
 
 

University of São Paulo 
“Luiz de Queiroz” College of Agriculture 

Integrative analysis of microRNAs and mRNAs involved in regulation of 
intramuscular fat deposition in Nelore cattle 

Gabriella Borba de Oliveira 

Dissertation presented to obtain the degree of Master in 
Science. Area: Animal Science and Pastures 

 

 

 

 

 

 

 

 

 

 

 

 

Piracicaba 
2017  



Gabriella Borba de Oliveira 
Bachelor of Biotechnology 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Integrative analysis of microRNAs and mRNAs involved in regulation of intramuscular fat 
deposition in Nelore cattle 

versão revisada de acordo com a resolução CoPGr 6018 de 2011 
 
 
 
 
 
 
 
Advisor: 
Prof. Dr. LUIZ LEHMANN COUTINHO 
 

Dissertation presented to obtain the degree of Master in 
Science. Area: Animal Science and Pastures 

 

 

 

 

 

 

 

 

 

 

Piracicaba 
2017 



2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dados Internacionais de Catalogação na Publicação 
DIVISÃO DE BIBLIOTECA – DIBD/ESALQ/USP 

Oliveira, Gabriella Borba de 

Integrative analysis of microRNAs and mRNAs involved in regulation of 
intramuscular fat deposition in Nelore cattle / Gabriella Borba de Oliveira. - - 
versão revisada de acordo com a resolução CoPGr 6018 de 2011. - -
Piracicaba, 2017. 

54 p. 

Dissertação (Mestrado)  - - USP / Escola Superior de Agricultura “Luiz 
de Queiroz”. 

1. Lipídeos 2. RNA-Seq 3. Bos Indicus 4. MicroRNAs 5. Redes de co-
expressão I. Título 

 



3 

 

DEDICATION 

 

 

I dedicate this work to my father Cláudio and my mother Ana Beatriz for all support, encouragement, 

patience and love during my master studies and during all my life. 

  



4 

ACKNOWLEGDMENTS 

 

First and foremost I would like to thank my advisor Dr. Luiz Lehmann Coutinho for all support, help, 

guidance and comprehension during the Master’s. I’m grateful for the opportunity to be part of his lab team.  

 

To University of São Paulo – “Luiz de Queiroz” College of Agriculture (USP/ESALQ) and Animal 

Science Department for opportunity, support, teaching and friendship with faculty, staff and students. 

 

To National Counsel of Technological and Scientific Development (CNPq) for the first Master's 

scholarship and to São Paulo State Research Foudation (FAPESP) for the scholarship (Process 2015/00617-3) at 

ESALQ and Research Internship Abroad (Process 2015/24688-7) at Iowa State University (ISU). 

 

To Embrapa Southeast-Cattle Research Center, and especially to Dr. Luciana Regitano, for the 

partnership, help and scientific collaboration during development of Master's project. 

 

To the international collaborator and supervisor at ISU, Dr. James Reecy for his teaching, attention 

and opportunity and to all the team for friendship, receptivity and help. To Animal Science Department at ISU 

for allowing me to participate in all activites and oppening the infrasctucture. 

 

To my parents, Cláudio and Ana Beatriz, my sister Fernanda and all my family for their love and 

patience. 

 

To my friends at Animal Biotechnology Laboratory for all help, friendship and support in all moments 

during this period and especially to Gabriel, Karina, Thaís and Ariana, who have become my family in São 

Paulo. To my friend Aline, who helped me in all steps of my project and was always helpful and patience. 

 

To God as an expression of my gratitude 

 

 

  



5 

 

 
 

 

“Quem vence sem risco, triunfa sem glória... 

Não tenha medo da vida, não tenha medo de vivê-la.”. 

 

Augusto Cury. 

 

 

  



6 

SUMMARY 

RESUMO .................................................................................................................................. 8 

ABSTRACT .............................................................................................................................. 9 

1 INTRODUCTION ............................................................................................................... 11 

1.1 GENE REGULATION OF LIPIDS METABOLISM ........................................................................ 11 

1.2 MICRORNAS REGULATION ................................................................................................... 12 

1.3 HYPOTHESIS ........................................................................................................................ 14 

1.3.1 OBJECTIVES ...................................................................................................................... 14 

1.4 SPECIFIC OBJECTIVES .......................................................................................................... 15 

REFERENCES .............................................................................................................................. 15 

2  INTEGRATIVE ANALYSIS OF MICRORNAS AND MRNAS REVEALED 

REGULATION OF INTRAMUSCULAR FAT DEPOSITION IN NELORE CATTLE 19 

ABSTRACT ................................................................................................................................ 19 

2.1 INTRODUCTION .................................................................................................................... 19 

2.2 RESULTS .............................................................................................................................. 21 

2.2.1 PHENOTYPIC AND SEQUENCING DATA .............................................................................. 21 

2.2.2 DIFFERENTIALLY EXPRESSED MICRORNAS AND TARGET GENES IDENTIFICATION ............ 22 

2.2.3 ENRICHMENT ANALYSIS OF TARGET GENES ...................................................................... 23 

2.2.4 CO-EXPRESSION ANALYSIS: PCIT - DIFFERENTIAL HUBBING ........................................... 25 

2.2.5 CO-EXPRESSION ANALYSIS: PIF AND RIF ......................................................................... 29 

2.2.6 CO-EXPRESSION ANALYSIS: WGCNA - MIRNAS CORRELATED WITH MRNA MODULES .. 30 

2.2.7 CO-EXPRESSION ANALYSIS: WGCNA - MIRNAS CORRELATED WITH PHENOTYPE ........... 37 

2.3 DISCUSSION ........................................................................................................................ 39 

2.3.1 NETWORKS ENRICHED FOR LIPID AND CARBOHYDRATE METABOLISM .............................. 39 

2.3.2 NETWORKS RELATED TO IMMUNE SYSTEM AND INFLAMMATORY RESPONSE .................... 41 

2.3.3 COMPARISON OF CO-EXPRESSION ANALYSIS: PCIT AND WGCNA .................................. 42 

2.4 CONCLUSION ....................................................................................................................... 43 

2.5 MATERIAL AND METHODS .................................................................................................... 43 

2.5.1 ANIMALS AND PHENOTYPIC DATA .................................................................................... 43 

2.5.2 RNA EXTRACTION AND RNA-SEQUENCING ..................................................................... 43 

2.5.3 READS FILTERING AND MIRNAS IDENTIFICATION ............................................................ 44 

2.5.4 DIFFERENTIALLY EXPRESSED MIRNAS ............................................................................ 44 



7 

 

2.5.5 MIRNA TARGET GENES AND ENRICHMENT ANALYSIS OF DE MIRNAS ............................. 44 

2.5.6 PCIT AND DIFFERENTIAL HUBBING NETWORK ANALYSIS .................................................. 44 

2.5.7 PIF AND RIF ANALYSIS .................................................................................................... 45 

2.5.8 WGCNA .......................................................................................................................... 45 

2.5.9 CORRELATION BETWEEN MRNA AND MIRNA MODULES .................................................. 46 

2.5.10 CORRELATION OF MODULES WITH TRAIT ........................................................................ 46 

2.5.11 MIRNAS TARGET GENES AND ENRICHMENT ANALYSIS OF CO-EXPRESSION DATA........... 46 

REFERENCES .............................................................................................................................. 46 

ANNEX  ...................................................................................................................................... 51 

 

 

 

  



8 

RESUMO 

 

Análise de integração de dados de microRNAs e mRNAs envolvidos na regulação da 

deposição de gordura intramuscular em bovinos Nelore 

A quantidade de gordura intramuscular pode influenciar as características sensoriais e o 

valor nutricional da carne bovina, assim, a seleção de animais com conteúdo de gordura adequado 

para o consumidor torna-se importante. A gordura intramuscular é uma característica complexa, de 

difícil medição e há um conhecimento crescente sobre os genes e vias que controlam os processos 

biológicos envolvidos na deposição de gordura no músculo. MicroRNAs (miRNAs) são uma 

classe bem conservados de pequenos RNAs não-codificantes, que modulam a expressão gênica de 

uma gama de funções no desenvolvimento e fisiologia animal. Este estudo objetivou identificar 

miRNAs diferencialmente expressos (DE), genes reguladores candidatos e redes de co-expressão 

usando dados de expressão de mRNAs e miRNAs do músculo Longissimus dorsi de 30 novilhos 

Nelore com valores genéticos genômicos estimados (GEBV) extremos para conteúdo de gordura 

intramuscular (IMF). A análise de expressão diferencial entre os dados de miRNA de animais com 

valores extremos de GEBV para o IMF identificou seis miRNAs DE. A anotação funcional de 

genes alvos destes microRNAs indica que a via de sinalização de PPAR está envolvida com a 

deposição de IMF. Os genes reguladores candidatos, tais como SDHAF4, FBXO17, ALDOA e 

PKM foram identificados pelas abordagens de correlação parcial com teoria da informação 

(PCIT), fator de impacto fenotípico (PIF) e fator de impacto regulatório (RIF) a partir de dados 

integrados de expressão de mRNAs-miRNAs. Dois miRNAs, bta-miR-143 e bta-miR-146b, com 

alta expressão no grupo de baixo conteúdo de IMF, também foram correlacionados com genes 

reguladores candidatos, os quais foram funcionalmente enriquecidos para termos GO relacionados 

a oxidação de ácidos graxos. As redes de co-expressão identificaram vários módulos relacionados 

ao sistema imunológico, ao metabolismo das proteínas, ao metabolismo energético e ao 

catabolismo da glicose através da análise ponderada da rede de correlação (WGCNA), que 

mostrou possível interação e regulação entre mRNAs e miRNAs. Este estudo contribui com a 

compreensão dos possíveis mecanismos reguladores das redes de sinalização genética envolvidas 

no processo de deposição de gordura. O metabolismo da glicose e o processo de inflamação foram 

as principais vias encontrados na análise integrada de mRNA-miRNA e mostraram estar 

associadas ao conteúdo de gordura intramuscular em bovinos de corte. 

Palavras-chave: Lipídeos; RNA-Seq; Bos indicus; MicroRNAs; Redes de co-expressão 
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ABSTRACT 

 

Integrative analysis of microRNAs and mRNAs involved in regulation of intramuscular 

fat deposition in Nelore cattle 

The amount of intramuscular fat can influence the sensory characteristics and nutritional 

value of beef, thus the selection of animals with adequate fat content for consumer becomes 

important. Intramuscular fat is a complex trait that is difficult to measure and there is growing 

knowledge about the genes and pathways that control the biological processes involved in fat 

deposition in muscle. MicroRNAs (miRNAs) are well conserved class of non-coding small RNAs 

that modulate gene expression of a range of functions in animal development and physiology. This 

study aimed to identify differentially expressed (DE) miRNAs, regulatory candidate genes and co-

expression networks using mRNAs and miRNAs expression data from the Longissimus dorsi 

muscle of 30 Nelore steers with extreme genomic estimated breeding values (GEBV) for 

intramuscular fat (IMF) content. The differential expression analysis between the miRNA data 

from animals with extreme GEBV values for IMF identified six DE miRNAs. Functional 

annotation of target genes for these microRNAs indicates that PPARs signaling pathway is 

involved with IMF deposition. Regulatory candidate genes such as SDHAF4, FBXO17, ALDOA 

and PKM were identified by partial correlation with information theory (PCIT), phenotypic impact 

factor (PIF) and regulatory impact factor (RIF) approaches from integrated miRNAs-mRNAs 

expression data. Two DE miRNAs, bta-miR-143 and bta-miR-146b, upregulated in Low IMF 

group, were also correlated with regulatory candidate genes, which were functionally enriched for 

GO terms for fatty acids oxidation. Co-expression networks identified several modules related to 

immune system, protein metabolism, energy metabolism and glucose catabolism by weighted 

correlation network analysis (WGCNA), which showed possible interaction and regulation 

between mRNAs and miRNAs. This study contributes to our understanding of regulatory 

mechanisms of gene signaling networks involved in fat deposition process. Glucose metabolism 

and inflammation process were the main pathways found in integrative mRNAs-miRNAs analysis 

and showed to influence intramuscular fat content in beef cattle. 

Keywords: Lipids; RNA-Seq; Bos indicus; MicroRNAs; Co-expression networks 
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1 INTRODUCTION 

Brazil has the largest commercial cattle herd in the world with over 219 million head in 2016, 48 

million head slaughtered and from a total of 9,284 tons, according to United States Department of Agriculture 

[1]. 

In Brazil, beef cattle herd are mostly Nelore breed (Bos taurus indicus) or their crossbreeds. The 

predominance of this breed is due to the greater productivity of these animals at tropical conditions, because they 

are resistant to heat and parasites [2]. Other important characteristic of the zebu animals is that when they are 

slaughtered in earlier ages, in relation to taurine animals, present more homogeneous distribution of 

subcutaneous fat (coverage) and lower amount of intramuscular fat [3]. Characteristic that for some markets such 

as European (continental) the least amount of fat in the carcass is desirable, but for others, like Asian and British 

this feature makes Brazilian beef with lower market value [4]. 

Despite the prominent position of the beef cattle industry in the economic scenario, Brazil still exports 

meat without added value to the international market. Thus, the control of beef quality, and their sensory 

characteristics (tenderness, flavour, juiciness and colour) are very important [5]. Meat quality depends on many 

factors and the amount of intramuscular fat (IMF) affects the sensory characteristics and nutritional value of 

meat, which is an important parameter to ensure a more juicy and tasty meat [6]. 

The genetic component shows to be highly crucial for several traits affecting meat quality. 

Experiments comparing the transcriptional profile among breeds with different potential for intramuscular fat 

deposition provide important information about differentially expressed genes that may be able to be used as 

candidate genes in beef cattle breeding programs [7]. Thus the understanding of genes regulation associated with 

adipose tissue growth and lipid metabolism becomes important to identification of potential regulators of 

phenotype. 

1.1 Gene regulation of lipid metabolism 

The control and organization of cellular and physiological responses to different metabolic conditions 

occurs at the level of gene regulation in the nucleus. Many key regulators of gene expression, such as 

transcription factors or non-coding RNAs, may respond directly or indirectly to metabolic signals such as lipids, 

glucose, and insulin, rapidly altering gene pathways responsible for metabolic homeostasis [8]. The regulation of 

lipid homeostasis is mediated by the influence of nutritional status, energy expenditure, hormonal physiological 

response, enzymatic activity and molecular mechanisms, which promote the modulation of adipogenesis and 

lipogenesis [9-11]. 

Lipids are important metabolites in the body, participating as cellular components of membranes, 

important for energy generation and also act as signaling molecules in physiological processes [8,10]. The white 

adipose tissue is the main source of lipids of the organism, storing them in the form of triacylglycerols (TAGs) in 

the adipocytes, which serve as energy storage. Besides the adipocytes tissue have other important cellular 

structures for its maintenance as preadipocytes (adipocyte precursor cells), endothelial cells, vascular stroma 

cells, fibroblasts, leukocytes, and macrophages. Modifications in adipocyte size (hypertrophy) and number 

(hyperplasia) of cells occur in response to activation of metabolic functions that react according to the need of 

adipocytes differentiation, incorporation or release of lipids [9,10]. 
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The differentiation of the adipocytes consists of stages controlled by the activation of genes previously 

silenced, initiating the process of adipogenesis. Activation of binding proteins to the CCAAT (CCAAT/enhancer 

binding proteins, C/EBPs), known as C/EBP-b and C/EBP-s, occurs first. The cells then enter in terminal 

differentiation by activation of the PPARγ (from the peroxisome proliferator-activated receptors family) and 

C/EBP-a, the two central regulators of the adipogenic process [12]. These regulators remain active through 

positive feedback until the moment of cell compromise in differentiation, where other target genes are already 

being activated to maintain this process, such as enzymes and proteins involved in the transport of glucose, 

lipogenesis, lipolysis and adipokine synthesis and secretion [9]. After the formation of this adipocyte structure, 

begins the incorporation and storage of lipids, originated from the synthesis process during lipogenesis. 

Lipogenesis is the process by which metabolism intermediates are converted to fatty acids, which can be 

incorporated into triacylglycerols for tissue energy storage. During fasting, the opposite occurs and the lipid 

degradation pathway known as lipolysis is activated, so the TAGs of the adipose tissue are hydrolyzed by 

releasing free fatty acids that can be recovered by the body and used as a source of energy for organism [10]. 

These processes are controlled by genetic mechanisms that can activate or inhibit genes and enzymes of 

lipogenic and lipolytic pathways [13]. The genes PGC-1β and PGC-1α, members of the transcriptional co-

activators PGC-1 family (peroxisome proliferator-activated receptor-gamma coactivator), have been described to 

increase the fatty acid oxidation, through the coactivation of PPARα [14, 15]. However, it has been shown that 

the overexpression of PGC-1β induces the transcription of several lipogenic enzymes involved in lipogenesis 

[16], through the activation of other signaling pathways, showing the different functions of the same gene 

according to stimulus received. 

Another important gene is the LXR (liver X receptors), a member of the superfamily of nuclear 

receptors that heterodimerize with the RXR (retinoid X receptor). This LXR gene plays a role in the lipid and 

cholesterol metabolism [17] by indirectly activating lipogenic genes through the activation of the SREBP-1c 

transcription factor (from the Sterol regulatory element-binding proteins family) and from ChREBP 

(carbohydrate-responsive element-binding protein), both involved in the activation of glucose pathway enzyme 

genes and fatty acid synthesis [13]. 

PPARs can also acts as transcription factors heterodimerizing with RXRs and binding to specific DNA 

regions of target genes. PPAR’s family is formed by PPARα, PPARγ and PPARβ, which each one presents a 

specific have different function in lipid metabolism. PPARα and PPARβ show their expression level stimulated 

during fasting and influenced by some hormones, such as growth, leptin and insulin [18]. They are related to 

lipolysis, i.e. in the oxidation of fatty acids, mainly described in skeletal muscle where their expression is higher 

[19, 20]. On the other hand, PPARγ is mainly important for adipogenesis, promoting the proliferation and 

differentiation of adipocytes and also improve insulin sensitivity through increased liver and muscle glucose 

uptake and reduced circulation in the bloodstream [21]. 

1.2 microRNAs regulation 

The emergence of RNA sequencing (RNA-seq), for gene expression study, using NGS technologies 

(Next Generation Sequencing) has allowed the access to transcriptome analysis [22]. This technology also 

provides a more accurate measure of transcript levels compared to microarray technology [23] and the 

expression analysis of small RNAs, such as microRNAs (miRNAs), has also been improved. 



13 

 

The regulation of the expression of genes that control lipid metabolism has many levels and can be 

regulated by different molecular mechanisms. One of these regulatory steps is by modulating gene expression 

through non-coding RNAs such as miRNAs.  

MiRNAs are endogenous ribonucleic acids (RNAs), non-coding (ncRNA) of approximately twenty-two 

nucleotides in length [24]. The first miRNA was discovered in 1993 in Caenorhabditis elegans and was called 

lin-4 to be related to suppress a gene encoding the lin-4 protein, which has activity in the larval development of 

this nematode species [25]. In mammals, miRNAs perform their regulatory effect at post-transcriptional level in 

many tissues and are associated with the control of several important biological processes related with lipid 

metabolism [26]. This regulatory effect is mainly through imperfect complementarity between the miRNA and 

the 3'UTR region of the target mRNA, promoting the inhibition of translation [27, 28]. In addition, the miRNAs 

affect directly the translation initiation factors, disrupting poly-A tail function [29], and consequently causing a 

reduction in the protein levels of their target genes [30]. Because miRNAs have small sequences and act without 

complete pairing, a single miRNA can regulate many target mRNAs, in addition to cooperating in the control of 

a single mRNA [31]. Thus, miRNAs constitute a complex regulatory network of cell signaling [32], and can act 

directly on the mRNA transcript or indirectly through the regulation of intermediary components that influence 

the expression of genes, such as transcription factors. Besides that, miRNAs act on coactivating genes present in 

signaling networks that control the expression of transcription factors, thus forming an additional layer of 

indirect regulation of mRNAs [33]. 

Several studies have shown the miRNAs importance in the modulation of different biological 

processes [8, 34, 35]. New miRNAs are being discovered and their sequences deposited in the database for 

miRNAs, also known as miRBase [36]. So far, over 30 thousand sequences of mature miRNAs in more than 206 

different species have been cataloged. The understanding of regulatory functions of miRNA and other small 

RNAs on the expression of target genes for lipogenesis and adipogenesis is important to identify targets 

molecules of fat deposition. These analyses can also provide base knowledge to further research to comprehend 

genetic modifications that lead to important metabolic diseases.  

Although investigations studying the influence of miRNAs on energy metabolism are recent [37], 

there has been a rapid growth in the number of miRNAs identified that are involved in the regulation of genes 

and signaling molecules responsible for the maintenance of lipid homeostasis [8, 38]. Many studies have been 

published in this area, showing the importance of miRNAs as biomarkers, aiming to develop strategies to 

manipulate traits such intramuscular fat content, which affect the quality of meat and animal productivity [39, 

40] and even in research on obesity and diabetes in humans [41]. 

The miR-122 was the first miRNA identified to regulate lipid metabolism, being initially described as 

affecting the level of hepatic cholesterol [42, 43]. Some recent studies have shown that anti-miR-122 therapy, i.e. 

molecules complementary to miRNAs that prevent its action, resulted in a 25-30% reduction in circulating 

cholesterol levels [44-46]. Its mechanism of action is due to direct or indirect downregulation of innumerable 

genes expressed in the liver that are involved in cholesterol biosynthesis, such as 3-hydroxy-3-methylglutaryl-

coenzyme A reductase (HMGCR), 3-hydroxy-3-methylglutaryl-coenzyme synthase 1 (HMGCS1), 7-

dehydrocholesterol reductase (DHCR7) and microsomal TG transfer protein (MTTP). 

Another miRNA that has been extensively studied for modulating the expression of genes involved in 

lipid metabolism is miR-33 [47]. The family of this miRNA includes two members, miR-33a and miR-33b, 
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which are located in intronic regions within the genes of the transcription factors SREBP-2 and SREBP-1, 

respectively [48]. This transcription factor family, SREBP, regulates the expression of many genes involved in 

biosynthesis and uptake of cholesterol and fatty acids, as well as in the production of phospholipids and TAGs. 

SREBP-1 mainly regulates genes such as fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), and 

stearoyl-CoA desaturase (SCD), while SREBP-2 preferentially controls genes important for cholesterol 

metabolism including HMGCR and low-density lipoprotein receptor (LDLR) [8, 49]. Both miRNAs are 

transcribed along with their host genes, regulating physiological processes similar to them, and the mature 

sequence of these two miRNAs differ in only two nucleotides and have several common target genes, thus they 

have similar regulation effect for the organism [8, 38]. 

The miRNAs miR-33a and b have an important role in the post-transcriptional regulation of the 

expression of the ATP binding cassette transporter gene (ABCA1), which leads to the higher efflux of free 

cholesterol from within the cell to apolipoprotein A-1 (ApoA1), [50]. It is also important in high density 

lipoprotein (HDL) synthesis. Studies that have made the in vivo silencing of miR-33 have confirmed its action in 

the metabolism of cholesterol, because the results obtained with the technique showed increased HDL plasma 

levels and reduced cholesterol efflux, due to the influence of miR-33 in many genes involved in this process [51, 

52]. Another target gene of miR-33 is its host gene SREBP-1, leading to a self-feedback regulation for proper 

lipid homeostasis, especially in relation to cholesterol biosynthesis in the body [53]. 

The mechanism of regulation of miRNA expression is dynamic and specific, and may vary from one 

tissue to another and also depending on the physiological conditions of the organism [54]. It is possible that the 

activity of the miRNAs is controlled by external stimulus, triggered by response to physiological changes. Thus, 

miRNAs are likely to serve as potential biomarkers for metabolic diseases, responses to therapeutic treatments, 

or as targets for gene therapies related to lipid metabolism in diseases such as diabetes and obesity [38, 55].  

Although RNA-seq analysis has improved genomic studies and generates a large list of expressed 

genes in specific tissues, the biological interpretation of this data is still a challenge. The integration of genomic 

information, proteins, metabolites and cellular processes becomes very complex and it is still difficult to connect 

the molecular and cellular areas to understand the metabolism as a whole. Thus, the systems biology study, that 

is the integrative analysis of biological interaction networks, is so important to take advantage of the information 

provided by all genes and regulatory molecules, such miRNAs, found in RNA-seq and have become an 

interesting strategy for the development of therapies using miRNAs as therapeutic targets [56]. 

1.3 Hypothesis 

Gene and microRNA expression, and co-expression networks can influence intramuscular fat deposition, 

as well as the metabolic pathways they participate.  

1.4 Objectives 

To identify the importance of miRNAs-mRNAs networks in the regulation of gene expression and how it 

affects the content of intramuscular fat in Nelore cattle by analysis of a groups of animals with extreme genomic 

estimated breeding values (GEBV). 
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1.4.1 Specific objectives 

1) Analyze the differential expression of miRNAs between the two different group of animals; 

2) Identify potential target genes of those differentially expressed miRNAs in muscle; 

3) Identify gene networks from a list of miRNAs target genes; 

4) Identify miRNAs-mRNAs co-expression networks; 

5) Identify candidate regulators genes involved in intramuscular fat deposition process; 

6) Identify biological processes and pathways associated with intramuscular fat deposition. 
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Abstract 

The amount of intramuscular fat can influence the sensory characteristics and nutritional value of beef, thus 

the selection of animals with adequate fat content is important for consumer. Intramuscular fat is a complex trait that 

is difficult to measure and there is growing knowledge about the genes and pathways that control the biological 

processes involved in fat deposition in muscle. MicroRNAs (miRNAs) belong to a well conserved class of non-

coding small RNAs that modulate gene expression across a range of biological functions in animal development and 

physiology. The aim of this study was to identify differentially expressed (DE) miRNAs, regulatory candidate genes 

and co-expression networks related to intramuscular fat (IMF) content. To achieve this we used mRNA and miRNA 

expression data from the Longissimus dorsi muscle of 30 Nelore steers with extreme genomic estimated breeding 

values (GEBV) for this trait. Differential miRNA expression analysis between animals with extreme GEBV values 

for IMF identified six DE miRNAs. Functional annotation of the target genes for these microRNAs indicated that 

PPARs signaling pathway maybe is involved with IMF deposition. Regulatory candidate genes such as SDHAF4, 

FBXO17, ALDOA and PKM were identified by partial correlation with information theory (PCIT), phenotypic 

impact factor (PIF) and regulatory impact factor (RIF) approaches from integrated miRNA-mRNA expression data. 

Two DE miRNAs, bta-miR-143 and bta-miR-146b, which were upregulated in the Low IMF group, were correlated 

with regulatory candidate genes, which were functionally enriched for GO terms for fatty acids oxidation. Co-

expression patterns obtained by weighted correlation network analysis (WGCNA), which showed possible 

interaction and regulation between mRNAs and miRNAs, identified several modules related to immune system, 

protein metabolism, energy metabolism and glucose catabolism. In this study, several genes and miRNAs were 

identified as possible regulators of IMF by analyzing DE miRNAs and using different strategies for identification of 

miRNAs-mRNAs co-expression networks. This study contributes to the understanding of regulatory mechanisms of 

gene signaling networks involved in fat deposition process. Glucose metabolism and inflammation process were the 

main pathways found in integrative mRNAs-miRNAs analysis and showed to influence intramuscular fat content in 

beef cattle. 

Keywords: lipids, RNA-Seq, Bos indicus, microRNAs, co-expression networks. 

 

2.1 Introduction 

The amount of intramuscular fat (IMF) is an important characteristic associated with juiciness and taste of 

beef [1]. Overall meat quality can be impacted by many factors such as nutritional program, genetic, environment, 

age and sex. For example, zebu animals (Bos taurus indicus) slaughtered at an earlier age present a more 

homogeneous distribution of subcutaneous fat but lower amount of intramuscular fat in relation to Bos taurus taurus 

animals [2, 3]. This beef quality characteristic, i.e. low IMF, is also an important economic trait because for some 
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markets in Continental Europe, lower amounts of fat in the carcass are desirable, but for others, like some countries 

in Asia and the UK, this feature lowers the market value of Brazilian beef. Despite the prominent position of the beef 

cattle industry in the economy, Brazil still exports meat without added value to international market. Thus, the 

control of beef quality, and their sensory characteristics (tenderness, flavor, juiciness and color) are very important.  

MicroRNAs (miRNAs) are endogenous non-coding (ncRNA) ribonucleic acids (RNAs) that are 

approximately twenty-two nucleotides in length [4]. These molecules modulate the expression of genes at the post-

transcriptional level by blocking the translation of target mRNAs [4]. The first miRNA was discovered in 

Caenorhabditis elegans and was called lin-4 as it was involved in the suppression of a gene that encodes the lin-4 

protein [5]. Lin-4 acts in larval development of this nematode species.  

MiRNAs play an important role in post-transcriptional gene regulation in many tissues and are associated 

with the control of several important biological processes related to lipid metabolism [6]. Understanding the 

regulatory functions of miRNA and other small RNAs on the expression of target genes impacting lipogenesis and 

adipogenesis is important to identify target molecules with potential impact on fat deposition. Several studies have 

been published, which demonstrate the importance of miRNAs as potential biomarkers for variations in IMF [7-9].  

Once identified biomarkers could be used to improve the quality of meat and animal productivity [7, 9] and 

potentially provide priors for the research in human diseases such as obesity and diabetes [10, 11].  Identification of 

new regulatory roles for miRNA in lipid metabolism would be important in understanding potential mechanisms 

involved in metabolic diseases. 

Although RNA-seq analyses can be helpful for genomic studies and can generate lists of expressed genes in 

specific tissues to ultimately detect differentially expressed (DE) genes, the biological interpretation of this data is 

still a challenge. Network approaches that integrate data have proven useful in the identification of complex 

transcriptional regulation.  For example, hub genes, which are highly correlated with a large number of genes, have 

been shown to have key regulatory roles in gene expression networks [12-14]. Thus, co-expression analysis may be 

more sensitive at detecting biologically interesting pathways than analysis of DE genes [15]. Several network 

approaches are available for this purpose, such as the Weighted Gene Co-expression Network Analysis (WGCNA) 

method and the Partial Correlation with Information Theory (PCIT) methods. The WGCNA method identifies gene 

correlation networks, i.e.  gene clusters of biological significance, from expression profiling data [16].  The PCIT 

method identifies differences in pairs of correlated gene expression levels to measure a gene’s differential 

connectivity across levels of a phenotype [17]. Both the PCIT and WGCNA approaches have enabled a better 

understanding of the co-regulation of mRNAs and miRNAs for different phenotypes [15, 18-21] to better 

comprehend the biological mechanisms and regulatory processes in lipid metabolism. 

The aim of this study was to identify candidate regulatory genes and pathways that are regulated by 

miRNAs and understand the importance of integrative co-expression networks of mRNAs-miRNAs for fat 

deposition in cattle from a systems biology perspective. 
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2.2 Results 

2.2.1 Phenotypic and sequencing data 

The genetic variance, residual variance and heritability for IMF obtained from this population were 

0.196, 0.490 and 0.29±0.16, respectively, as previously published [22]. The animals were ranked using GEBV 

for IMF values and fifteen animals with high IMF GEBV (H) and fifteen with low IMF GEBV (L) were selected 

for miRNA-Seq analysis (Table 1). This strategy, to select animals with extreme GEBV, was performed because 

the correlation between the raw IMF values (% IMF) and GEBV was high (r = 0.76) [22] and the statistical T-

test showed that the GEBV averages for groups were statistically different (p-value = 2.2e-16).  

A total of 32 million (M) reads were obtained from sequencing on Illumina MiSeq equipment. The 

average number of total reads per sample was one million. The reads were filtered using the FASTX program 

(total number of filtered reads was 28 M) and mapped by miRDeep2. The total number of mapped reads was 24 

M, for an average of 84 % reads mapped (Table 1).   
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Table 1. Phenotypic data for intramuscular fat percentage (IMF), genomic estimated breeding values (GEBV) 

and number of normalized mapped miRNA reads of all animals. 

Animal IMF (%) GEBV Mapped Reads 

High
1
 4.42 0.44 676,705.83 

High
2
 4.12 0.51 722,149.21 

High
3
 4.35 0.57 856,445.98 

High
4
 5.02 0.47 564,721.48 

High
5
 4.74 0.81 1,477,652.40 

High
6
 3.99 0.51 382,812.08 

High
7
 4.17 0.66 1,372,859.97 

High
8
 4.95 0.59 714,291.96 

High
9
 3.97 0.57 637,211.41 

High
10

 4.38 0.71 628,643.15 

High
11

 5.27 0.85 803,295.42 

High
12

 4.35 0.61 675,159.48 

High
13

 3.75 0.42 610,860.91 

High
14

 2.99 0.36 327,429.32 

High
15

 4.13 0.81 578,590.62 

Low
1
 2.06 -0.57 681,969.11 

Low
2
 1.32 -0.77 825,926.83 

Low
3
 1.35 -0.36 654,790.36 

Low
4
 1.7 -0.31 510,809.28 

Low
5
 1.44 -0.51 661,870.55 

Low
6
 1.04 -0.33 675,033.41 

Low
7
 1.58 -0.5 711,330.33 

Low
8
 1.39 -0.52 421,474.63 

Low
9
 1.94 -0.29 727,950.69 

Low
10

 1.86 -0.24 980,827.28 

Low
11

 1.38 -0.43 754,990.11 

Low
12

 1.6 -0.59 655,706.88 

Low
13

 1.62 -0.57 862,654.84 

Low
14

 0.65 -0.22 821,821.32 

Low
15

 1.69 -0.27 1,398,620.62 

Mean High 4.306 0.592 735,255.28 

Mean Low 1.508 -0.432 756,385.08 

 

2.2.2 Differentially expressed microRNAs and target genes identification 

Twenty-six novel and 463 known miRNAs were identified using miRDeep2 analysis. Among all 

miRNAs identified, six of them were DE with a False Discovery Rate (FDR) of 10% (Table 2). Negative values 

of fold change indicate lower miRNA expression in animals with low IMF content and positive values indicate 

higher miRNA expression for this group. These six miRNAs targeted 2,250 genes expressed in skeletal muscle 

based on IPA analysis. Of note, because bta-let-7f and bta-let-7a-5p belong to the same family of miRNAs, they 

have the same seed sequence, and therefore target the same genes (Table 2).   
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Table 2. List of differentially expressed miRNAs between Low and High groups based on genomic estimated 

breeding values (GEBV) for intramuscular fat identified by miRDeep2 and the number of target genes obtained 

by IPA® for each miRNA. 

 

miRNA FDR
1 

Fold Change
2 

Low
3 

High
4 

Target Genes
4 

bta-let-7f 0.04 -1.671 2617.43 3767.18 1236 

bta-let-7a-5p 0.08 -1.456 1526.04 1908.20 1236 

bta-miR-146b 0.08 1.557 423.46 301.78 544 

bta-miR-100 0.09 1.715 1968.02 840.72 176 

bta-miR-143 0.09 1.309 32275.17 27539.78 648 

bta-miR-423-5p 0.09 -1.600 311.91 488.05 294 
1 
False discovery rate adjusted p-values by Benjamini-Hochberg methodology 

2
 Log2 Fold Change from low to high groups 

3
 Mean normalized counts from low and high groups 

4
 Target genes identified by IPA 

 

2.2.3 Enrichment analysis of target genes 

Functional enrichment analyses of target genes by IPA showed networks and canonical pathways 

related to fatty acid metabolism (Table 3; Figs. 1 and 2; Annex A: Figs. 14 and 15; Annex B: Figs 16 and 17). 

The most relevant gene network was “lipid metabolism, small molecule biochemistry, vitamin and mineral 

metabolism” that involved genes such as PPARGC1A, MYCN, ESR2 and ARL4D, that are targets of 

downregulated miRNAs and MED1, SMAD4, NEDD4 and MBOAT2, that are targets of upregulated miRNAs 

in the L group (Fig. 1).  

 

Table 3. List of the top gene networks and signaling pathways related with lipid metabolism identified by IPA®. 

Gene Networks 
Target 

genes 

Signaling 

Pathways 

Target 

genes 
P-value

1 

Drug Metabolism, Lipid Metabolism, 

Molecular Transport 

 

32 PPAR Signaling 33 1.00E-08 

Lipid Metabolism, Small Molecule 

Biochemistry, Vitamin and Mineral 

Metabolism 

 

31 PPARa-RXR 

Activation 

44 3.00E-06 

Gene Expression, Cell Cycle, Cancer 32 Adipogenesis 27 0.003 
1 
Nominal p-value, not adjusted 
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Figure 1. Gene network “lipid Metabolism, Small Molecule Biochemistry, Vitamin and Mineral Metabolism” 

identified from miRNAs target gene list by IPA. Grey shapes represent target genes and the white shapes are 

other genes of the network that are not target genes. Solid lines mean direct interaction and dashed lines an 

indirect interaction between genes. 

 

Target genes enriched for PPAR-RXR signaling pathways (i.e. lipogenesis promoting) were 

negatively regulated by miRNAs which were upregulated in L group. Target genes enriched for fatty acid 

oxidation were targets of downregulated miRNAs. Some important genes for lipid metabolism present in this 

pathway included: PPARα, PKA and ADIPOR2. These genes are targets of the downregulated miRNAs bta-let-7 

and bta-miR-423 (i.e. downregulated in the L group). On the other hand, STAT5b and GPDH are targets of 

upregulated miRNAs (bta-miR-100 and bta-miR-143) in L group (Fig. 2).  
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Figure 2. PPARα-RXR signaling pathway overrepresented in miRNA target genes list by IPA. The shapes 

highlighted in purple represent the miRNAs target genes and the white shapes represent the other genes of the 

pathway that are not target genes. 

 

2.2.4 Co-expression analysis: PCIT – Differential Hubbing 

After data filtering by expression in H and L IMF groups, a list with 383 miRNAs and 14,650 genes 

expressed in bovine skeletal muscle were used for PCIT analysis that allowed the identification of ten positive 

and negative differentially hubbed (DH) genes and miRNAs (Table 4).  

  



26 

Table 4. List of the top ten positive and negative Differentially Hubbed (DH) genes, when comparing High and 

Low groups of GEBV for IMF. 

ENSEMBL Gene ID  Gene Symbol DH 

Top Positive Differentially Hubbed genes 

ENSBTAG00000009084 ATG3 1849 

ENSBTAG00000005688 MRPS2 1793 

ENSBTAG00000008664 EIF2B2 1785 

ENSBTAG00000012113 HCCS 1781 

ENSBTAG00000005196 TYW3 1755 

ENSBTAG00000001022 AMDHD2 1750 

ENSBTAG00000010339 ABHD11 1736 

ENSBTAG00000017941 NSUN5 1735 

ENSBTAG00000003066 NSA2 1731 

ENSBTAG00000001783 FBXO17 1730 

Top Negative Differentially Hubbed genes 

ENSBTAG00000027049 SDHAF4 -851 

ENSBTAG00000010952 C2CD4B -850 

ENSBTAG00000005275 PKIG -837 

ENSBTAG00000009876 C4BPA -835 

ENSBTAG00000011184 FTH1 -828 

ENSBTAG00000008895 BPGM -819 

- bta-miR-24-3p -811 

- bta-miR-1291 -810 

ENSBTAG00000031778 HIST1H2BD -799 

ENSBTAG00000038275 CYP27C1 -795 

 

The genes with a significant correlation with DH genes were used to construct co-expression networks 

and identify enriched GO terms. The GO terms enriched among all genes correlated to the top ten negative DH 

genes were most related to glucose metabolism (GO ID: 6006, GO ID: 6007, GO ID: 6096) (Fig. 3) and for the 

top ten positive DH genes the GO terms were related to protein and mRNA metabolism (GO ID: 6364, GO ID: 

6350, GO ID: 30163, GO ID: 30162, GO ID: 51603) (Fig. 4).  
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Figure 3. GO terms enriched from genes correlated with negatively differentially hubbed genes. Bubble color 

indicates the user-provided p-value; bubble size indicates the frequency of the GO term in the underlying GOA 

database. Highly similar GO terms are linked by edges in the graph, where the line width indicates the degree of 

similarity. 

 

Figure 4. GO terms enriched from genes correlated with positively differentially hubbed genes. Bubble color 

indicates the user-provided p-value; bubble size indicates the frequency of the GO term in the underlying GOA 

database. Highly similar GO terms are linked by edges in the graph, where the line width indicates the degree of 

similarity. 

 

The most important DH genes potentially involved in the regulation of lipid metabolism and protein 

metabolism are shown in Table 5. The negatively DH genes bta-miR-24-3p and SDHAF4 are important for 

differentiation of adipocytes [23] and the assembly of succinate dehydrogenase, respectively. The positively DH 

gene FBXO17 is a component of the Skp, Cullin, F-box (SCF) complex, which mediates ubiquitination of 

proteins that leads to degradation and can bind to glycoprotein substrates [24]. Another positively DH gene is 
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EIF2B2, an eukaryotic initiation factor that is required in the initiation of translation and protein synthesis [25]. 

The co-expression networks of top DH genes were visualized by BioLayout (Fig. 5).  

 

Table 5. List of the top two differentially hubbed (DH) genes and the GO terms associated with them. The 

negative DH genes have higher number of connections in Low GEBV group and positive DH genes in High 

GEBV group. 

ENSEMBL Gene ID Gene Symbol DH GO terms of genes correlated 

Top Negative Differentially Hubbed genes 

ENSBTAG00000027049 SDHAF4 -851 

GO ID 44275:cellular carbohydrate catabolic process 

GO ID 44282:small molecule catabolic process 

GO ID 16052:carbohydrate catabolic process 

   
 

 
bta-miR-24-3p -811 

GO ID 44275:cellular carbohydrate catabolic process 

GO ID 6096:glycolysis 

GO ID 6936:muscle contraction 

Top Positive Differentially Hubbed genes 

ENSBTAG00000008664 EIF2B2 1785 

GO ID 6090:pyruvate metabolic process 

GO ID 30162:regulation of proteolysis 

GO ID 6364:rRNA processing 

   
 

ENSBTAG00000001783 FBXO17 

1730 GO ID 30162:regulation of proteolysis 

 

GO ID 6364:rRNA processing 

GO ID 70585:protein localization in mitochondrion 
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Figure 5. Negative (A) and positive (B) differentially hubbed genes associated with lipid metabolism between 

groups High GEBV and Low GEBV. The blue edges mean negative correlations between hub gene and the other 

connected genes and the red edges mean positive correlations. 

 

2.2.5 Co-expression analysis: PIF and RIF 

The PIF and RIF analyses were used to identify putative regulatory genes that may explain differences 

in phenotype between groups of animals, based on differences in gene expression. The most relevant genes for 

fatty acid metabolism found in the RIF and PIF analyses and the GO terms associated with them are shown in 

Table 6. The genes with positive values for RIF 1 and 2 were PYGM, ENO3, ATP2A1, GAPDH and ALDOA, 

which were principally related to glucose metabolism and energy metabolism. Those with negative values of RIF 

were mostly miRNAs. Specifically listed in the RIF 2 as one of the genes with most extreme negative value is 

the miRNA bta-miR-143, which was identified as DE in this study (Table 1). The bta-miR-26b, which plays a 

role in cholesterol efflux [26], had an extreme negative RIF2 value. The PIF analysis identified ALDOA as a 

putative regulatory gene for the difference in fat content between H and L groups. The enrichment of GO terms 

was similar with those found in DH analysis. 



30 

Table 6. List of the genes with the most extreme Phenotypic Impact Factor (PIF) and Regulatory Impact Factor 

(RIF) 1 and 2 values and the GO terms associated with them. 

ENSEMBL Gene ID Gene Symbol Score GO terms of genes correlated/targets 

Top PIF 

ENSBTAG00000012927 ALDOA 4.895E+10 GO ID 30163:protein catabolic process 

   GO ID 6006:glucose metabolic process 

   GO ID 6091:generation of precursor metabolites 

and energy 

Top Positive RIF1 and 2 

ENSBTAG00000012927 ALDOA 105.5434 GO ID 6006:glucose metabolic process 

ENSBTAG00000005534 ENO3 4.121744 GO ID 6007:glucose catabolic process 

ENSBTAG00000001032 PYGM 6.417047 GO ID 16052:carbohydrate catabolic process 

ENSBTAG00000014731 GAPDH 4.403429 GO ID 22900:electron transport chain 

ENSBTAG00000006541 ATP2A1 5.891178 GO ID 6006:glucose metabolic process 

Top Negative RIF2 

ENSBTAG00000001601 PKM -0.5742 GO ID 6006:glucose metabolic process 

ENSBTAG00000030114 bta-miR-143 -0.74594 GO ID 6538:glutamate catabolic process 

ENSBTAG00000029850 bta-miR-26b -0.84051 GO ID 6793:phosphorus metabolic process 

 

2.2.6 Co-expression analysis: WGCNA - miRNAs correlated with mRNA modules 

The WGCNA methodology was applied in two different manners, first to integrate mRNAs and 

miRNAs by analyzing those modules with a negative correlation between them and second by identifying 

modules that are important to phenotypic variation by correlating all modules identified in WGCNA to IMF 

content. The dendrograms resulting from clustering of genes and miRNAs, made in separately analysis, are 

presented in Figures 6 and 7, respectively. The lowest soft threshold power (β) with scale free fitting index of 0.9 

was applied to calculate the adjacency matrix of mRNAs and miRNAs from H and L groups (Figs. 8 and 9). The 

β’s used to construct the mRNA modules from the L and H IMF group’s expression data were 12 and 8, 

respectively. While the β’s used to construct the miRNA modules were 9 for the L and 4 for the H IMF group. A 

total of 27 mRNA modules in H and 44 in the L group were identified, and were 14 miRNA modules in H and 

22 in L. The grey module contained all genes not included in a correlated module.  
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Figure 6. The color-band below the dendrogram denotes the mRNAs modules, which are defined as branches in 

the dendrogram. A: High IMF GEBV group network. B: Low IMF GEBV group network. 
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Figure 7. The color-band below the dendrogram denotes the miRNAs modules, which are defined as branches in 

the dendrogram. A: High IMF GEBV group network. B: Low IMF group GEBV network. 
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Figure 8. Scale free topology model and Mean connectivity of mRNAs network on the basis of power β value. 

(A) H group. (B) L group. 
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Figure 9. Scale free topology model and Mean connectivity of miRNAs network on the basis of power β value. 

(A) H group. (B) L group. 

 

After correlating all miRNA and mRNA modules, those modules that were negatively correlated with 

one another were investigated further. Among all correlated modules, three miRNA modules were negatively 

correlated with five mRNAs modules in the H group, while six miRNA modules were negatively correlated with 

seven mRNA modules in the L group (p-value > 0.05; Table 7). The genes that composed each mRNA module 

were significantly over enriched for GO terms most related to lipid metabolism (adj. p-value <0.1).  These lipid 

metabolism GO terms enriched from mRNA modules were then used to construct mRNA-miRNA co-expressed 

networks for both groups H and L (Figs. 10 and 11). The miRNAs modules were enriched for GO terms based 

on the hub miRNA target genes. 
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Table 7. List of miRNAs modules negatively correlated with mRNAs modules. 

Group 
miRNAs 

Modules 
mRNA Modules Correlation p-value #miRNAs #mRNAs #targets 

H 

black cyan -0.853 (0.0000518) 21 187 17 

green pink -0.625 (0.012) 24 295 64 

green blue -0.681 (0.005) 24 2004 707 

green brown -0.668 (0.006) 24 1542 615 

pink lightgreen -0.542 (0.036) 20 152 13 

L 

midnightblue green -0.637 (0.01) 10 743 360 

midnightblue  orange -0.531 (0.041) 10 174 85 

midnightblue yellowgreen -0.589 (0.02) 10 73 33 

midnightblue black -0.66 (0.007) 10 704 264 

lightcyan black -0.577 (0.024) 9 704 294 

lightcyan lightyellow -0.545 (0.035) 9 256 53 

cyan darkolivegreen -0.554 (0.031) 11 106 33 

magenta  orangered4 -0.514 (0.049) 18 60 8 

salmon darkolivegreen -0.55 (0.033) 12 106 21 

salmon  green -0.551 (0.033) 12 743 131 

tan  green -0.529 (0.044) 12 743 294 

tan orange -0.576 (0.024) 12 174 62 

 

 

Figure 10. Co-expression networks showing the inverse correlation among miRNAs and biological processes in 

High IMF GEBV group. Colored circles represent hub miRNAs, with higher connectivity, inside each module 

and squares represent the GO terms associated with each mRNA module, represented by different letter color. 
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Figure 11. Co-expression networks show the inverse correlation among miRNAs and biological processes in 

Low IMF GEBV group. Colored circles represent hub miRNAs, with higher connectivity, inside each module 

and squares represent the GO terms associated with each mRNA module, represented by different letter color. 

 

In the H group, the green miRNA module was negatively correlated with pink, blue and brown 

mRNA modules whose genes were enriched for GO terms related to zinc ion binding, angiogenesis and 

glycerophospholipid metabolism. The hub miRNAs in the black module were negatively correlated to genes 

enriched for inflammatory response (cyan mRNA module) and miRNAs in the pink module were negatively 

correlated to genes enriched for immune response (lightgreen mRNA module) (Fig. 10). The L group contained 

multiple miRNA modules negatively correlated with the same mRNA module (Table 7). Specifically, the 

miRNA modules midnightblue, tan and salmon were negatively correlated with mRNAs inside the green 

module, while the midnight blue and tan miRNA modules were negatively correlated with the orange mRNA 

module (Fig. 11). The orange mRNA module was enriched for positive regulation of fatty acid oxidation, while 

the green mRNA module was enriched for protein kinase B signaling cascade. The midnightblue miRNA 

module and the lightcyan miRNA module were negatively correlated with the black mRNA module, enriched for 

negative regulation of protein ubiquitination. The salmon miRNA module and the cyan miRNA module were 

negatively correlated with darkolivegreen mRNA module, enriched for AMP biosynthetic process. The magenta 

miRNA module was negatively correlated with orangered4 mRNA module, which was enriched for 

carbohydrate metabolic process. The yellowgreen mRNA module was not enriched for any biological processes 

(p-value > 0.10). 
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2.2.7 Co-expression analysis: WGCNA – miRNAs correlated with phenotype 

Besides the integration of mRNA and miRNA data, the correlation of modules with the phenotype 

(high or low IMF content) was also performed (Figs. 12 and 13). Three mRNA modules in the H group and two 

in the L group, and three miRNA modules both the H and L group were correlated with the IMF phenotype 

(Table 8). In the H group, the black miRNA module and the cyan mRNA module were negatively correlated 

with each other (Table 7). 

 

 

Figure 12. Correlation between the mRNA modules and IMF. A: modules identified in the High IMF GEBV (H) 

group. B: modules identified in the Low IMF GEBV (L) group. Modules with intense red color have a higher 

correlation (close to +1) and those with intense green color have a more negative correlation (close to -1). 
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Figure 13. Correlation between miRNA modules and IMF. A: modules identified in High IMF GEBV (H) 

group. B: modules identified in Low IMF GEBV (L) group. Modules with intense red color have a higher 

positive correlation (close to +1) and those with an intense green color have a more negative correlation (close to 

-1). 

 

Table 8. GO terms enrichment of modules significantly correlated with the trait, for mRNA and microRNAs for 

High (H) and Low (L) groups. 

Group module corr pvalue #molecules FDR GO terms 

microRNAs modules 

H 

black 0.7 0.007 21 0.045  GO ID 46942:carboxylic acid transport 

yellow 0.5 0.09 25 0.041  GO ID 6417:regulation of translation 

turquoise -0.5 0.07 105 0.064  GO ID 19377:glycolipid catabolic process 

L 

greenyellow 0.5 0.04 13 0.007  GO ID 6629:lipid metabolic process 

lightgreen 0.6 0.02 7 0.0001  GO ID 55074:calcium ion homeostasis 

purple -0.5 0.07 14 0.028  GO ID 19915:lipid storage 

mRNAs modules 

H 

darkorange 0.5 0.09 63 0.052  GO ID 42816:vitamin B6 metabolic process 

cyan -0.5 0.08 187 0.01  GO ID 6954:inflammatory response 

darkgrey 0.5 0.08 83 0.002  GO ID 4117:calmodulin-dependent cyclic-   

nucleotide phosphodiesterase activity 

L 
plum1 -0.5 0.06 63 0.053  GO ID 19955:cytokine binding 

magenta -0.5 0.03 474 0.093  GO ID 2385:mucosal immune response 
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The darkorange and darkgrey mRNA modules were positively correlated with high IMF content (H 

group). The genes in these modules were enriched for the GO terms associated with vitamin B6 metabolic 

process, and calmodulin-dependent cyclic-nucleotide phosphodiesterase activity, respectively. The cyan mRNA 

module enriched for inflammatory response was negatively correlated with high IMF content. The plum1 and 

magenta mRNA modules were negatively correlated with low IMF content (L group). The genes in these two 

modules were enriched for the GO terms cytokine binding and mucosal immune response, respectively. 

On the other hand, the black and yellow miRNA modules, that were positively correlated with high 

IMF content (H group), were enriched for GO terms related to carboxylic acid transport and regulation of 

translation, respectively. The turquoise miRNA module, which was negatively correlated with IMF content in H 

group, was enriched for GO terms related to glycolipid catabolic process. The greenyellow and lightgreen 

miRNAs modules were positively correlated with the low IMF content (L group).  These two miRNA modules 

were enriched for GO terms related to lipid metabolic process and calcium ion homeostasis. The purple miRNA 

module was negatively correlated with low IMF content and enriched for GO terms related to lipid storage. 

  

2.3 Discussion 

The regulation of lipid oxidation and biosynthesis is under strong feedback control in order to 

maintain homeostasis [27]. Although research studying the influence of miRNAs on metabolism are recent [28], 

there has been a rapid growth in the number of identified miRNAs that are involved in the regulation of genes 

and signaling molecules responsible for maintaining lipid homeostasis [20, 29]. 

 

2.3.1 Networks enriched for lipid and carbohydrate metabolism 

The comparison of miRNA expression between animals with different genetic potential for IMF 

deposition resulted in the identification of six DE miRNAs involved in fatty acid metabolism and lipid content. 

The miR-423 and let-7 family, upregulated in the high (H) IMF group, have been previously reported to be 

associated with obesity related to disorders in glucose metabolism [10, 30] and have been implicated as possible 

biomarkers for risk of obesity. The miRNAs upregulated in the low (L) IMF group, miR-100, miR-146 and miR-

143, have been reported to control aspects of adipogenesis in humans [31-34]. Chen et al. [31] suggested that 

overexpression of mir-143 could promote or inhibit adipogenesis by regulation of MAPK signaling pathway 

depending on the stage of development. Interestingly, they found that upregulation of miR-143 expression in 

early stages of adipogenesis blocks adipocyte differentiation, but when it happens later induces clonal expansion 

of adipose tissue. The upregulation of miR-143 in lower intramuscular fat content animals in this study may be 

explained by the fact that fat deposition in Bos indicus occurs later than that of other species and that these 

animals were probably slaughtered in early stages of adipogenesis [2, 3, 35, 36].  

The enrichment analysis of DE miRNAs’ target genes revealed that the PPAR pathway was 

overrepresented (Table 3 and Fig. 2) in IPA analysis.  Furthermore, many important target genes related to lipid 

metabolism were present in the gene networks identified by IPA (Table 3 and Fig. 1). Peroxisome proliferator-

activated receptors (PPARs) are a class of ligand-activated transcription factors that have a well-known influence 
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on lipid metabolism and glucose homeostasis. PPARs play a role in development of obesity, diabetes and 

inflammation [37-39]. PPARα regulates transcription of genes involved in lipid β-oxidation, which decreases fat 

mass and has anti-inflammatory effects, while PPARγ has an opposite effect [40, 41]. The enrichment analysis of 

DE miRNAs’ target genes indicate that lean animals have higher levels of fatty acid oxidation, because genes 

that lead to lipolysis are targets of downregulated miRNAs in the low (L) IMF group. On the other hand, based 

on IPA results, miRNAs upregulated in this group would down regulate genes of lipogenesis and adipogenesis. 

In order to gain additional insights into the pathways impacted by miRNAs, we performed co-

expression analysis by integration of the miRNA and mRNA data. The PCIT analysis revealed that the top 

negatively DH genes, which had more connections in the low (L) IMF group, were correlated with genes 

associated mostly with glucose and carbohydrate metabolism (Table 5). The DH genes that may be the most 

relevant for IMF were SDHAF4 and bta-miR-24. SDHAF4 plays a role in ATP synthesis by the electron 

transport chain and miR-24 negatively regulates adipocyte differentiation in mice by targeting genes such as 

FABP4 [42] and hepatic lipid accumulation by downregulating Insig1 [43]. The DE miRNAs bta-miR-143 and 

bta-miR-146b, upregulated in the low (L) IMF group (Table 2), were both positively correlated with negative 

DH genes, and were associated with glucose and fatty acids catabolism (Fig. 5). Bta-miR-146b was correlated 

with almost all negatively DH genes, while bta-miR-143 was only correlated with SDHAF4. This result indicates 

that DE miRNAs may play a role in co-expression networks that lead to less fat deposition. 

The candidate regulatory genes identified by PIF and RIF that negatively regulate IMF deposition 

were PKM, bta-miR-143 and bta-miR-26b. PKM is associated with glucose metabolism, while bta-miR-26b was 

related to cholesterol metabolism and lipogenesis [26, 44] (Table 6). The target genes of bta-miR-143 were 

enriched for glutamate catabolism.  Glutamate is a key component in cellular metabolism, and it is related to 

biosynthesis of lipids, because it is utilized in the citric acid cycle to produce ATP through α-ketoglutarate [45]. 

MiR-143 downregulates this process by blocking excess ATP production that could induce storage of lipids 

instead of undergoing lipid degradation. This co-expression analysis reaffirms the importance of the bta-miR-

143 in control of fat deposition. 

The midnightblue miRNAs module identified by WGCNA in the low (L) IMF group was associated 

with downregulation of metal ion homeostasis and interleukin-1 beta production and was negatively correlated 

with four mRNA modules (green, orange, yellowgreen and black) (Fig. 10). These four mRNA modules were 

enriched for protein kinase B (PKB) signaling cascade, positive regulation of fatty acid oxidation and negative 

regulation of protein ubiquitination. The PKB signaling pathway promotes protein synthesis and activation of 

glucose metabolism via insulin regulation. The orangered4 mRNA module was enriched for carbohydrate 

metabolic process, which is also related to glucose metabolism.  It was negatively correlated with the magenta 

miRNA module, whose target genes are associated with cell differentiation. Thus, our analysis indicates that in 

animals with lower IMF, glucose signaling and lipolysis are positively correlated with regulation of interleukin 

production, ion homeostasis and cell differentiation, based on miRNA-mRNA co-expression analysis. 

WGCNA revealed that the mRNA module in the high (H) IMF group that was positively correlated 

with IMF deposition (darkorange) was enriched for vitamin B6 metabolic process (Table 8), which is indirectly 

related to lipogenesis. Several enzyme reactions involved in fatty acid metabolism require vitamin B-6 as a 

coenzyme, such as the biosynthesis of sphingolipids [46], which are a class of lipids that are components of cell 

membranes. Moreover, the black and yellow miRNA modules in the high (H) IMF group were positively 
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correlated with IMF deposition.  The target genes for the miRNA in these modules are associated with 

carboxylic acid transport and regulation of translation (Table 8). Fatty acids are carboxylic acids and their 

transport into the mitochondria leads to activation of β-oxidation to produce energy. Thus, it appears that 

miRNAs in the high (H) IMF group are downregulating genes involved in lipid catabolism. However, the 

turquoise miRNA module, which was negatively correlated with IMF in the high (H) IMF group, was related to 

glycolipid catabolic process (Table 8). This indicates that miRNAs associated with high fat deposition are 

downregulating biological processes such as transport and catabolism of fatty acids, while miRNAs negatively 

associated with higher fat deposition downregulate glycolipid degradation. Interestingly in the high (H) IMF 

group, the black miRNA module and cyan mRNA module were negatively correlated with each other (Table 7) 

and both were differently correlated with IMF, positively and negatively, respectively (Table 8). These miRNAs 

were associated with downregulation of fatty acid transport, while the mRNAs were associated with 

inflammation. 

In the low (L) IMF group, the greenyellow and lightgreen miRNA modules were positively correlated 

with IMF. The miRNA in these modules downregulate genes enriched for lipid metabolic process and calcium 

ion homeostasis, respectively (Table 8). Calcium (Ca) participates in many signaling networks that contribute to 

modulation of enzyme function, including Ca-sensitive enzymes involved in lipolysis and lipogenesis [47].  The 

purple miRNA module was negatively correlated with IMF. A majority of miRNAs in this module were 

expressed at lower levels in lean animals.  The target genes of these miRNA were associated with lipid storage. 

Overall, the miRNAs in co-expression networks associated with low IMF were related to lipid metabolism, 

lipolysis, lipogenesis and lipid storage. 

 

2.3.2 Networks related to immune system and inflammatory response 

It is known that lipid accumulation in obesity activates the immune system which leads to an 

inflammatory state due to secretion of proinflammatory molecules by adipocytes [48]. Genes associated with 

inflammatory response were identified as target genes of DE miRNAs that were upregulated in the low (L) IMF 

group, which was enriched for the PPAR-RXR signaling pathway (Fig. 2). These genes mediate signal 

transduction from members of the interleukin-1 (IL-1) family. IL-1, which is regulated by PPARα, can induce 

and regulate a network of proinflammatory cytokines that initiate inflammatory responses [49]. Using the same 

population of animals as utilized here, Cesar et al. [22] previously reported that DE genes were associated with 

inflammatory response. 

The WGCNA results indicated that the cyan and lightgreen mRNA modules in the high (H) IMF 

group were enriched for inflammatory response and adaptive immune response. They were also negatively 

correlated with the black and pink miRNA modules (Fig. 11), whose target genes were associated with 

carboxylic acid transport and positive regulation of leukocyte migration. Moreover, in the low (L) IMF group the 

target genes of the most connected miRNA module (midnightblue) (Fig. 11) were associated with metal ion 

homeostasis and regulation of interleukin-1 beta (IL-1B) production. This module was negatively correlated with 

catabolism of lipids and protein, as described above. This indicates that mRNA and miRNA co-expression 

networks are involved in pathways that regulate the immune system and inflammation and that they are 

correlated with lipid and protein metabolism. 
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The correlation analysis of mRNA and miRNA modules with IMF emphasized that the immune 

system was related to lipid accumulation (Table 8). The plum1 and magenta mRNA modules in the low (L) IMF 

group were negatively correlated with IMF and were associated with cytokine binding and mucosal immune 

response. The cyan mRNA module in the high (H) IMF group was negatively correlated with IMF and was 

enriched for inflammatory response. 

 

2.3.3 Comparison of Co-expression analysis: PCIT and WGCNA 

The hub miRNAs identified in the integrative analysis correlating both the mRNA and miRNA 

modules were significantly correlated with DH genes in the PCIT analysis. Hub miRNAs (bta-miR-106a, bta-

miR-2400, bta-miR-2887, bta-miR-29d-3p and bta-miR-671) in the green module of the high (H) IMF group 

(Fig. 10) were correlated with positively DH genes, i.e. those with a higher number of connections in the high 

(H) IMF group. The enrichment analysis of the green miRNA module in WGCNA revealed that the hub 

miRNAs target genes were associated with ATP synthesis and catabolism of proteins. Green miRNA module 

was negatively correlated with the pink, blue and brown mRNA modules in high (H) IMF group (Fig. 10), which 

were enriched for zinc ion binding, glycerophospholipid metabolic processes and angiogenesis. 

Glycerophospholipids are the main component of biological membranes, derived from esterification of fatty 

acids [50]. Angiogenesis is influenced by adipogenesis because activated adipocytes produce angiogenic factors 

for growth [51]. This result indicates that blood vessel growth is positively correlated with energy metabolism 

and protein catabolism. Both of which are associated with meat tenderness and are positively correlated with 

marbling [52, 53]. In the DH analysis, the hub miRNAs in green module were correlated with genes involved in 

regulation of pyruvate metabolism and proteolysis (Fig. 4). This is consistent with previous study where miR-

106a was related to promotion of adipogenesis and inhibition of osteogenesis by targeting BMP2 [54].  

Hub miRNAs (bta-miR-122, bta-miR-1291, bta-miR-2308, bta-miR-376d, bta-miR-656 and bta-miR-

2904) in the midnightblue module from the low (L) IMF group (Fig. 11) were correlated with negatively DH 

genes, i.e. those with a higher number of connections in the low (L) IMF group. The target genes of the hub 

miRNAs in midnightblue module were associated with metabolism of metals and interleukin production and 

were negatively correlated with mRNA modules enriched for regulation of fatty acid oxidation, protein 

ubiquitination and PKB signaling in low (L) IMF group, as described above (Fig. 11). In the DH analysis, the 

hub miRNAs in midnightblue module were correlated with genes associated with energy and lipid metabolism 

and protein ubiquitination (Fig. 3). Of the miRNAs in midnightblue module, two have been previously reported 

to be important for lipid metabolism, i.e. mir-122 and mir-1291. MiR-122 was first reported as a key regulator of 

cholesterol and fatty-acid metabolism [55], while miR-1291 regulates glucose transport into the cell [56]. The 

miR-1291 was a negatively DH gene (Table 4), which demonstrates that WGCNA and PCIT not only identify 

similar biological processes regulating fat deposition, but they can also identify the same miRNAs in co-

expression networks. 
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2.4 Conclusion 

DE and co-expressions analysis indicate that in addition to lipids metabolism, the glucose metabolism 

and inflammatory response are the main processes involved in IMF deposition. It shows that the miRNAs not 

only are related to changes in expression between animals with extreme phenotypes for intramuscular fat 

deposition, but also participate in co-expression networks that affect mRNAs expression and are related to 

metabolic pathways that can in fact modulate fat deposition. We also identify that both co-expression 

approached could construct similar miRNAs networks that were correlated with genes and pathways important 

to phenotype and we have noticed that perhaps lipolysis is prominent in animals with low IMF content rather 

than lipogenesis in animals with high IMF. This study allowed us to better understand the role of miRNAs 

regulation and interaction of them to control fat deposition and also revealed new candidate regulatory genes and 

miRNAs of lipid metabolism.  

 

2.5 Material and methods 

2.5.1 Animals and phenotypic data 

Genotypic and phenotypic data were collected on 310 Nelore steers sired by 34 unrelated sires that 

represent the main breeding lineages in Brazilian Nelore from an experimental breeding herd from EMBRAPA 

between 2009 and 2011 [57]. The animals were raised in feedlots under identical nutrition and handling 

conditions until slaughter at an average age of 25 months. Samples from Longissimus dorsi (LD) muscle located 

between the 12th and 13th ribs were collected at two time points: at slaughter for RNA sequencing analysis, and 

24 hours after slaughter for the intramuscular fat (IMF) content measurement as described below [22]. 

Approximately 100g of muscle were lyophilized and ground to measure IMF content using an Ankom 

XT20 extractor and the AOCS procedure (official Procedure Am 5-04) as described Cesar et al. [57].  Animals 

with extreme values for intramuscular fat (IMF) content were selected based on their genomic estimated 

breeding values (GEBV) [57]. GEBV was predicted by Genomic Best Linear Unbiased Prediction (GBLUP) 

methodology, which was conducted using ASREML software [58]. A group of 30 animals were selected (fifteen 

with high IMF GEBV values and fifteen with low IMF GEBV values) for mRNA and miRNA analyses. 

 

2.5.2 RNA extraction and RNA-sequencing 

Total RNA was isolated from 100 mg of LD muscle samples from 30 steers with extreme GEBV 

values. The extraction of total RNA was performed using the Trizol reagent (Invitrogen) according to the 

protocol described by Chomczynski and Sacchi [59]. After extraction, total RNA was quantified by 

spectrophotometer (NanoDrop 200 - Thermo Scientific. Wilmington. Delaware, USA). The integrity of the RNA 

was verified by size separation on a 1% agarose gel and analysis on a Bioanalyzer 2100 (Agilent Technologies - 

Santa Clara, CA, USA) with the RNA 6000 Nano kit. All samples had an RNA integrity number (RIN) greater 

than or equal to 8. Then samples were diluted to a final concentration of 200 ng/μL. Sequencing libraries were 
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generated with the TruSeq® smallRNA Sample Preparation kit (Illumina - San Diego, USA). The concentration 

of the cDNA libraries was determined with the KAPA Library Quantification Kit (KAPA Biosystems) and then 

samples were sequenced on a Miseq machine (Illumina), using MiSeq Reagent Kit v3 (150 cycles), generating 

around 1 million reads/sample. 

 

2.5.3 Reads filtering and miRNAs identification 

After sequencing, data quality was evaluated with FastQC [60] and filtered by Phred score quality 

using FASTX-Toolkit [61] software, where the minimum quality Phred score was 28. Then, the miRDeep2 [62] 

program was used to identify and quantify miRNAs, using the default parameters. The sequences were mapped 

against the bovine reference genome Bos taurus UMD 3.1 and compared with miRBase database (v. 21) [63]. 

 

2.5.4 Differentially expressed miRNAs 

In order to identify differentially expressed (DE) miRNAs between the L and H groups, the total count 

data of each miRNA was analyzed with the DESeq2 package [64], using a statistical model that fitted 

contemporary group (animal origin and year that the animal enter the experiment) as a categorical fixed effect 

and age at slaughter of an animal as a covariate. To remove variation due to the preparation of sequencing 

libraries, the expression data were normalized by library size, as described in the manual of the DESeq2 package 

[64]. The Benjamini-Hochberg (BH) [65] methodology was used to control the False Discovery Rate (FDR) of 

DE at 10%. 

 

2.5.5 miRNA target genes and enrichment analysis of DE miRNAs 

The miRNA target genes were obtained from the MicroRNA Target Filter tool of QIAGEN’s 

Ingenuity Pathway Analysis (IPA®, Redwood City-CA) that uses TargetScan, miRecords and TarBase as the 

miRNA target genes databases. After this first approach to obtain the target genes by IPA, the expression of 

these genes was checked against skeletal muscle RNA-Seq data that had been previously analyzed on the same 

set of samples [22]. The functional enrichment of target genes was also performed by IPA software to identify 

enriched metabolic pathways and gene networks associated with lipid metabolism. 

 

2.5.6 PCIT and differential hubbing network analysis 

To improve the functional annotation of miRNA and mRNA interactions in a systems biology context, 

the Partial Correlation with Information Theory (PCIT) analyses [66, 67] were conducted on the combined list of 

miRNAs (383) and mRNAs (14,650) after normalization of expression level by DESeq2. The miRNAs and 

mRNAs were filtered to select only those expressed in animals in both H and L IMF groups. The mRNA 

expression data utilized in this study was previously published by Cesar et al. [22]. 
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PCIT was used to evaluate the specific behavior or co-expression between all miRNAs and genes and 

from this information, differential connectivity or hubbing (DH) [67] was calculated. Differential hubbing is the 

difference in the number of significant partial correlations (connections) a gene has between two different 

treatments, in this case compared between H and L groups and filtering those correlations higher than 0.9. 

BioLayout Express3D [68] software was used to visualize gene networks. 

 

2.5.7 PIF and RIF analysis 

To identify putative candidate regulators responsible for the differences observed in phenotypes, the 

Phenotypic Impact Factor (PIF) and Regulatory Impact Factor (RIF) approaches were performed [17, 66, 69]. 

PIF gives a ‘weight’ for the contribution and importance of genes to the differences involved between 

phenotypes, based exclusively on their numerical properties. RIF is based on differences in the regulator’s 

correlations and it represents the relative importance of genes/miRNAs on the phenotypically relevant part of the 

network. The RIF1 value is based largely on changes in correlation between two treatments levels (i.e. 

differential wiring). The RIF2 value allows genes to be ranked as potential regulators based on the expression 

changes of a regulator and how it can affect the expression of other genes in the network due to treatment 

differences [17]. 

 

2.5.8 WGCNA 

The same list of genes and miRNAs used in the PCIT analysis was utilized to run the R package 

WGCNA [16]. This analysis constructs clusters of highly correlated genes and miRNAs in modules and allows 

the correlation of them to each other and also to a trait (i.e. IMF content). In contrast to the analysis performed 

with PCIT, the WGCNA was done separately for genes and then for miRNAs. 

Modules of mRNA - In order to construct clusters of genes, pair-wise Pearson correlation coefficients 

were first calculated between all expressed transcripts to generate a signed similarity. To emphasize (weight) 

stronger correlations and punish weaker correlations, the signed similarity matrix was then raised to the lowest 

power β that approximated a scale-free network topology (R2 > 0.90) to generate an adjacency matrix [70]. The 

topological overlap distance calculated from the adjacency matrix is then clustered with the average linkage 

hierarchical clustering. The default minimum cluster merge height of 0.25 was retained. The clusters created by 

WGCNA are called modules, and the minimum number of genes in a module was set to 30. Each module 

represents a group of genes with similar expression profiles across the samples and the expression profile pattern 

is distinct from those of other modules. Modules were named by a conventional color scheme and genes not 

classified in a correlated module were grouped in the grey module. After modules were defined, the module 

Eigengene (MEs) values were calculated. The Eigengene of a module is defined as the eigenvector associated 

with the first principal component of the expression matrix representing the expression profile of all genes within 

a given module [16, 71]. 

Modules of miRNA - The steps for constructing miRNA co-expression modules were as described 

above. After generating the signed similarity matrix, a power β value was chosen to generate the adjacency 
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matrix. The topological overlap distance was calculated and a minimum module size of five miRNAs was 

chosen. Five was chosen as the minimum module size for the miRNAs due to the smaller size of the miRNA 

transcriptome relative to the mRNA transcriptome [16, 71]. 

 

2.5.9 Correlation between mRNA and miRNA modules 

An integrative analysis was performed correlating the ME of miRNAs with the ME of mRNAs, for 

each group. Those modules with a negative correlation higher than -0.4 with a p-value <0.05 were used for 

enrichment analysis. The co-expression networks among hub miRNAs, representing the whole module, and the 

GO terms of mRNAs inside the correlated modules were constructed in Cytoscape v.3.3.0 0 [72]. 

 

2.5.10 Correlation of modules with trait 

Using the ME, the Module-Trait relationships were estimated by calculating the Pearson’s correlations 

between the ME and the animals’ phenotypic information (i.e. % IMF) to select potential biologically interesting 

modules that could explain the phenotypic differences between groups. Modules were selected when they had a 

p-value of correlation <0.1 with the trait. 

 

2.5.11 MiRNAs target genes and enrichment analysis of co-expression data 

The general gene enrichment of GO terms for biological processes was made using BiNGO 

(Biological Networks Gene Ontology), tool for Cytoscape v.3.3.0 [72] and REVIGO [73] to visualize clusters of 

GO terms. The Benjamini-Hochberg (BH)  [65] methodology was used as a multiple testing correction to control 

the False Discovery Rate (FDR) at 10%. For miRNAs, the combined results from miRanda and TargetScan 

approaches were used to identify the target genes and these genes were also filtered by skeletal muscle RNA-seq 

data of previous study [22] to do the enrichment.  

The enrichment of miRNA modules identified by WGCNA was conducted using the target genes 

information of specific hub miRNAs in each miRNA module. In this case the hub miRNAs were those with the 

highest Modular Membership (MM) value for the module, which means that these miRNAs have higher 

connectivity inside the module and are probably more informative [12]. 
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ANNEX 

 

ANNEX A - Figures 14 and 15 of gene networks enriched in IPA analysis 

 

 

Figure 14. Gene network “Drug Metabolism, Lipid Metabolism, Molecular Transport” identified from the DE 

miRNA’s target genes list generated by IPA. Grey shapes represent target genes and the white shapes are other 

genes of the network that are not target genes. Solid lines mean direct interaction and dashed lines an indirect 

interaction between genes. 
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Figure 15. Gene network “Gene Expression, Cell Cycle, Cancer” identified from the DE miRNA’s target genes 

list generated by IPA. Grey shapes represent target genes and the white shapes are other genes of the network 

that are not target genes. Solid lines mean direct interaction and dashed lines an indirect interaction between 

genes. 
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ANNEX B - Figures 16 and 17 of canonical pathways enriched in IPA analysis 

 

 

Figure 16. The PPAR Signaling pathway is over-represented in miRNA target genes identified by IPA. The 

shapes highlighted in purple represent the miRNA target genes and the white shapes represent the other genes of 

the pathway that are not target genes. 
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Figure 17. The Adipogenesis pathway is over-represented in miRNA target genes identified by IPA. 

The shapes highlighted in purple represent the miRNA target genes and the white shapes represent the 

other genes of the pathway that are not target genes. 

 

 




