID=6611 Body_weight_(112_days) bw 

chr3 45203763 84080722 QTL_ID=6612 Body_weight_(200_days) bw 

chr3 45203763 84080722 QTL_ID=6610 Body_weight_(8_days) bw 
chr3 45203763 84080722 QTL_ID=6613 Growth_(1-8_days) grow 

chr3 45311696 104141066 QTL_ID=9420 Body_weight_(63_days) bw 

chr3 57793506 84765752 QTL_ID=11768 Body_weight_(49_days) bw 
chr3 57793506 84765752 QTL_ID=11772 Body_weight_(63_days) bw 

chr3 58466018 88819995 QTL_ID=1969 Body_weight bw 

chr3 58466018 88819995 QTL_ID=1972 Body_weight bw 
chr3 72032411 84765752 QTL_ID=9127 Growth_(post-challenge) grow 

chr4 3459678 19246773 QTL_ID=1989 Body_weight bw 

chr4 3459678 19246773 QTL_ID=1990 Body_weight bw 

chr4 3459678 19246773 QTL_ID=1991 Body_weight bw 
chr4 3459678 16468784 QTL_ID=24854 Body_weight_(42_days) bw 

chr4 3459678 16468784 QTL_ID=24865 Body_weight_(84_days) bw 

chr4 17039416 80254980 QTL_ID=24875 Body_weight_(168_days) bw 
chr4 17039416 80254980 QTL_ID=24842 Body_weight_(21_days) bw 

chr4 17039416 80254980 QTL_ID=24883 Body_weight_(336_days) bw 

chr4 17039416 80254980 QTL_ID=24855 Body_weight_(42_days) bw 

chr4 17039416 80254980 QTL_ID=24890 Body_weight_(504_days) bw 
chr4 17039416 80254980 QTL_ID=24866 Body_weight_(84_days) bw 

chr4 17039416 80254980 QTL_ID=14457 Body_weight_(day_of_f.intakerst_egg) bw 

chr4 17039416 80254980 QTL_ID=14464 Body_weight_(day_of_f.intakerst_egg) bw 
chr4 17039416 80254980 QTL_ID=14470 Body_weight_(day_of_f.intakerst_egg) bw 

chr4 30753891 88270681 QTL_ID=55905 Body_weight_(35_days) bw 

chr4 32166525 88270681 QTL_ID=55930 Growth_(0-35_days) grow 
chr4 46739707 88408499 QTL_ID=2008 Body_weight bw 

chr4 46739707 88408499 QTL_ID=2015 Body_weight bw 

chr4 46739707 88408499 QTL_ID=2016 Body_weight bw 

chr4 46739707 88408499 QTL_ID=9759 Body_weight_(42_days) bw 
chr4 46739707 88408499 QTL_ID=9760 Body_weight_(63_days) bw 

chr4 46739707 88408499 QTL_ID=9761 Growth_(21-42_days) grow 

chr4 46739707 88408499 QTL_ID=9762 Growth_(42-63_days) grow 
chr4 47497706 81608525 QTL_ID=12498 Growth_(0-14_days) grow 

chr4 47897157 84135947 QTL_ID=12500 Growth_(28-42_days) grow 

chr4 51678002 81608525 QTL_ID=12499 Growth_(14-28_days) grow 
chr4 61658027 87975245 QTL_ID=12501 Growth_(42-56_days) grow 

chr4 67602577 86114364 QTL_ID=55942 Growth_(105-140_days) grow 

chr4 68050486 84928400 QTL_ID=17069 Body_weight_(224_days) bw 

chr4 68567303 80565058 QTL_ID=55938 Growth_(70-105_days) grow 
chr4 69497574 81401798 QTL_ID=55915 Body_weight_(105_days) bw 

chr4 69942858 88408499 QTL_ID=11766 Body_weight_(35_days) bw 

chr4 69942858 84618310 QTL_ID=7181 Body_weight_(35_days) bw 
chr4 69942858 84618310 *QTL_ID=7157 Body_weight_(35_days) bw 

chr4 69942858 84618310 *QTL_ID=7185 Body_weight_(41_days) bw 
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chr start end QTL_ID Trait Abrev 

chr4 69942858 84618310 *QTL_ID=7162 Body_weight_(41_days) bw 
chr4 69942858 88408499 QTL_ID=11769 Body_weight_(49_days) bw 

chr4 69942858 88408499 QTL_ID=11773 Body_weight_(63_days) bw 

chr4 70976493 80254980 QTL_ID=2026 Body_weight bw 

chr4 70976493 80254980 QTL_ID=2023 Feed_intake f.intake 
chr5 13971153 59580361 QTL_ID=55939 Growth_(70-105_days) grow 

chr5 22465118 58876488 QTL_ID=17079 Body_weight_(140_days) bw 

chr5 30162850 59580361 QTL_ID=9763 Growth_(42-63_days) grow 
chr6 1732132 29763072 QTL_ID=55916 Body_weight_(105_days) bw 

chr6 14060241 31613296 QTL_ID=2125 Body_weight bw 

chr6 26971183 31244082 QTL_ID=24843 Body_weight_(21_days) bw 

chr6 26971183 31244082 QTL_ID=9764 Body_weight_(42_days) bw 
chr6 26971183 31244082 QTL_ID=24867 Body_weight_(84_days) bw 

chr6 26971183 31244082 QTL_ID=9765 Growth_(21-42_days) grow 

chr6 28380699 29847153 QTL_ID=12502 Growth_(0-14_days) grow 
chr7 1293359 22946278 QTL_ID=2136 Body_weight bw 

chr7 1293359 27006229 QTL_ID=2149 Body_weight bw 

chr7 1293359 27006229 QTL_ID=2151 Body_weight bw 
chr7 1293359 27006229 QTL_ID=2153 Body_weight bw 

chr7 1293359 28666221 QTL_ID=2147 Body_weight bw 

chr7 1293359 28666221 QTL_ID=2148 Body_weight bw 

chr7 1293359 22946278 QTL_ID=6626 Body_weight_(112_days) bw 
chr7 1293359 22946278 QTL_ID=6627 Body_weight_(200_days) bw 

chr7 4794981 24245453 QTL_ID=2150 Body_weight bw 

chr7 7699967 36245040 QTL_ID=2146 Body_weight bw 
chr7 7699967 36245040 QTL_ID=2158 Body_weight bw 

chr7 7699967 36245040 QTL_ID=2160 Body_weight bw 

chr7 12980232 24245453 QTL_ID=17305 Body_weight_(14_days) bw 
chr7 12980232 24245453 QTL_ID=17308 Body_weight_(35_days) bw 

chr7 12980232 24245453 QTL_ID=17314 Body_weight_(77_days) bw 

chr7 24245453 28666221 QTL_ID=17309 Body_weight_(42_days) bw 

chr7 24245453 28666221 QTL_ID=17310 Body_weight_(49_days) bw 
chr7 24245453 28666221 QTL_ID=17311 Body_weight_(56_days) bw 

chr7 24245453 28666221 QTL_ID=17312 Body_weight_(63_days) bw 

chr7 24245453 28666221 QTL_ID=17304 Body_weight_(7_days) bw 
chr7 24245453 28666221 QTL_ID=17313 Body_weight_(70_days) bw 

chr7 24245453 28666221 QTL_ID=17315 Body_weight_(84_days) bw 

chr7 25665007 26638454 QTL_ID=64529 Feed_conversion_ratio f.conv 

chr7 25675920 26648497 QTL_ID=95407 Body_weight_(21_days) bw 
chr7 28666221 36245040 QTL_ID=6625 Body_weight_(8_days) bw 

chr7 34723350 36245040 *QTL_ID=7163 Body_weight_(41_days) bw 

chr8 6726971 28767244 QTL_ID=24891 Body_weight_(504_days) bw 
chr8 6967382 28767244 QTL_ID=55922 Body_weight_(140_days) bw 

chr8 6967382 28767244 QTL_ID=55940 Growth_(70-105_days) grow 

chr8 8398681 28767244 QTL_ID=2190 Body_weight bw 
chr8 8398681 28767244 QTL_ID=2199 Body_weight bw 

chr8 8398681 28767244 QTL_ID=2201 Body_weight bw 

chr8 8398681 28767244 QTL_ID=9767 Body_weight_(63_days) bw 

chr8 8398681 28767244 QTL_ID=9768 Growth_(21-42_days) grow 
chr8 19901881 28767244 QTL_ID=24877 Body_weight_(168_days) bw 

chr8 19901881 28767244 QTL_ID=24844 Body_weight_(21_days) bw 

chr8 19901881 28767244 QTL_ID=24857 Body_weight_(42_days) bw 
chr8 19901881 28767244 QTL_ID=24868 Body_weight_(84_days) bw 

chr8 19901881 28767244 QTL_ID=14458 Body_weight_(day_of_f.intakerst_egg) bw 

chr8 19901881 28767244 QTL_ID=14471 Body_weight_(day_of_f.intakerst_egg) bw 
chr9 5124631 18131981 QTL_ID=2217 Body_weight bw 

chr9 6503007 23441680 QTL_ID=9442 Body_weight_(63_days) bw 

chr9 13658592 19669473 QTL_ID=6634 Body_weight_(200_days) bw 

chr9 13658592 23441680 QTL_ID=24886 Body_weight_(336_days) bw 
chr9 13658592 23441680 QTL_ID=24869 Body_weight_(84_days) bw 

chr9 13658592 19669473 QTL_ID=6635 Growth_(46-112_days) grow 

chr9 19669473 23441680 *QTL_ID=7177 Body_weight_(1_day) bw 
chr10 1114728 15658282 QTL_ID=55923 Body_weight_(140_days) bw 

chr10 1924750 17334850 QTL_ID=55907 Body_weight_(35_days) bw 

chr10 2119755 17529855 QTL_ID=55931 Growth_(0-35_days) grow 

chr10 2142052 19911089 QTL_ID=55911 Body_weight_(70_days) bw 
chr10 3972100 17904865 QTL_ID=55917 Body_weight_(105_days) bw 

chr10 15658282 19911089 QTL_ID=2234 Body_weight_(ascites_conditions) bw 

chr10 16519830 19911089 *QTL_ID=7158 Body_weight_(35_days) bw 
chr10 16519830 19911089 *QTL_ID=7164 Body_weight_(41_days) bw 

chr start end QTL_ID Trait Abrev 

chr11 888408 19401079 QTL_ID=17080 Body_weight_(140_days) bw 
chr11 975081 8298366 QTL_ID=64559 Feed_intake f.intake 

chr11 1063950 19185191 QTL_ID=55924 Body_weight_(140_days) bw 

chr11 2091236 3659428 QTL_ID=24845 Body_weight_(21_days) bw 

chr11 2091236 3659428 QTL_ID=24858 Body_weight_(42_days) bw 
chr13 721942 17760035 QTL_ID=24859 Body_weight_(42_days) bw 

chr13 721942 17760035 QTL_ID=24870 Body_weight_(84_days) bw 

chr13 721942 17760035 QTL_ID=14472 Body_weight_(day_of_f.intakerst_egg) bw 
chr13 8120084 17760035 QTL_ID=2310 Body_weight bw 

chr13 8120084 17760035 QTL_ID=9769 Body_weight_(21_days) bw 

chr13 8120084 17760035 QTL_ID=9770 Body_weight_(42_days) bw 

chr13 8120084 17760035 QTL_ID=9771 Body_weight_(63_days) bw 
chr13 8120084 17760035 QTL_ID=9772 Growth_(21-42_days) grow 

chr13 9323148 14111077 QTL_ID=9444 Body_weight_(63_days) bw 

chr13 10363506 16327806 QTL_ID=6645 Body_weight_(46_days) bw 
chr13 10363506 16327806 QTL_ID=6646 Growth_(1-8_days) grow 

chr13 12437243 17760035 QTL_ID=17081 Body_weight_(140_days) bw 

chr13 14111077 16327806 QTL_ID=2304 Body_weight bw 
chr14 50307 7445319 QTL_ID=6647 Body_weight_(1_day) bw 

chr14 50307 14696724 QTL_ID=17082 Body_weight_(140_days) bw 

chr14 50307 14696724 QTL_ID=55943 Growth_(105-140_days) grow 

chr14 133818 14696724 QTL_ID=55925 Body_weight_(140_days) bw 
chr14 3987816 7445319 QTL_ID=2328 Body_weight bw 

chr15 2798507 10631416 QTL_ID=24887 Body_weight_(336_days) bw 

chr15 3717446 8184057 QTL_ID=3355 Body_weight_(35_days) bw 
chr15 3717446 10631416 QTL_ID=6648 Body_weight_(46_days) bw 

chr15 3717446 10631416 QTL_ID=6649 Growth_(8-46_days) grow 

chr17 2449728 6121982 QTL_ID=2355 Body_weight bw 
chr18 1430572 4653744 QTL_ID=6650 Body_weight_(8_days) bw 

chr18 1430572 4653744 QTL_ID=6651 Growth_(1-8_days) grow 

chr18 3180498 7587685 QTL_ID=9773 Body_weight_(42_days) bw 

chr18 3180498 7587685 QTL_ID=9774 Growth_(21-42_days) grow 
chr21 13225 979078 QTL_ID=95430 Body_weight bw 

chr23 1779254 5097178 QTL_ID=9124 Growth_(post-challenge) grow 

chr26 58444 2538399 QTL_ID=64571 Feed_conversion_ratio f.conv 
chr26 1193077 4893906 QTL_ID=9453 Body_weight_(63_days) bw 

chr27 81131 4104720 QTL_ID=55906 Body_weight_(35_days) bw 

chr27 81131 4104720 QTL_ID=55932 Growth_(0-35_days) grow 

chr27 81131 4104720 QTL_ID=55944 Growth_(105-140_days) grow 
chr27 1210605 4104720 QTL_ID=2410 Body_weight bw 

chr27 1210605 4104720 QTL_ID=2409 Body_weight bw 

chr27 1969149 4104720 QTL_ID=17084 Body_weight_(140_days) bw 
chr27 2282360 4104720 QTL_ID=55926 Body_weight_(140_days) bw 

chr27 2467966 4104720 QTL_ID=55912 Body_weight_(70_days) bw 

chr27 2467966 4104720 QTL_ID=55936 Growth_(35-70_days) grow 
chr27 2595571 4104720 QTL_ID=55918 Body_weight_(105_days) bw 

chr27 3493381 4104720 QTL_ID=2408 Body_weight bw 

chr27 3493381 4104720 *QTL_ID=7159 Body_weight_(35_days) bw 

chr28 1657793 4302316 QTL_ID=24893 Body_weight_(504_days) bw 
chr28 2073322 4302316 QTL_ID=55901 Body_weight_(hatch) bw 

chr28 2507636 4302316 QTL_ID=2419 Body_weight bw 

      

 

*bolded are QTL mapped in the same F2 population used in this study 
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Appendix H – Functional annotation of 94 associated (P < 7.86E-07) and/or suggestive associated (P < 1.57E-05) 

SNPs from 444 F2 individuals using Variant Effect Predictor (VEP) tool v.71 online 1. The last 

column is the classification of the SNPs as overlapping QTLs (TRUE) or not overlapping QTLs 

(FALSE). These QTLs were the same presented in Table S3 online 

Chr Pos Allele # Consequence Ensemble gene ID Gene Symbol ## 
Overlapping 

QTLs 

chr1 3706 C/G 1 intron_variant ENSGALG00000009771   FALSE 
chr1 25041791 C/T 2 intergenic_variant    TRUE 

chr1 45468342 T/C 3 3_prime_UTR_variant ENSGALG00000011406 NTN4  TRUE 

chr1 53749693 G/A 4 upstream_gene_variant ENSGALG00000012647 RFX4  TRUE 
chr1 82575973 T/C 5 downstream_gene_variant ENSGALG00000027337 CLDND1  TRUE 

chr1 102944294 A/C 6 intergenic_variant    TRUE 
chr1 178184151 G/A 7 intergenic_variant    TRUE 

chr1 194726625 A/C 8 intron_variant ENSGALG00000017320 RAB6A  TRUE 

chr2 33436237 A/T 9 intergenic_variant   
1 

TRUE 
chr2 33437336 C/G 10 intergenic_variant   TRUE 

chr2 138815862 G/A 11 intergenic_variant    TRUE 

chr3 77435334 C/T 12 intron_variant ENSGALG00000015860 UBE3D  TRUE 
chr4 3514658 G/T 13 intron_variant ENSGALG00000029157 MBNL3  TRUE 

chr4 68623163 A/C 14 intergenic_variant   

2 

TRUE 

chr4 68882750 G/A 15 3_prime_UTR_variant ENSGALG00000014320 UGDH TRUE 

chr4 68882765 T/G 16 
downstream_gene_variant ENSGALG00000014312 LIAS 

TRUE 
3_prime_UTR_variant ENSGALG00000014320 UGDH 

chr4 69297525 G/A 17 downstream_gene_variant ENSGALG00000014312 LIAS TRUE 
chr4 69370079 A/T 18 intron_variant ENSGALG00000013521 TBC1D1 TRUE 

chr4 69372005 T/C 19 intron_variant ENSGALG00000013521 TBC1D1 TRUE 

chr4 69372065 G/A 20 intron_variant ENSGALG00000013521 TBC1D1 TRUE 
chr4 73210325 C/T 21 intergenic_variant   

3 

TRUE 

chr4 73407243 A/G 22 intergenic_variant   TRUE 

chr4 73407249 G/A 23 intergenic_variant   TRUE 

chr4 75842191 A/C 24 intron_variant ENSGALG00000014485 LDB2  TRUE 

chr4 79707389 C/G 25 intron_variant ENSGALG00000028116   TRUE 

chr5 54401932 C/T 26 intergenic_variant    TRUE 
chr6 2997851 G/A 27 intron_variant ENSGALG00000002327 NRG3  TRUE 

chr6 5492179 A/C 28 intergenic_variant    TRUE 

chr6 28967516 G/T 29 intergenic_variant    TRUE 
chr6 31436207 T/C 30 intergenic_variant    TRUE 

chr7 6904443 G/A 31 synonymous_variant    TRUE 

chr7 22092999 G/C 32 intron_variant ENSGALG00000025739 RUFY4 
4 

TRUE 
chr7 22093009 C/T 33 intron_variant ENSGALG00000025739 RUFY4 TRUE 

chr7 26252164 C/T 34 intergenic_variant    TRUE 

chr7 34668134 A/C 35 missense_variant ENSGALG00000012484 RIF1 
5 

TRUE 
chr7 34855716 G/A 36 upstream_gene_variant ENSGALG00000012511 CACNB4 TRUE 

chr8 5848411 T/C 37 intron_variant ENSGALG00000003893 XPR1  FALSE 

chr8 27651130 T/C 38 
downstream_gene_variant ENSGALG00000027967 MIR6630  

TRUE 
upstream_gene_variant ENSGALG00000011238 WLS  

chr9 15349595 G/A 39 downstream_gene_variant ENSGALG00000006246   TRUE 

chr9 21971358 C/T 40 intron_variant ENSGALG00000009669 RSRC1  TRUE 
chr10 9890328 A/G 41 intron_variant ENSGALG00000005011 SHC4  TRUE 

chr10 17086845 G/A 42 intron_variant ENSGALG00000026468 CHSY1  TRUE 

chr11 1249418 G/A 43 missense_variant ENSGALG00000117983 MUC5B 

6 

TRUE 
chr11 1997302 G/A 44 intron_variant ENSGALG00000002853 CFDP1 TRUE 

chr11 2149223 A/G 45 
intron_variant ENSGALG00000003084 NUDT21 

TRUE 
upstream_gene_variant ENSGALG00000003071 OGFOD1 

chr13 1958055 C/T 46 downstream_gene_variant ENSGALG00000002447 CTNNA1  TRUE 

chr13 9894951 C/T 47 
downstream_gene_variant ENSGALG00000002457 SIL1 

7 
TRUE 

intron_variant ENSGALG00000003512 SPINK7 
chr13 9894952 C/T 48 intron_variant ENSGALG00000003512 SPINK7 TRUE 

chr13 12804655 T/C 49 intergenic_variant    TRUE 

chr13 15109350 T/C 50 intron_variant ENSGALG00000006424 JADE2 
8 

TRUE 
chr13 15109354 C/T 51 intron_variant ENSGALG00000006424 JADE2 TRUE 

chr14 2918142 C/A 52 intron_variant ENSGALG00000004224 MAD1L1  TRUE 
chr14 4019669 G/T 53 intron_variant ENSGALG00000004504 RADIL  TRUE 

chr14 12043802 T/C 54 
downstream_gene_variant ENSGALG00000007456 CGTHBA 

9 

TRUE 
3_prime_UTR_variant ENSGALG00000028691 MPG 

chr14 12127914 G/A 55 downstream_gene_variant ENSGALG00000007473 MRPL28 TRUE 

chr14 12127934 C/T 56 downstream_gene_variant ENSGALG00000007473 MRPL28 TRUE 

chr15 6942668 G/A 57 intergenic_variant    TRUE 
chr15 9763685 C/A 58 intergenic_variant    TRUE 

chr17 1976385 C/G 59 intron_variant ENSGALG00000008475 ARRDC1  FALSE 

chr17 4917070 C/G 60 intron_variant ENSGALG00000005036 SH2D3C 
10 

TRUE 
chr17 4917071 G/T 61 intron_variant ENSGALG00000005036 SH2D3C TRUE 
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Chr Pos Allele # Consequence Ensemble gene ID Gene Symbol ## 
Overlapping 

QTLs 

chr17 4917072 T/G 62 intron_variant ENSGALG00000005036 SH2D3C  TRUE 

chr17 5621341 C/T 63 intergenic_variant   
11 

TRUE 

chr17 5621374 C/T 64 intergenic_variant   TRUE 
chr17 5986188 C/T 65 intergenic_variant    TRUE 

chr18 4390068 C/T 66 intron_variant ENSGALG00000001971 UBE2O  TRUE 

chr18 9253828 A/C 67 
upstream_gene_variant ENSGALG00000004429 COG1 

12 

FALSE downstream_gene_variant ENSGALG00000004418 SS2R 

upstream_gene_variant ENSGALG00000004429 COG1 

chr18 9551090 C/T 68 intron_variant ENSGALG00000006895 CEP131 FALSE 
chr18 9554600 C/T 69 intron_variant ENSGALG00000006895 CEP131 FALSE 

chr20 11847031 T/C 70 intron_variant ENSGALG00000007636 PEPCK 
13 

FALSE 

chr20 11847038 C/T 71 intron_variant ENSGALG00000007636 PEPCK FALSE 
chr21 725260 G/A 72 intergenic_variant    TRUE 

chr23 2109713 G/A 73 

downstream_gene_variant ENSGALG00000026379 OPRD1  

TRUE 
downstream_gene_variant ENSGALG00000021931 SNORA73  

downstream_gene_variant ENSGALG00000002871 PHACTR4  

intron_variant ENSGALG00000027784 RCC1  

chr23 4929597 A/G 74 intron_variant ENSGALG00000026836 COL16A1  TRUE 
chr25 601833 T/C 75 intron_variant ENSGALG00000014559 MEF2D  FALSE 

chr26 534090 C/T 76 intron_variant ENSGALG00000000427 KDM5B 
14 

TRUE 

chr26 1249195 A/G 77 upstream_gene_variant ENSGALG00000000329 AHCYL1 TRUE 

chr27 1587217 C/A 78 
3_prime_UTR_variant ENSGALG00000000201 PLEKHM1 

15 

TRUE 
upstream_gene_variant ENSGALG00000025745 ARHGAP27 

chr27 1587218 A/C 79 
3_prime_UTR_variant ENSGALG00000000201 PLEKHM1 

TRUE 
upstream_gene_variant ENSGALG00000025745 ARHGAP27 

chr27 1587219 G/A 80 
3_prime_UTR_variant ENSGALG00000000201 PLEKHM1 

TRUE 
upstream_gene_variant ENSGALG00000025745 ARHGAP27 

chr27 1587220 G/T 81 
3_prime_UTR_variant ENSGALG00000000201 PLEKHM1 

TRUE 
upstream_gene_variant ENSGALG00000025745 ARHGAP27 

chr27 1587221 G/C 82 
3_prime_UTR_variant ENSGALG00000000201 PLEKHM1 

TRUE 
upstream_gene_variant ENSGALG00000025745 ARHGAP27 

chr27 1587222 A/C 83 
3_prime_UTR_variant ENSGALG00000000201 PLEKHM1 

TRUE 
upstream_gene_variant ENSGALG00000025745 ARHGAP27 

chr27 1587224 A/C 84 
3_prime_UTR_variant ENSGALG00000000201 PLEKHM1 

TRUE 
upstream_gene_variant ENSGALG00000025745 ARHGAP27 

chr27 1587226 C/A 85 
3_prime_UTR_variant ENSGALG00000000201 PLEKHM1 

TRUE 
upstream_gene_variant ENSGALG00000025745 ARHGAP27 

chr27 1587227 C/G 86 
3_prime_UTR_variant ENSGALG00000000201 PLEKHM1 

TRUE 
upstream_gene_variant ENSGALG00000025745 ARHGAP27 

chr27 1587228 A/G 87 
3_prime_UTR_variant ENSGALG00000000201 PLEKHM1 

TRUE 
upstream_gene_variant ENSGALG00000025745 ARHGAP27 

chr27 3798382 C/G 88 intron_variant ENSGALG00000027305 SKAP1 
16 

TRUE 

chr27 3798470 G/A 89 intron_variant ENSGALG00000027305 SKAP1 TRUE 

chr27 4784671 G/A 90 intron_variant ENSGALG00000003403 ZNF385C  FALSE 
chr28 788219 C/T 91 downstream_gene_variant ENSGALG00000027742 KLHL33  FALSE 

chr28 1252731 G/A 92 intron_variant ENSGALG00000026716 CELF5  FALSE 

chr28 2986566 G/A  intergenic_variant    TRUE 

chrZ 9064309 A/G 94 downstream_gene_variant ENSGALG00000004022 TLN1 17 FALSE 

# marker number; ##block number 
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Appendix I – List of 40 QTLs mapped using microsatellite markers, from the same F2 population used in this study. 

This information was filtered by the Chicken Animal QTLdb 

Chr start end QTL_ID Trait Abrev 

chr1 51977644 53798691 *QTL_ID=3324 Body_weight_(35_days) BW35 

chr1 53763599 53833783 QTL_ID=19671 Body_weight_(41_days) BW41 

chr1 53763599 53833783 QTL_ID=19672 Feed_intake F.intake 

chr1 58033892 58104076 QTL_ID=19675 Body_weight_(41_days) BW41 

chr1 58033892 58104076 QTL_ID=19676 Feed_intake F.intake 

chr1 83747978 90906992 QTL_ID=12464 Body_weight_(35_days) BW35 

chr1 156472083 162032735 QTL_ID=12469 Body_weight_(35_days) BW35 

chr2 15053040 19379651 QTL_ID=7175 Body_weight_(1_day) BW1 

chr2 67519043 70985270 QTL_ID=7170 Body_weight_(35_days) BW35 

chr2 79199747 101588000 QTL_ID=7155 Body_weight_(35_days) BW35 

chr2 79199747 101588000 QTL_ID=7160 Body_weight_(41_days) BW41 

chr2 79199747 101588000 QTL_ID=7173 Body_weight_(41_days) BW41 

chr2 79199747 101588000 QTL_ID=7179 Body_weight_(35_days) BW35 

chr2 79199747 101588000 QTL_ID=7183 Body_weight_(41_days) BW41 

chr3 6645961 24160710 QTL_ID=7184 Body_weight_(41_days) BW41 

chr3 6645961 106970113 *QTL_ID=7180 Body_weight_(35_days) BW35 

chr3 12229218 12229258 QTL_ID=24377 Body_weight_(35_days) BW35 

chr3 12229218 12229258 QTL_ID=24378 Body_weight_(41_days) BW41 

chr3 12229218 12229258 QTL_ID=24379 Body_weight_(42_days) BW42 

chr3 24160710 35512024 QTL_ID=7167 Body_weight_(1_day) BW1 

chr3 24160710 35512024 QTL_ID=7171 Body_weight_(35_days) BW35 

chr3 24160710 35512024 QTL_ID=7174 Body_weight_(41_days) BW41 

chr3 35512024 40606300 QTL_ID=7156 Body_weight_(35_days) BW35 

chr3 35512024 40606300 QTL_ID=7161 Body_weight_(41_days) BW41 

chr4 69942858 84618310 *QTL_ID=7157 Body_weight_(35_days) BW35 

chr4 69942858 84618310 *QTL_ID=7162 Body_weight_(41_days) BW41 

chr4 69942858 84618310 *QTL_ID=7185 Body_weight_(41_days) BW41 

chr6 29735045 31244082 QTL_ID=7176 Body_weight_(1_day) BW1 

chr7 34723350 36245040 *QTL_ID=7163 Body_weight_(41_days) BW41 

chr9 19669473 23441680 *QTL_ID=7177 Body_weight_(1_day) BW1 

chr10 16519830 19911089 *QTL_ID=7158 Body_weight_(35_days) BW35 

chr10 16519830 19911089 *QTL_ID=7164 Body_weight_(41_days) BW41 

chr12 11106924 12275026 QTL_ID=7168 Body_weight_(1_day) BW1 

chr18 378464 3180498 QTL_ID=7169 Body_weight_(1_day) BW1 

chr18 378464 3180498 QTL_ID=7172 Body_weight_(35_days) BW35 

chr18 378464 3180498 QTL_ID=7182 Body_weight_(35_days) BW35 

chr27 1627441 3493381 QTL_ID=7178 Body_weight_(1_day) BW1 

chr27 1627441 3493381 QTL_ID=7186 Body_weight_(41_days) BW41 

chr27 3493381 4104720 *QTL_ID=7159 Body_weight_(35_days) BW35 

chr28 1674859 2912979 QTL_ID=7187 Body_weight_(41_days) BW41 

*bolded are QTLs overlapped by genome-wise associated and suggestively associated SNPs with the performance 

traits analyzed in this study 
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Appendix J 
  Location Gene SYMBOL edgeR,logFC edgeR,logCPM edgeR,p,value edgeR,adj,p,value 

1 1:1244701-1244701 
ENSGALG00000008449 novelgene 

4,448 3,344 0,005 4,69E-03 

2 1:1245001-1245001 4,448 3,344 0,005 4,69E-03 

3 1:44775901-44775901 ENSGALG00000011297 CRADD -1,373 6,134 0,003 2,79E-03 

4 1:81671101-81671101 
- - 

2,877 4,270 0,002 1,77E-03 

5 1:81671401-81671401 2,877 4,270 0,002 1,77E-03 

6 1:143647201-143647201 
- - 

2,179 4,363 0,002 2,32E-03 

7 1:143647501-143647501 2,179 4,363 0,002 2,32E-03 

8 1:193971001-193971001 

ENSGALG00000009114 DGAT2 

2,541 3,400 0,004 4,08E-03 

9 1:193971301-193971301 2,541 3,400 0,004 4,08E-03 

10 1:193971601-193971601 3,195 3,370 0,004 3,73E-03 

11 2:223501-223501 ENSGALG00000013341 AGAP3 3,053 3,326 0,003 2,74E-03 

12 2:112513801-112513801 ENSGALG00000015450 RAB2A -3,924 4,005 0,003 3,37E-03 

13 4:13297201-13297201 ENSGALG00000008006 CAPN6 2,767 3,510 0,003 3,14E-03 

14 4:13429201-13429201 - - -1,567 4,940 0,003 2,67E-03 

15 4:34189801-34189801 

ENSGALG00000010291 ENSGALG00000010298 RBPMS DCTN6 

2,286 4,055 0,003 3,36E-03 

16 4:34190101-34190101 2,557 3,982 0,003 2,71E-03 

17 4:44742601-44742601 ENSGALG00000010893 FGF5 -2,695 4,638 0,000 2,65E-04 

18 5:402001-402001 

ENSGALG00000013298 CPSF7 

3,572 3,779 0,002 1,88E-03 ENSGALG00000022369 TMEM216 

ENSGALG00000025756 TMEM138 

19 5:5731501-5731501 
- - 

-0,713 8,232 0,003 3,36E-03 

20 5:5731801-5731801 -0,712 8,514 0,002 1,82E-03 

21 5:43370101-43370101 
ENSGALG00000010680 TTC7B 

3,802 3,585 0,000 4,92E-04 

22 5:43370401-43370401 3,802 3,585 0,000 4,92E-04 

23 5:56258101-56258101 
ENSGALG00000012203 SAMD4A 

-1,651 5,633 0,001 1,43E-03 

24 5:56258401-56258401 -1,651 5,633 0,001 1,43E-03 

25 5:57753301-57753301 
ENSGALG00000012321 MAP4K5 

-5,357 4,037 0,001 5,13E-04 

26 5:57753601-57753601 -5,385 4,055 0,000 4,59E-04 

27 6:27634201-27634201 
ENSGALG00000025403 MIR1815 

3,831 3,561 0,003 2,92E-03 

28 6:27634501-27634501 3,831 3,561 0,003 2,92E-03 

29 7:10155301-10155301 
- - 

3,461 3,442 0,002 2,22E-03 

30 7:10155601-10155601 3,461 3,442 0,002 2,22E-03 

31 7:34455901-34455901 
- - 

3,254 3,374 0,001 1,40E-03 

32 7:34456201-34456201 3,254 3,374 0,001 1,40E-03 

33 7:34456501-34456501 ENSGALG00000012475 novelgene 3,494 3,455 0,001 1,38E-03 

34 8:3895201-3895201 - - 2,440 3,704 0,002 1,61E-03 

35 8:19935901-19935901 

ENSGALG00000010226 MUTYH 

1,891 4,176 0,005 4,58E-03 ENSGALG00000010228 TOE1 

ENSGALG00000023348 HPDL 

36 8:27597601-27597601 
ENSGALG00000026591 GNG12 

-1,819 4,950 0,002 2,49E-03 
ENSGALG00000025977 GADD45A 
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  Location Gene SYMBOL edgeR,logFC edgeR,logCPM edgeR,p,value edgeR,adj,p,value 

37 8:27652201-27652201 
ENSGALG00000011238 WLS 

4,908 3,584 0,004 3,80E-03 
ENSGALG00000027802 gga-mir-6653 

38 8:28043701-28043701 - - -2,832 4,513 0,003 3,01E-03 

39 10:2100301-2100301 

ENSGALG00000001449 STRA6 

-2,742 4,917 0,004 4,00E-03 ENSGALG00000021525 ISLR 

ENSGALG00000029151 novelgene 

40 10:12681001-12681001 - - 4,800 3,523 0,004 3,92E-03 

41 10:12681301-12681301 - - 4,616 3,435 0,005 4,78E-03 

42 10:19580401-19580401 

ENSGALG00000008315 ENSGALG00000008336 UNC45A MAN2A2 

1,612 5,653 0,000 2,52E-04 

43 10:19580701-19580701 1,708 5,559 0,000 1,90E-04 

44 10:19592401-19592401 

ENSGALG00000008340 ENSGALG00000008341 FES FURIN 

3,584 3,748 0,002 1,99E-03 

45 10:19592701-19592701 3,584 3,748 0,002 1,99E-03 

46 11:453601-453601 

ENSGALG00000000904 USB1 

3,478 3,400 0,004 4,02E-03 ENSGALG00000000999 ZNF319 

ENSGALG00000001011 CNGB1 

47 11:17139901-17139901 
ENSGALG00000014284 GSE1 

-5,359 4,016 0,003 3,01E-03 

48 11:17140201-17140201 -5,359 4,016 0,003 3,01E-03 

49 11:19161901-19161901 

ENSGALG00000000802 DHODH 

3,019 3,598 0,002 1,81E-03 ENSGALG00000000811 IST1 

ENSGALG00000000787 DHX38 

50 12:3190201-3190201 

ENSGALG00000004639 GNAI2 

2,362 4,114 0,005 4,95E-03 ENSGALG00000013370 SEMA3F 

ENSGALG00000028697 GNAT1 

51 12:5752201-5752201 
- - 

-2,520 4,337 0,004 4,40E-03 

52 12:5752501-5752501 -2,549 4,034 0,001 7,62E-04 

53 12:11534101-11534101 
- - 

-1,405 5,706 0,003 3,14E-03 

54 12:11534401-11534401 -1,338 5,596 0,004 3,93E-03 

55 13:15793201-15793201 
ENSGALG00000006569 novelgene 

2,434 4,351 0,005 4,97E-03 

56 13:15793501-15793501 2,551 4,488 0,002 1,99E-03 

57 15:2566201-2566201 
ENSGALG00000002272 NOC4L 

4,472 3,349 0,003 3,14E-03 
ENSGALG00000002336 RP11-2C24.9 

58 15:7104601-7104601 - - -3,205 4,148 0,004 3,67E-03 

59 15:9882901-9882901 ENSGALG00000007396 TAOK3 2,858 3,697 0,001 9,83E-04 

60 15:10068901-10068901 

ENSGALG00000007720 AIFM3 

1,460 4,850 0,004 4,38E-03 ENSGALG00000028023 C14ORF166B 

ENSGALG00000026902 P2RX6 



 

 

117 

  Location Gene SYMBOL edgeR,logFC edgeR,logCPM edgeR,p,value edgeR,adj,p,value 

61 15:10800301-10800301 
ENSGALG00000007781 GAL3ST1 

-1,368 5,310 0,004 4,14E-03 
ENSGALG00000007840 RP4-539M6.19 

62 16:70501-70501 

ENSGALG00000000178 ENSGALG00000000181 ENSGALG00000026269 BF1 novelgene TAP1 

2,832 4,523 0,001 8,84E-04 

63 16:70801-70801 2,832 4,523 0,001 8,84E-04 

64 16:219901-219901 

ENSGALG00000019836 ENSGALG00000028962 ZNF692 novelgene 

-5,336 4,053 0,003 2,77E-03 

65 16:220201-220201 -5,393 4,088 0,002 2,42E-03 

66 17:168901-168901 1,344 4,824 0,005 4,74E-03 
ENSGALG00000019837 KIFC1 

67 17:8289901-8289901 

ENSGALG00000001595 ENSGALG00000001620 PHF19 CUTA 

-3,805 5,124 0,001 8,25E-04 

68 17:8290201-8290201 -3,677 3,935 0,001 1,25E-03 

69 17:8550001-8550001 
ENSGALG00000001419 DAB2IP 

2,939 4,030 0,004 3,58E-03 

70 17:8550301-8550301 2,939 4,030 0,004 3,58E-03 

71 17:9845701-9845701 - - -5,019 3,840 0,002 1,58E-03 

72 19:4471201-4471201 

ENSGALG00000002186 ENSGALG00000002212 UNC45B RAD51D 

2,321 3,861 0,002 2,13E-03 

73 19:4471501-4471501 2,321 3,861 0,002 2,13E-03 

74 19:4753501-4753501 
ENSGALG00000002312 TMEM132E 

1,650 4,849 0,003 2,50E-03 

75 19:4753801-4753801 1,669 4,859 0,003 2,59E-03 

76 19:8303401-8303401 
- - 

4,901 3,525 0,001 9,14E-04 

77 19:8303701-8303701 4,901 3,525 0,001 9,14E-04 

78 20:2325901-2325901 
- - 

-4,852 4,715 0,001 7,05E-04 

79 20:2326201-2326201 -4,115 4,730 0,003 2,62E-03 

80 20:8868601-8868601 - - 3,123 3,889 0,000 4,05E-04 

81 20:9458401-9458401 ENSGALG00000005932 MYT1 -3,928 4,105 0,005 4,53E-03 

82 20:11843101-11843101 

ENSGALG00000007636 PCK1 

-2,591 4,055 0,001 1,37E-03 

83 20:11843401-11843401 -2,453 3,975 0,002 2,27E-03 

84 20:11844601-11844601 -2,149 4,166 0,003 2,82E-03 

85 20:11844901-11844901 -2,149 4,166 0,003 2,82E-03 

86 21:4398301-4398301 ENSGALG00000027085 CROCC 1,579 5,808 0,000 4,36E-04 

87 22:1246501-1246501 
ENSGALG00000000402 LOXL2 

-1,682 5,492 0,002 1,87E-03 

ENSGALG00000000405 R3HCC1 
88 22:1246801-1246801 -1,724 5,320 0,003 2,83E-03 
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  Location Gene SYMBOL edgeR,logFC edgeR,logCPM edgeR,p,value edgeR,adj,p,value 

89 24:2467801-2467801 ENSGALG00000001450 IGSF9B 3,291 3,378 0,004 3,57E-03 

90 25:15301-15301 
ENSGALG00000009011 SMG5 

1,640 4,771 0,004 3,87E-03 

91 25:15601-15601 1,640 4,771 0,004 3,87E-03 

92 25:209701-209701 
ENSGALG00000000443 novelgene 

1,467 7,140 0,001 1,06E-03 

93 25:210001-210001 1,954 6,799 0,000 3,49E-05 

94 25:225301-225301 
- - 

2,562 5,493 0,002 2,38E-03 

95 25:225601-225601 2,420 5,586 0,002 1,78E-03 

96 25:234901-234901 
- - 

2,406 5,405 0,004 4,09E-03 

97 25:235201-235201 2,394 5,426 0,004 3,86E-03 

98 25:243301-243301 - - 1,441 6,808 0,001 5,96E-04 

99 25:660001-660001 ENSGALG00000027046 novelgene 3,421 3,810 0,005 4,91E-03 

100 25:1675201-1675201 
ENSGALG00000028854 DUSP23 

1,213 5,974 0,004 4,41E-03 

ENSGALG00000022137 CRP 

101 25:1675501-1675501 1,213 5,974 0,004 4,41E-03 

ENSGALG00000027054 ENSGALG0000002879 novelgene CADM3 

102 26:648601-648601 -1,825 4,777 0,005 4,69E-03 
ENSGALG00000000362 NAV1 

ENSGALG00000028854 DUSP23 

103 26:1633201-1633201 
ENSGALG00000000583 SOX13 

3,188 3,594 0,002 2,18E-03 

104 26:1633501-1633501 3,188 3,594 0,002 2,18E-03 

105 26:1707301-1707301 ENSGALG00000000587 PLEKHA6 1,772 4,710 0,002 1,77E-03 

106 26:4467901-4467901 - - -3,344 3,754 0,004 4,25E-03 

107 27:2586001-2586001 ENSGALG00000000478 TANC2 3,125 3,321 0,005 4,69E-03 

108 27:4113601-4113601 ENSGALG00000025788 CACNB1 3,252 3,461 0,004 4,33E-03 

109 28:2780701-2780701 
ENSGALG00000026231 ARID3A 

-5,524 4,143 0,001 1,14E-03 

110 28:2781001-2781001 -5,524 4,143 0,001 1,14E-03 

111 28:3127801-3127801 
ENSGALG00000024298 ADAMTSL5 

2,225 3,991 0,003 3,27E-03 
ENSGALG00000026384 PCSK4 

112 Z:1446301-1446301 
- - 

3,788 3,612 0,003 2,86E-03 

123 Z:1446601-1446601 3,707 3,576 0,004 3,74E-03 

114 Z:56827201-56827201 
ENSGALG00000014684 ERAP1 

1,661 4,443 0,003 2,79E-03 

115 Z:56827501-56827501 1,661 4,443 0,003 2,79E-03 
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Appendix K 

Merged windows with 

differential methylation 

CpGs within  

the merged 

 window 

Within or nearby gene 
Position regarding gene 

ENSEMBL name Gene symbol 

1 chr1:1244701-1245300 5 ENSGALG00000008449 Novel gene (1) coding sequence ; intronic ; regulatory region 

2 chr1:44775901-44776200 12 ENSGALG00000011297 CRADD intronic ; regulatory region 

3 chr1:81671101-81671700 10 -- Intergenic region (1) intergenic  

4 chr1:143647201-

143647800 
29 -- Intergenic region (2) intergenic  

5 chr1:193971001-

193971900 
36 ENSGALG00000009114 DGAT2 upstream gene  

6 chr2:223501-223800 19 ENSGALG00000013341 AGAP3 intronic ; regulatory region 

7 chr2:112513801-

112514100 
6 ENSGALG00000015450 RAB2A upstream gene  

8 chr4:13297201-13297500 4 ENSGALG00000008006 CAPN6 intronic ; regulatory region 

9 chr4:13429201-13429500 11 
-- Intergenic region (3) intergenic  

ENSGALG00000010298 DCTN6 downstream gene  

10 chr4:34189801-34190400 20 ENSGALG00000010291 RBPMS coding sequence ; intronic ; regulatory region 

11 chr4:44742601-44742900 14 ENSGALG00000010893 FGF5 coding sequence ; intronic ; regulatory region 

12 chr5:402001-402300 10 

ENSGALG00000013298 CPSF7 downstream gene  

ENSGALG00000022369 TMEM216 upstream gene  

ENSGALG00000025756 TMEM138 coding sequence ; intronic ; regulatory region 

ENSGALG00000028882 Novel gene (2) upstream gene  

13 chr5:5731501-5732100 29 -- Intergenic region (4) intergenic  

14 chr5:43370101-43370700 10 ENSGALG00000010680 TTC7B intronic ; regulatory region 

15 chr5:56258101-56258700 34 ENSGALG00000012203 SAMD4A intronic ; regulatory region 

16 chr5:57753301-57753900 6 ENSGALG00000012321 MAP4K5 upstream gene  

17 chr6:27634201-27634800 3 ENSGALG00000025403 MIR1815 upstream gene  

18 chr7:10155301-10155900 13 -- Intergenic region (5) intergenic  

19 chr7:34455901-34456800 20 
-- Intergenic region (6) intergenic  

ENSGALG00000012475 Novel gene (3) downstream gene  

20 chr8:3895201-3895500 7 -- Intergenic region (7) intergenic  

21 chr8:19935901-19936200 3 

ENSGALG00000010226 MUTYH coding sequence ; intronic ; regulatory region 

ENSGALG00000010228 TOE1 upstream gene  

ENSGALG00000023348 HPDL downstream gene  

22 chr8:27597601-27597900 8 
ENSGALG00000026591 GNG12 coding sequence ; intronic ; regulatory region 

ENSGALG00000025977 GADD45A downstream gene  

23 chr8:27652201-27652500 9 
ENSGALG00000011238 WLS upstream gene  

ENSGALG00000027802 gga-mir-6653 downstream gene  

24 chr8:28043701-28044000 3 -- Intergenic region (8) intergenic  

25 chr10:2100301-2100600 27 

ENSGALG00000001449 STRA6 downstream gene  

ENSGALG00000021525 ISLR coding sequence ; regulatory region 

ENSGALG00000029151 Novel gene (4) downstream gene  

26 chr10:12681001-12681600 5 -- Intergenic region (9) intergenic  

27 chr10:19580401-19581000 43 
ENSGALG00000008315 UNC45A upstream gene  

ENSGALG00000008336 MAN2A2 coding sequence ; intronic ; regulatory region 

28 chr10:19592401-19593000 21 
ENSGALG00000008340 FES intronic ; regulatory region 

ENSGALG00000008341 FURIN downstream gene  

29 chr11:453601-453900 29 

ENSGALG00000000904 USB1 upstream gene  

ENSGALG00000000999 ZNF319 coding sequence ; regulatory region 

ENSGALG00000001011 CNGB1 upstream gene  

ENSGALG00000000904 USB1 upstream gene  

30 chr11:17139901-17140500 26 ENSGALG00000014284 GSE1 intronic ; regulatory region 

31 chr11:19161901-19162200 8 

ENSGALG00000000802 DHODH downstream gene  

ENSGALG00000000811 IST1 downstream gene  

ENSGALG00000000787 DHX38 upstream gene  

32 chr12:3190201-3190500 11 

ENSGALG00000004639 GNAI2 downstream gene  

ENSGALG00000013370 SEMA3F downstream gene  

ENSGALG00000028697 GNAT1 coding sequence ; intronic ; regulatory region 

33 chr12:5752201-5752800 12 -- Intergenic region (10) intergenic  

34 chr12:11534101-11534700 23 -- Intergenic region (11) intergenic  

35 chr13:15793201-15793800 9 ENSGALG00000006569 Novel gene (5) downstream gene  

36 chr15:2566201-2566500 6 
ENSGALG00000002272 NOC4L coding sequence ; intronic ; regulatory region 

ENSGALG00000002336 RP11-2C24.9 downstream gene  

37 chr15:7104601-7104900 5 -- Intergenic region (12) intergenic  
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Merged windows with 

differential methylation 

CpGs within  

the merged 

 window 

Within or nearby gene Position regarding gene 

38 chr15:9882901-9883200 6 ENSGALG00000007396 TAOK3 coding sequence ; intronic ; regulatory region 

39 chr15:10068901-10069200 24 

ENSGALG00000007720 AIFM3 downstream gene  

ENSGALG00000028023 C14ORF166B start lost; coding sequence ; 5 prime UTR  

ENSGALG00000026902 P2RX6 coding sequence ; intronic ; regulatory region 

40 chr15:10800301-10800600 6 
ENSGALG00000007781 GAL3ST1 downstream gene  

ENSGALG00000007840 RP4-539M6.19 downstream gene  

41 chr16:70501-71100 13 

ENSGALG00000000178 BF1 downstream gene  

ENSGALG00000000181 Novel gene (6) upstream gene  

ENSGALG00000026269 TAP1 coding sequence ; intronic ; regulatory region 

42 chr16:219901-220500 11 
ENSGALG00000019836 ZNF692 coding sequence ; intronic ; regulatory region 

ENSGALG00000028962 Novel gene (7) upstream gene  

43 chr17:168901-169200 1 

-- Intergenic region (13) intergenic  

ENSGALG00000019837 KIFC1 downstream gene  

ENSGALG00000028962 Novel gene (7) upstream gene  

44 chr17:8289901-8290500 28 
ENSGALG00000001595 PHF19 coding sequence ; intronic ; regulatory region 

ENSGALG00000001620 CUTA downstream gene  

45 chr17:8550001-8550600 24 ENSGALG00000001419 DAB2IP intronic ; regulatory region 

46 chr17:9845701-9846000 10 -- Intergenic region (14) intergenic  

47 chr19:4471201-4471800 12 
ENSGALG00000002186 UNC45B coding sequence ; intronic ; regulatory region 

ENSGALG00000002212 RAD51D upstream gene  

48 chr19:4753501-4754100 22 ENSGALG00000002312 TMEM132E coding sequence ; intronic ; regulatory region 

49 chr19:8303401-8304000 11 -- Intergenic region (15) intergenic  

50 chr20:2325901-2326500 13 -- Intergenic region (16) intergenic  

51 chr20:8868601-8868900 37 -- Intergenic region (17) intergenic  

52 chr20:9458401-9458700 2 ENSGALG00000005932 MYT1 coding sequence ; intronic ; regulatory region 

53 chr20:11843101-11843700 31 ENSGALG00000007636 PCK1 intronic ; regulatory region 

54 chr20:11844601-11845200 17 ENSGALG00000007636 PCK1 intronic ; regulatory region 

55 chr21:4398301-4398600 12 ENSGALG00000027085 CROCC coding sequence ; intronic ; regulatory region 

56 chr22:1246501-1247100 19 
ENSGALG00000000402 LOXL2 downstream gene  

ENSGALG00000000405 R3HCC1 coding sequence ; intronic ; regulatory region 

57 chr24:2467801-2468100 10 ENSGALG00000001450 IGSF9B upstream gene  

58 chr25:15301-15900 37 ENSGALG00000009011 SMG5 upstream gene  

59 chr25:209701-210300 34 ENSGALG00000000443 Novel gene (8) intronic ; regulatory region 

60 chr25:225301-225900 21 -- Intergenic region (18) intergenic  

61 chr25:234901-235500 20 -- Intergenic region (19) intergenic  

62 chr25:243301-243600 12 -- Intergenic region (20) intergenic  

63 chr25:660001-660300 17 

 
ENSGALG00000027046 Novel gene (9) coding sequence ; intronic ; regulatory region 

64 chr25:1675201-1675800 
54 

ENSGALG00000022137 CRP coding sequence ; regulatory region 

ENSGALG00000028854 DUSP23 upstream gene  

65 chr26:648601-648900 
 

6 

ENSGALG00000000362 NAV1 coding sequence ; intronic ; regulatory region 

ENSGALG00000028854 DUSP23 upstream gene  

ENSGALG00000027054 Novel gene (10) downstream gene  

ENSGALG00000028795 CADM3 downstream gene  

66 chr26:1633201-1633800 12 ENSGALG00000000583 SOX13 intronic ; regulatory region 

67 chr26:1707301-1707600 5 ENSGALG00000000587 PLEKHA6 intronic ; regulatory region 

68 chr26:4467901-4468200 8 -- Intergenic region (21) intergenic  

69 chr27:2586001-2586300 5 ENSGALG00000000478 TANC2 intronic ; regulatory region 

70 chr27:4113601-4113900 12 ENSGALG00000025788 CACNB1 coding sequence ; intronic ; regulatory region 

71 chr28:2780701-2781300 25 

 
ENSGALG00000026231 ARID3A intronic ; regulatory region 

72 chr28:3127801-3128100 
8 

ENSGALG00000024298 ADAMTSL5 downstream gene  

ENSGALG00000026384 PCSK4 downstream gene  

73 chrZ:1446301-1446900 16 -- Intergenic region (22) intergenic  

74 chrZ:56827201-56827800 76 ENSGALG00000014684 ERAP1 upstream gene  
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Appendix L - Results for Consensus PathDB network analyses 

 

1) Pathway over-representation analysis 

47 genes (68.1%) from the input list are present in at least one pathway 

pathway name 
pathway 
source 

set 
size 

candidates 
contained 

p-value q-value 

G-protein activation Reactome 28 3 (10.7%) 0,000211 0,0323 

Activation of the 
phototransduction cascade 

Reactome 11 2 (18.2%) 0,000926 0,0708 

cell cycle: g2/m checkpoint BioCarta 21 2 (9.5%) 0,00344 0,0899 

ADP signalling through P2Y 
purinoceptor 12 

Reactome 22 2 (9.1%) 0,00378 0,0899 

Adrenaline,noradrenaline 
inhibits insulin secretion 

Reactome 23 2 (8.7%) 0,00413 0,0899 

MAPK signaling pathway - 
Homo sapiens (human) 

KEGG 257 5 (2.0%) 0,00414 0,0899 

Visual signal transduction: Rods PID 24 2 (8.3%) 0,00449 0,0899 

Opioid Signalling Reactome 84 3 (3.6%) 0,00504 0,0899 

p38 MAPK signaling pathway PID 29 2 (6.9%) 0,00652 0,0899 

Phototransduction - Homo 
sapiens (human) 

KEGG 29 2 (6.9%) 0,00652 0,0899 

Signal amplification Reactome 31 2 (6.5%) 0,00742 0,0899 

Visual phototransduction Reactome 96 3 (3.1%) 0,00754 0,0899 

Inactivation, recovery and 
regulation of the 
phototransduction cascade 

Reactome 32 2 (6.2%) 0,0079 0,0899 

The phototransduction cascade Reactome 33 2 (6.1%) 0,00838 0,0899 

mRNA 3,-end processing Reactome 35 2 (5.7%) 0,0094 0,0899 

Post-Elongation Processing of 
Intron-Containing pre-mRNA 

Reactome 35 2 (5.7%) 0,0094 0,0899 

 

2) Enriched gene ontology (GO) terms 

67 genes (97.1%) from the input list are present in at least one GO category 

gene ontology term 
category, 

level 
set 
size 

candidates 
contained 

p-value q-value 

GO:0019885   antigen 
processing and presentation of 
endogenous peptide antigen via 
MHC class I 

BP 5 11 2 (18.2%) 0,000683 0,0936 

GO:0001578   microtubule 
bundle formation 

BP 5 67 3 (4.5%) 0,0018 0,123 

GO:0019001   guanyl nucleotide 
binding 

MF 5 394 6 (1.5%) 0,00276 0,0412 

GO:0032550   purine 
ribonucleoside binding 

MF 5 1828 14 (0.8%) 0,00458 0,0412 

GO:0051297   centrosome 
organization 

BP 5 97 3 (3.1%) 0,00512 0,234 

GO:0007602   phototransduction BP 5 115 3 (2.6%) 0,00819 0,26 

GO:0042461   photoreceptor cell 
development 

BP 5 41 2 (4.9%) 0,0095 0,26 

 


