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RESUMO 

Novas estratégias para a implementação de seleção genômica em programas de 

melhoramento de espécies de propagação vegetativa 

A seleção genômica consiste no uso de efeitos preditos de marcadores genéticos para 
predizer os valores genéticos e/ou genotípicos de indivíduos genotipados. Desta forma, a seleção 
de genótipos superiores pode ser feita baseada apenas em valores genéticos preditos, reduzindo a 
necessidade de avaliações fenotípicas subsequentes. Isto representa um grande avanço em termos 
de custos e eficiência da seleção em programas de melhoramento de todos os tipos de culturas. No 
primeiro capítulo deste trabalho, nós exploramos uma das maneiras com que a seleção genômica 
pode ser utilizada para aumentar a eficiência no melhoramento simultâneo para múltiplos caráteres 
em espécies de propagação vegetativa. Utilizando simulações estocásticas, nós mostramos que um 
índice de seleção econômico deve ser utilizado no lugar da eliminação independente (independent 
culling). Os resultados mostram que o uso da seleção genômica pode tornar o custo-benefício da 
eliminação independente obsoleto se indivíduos em gerações iniciais forem genotipados e 
predições acuradas para todos os caráteres estiverem disponíveis desde o início. Apesar dos 
potenciais benefícios de realizar a seleção com base em valores genéticos preditos, para algumas 
espécies de propagação vegetativa a complexidade de seus genomas é um fator limitante para a 
efetiva implementação da seleção genômica em programas de melhoramento. Considerando que 
incluir a informação de dosagem alélica melhorou a performance de modelos de seleção genômica 
em espécies autotetraploides, nosso objetivo no segundo capítulo deste trabalho foi avaliar a 
acurácia da predição genômica com informação de dosagem alélica em cana-de-açúcar, que é uma 
complexa espécie poliploide. Neste capítulo, nós expandimos modelos GBLUP de seleção 
genômica desenvolvidos para autotetraploides para incluir níveis mais altos de ploidia. Dois 
modelos foram utilizados, um modelo com somente efeitos aditivos e um modelo com efeitos 
aditivos e efeitos de dominância digênica. Nós observamos uma modesta melhora na performance 
do modelo preditivo quando estimativas de ploidia e dosagem alélica foram incluídas, indicando 
que esta é uma possível maneira de aprimorar a seleção genômica em cana-de-açúcar. Os resultados 
obtidos nos dois estudos podem auxiliar pesquisadores e melhoristas de espécies de propagação 
vegetativa, abrindo portas para novas pesquisas e indicando as maneiras mais eficientes para 
implementação da seleção genômica.   

Palavras-chave: Seleção genômica; Cana-de-açúcar; Dosagem alélica; Poliploides; Índice de seleção 
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ABSTRACT 

New strategies for implementing of genomic selection in breeding programs of clonally 

propagated crops 

Genomic selection consists of using predicted effects of genetic markers to predict 
breeding values and/or genotypic values of genotyped individuals. With this approach, selection 
can be carried based only on those predicted breeding values, reducing the need for further 
phenotypic evaluations. This represents a great advance in terms of cost and effectiveness of 
selection in breeding programs of all kinds of crops. In the first chapter of this work, we explore 
one of the ways genomic selection can be used to increase efficiency when breeding clonally 
propagated crops for multiple traits. Using stochastic simulations, we show that an economic 
selection index should be preferred over independent culling. Our results show that the use of 
genomic selection may render the cost-efficiency benefit of independent culling obsolete when all 
early generation individuals are genotyped and accurate prediction of all traits becomes available 
simultaneously. Despite the potential benefits of selecting based on predicted breeding values, for 
some clonally propagated species the complexity of their genomes limits the implementation of 
genomic selection in breeding programs. Since including allele dosage information has been shown 
to improve performance of genomic selection models in autotetraploid species, our objective in 
the second chapter of this work was to assess the accuracy of genome-wide prediction in the highly 
complex polyploid sugarcane when incorporating allele dosage information. In this chapter, we 
expanded GBLUP genomic selection models developed for autotetraploids to include higher levels 
of ploidy. Two types of model were used, one with additive effects only and one with additive and  
digenic dominance effects.  We observed a modest improvement in the performance of the 
prediction model when ploidy and allele dosage estimates were included, indicating that this is a 
possible way of improving genomic selection in sugarcane. The results obtained in both studies can 
assist researchers and breeders of clonally propagated crops, opening new research opportunities and 
indicating the most efficient ways to implement genomic selection.   

Keywords: Genomic selection; Sugarcane; Allele dosage; Polyploids; Selection Index 
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1. INTRODUCTION 

Genomic selection is an approach that aims to increase the efficiency of selection in a breeding program, 

especially when selecting for complex traits, which usually requires evaluation of field trials in several locations and 

years, an expensive and time-consuming process (Heffner et al. 2009a). The method consists of using a training 

population that is both genotyped and phenotyped to predict the effect of genetic markers widely spread throughout 

the genome. The estimated effects can then be used to predict the phenotype of genotyped individuals in terms of 

estimated breeding values or estimated genotypic values (Meuwissen et al. 2001a). This allows selection to be carried 

without the need for further phenotypic evaluations, therefore shortening the time needed for selection of 

superior genotypes. Genomic selection can be implemented in any population of interest and has been 

successfully applied in several crop breeding programs (Bernardo and Yu 2007a; Heffner et al. 2009a; Crossa et al. 

2010; Resende et al. 2012; Duhnen et al. 2017).   

The breeding schemes for clonally propagated crops generally comprise several sequential steps that are 

carried over several years. The overall scheme can be simply summarized in generating genetic variation through 

crosses and subsequently selecting clones in the resulting F1 progenies, which is done in several stages of selection, 

until the most promising clones can be released as cultivars, which often are also the candidate parents for the next 

breeding cycle (Simmonds 1979). Typically, the initial stages of selection include a large number of individuals to be 

evaluated and, to increase program efficiency, individuals are initially culled based on traits that can be phenotyped at 

a lower cost and, as the number of individuals decreases and higher-cost phenotyping becomes feasible, selection is 

performed for other traits in later stages of selection (Grüneberg et al. 2009a). In the context of genomic selection, 

the plant breeder may no longer be forced to cull if the individuals are genotyped. Because accurate prediction of 

breeding values of genotyped individuals can become available simultaneously for all traits, a selection index could be 

used instead of independent culling. 

The selection index method involves selection for all traits simultaneously based on a linear or non-linear 

combination of individual traits weighted by their importance for the breeding objective (Hazel and Lush 1942). 

Theoretically, the selection index is the most efficient method of selection for multiple traits (Hazel and Lush 1942; 

Young 1961a). A major drawback of independent culling in comparison to selection index is that independent 

culling, if strictly applied, will not select individuals below the threshold for one single trait despite being exceptional 

for all other traits, while the use of a selection index makes it possible to retain those individuals (Bernardo 2010). 

Thus, especially for the selection of parents in breeding programs, the use of a selection index instead of 

independent culling might lead to higher genetic gains across cycles of selection, particularly when the correlation 

between traits is unfavorable. In this context, in the first chapter we investigated the gains over several generations of 

genomic selection in a recurrent selection breeding program using either a selection index or independent culling. We 

used simulations of recurrent breeding programs to evaluate and compare both strategies with the purpose of 

quantifying the magnitude of the difference between the different selection methods.  

In the second chapter, we focus on the practical deployment of genomic selection in sugarcane breeding 

programs. Sugarcane cultivars are auto-allopolyploids, with 100 to 130 chromosomes and different number of 

chromosome copies between homology groups (i.e., aneuploid) (D’Hont et al. 1996, 1998).  Due to this extremely 

complex genome structure, the majority of genetic studies in sugarcane use either dominant or single-dosage 

codominant markers (Wu et al. 1992; Huckett and Botha 1995; Besse et al. 1998; Nair et al. 2002; Gouy et al. 2013; 

Aitken et al. 2014; Racedo et al. 2016; Balsalobre et al. 2017), i.e., polymorphisms that were either detected in a 
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presence/absence fashion or that could only be detected in one chromosome per homology group, without 

considering information of other allele dosage levels. With the recent possibility of estimating the ploidy and allele 

dosage of markers (Serang et al. 2012; Garcia et al. 2013; Mollinari and Serang 2015), markers with higher dosages can 

be used in studies of polyploid species. Also, given that recent studies have shown that allele dosage information can 

improve the accuracy of genomic selection models in autotetraploid species (Slater et al. 2016, 2016; de Bem Oliveira 

et al. 2018; Hawkins and Yu 2018; Endelman et al. 2018), our objective in the second chapter was to assess the 

accuracy of genomic selection in sugarcane when incorporating allele dosage information. 

Overall, we tackled possible ways to improve the implementation of genomic selection in breeding 

programs of clonally propagated crops in two levels. First, in terms of rearranging breeding schemes, by replacing the 

use of independent culling for an economic selection index; second, in terms of adapting genotyping techniques and 

genomic selection models to the complexity of the polyploid sugarcane genome, by estimating both ploidy and allele 

dosage of markers and incorporating this information in the prediction model. 
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2. PLANT BREEDERS SHOULD BE DETERMINING ECONOMIC WEIGHTS FOR A 

SELECTION INDEX INSTEAD OF USING INDEPENDENT CULLING FOR 

CHOOSING PARENTS IN BREEDING PROGRAMS WITH GENOMIC SELECTION 

ABSTRACT 

In the context of genomic selection, we evaluated and compared recurrent selection 
breeding programs using either index selection or independent culling for selection of parents. We 
simulated a clonally propagated crop breeding program for 20 cycles of selection using either 
independent culling or an economic selection index with two unfavourably correlated traits under 
selection. Cycle time from crossing to selection of parents was kept the same for both strategies. Our 
results demonstrate that accurate knowledge of the economic importance of traits is essential even 
when performing independent culling. This is because independent culling achieved its optimum 
genetic gain when the culling threshold for each trait varied accordingly to the economic importance 
of the traits. When gains from independent culling were maximised, the efficiency of converting 
genetic diversity into genetic gain of both selection methods were equivalent. When the same 
proportion selected of 10% for each trait was used instead of optimal culling levels, index selection 
was 10%, 128% and 310% more efficient than independent culling when T2 had a relative economic 
importance of 1.0, 2.5 and 5.0, respectively. Given the complexity of estimating optimal culling levels 
and the fact that the gains achieved with independent culling are, at most, equivalent to index 
selection, the use of an economic selection index is recommended for multi-trait genomic selection. 

Keywords: economic index; genomic selection; recurrent selection; independent culling 

2.1. Introduction 

Crop breeding seeks to develop improved cultivars. Besides high yield levels, a successful cultivar in many 

crops must meet minimal standards for several other traits that are economically important, such as pest and disease 

resistance and product quality. Traits are often unfavourably correlated with each other (e.g., Kwon and Torrie 1964; 

Meredith and Bridge 1971; Erskine et al. 1985; Kato and Takeda 1996; Triboi et al. 2006). When traits are 

antagonistically correlated, selection for one trait causes an undesired economic response in the other trait (Falconer 

et al. 1996; Bernardo 2010). This makes breeding to simultaneously improve multiple traits complicated. 

Independent culling and the use of a selection index are two commonly used methods in plant breeding 

programs for selecting on multiple traits (Bernardo 2010). Independent culling involves establishing minimum 

standards (i.e., culling levels) for each trait and only selecting individuals that meet these minimum standards. The 

thresholds can be set according to a specific selection intensity or a specific value, such as a value relative to an 

agronomic check. The application of independent culling can be on multiple traits simultaneously or on individual 

traits sequentially. The selection index method involves selection for all traits simultaneously based on a linear or 

non-linear combination of individual traits weighted by their importance for the breeding objective (Hazel and Lush 

1942).  

Theoretically, the selection index is the most efficient method of selection for multiple traits (Hazel and 

Lush 1942; Young 1961b). However, independent culling can achieve nearly equivalent efficiencies using optimised 

thresholds (Xu and Muir 1991). Independent culling is less efficient, because when strictly applied it will not select 
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individuals below the threshold for only one trait despite being exceptional for all other traits, while the use of a 

selection index makes it possible to retain those individuals (Bernardo 2010).  

When cost is considered, independent culling can be more efficient than a selection index (Xu and Muir 

1991). This is because independent culling does not require phenotypes for all individuals and traits at one time, 

whereas strict application of a selection index requires phenotypes for all traits. This benefit is particularly valuable to 

plant breeders, because early stages of the breeding program often have a very large number of individuals. 

Phenotyping all individuals for all traits is likely to be logistically and financially infeasible. For example, some traits 

have a high measurement cost, such as bread quality in wheat, so that they cannot be measured on a large number of 

individuals. Further, some traits can only be measured on older plants, such as lifetime production in sugarcane, or 

on a plot or group basis. Delaying selection until these traits become available would be effectively equivalent to 

random selection, because the breeder would have to reduce the overall size of the early stage. Thus, practical 

constraints require at least some use of independent culling on traits that can be phenotyped simply/quickly and at a 

lower cost in breeding programs utilising phenotypic selection.  

The use of genomic selection in plant breeding may render the cost efficiency benefit of independent 

culling obsolete if all early generation individuals are genotyped. This is because genomic selection allows for 

accurate prediction of all traits at once (Meuwissen et al. 2001b). While genotyping all early generation individuals is 

not standard in most current breeding programs, it may become so in the future. This is likely to be the case if 

breeding programs adopt a two-part strategy to breeding that explicitly splits breeding programs into a rapid cycling, 

genomic selection guided, population improvement part tasked with developing new germplasm and a product 

development part focused on developing new varieties. Simulations of these breeding programs suggest they can 

deliver considerably more genetic gain than more conventional breeding programs (Gaynor et al. 2017). 

Several studies have already discussed the benefits of incorporating genomic selection strategies into crop 

breeding programs (Bernardo and Yu 2007b; Heffner et al. 2009b; Gaynor et al. 2017; Hickey et al. 2017). However, 

to our knowledge, there have been no studies to date that have investigated the gains over several generations in a 

recurrent selection breeding program using either a selection index or independent culling, at least in the context of 

genomic selection. We used simulations of recurrent breeding programs to evaluate and compare both strategies for 

20 cycles of selection. The purpose of these simulations was to quantify the magnitude of the difference between 

optimally set independent culling levels and an optimal selection index. The simulations also investigated the 

sensitivity of independent culling to sub-optimal culling levels. 

2.2. Material and Methods 

Stochastic simulations of entire breeding programs for multiple traits were used to compare the genetic 

gains in a breeding program using independent culling levels and a breeding program using an economic selection 

index for selection of parents. In the independent culling approach, selection was performed for one trait at a time at 

each stage of selection. A clonally propagated crop species was considered. In breeding programs for clonally 

propagated species, all the genotypes in the F1 population are candidate clones to be released as cultivars or used as 

parents in the next breeding cycle (Grüneberg et al. 2009b). The methods were compared using the average of fifty 

replicates, each replicate consisting of: i) a burn-in phase shared by both strategies so that each strategy had an 

identical, realistic starting point; and ii) an evaluation phase that simulated future breeding with different breeding 

strategies. The burn-in phase consisted of 20 years of breeding using independent culling for the selection of parents 

and the evaluation phase consisted of 20 cycles of selection using either independent culling or index selection.  
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Genome sequence  

For each replicate, a genome consisting of 10 chromosome pairs was simulated for the hypothetical 

clonally propagated plant species. These chromosomes were assigned a genetic length of 1.43 Morgans and a physical 

length of 8x108
 

base pairs. Sequences for each chromosome were generated using the Markovian Coalescent 

Simulator (Chen et al. 2009) and AlphaSimR (Gaynor et al.). Recombination rate was inferred from genome size (i.e. 

1.43 Morgans / 8x108
 
base pairs = 1.8x10-9

 
per base pair), and mutation rate was set to 2x10-9 per base pair. 

Effective population size was set to 50, with linear piecewise increases to 1,000 at 100 generations ago, 6,000 at 1,000 

generations ago, 12,000 at 10,000 generations ago, and 32,000 at 100,000 generations ago. 

Founder genotypes  

Simulated genome sequences were used to produce 50 founder genotypes. These founder genotypes 

served as the initial parents in the burn-in phase. This was accomplished by randomly sampling gametes from the 

simulated genome to assign as sequences for the founders. Sites that were segregating in the founders’ sequences 

were randomly selected to serve as 1,000 causal loci per chromosome (10,000 across the genome in total). To 

simulate genetic correlations between traits, the traits were treated as pleiotropic and the additive effects of the causal 

loci alleles were sampled from a multivariate normal distribution with mean 𝜇 = [
0
0

] and desired values of 

correlation. 

Estimated breeding values  

The true genetic value of the simulated traits was determined by the summing of its causal loci allele 

effects. The matrix 𝐄 with the estimated breeding values of the traits for each individual in the population was 

obtained according to the formula: 

𝐄 = 𝐘𝐏−𝟏𝐆 

Where 𝐘 is the matrix of phenotypes simulated by adding random error to the true genetic values of the 

traits, where rows correspond to individuals in the population and columns correspond to traits. The random error 

was sampled from a multivariate normal distribution with mean 𝜇 = [
0
0

] and zero covariance, with variance values 

tuned to achieve a target level of accuracy for both traits. 𝐏 is the phenotypic variance-covariance matrix of the traits, 

and 𝐆 is the genetic variance-covariance matrix for the traits.  

Breeding methods 

The simulations modelled breeding for two component traits (T1 and T2) that were improved using either 

independent culling or an economic selection index. With both strategies, an F1 population of 5,000 individuals was 

generated by randomly crossing the individuals in the crossing block (Parents). With independent culling, selection 

was carried out in two stages: a proportion of individuals was selected first based on T1 and then, from this 

proportion, the parents of the next breeding cycle were selected based on T2. With the selection index approach, the 

F1 individuals with the highest values for the index trait were selected as parents of the next breeding cycle. The 

index trait was the sum of the estimated breeding values for each trait weighted by their economic importance. The 
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number of selected parents (50 parents) and the cycle time from crossing to selection of new parents was kept the 

same for both strategies, so the comparisons between them reflect only the differences due to the method of 

selection. For simulation of breeding programs, we used the R package AlphaSimR (Gaynor et al.). 

Simulated scenarios 

The selection index and independent culling methods were compared in a set of scenarios that aimed to 

assess the relative performance of the methods under different levels of accuracy of selection, and relative economic 

importance of T2. A summary of all simulated scenarios is shown in Table 1. 

For one set of scenarios we simulated four levels of accuracy (0.3, 0.5, 0.7, and 0.99), assigned the same 

economic importance for both traits, and an unfavourable initial genetic correlation of -0.5 between traits. In another 

set of scenarios, we varied the relative economic importance of T2, but fixed selection accuracy to 0.7 and set an 

unfavourable initial genetic correlation of -0.5 between traits. Here, three levels of relative economic importance 

were simulated. T1 was given an economic importance of 1.0 and T2 an economic importance of either 1.0, 2.5 or 

5.0. For each level of relative economic importance, we simulated: i) scenarios where the proportion selected was the 

same (10%) when selecting for both traits, and ii) scenarios where the proportions selected were set to achieve 

optimal culling levels (i.e., optimal independent culling). To achieve optimal culling levels, in each cycle of selection 

we chose the proportion selected for each trait that maximised the genetic gain. To find the optimal proportions, we 

fixed the number of parents selected (50 parents) and found the number of individuals to be selected in the first 

culling stage that maximized parents’ economic value (i.e., index trait).   

Comparison 

The comparisons were made in terms of: i) genetic gain ii) genetic diversity, iii) the efficiency of 

converting genetic diversity into genetic gain for the index; and iv) genetic correlation between traits. For genetic gain 

and genetic diversity, we report values based on the individuals in the crossing block (parents) at each cycle of 

selection. We measured genetic gain as the increment in genetic mean (average of true genetic values) compared to 

the genetic mean in year 20. We measured genetic diversity with genetic standard deviation and genic standard 

deviation. We calculated genetic standard deviation as standard deviation of true genetic values. We calculated genic 

standard deviation as 𝜎𝑎 = √2 ∑ 𝑝𝑖(1 − 𝑝𝑖)𝛼𝑖
2𝑛𝑞

𝑖=1
, where 𝑛𝑞 is the number of causal loci and 𝑝𝑖  and 𝛼𝑖 are, 

respectively, allele frequency and allele substitution effect at the i-th causal locus.  

To measure efficiency, genetic mean and genic standard deviation were standardized to mean zero and 

unit standard deviation in year 20. We measured efficiency of converting genetic diversity into genetic gain by 

regressing the achieved genetic mean (𝑦𝑡 =  (𝜇𝑎𝑡
− 𝜇𝑎20

) 𝜎𝑎20
2⁄ ) on lost genetic diversity (𝑥𝑡 =  1 − 𝜎𝑎𝑡

𝜎𝑎20
)⁄ , i.e., 

𝑦𝑡 =  𝛼 + 𝑏𝑥𝑡 + 𝑒𝑡, where 𝑏 is efficiency (Gorjanc et al. 2017). We estimated efficiency with robust regression using 

function rlm() in R (Venables and Ripley 2002).  

For genetic correlation, we report the correlation between the true genetic values of T1 and T2. We 

calculated this metric on the individuals in the F1 population at each cycle of selection. 
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2.3. Results 

Overall the results show that index selection provided consistent genetic gains and was equivalent to 

independent culling in terms of genetic gains and efficiency when optimal culling levels were used. Index selection 

performed better than independent culling in scenarios where independent culling levels were suboptimal. 

We have structured the description of the results in two parts, corresponding to how the relative 

performance of the selection methods was affected by: i) the accuracy of selection, and ii) the relative economic 

importance of traits.  

Accuracy of selection 

The results show that increases in accuracy accentuated the differences in the genotypes being selected by 

either independent culling or index selection. This is shown in Fig. 1, where the genotypes selected as parents by 

each selection method are highlighted. Lower levels of accuracy led to a more diffuse cluster of selected genotypes 

and, with increasing selection accuracy, the cluster of selected genotypes approached what was expected for each 

method of selection (Bernardo, 2010). 

Fig. 2 shows the change in the genetic correlation between the component traits for both independent 

culling and index selection over 20 cycles of selection at different levels of accuracy. Both selection methods resulted 

in the correlation between traits becoming increasingly unfavourable over the cycles of selection. For both methods, 

the change in the genetic correlation was higher with higher values of accuracy. Compared to independent culling, 

index selection led to larger changes in the genetic correlation between the two traits. After 20 cycles of selection 

with accuracy of 0.3, independent culling led to a genetic correlation that was 9% more unfavourable compared to 

the genetic correlation in cycle 0, while index selection led to a genetic correlation that was 17% more unfavourable 

compared to the genetic correlation in cycle 0. After 20 cycles of selection with accuracy of 0.99, independent culling 

led to a genetic correlation that was 29% more unfavourable compared to the genetic correlation in cycle 0, while 

index selection led to a genetic correlation that was 64% more unfavourable compared to the genetic correlation in 

cycle 0. 

The change of genetic mean in parents for the component traits and the index trait over the cycles of 

selection using each method is shown in Fig. 3. For both methods, the genetic gains for the component traits and the 

index trait increased with higher values of accuracy. In general, the selection index method and independent culling 

with optimal culling levels led to equivalent genetic gains for the component traits and the index trait. Only in the 

scenario with 0.99 accuracy did index selection lead to a slightly higher genetic gain compared to that achieved with 

optimal independent culling. For the index trait, after 20 cycles of selection with accuracy of 0.99, index selection had 

a genetic gain 4% higher than the genetic gain achieved with independent culling. 

Table 2 shows the genetic standard deviation of parents in cycle 20 and the loss in genetic standard 

deviation in cycle 20 compared to the genetic standard deviation in cycle 0 for the component traits and the index 

trait. The change of genetic diversity in parents for the component traits and the index trait over the cycles of 

selection using each method is shown in Supplementary material 1 (Fig S1.1). For the component traits, when using 

index selection, the genetic standard deviation showed an initial increase in the first few cycles of selection followed 

by a gradual decrease in the subsequent cycles. When using independent culling, the decrease in the genetic standard 

deviation of the component traits was continual over the cycles of selection. Both of these trends were more obvious 

with increasing values of accuracy. For all values of accuracy, independent culling led to a higher loss in the genetic 
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standard deviation of the component traits compared to the index selection. For T1 and T2, independent culling 

with accuracy of 0.3 led to a loss of genetic standard deviation that was 6% and 5% higher than the loss of genetic 

standard deviation observed for index selection, respectively. With accuracy of 0.99, for T1 and T2 independent 

culling led to a loss of genetic standard deviation that was 65% and 51% higher than the loss of genetic standard 

deviation observed for index selection, respectively. For the index trait, both methods led to equivalent values of 

genetic standard deviation. With accuracies of 0.3 and 0.99, index selection led to a loss in the genetic standard 

deviation of the index trait that was 3% higher compared to the loss of genetic standard deviation observed using 

independent culling, respectively. 

Table 3 shows the genic standard deviation of parents in cycle 20 and the loss in genic standard deviation 

in cycle 20 compared to the genic standard deviation in cycle 0 for the component traits and the index trait. The 

values of genic standard deviation of T1, T2, and the index trait were equivalent. The highest difference between 

methods in the loss in genic standard deviation was 1% for all values of accuracy, except with accuracy of 0.99. With 

0.99 accuracy, for T1, T2 and the index trait, index selection led to a loss in the genic standard deviation that was 3% 

higher compared to the loss of genic standard deviation observed using independent culling.   

Relative economic importance of traits 

Fig. 4 shows the efficiency of converting genetic diversity into genetic gain for the index trait when the 

relative economic importance of T2 varies. Independent culling was compared to index selection using either optimal 

culling levels or selection with the same proportion of plants selected (10%) for each trait. Index selection had the 

highest efficiency and most gain for all levels of economic importance. The efficiency and gain for optimal 

independent culling levels was nearly equivalent to index selection. The efficiency and gain for selecting the same 

proportion of plants for both traits was worse than index selection for all levels of relative economic importance. 

Index selection was 10%, 128% and 310% more efficient than independent culling using the same proportion of 

selected plants for relative economic importance of 1.0, 2.5 and 5.0, respectively.  

Fig. 4 also shows the proportion of plant selected for T1 under optimal independent culling over the 

different levels of economic importance for T2. The mean proportion selected for T1 only varied slightly over the 

cycles of selection. The means were 29%, 93%, and 99% for relative economic importance of 1.0, 2.5, and 5.0, 

respectively. The variation about those means was largest with relative economic importance of 1.0 and smallest with 

relative economic importance of 5.0.   

2.4. Discussion 

This study evaluated and compared recurrent selection breeding programs that either use index selection 

or independent culling for the selection of parents by genomic selection. Overall the results show that using index 

selection is either better or equivalent to independent culling in this context. Index selection outperformed 

independent culling when sub-optimal culling levels were used. Our results demonstrate that accurately assessing the 

economic importance of the traits is essential regardless of the method of selection being used. 

The main difference between index selection and independent culling is that, when using index selection, 

genotypes that are exceptional for one of the traits under selection are more likely to be selected even though their 

performance for other traits is average. This can be seen in Fig. 1, with the cluster of individuals selected as parents 

with the index method including individuals that are more contrasting for the two traits under selection compared to 
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the individuals selected with independent culling. The main implications of this are in the way each method affects 

the correlation between traits and the genetic diversity over cycles of recurrent selection. We discuss each of these 

aspects in the following two sections. In the third section, we discuss how the relative economic importance of the 

traits can affect the relative performance of the methods. Lastly, we discuss the implications of our results for 

modern plant breeding programs which deploy genomic selection. 

Methods of selection and genetic correlation between traits 

The results show that, after only a few cycles of selection, index selection generates F1 populations with a 

more unfavourable genetic correlation between traits than the F1 populations generated by independent culling (Fig 

2). An explanation for the faster decrease of the genetic correlation observed with index selection is that the index is 

a linear combination of component traits. As shown by Bulmer (1971), selection on a linear combination leads to 

negative covariances between components (i.e., Bulmer effect). Consequently, the same principle applies to the 

component traits and index selection, with index selection leading to an unfavourable genetic correlation between the 

component traits (Tallis 1987; Itoh 1991).  

In general, genetic gains in multi-trait selection, regardless of the method of selection, are expected to be 

higher when the correlation between traits is favourable and lower when this correlation is unfavourable (Young 

1961b). As index selection generated F1 populations with more unfavourable genetic correlation between traits than 

independent culling, the genetic gains for index selection were potentially lower than for independent culling. 

Nevertheless, despite index selection being carried out under increasingly unfavourable genetic correlations over the 

cycles, the genetic gains obtained for the index trait were equivalent to the gains obtained using independent culling 

(Fig. 3).    

Unfavourable genetic correlations are the most challenging scenario for breeders. When traits are 

unfavourably correlated, selection on one trait results in response in an undesired direction for the other trait. When 

these correlations are due to pleiotropy, they cannot be broken with repeated cycles of recombination. This case is 

likely pervasive in several crops, e.g., grain yield and protein content in cereal crops (Duvick and Cassman 1999; 

Rharrabti et al. 2001; Rotundo et al. 2009), quality and disease resistance in forage crops (Casler and Vogel 1999), and 

yield and disease resistance in barley (Smedegaard-Petersen and Tolstrup 1985). However, the extent of genetic 

correlation and pleiotropy in these examples is unknown because unfavourable genetic correlations between the 

traits could also be, at least partly, induced by selection, as demonstrated in this study.  

Methods of selection and genetic diversity over cycles of selection  

According to Bulmer (1971), reduction in the genetic variance due to selection stems mostly from the 

build-up of negative linkage disequilibrium between causal loci when selection is performed. This can be seen by 

comparing genetic and genic variation (Table 2 and Table 3, respectively). Genic variation is a function of the allele 

frequencies and the allele substitution effect only, and thus is not affected by changes in linkage disequilibrium. The 

results in Table 3 show that the loss of genic standard deviation of the component traits and index trait are not 

greatly affected by the method of selection. Also, the method of selection did not greatly affect the trait means, as 

shown in Fig. 3. This indicates that, in terms of allele frequencies, there was little difference in the parents selected by 

either independent culling or the selection index method in situations similar to our simulation. Therefore, the 

difference between the selection methods derives from how they induce and exploit linkage disequilibrium between 
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the causal variants of the component traits. Specifically, as shown in Table 2, independent culling induced a greater 

degree of negative linkage disequilibrium between the causal variants of the component traits resulting in those traits 

having less genetic variation. A deviation from this result is expected with more intense selection schemes and more 

component traits selected in successive stages, which would induce larger changes in allele frequencies due to drift. 

As a consequence, differences between index selection and independent culling would be accentuated. Cowling and 

Li (2018) simulated and compared wheat breeding programs using different selection strategies under high and low 

selection intensities. They observed index selection resulted in higher population coancestry over cycles of selection 

compared to independent culling, and the difference between methods increased in scenarios with high selection 

intensity. Their results indicate index selection leads to a higher loss of genic standard deviation.   

Somewhat surprisingly, it is possible to make an argument for the superiority of independent culling 

relative to a selection index on the basis of the differences observed in linkage disequilibrium. This is because 

independent culling produced populations with nearly equivalent mean performance, but with more consistent 

performance between individuals, which is demonstrated by the lower variation observed for the component traits. 

This property could be beneficial from a management perspective if differences in the component traits require 

variations in management of individuals. Breeding for plant-architecture traits in outbreeding cultivars is a good 

example where this property might be valuable, as having more uniform plants in the field favours mechanical 

harvest. However, we believe this property is more of an academic curiosity than something that will have practical 

application. 

For simplicity and ease of implementation, our simulations consider the same genetic architecture for 

both traits, with both traits being controlled by a high number (10,000) of causal loci with small additive effects. 

Under different circumstances, such as at least one of the traits being controlled by few causal loci with higher allele 

substitution effects, different results could be expected. The results for the two-locus model of Bennett and Swiger 

(1980) show that independent culling tends to eliminate genotypes that are homozygous for alleles with low effect 

for one of the traits. For one pleiotropic causal locus, when both alleles are favourable for one trait and unfavourable 

for the other trait, both homozygous genotypes tend to be culled, and independent culling would select the 

heterozygous genotypes. If heterozygous genotypes were preferred, the fixation of alleles would be slower and, 

therefore, the loss in genic standard deviation would be lower. Our results indicate that, for highly polygenic traits, 

differences between methods of selection in the loss of genetic diversity are mostly due to changes in linkage 

disequilibrium as opposed to distinctive changes in allele frequencies. Therefore, in terms of conserving genetic 

diversity there was no obvious advantage for either method. Other strategies such as optimal-cross selection should 

be considered in order to optimize gains while also controlling the loss of genetic diversity over cycles of selection 

(Clark et al. 2013; Woolliams et al. 2015; Gorjanc et al. 2017; Cowling and Li 2018).  

Economic importance of the traits 

In general, when using the same selection intensity for both traits, the greater the difference in the 

economic importance of the traits, the better index selection will perform compared to independent culling (Fig. 4). 

This happens because there is a combination of selection intensities for each trait that maximizes the genetic gain 

when performing independent culling (Hazel and Lush 1942). Finding these selection intensities when selecting for 

two traits in two stages of selection is complex (Young and Weiler 1960; Namkoong 1970; Cotterill and James 1981; 

Smith and Quaas 1982), and becomes even more complex with increasing number of traits and stages of selection 

(Saxton 1989; Ducrocq and Colleau 1989; Xu and Muir 1991).  
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The results in Fig. 4 show that independent culling approaches its maximal gain when a higher selection 

intensity is used for the trait with higher economic importance and a lower selection intensity is used for the trait 

with lower economic importance. In fact, when one trait had 5 times the economic importance of the other trait, the 

optimum was achieved when almost no selection was carried out for the less important trait. These results 

demonstrate that accurately assessing the economic importance of the traits is essential even when independent 

culling is performed.  

Regardless of the gains achieved with independent culling being maximised, when parents are selected 

based on an index, equivalent gains are achieved by simply summing the values of the traits weighted by their 

economic importance. Once the true economic weights of the traits are quantified, index selection is much simpler 

than independent culling when using these weights for optimizing the genetic gains in a plant breeding program.  

Index selection in modern plant breeding programs that use genomic selection 

There is little to no evidence suggesting plant breeders use analytical techniques to determine optimal 

independent culling thresholds and/or constructing selection indices in most plant breeding programs. More likely, 

the majority of breeders rely on their intuition for setting thresholds and constructing indices. Their decisions are 

likely guided by the performance of agronomic checks and are prone to fluctuations between seasons and individual 

breeders. This model has clearly been successful, because plant breeding programs have continued to deliver genetic 

gain. However, it is likely sub-optimal, and a more analytical approach should be adopted in the future. 

The value of a more analytical approach becomes greater as genomic selection is more widely used. The 

results presented in this paper show a selection index is superior to independent culling when using genomic 

selection. These results are further supported by earlier theoretical work (Smith 1936; Hazel and Lush 1942; Young 

1961b). This indicates a clear preference for implementing selection indices in plant breeding. 

The focus of plant breeders should be determining the economic weights for a selection index. In this 

paper the economic model used to select weights was implicitly assumed to be known and linear. The reality is that 

true economic model may be unknown to breeders and it is likely non-linear. The presence of a non-linear model 

does not pose a problem, because linear economic weights can be derived for improving the economic value of 

germplasm (Goddard 1983). However, this still requires defining the economic model. For this reason, it is our 

opinion that plant breeders would benefit greatly from an increased emphasis on understanding and quantifying the 

economics of their species. This information would greatly aid breeders in getting the most out of genomic selection.  

2.5. Conclusions 

We evaluated and compared recurrent selection breeding programs using either independent culling or 

index selection for parent selection. The results show that, despite selection being carried out under unfavourable 

genetic correlations when using the selection index instead of independent culling, equivalent or higher genetic gains 

were achieved with index selection in all simulated scenarios. In terms of genetic diversity, the differences between 

methods in the studied system were driven mostly by differences in the generation of linkage disequilibrium between 

causal loci induced and not differences in allele frequencies. When linkage disequilibrium was not considered, both 

methods were equivalent in terms of loss of genetic diversity, and the differences between methods in terms of 

efficiency of converting genetic diversity into genetic gains mostly reflected the differences in the genetic gains 

obtained with each method. To obtain higher genetic gains, accurately assessing the economic importance of the 
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traits is essential even when independent culling is performed, as optimal culling levels should be determined in order 

for maximum gain to be achieved. Given that optimal culling levels are complex to estimate, once the economic 

importance of each trait is known, maximum genetic gains are more easily achieved with index selection. Therefore, 

the best choice for plant breeding programs is to select parents using an economic selection index.  
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TABLES AND FIGURES 

Table 1. Summary of parameters simulated in all comparison scenarios of recurrent selection breeding programs using either 
independent culling or selection index with two traits 

Scenario 
Selected Proportion  

Genetic correlation 
Relative economic 

importance of Trait 2 
Accuracy 

Trait 1  Trait 2 

1 Optimum Optimum -0.5 1.0 0.3 

2 Optimum Optimum -0.5 1.0 0.5 

3 Optimum Optimum -0.5 1.0 0.9 

4 Optimum Optimum -0.5 1.0 0.7 

5 Optimum Optimum -0.5 2.5 0.7 

6 Optimum Optimum -0.5 5.0 0.7 

7 10% 10% -0.5 1.0 0.7 

8 10% 10% -0.5 2.5 0.7 

9 10% 10% -0.5 5.0 0.7 

 

 

 

Fig 2. Scatterplots of true genetic values for Trait 1 (T1) and Trait 2 (T2) of the genotypes in the F1 population (grey) and 
genotypes selected as parents (orange) in the third cycle of selection using either independent culling (a) or a selection index (b) 
with different levels of accuracy 
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Fig 2. Change in genetic correlation (mean and 95% confidence interval) between traits in the F1 population over 20 cycles of 
selection using either optimal independent culling (IC) or a selection index (SI) with different levels of accuracy, and Trait 2 
relative economic importance of 1.0 
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Fig 3. Change in genetic mean for Trait 1 (T1), Trait 2 (T2) and Index Trait (Index) over 20 cycles of selection using either 
optimal independent culling (IC) or a selection index (SI) with different levels of accuracy, unfavourably correlated traits, and T2 
relative economic importance of 1.0 
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Table 2. Mean genetic standard deviation (Genetic SD) of parents in cycle 20 and loss in genetic standard deviation in cycle 20 in 
comparison to the genetic standard deviation in cycle 0 (Loss over cycle 0) for trait 1 (T1), trait 2 (T2) and the index trait using 
either optimal independent culling or index selection with different levels of accuracy, unfavourably correlated traits, and T2 
relative economic importance of 1.0 

 Independent culling 

 T1 T2 Index trait 

Accuracy Genetic SD 
(cycle 20) 

Loss over 
cycle 0 

Genetic SD 
(cycle 20) 

Loss over 
cycle 0 

Genetic SD 
(cycle 20) 

Loss over 
cycle 0 

0.3 3.51 (0.08)* -17% 3.68 (0.08) -16% 3.57 (0.06) -22% 

0.5 2.56 (0.06) -30% 2.45 (0.04) -28% 2.69 (0.05) -32% 

0.7 1.65 (0.04) -42% 1.64 (0.03) -37% 1.88 (0.04) -45% 

0.99 0.45 (0.01) -68% 0.45 (0.01) -55% 0.74 (0.02) -62% 

 Index Selection 

 T1 T2 Index trait 

Accuracy Genetic SD 
(cycle 20) 

Loss over 
cycle 0 

Genetic SD 
(cycle 20) 

Loss over 
cycle 0 

Genetic SD 
(cycle 20) 

Loss over 
cycle 0 

0.3 3.80 (0.09) -11% 4.00 (0.09) -11% 3.66 (0.08) -19% 

0.5 3.19 (0.08) -17% 3.19 (0.07) -14% 2.57 (0.06) -33% 

0.7 2.69 (0.06) -16% 2.60 (0.06) -18% 1.86 (0.04) -41% 

0.99 1.93 (0.4) -3% 1.91 (0.04) -4% 0.51 (0.01) -59% 

* standard errors of the estimates are presented in parenthesis  

 

Table 3. Genic standard deviation (Genic SD) of parents in cycle 20 and loss in genic standard deviation in cycle 20 in 
comparison to the genic standard deviation in cycle 0 (Loss over cycle 0) for trait 1 (T1), trait 2 (T2) and the index trait using 
either optimal independent culling or index selection with different levels of accuracy, unfavourably correlated traits, and T2 
relative economic importance of 1.0 

 Independent culling 

 T1 T2 Index trait 

Accuracy Genic SD 
(cycle 20) 

Loss over 
cycle 0 

Genic SD 
(cycle 20) 

Loss over 
cycle 0 

Genic SD 
(cycle 20) 

Loss over 
cycle 0 

0.3 3.94 (0.06)* -15% 4.11 (0.07) -15% 4.04 (0.05) -16% 

0.5 3.48 (0.06) -24% 3.41 (0.05) -24% 3.44 (0.04) -25% 

0.7 2.94 (0.04) -34% 2.89 (0.04)  -34% 2.89 (0.04)  -34% 

0.99 2.35 (0.04) -42% 2.35 (0.04) -42% 2.33 (0.04) -43% 

 Index Selection 

 T1 T2 Index trait 

Accuracy Genic SD 
(cycle 20) 

Loss over 
cycle 0 

Genic SD 
(cycle 20) 

Loss over 
cycle 0 

Genic SD 
(cycle 20) 

Loss over 
cycle 0 

0.3 3.92 (0.06) -16% 4.08 (0.07) -16% 4.02 (0.05) -16% 

0.5 3.44 (0.06) -25% 3.37 (0.05) -25% 3.39 (0.05) -26% 

0.7 2.92 (0.05) -34% 2.88 (0.05) -34% 2.87 (0.04) -35% 

0.99 2.21 (0.04) -45% 2.22 (0.04) -45% 2.17 (0.03) -46% 

* standard errors of the estimates are presented in parenthesis   
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Fig 4. Change of genetic mean and genic standard deviation for the index trait across 20 cycles of selection using either 
independent culling (IC) or a selection index (SI) under three levels of relative economic importance (REI) and using either the 
same proportion selected (10%) for Trait 1 (T1) and Trait 2 (T2) or optimal culling levels for each level of relative economic 
importance of T2 (a); and proportion selected (mean and 95% confidence interval) for T1 used to achieve optimal culling levels 
over the 20 cycles of selection (b). Traits are unfavourably correlated (-0.5). Individual replicates are shown by thin lines and a 
mean regression with a time-trend arrow. Values of genetic mean and genic standard deviation shown are standardized to mean 
zero and unit standard deviation in cycle 0 
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SUPPLEMENTARY MATERIAL 

 
Figure S1. Change in genic and genetic standard deviation for Trait 1 (T1), Trait 2 (T2) and Index Trait (Index) over 20 cycles of 
selection using either independent culling (IC) or a selection index (SI) with different levels of accuracy, proportion selected of 
10%, unfavourably correlated traits, and T2 relative economic importance of 1.0 
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3. GENOMIC SELECTION WITH ALLELE DOSAGE INFORMATION IN SUGARCANE 

ABSTRACT 

Modern sugarcane cultivars are derived from interspecific hybrids between Saccharum 
officinarum and S. spontaneum, backcrossed with S. officinarum. The result is a highly polyploid genome 
with a varying number of chromosomes in different homology groups. Hence, genomic selection 
models for sugarcane have to account for different ploidy levels between markers and multiple 
possible allele dosages. We expanded the methodology used for genomic selection in 
autotetraploids in order to build covariance matrices of both additive and digenic dominance 
effects that were subsequently used in GBLUP models. We applied these models using estimates of 
ploidy and allele dosage of 6,550 polymorphisms obtained through genotyping-by-sequencing of 179 
sugarcane genotypes from a biparental F1 progeny. Phenotypes for soluble solids content, sucrose 
content, fiber percentage, stalk diameter, stalk weight and stalk height were evaluated in two sites, 
during 2008 and 2009 for the first site and 2012 through 2014 for the second site. We observed low 
genetic variability and low values of heritability in the progeny, from 0.31 to 0.55. Mean predictive 
abilities ranged from 0.12 to 0.28 (additive) and from 0.05 to 0.29 (additive + dominant) and did not 
differ considerably from the mean predictive abilities when allele dosage information was not included 
in the model. Selection coincidence was higher when allele dosage was included, with a 20% difference 
from that obtained using diploidized markers. Overall, including estimates of ploidy and allele dosage 
in the models led to a modest improvement of genomic selection in sugarcane. The improvement is 
likely to be more evident with training population sets with a higher number of individuals and higher 
genetic variability. 

Keywords: Sugarcane; Genomic selection; Polyploids; Allele dosage; Digenic dominance 

3.1. Introduction 

Sugarcane (Saccharum spp.) accounts for 80% of the sugar production in the world (CIRAD) and has 

potential to become the main crop for bioenergy production, with the highest mean ethanol yield per hectare and a 

relatively low production cost (Goldemberg and Guardabassi 2010). With increasing worldwide demand for 

renewable energy sources, obtaining more productive and robust sugarcane cultivars becomes critical. The main 

bottleneck in sugarcane breeding programs is the rather long process for selection of cultivars. A traditional 

sugarcane breeding program is usually divided in several phases of selection, each consisting of large experiments 

that are usually conducted for more than one crop cycle (Cheavegatti-Gianotto et al. 2011; Zhou 2013), taking up to 

12 years from the initial crosses until commercial cultivar release (Park et al. 2007). In this framework, there exists a 

pressing need for the development of new strategies that will allow the reduction of experimental costs and time for 

selection of sugarcane cultivars. 

A viable way of achieving improvement in breeding programs in terms of time and costs is through the 

deployment of genomic selection (Heffner et al. 2009). Genomic selection consists of using a representative 

population that is both genotyped and phenotyped (i.e., the training population) to predict the effect of genetic 

markers widely spread throughout the genome. The predicted effects are then used to predict the breeding or 

genotypic value of genotyped individuals (Meuwissen et al. 2001). This allows selection to be carried based on 

predicted breeding values, reducing the need for further costly phenotypic evaluations and shortening the time 

needed for selection of the best genotypes. Genomic selection has been successfully implemented in several crop 

breeding programs (Bernardo and Yu 2007; Heffner et al. 2009; Crossa et al. 2010; Resende et al. 2012; Duhnen et al. 

2017). Although genomic selection could greatly improve sugarcane breeding programs, its implementation demands 
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a relatively large set of genetic markers to be consistently obtained at feasible costs, a process which is severely 

impaired by the complex genomes observed in the genus Saccharum. 

Modern sugarcane cultivars are derived from interspecific hybridizations between two highly 

polyploid species, S. officinarum (2n = 80, x = 10) and S. spontaneum (2n = 40 to 128, x = 8) (D’Hont et al. 1996, 

1998). The interspecific hybrids were then successively backcrossed with S. officinarum, the so-called noble cane. 

This culminated in a highly heterozygous, aneuploid genome with 100 to 130 chromosomes, most of which are 

derived from S. officinarum, 10% to 20% from S. spontaneum, and approximately 10% from interspecific 

recombinants (Grivet and Arruda 2002). These biological events resulted in hom(e)ology groups with different 

ploidy levels and a higher number of heterozygous genotypic classes, which makes estimating genotypic classes 

a substantially more difficult task (Mollinari and Serang 2015). 

To avoid these problems, the majority of genetic studies in sugarcane use either dominant or single-

dosage codominant markers (Wu et al. 1992; Huckett and Botha 1995; Besse et al. 1998; Nair et al. 2002; Gouy et al. 

2013; Aitken et al. 2014; Racedo et al. 2016; Balsalobre et al. 2017), i.e., polymorphisms that were either detected in a 

presence/absence fashion or that could only be detected in one chromosome per homology group. When using only 

dominant or single-dosage markers, markers with other allele dosage levels are ignored. However, new tools that 

leverage the relative allelic abundance of single nucleotide polymorphisms (SNPs) to estimate both their ploidy and 

allele dosage have allowed markers with higher dosages to be used in sugarcane studies (Garcia et al. 2013; Mollinari 

and Serang 2015). 

Garcia et al. (2013) showed that the portion of the sugarcane genome effectively explored by single-dosage 

(simplex) markers can be rather small, indicating that using markers with higher dosages would potentially result in 

greater coverage and better representation of these polyploid genomes. Moreover, given that recent studies have 

shown that allele dosage information can improve the accuracy of genomic selection models in autotetraploid species 

(Slater et al. 2016, 2016; de Bem Oliveira et al. 2018; Hawkins and Yu 2018; Endelman et al. 2018), the objective of 

our study was to assess the accuracy of genome-wide prediction when incorporating allele dosage information in 

highly polyploid sugarcane. 

3.2.  Material and Methods 

Genetic material and field experiments 

A segregating F1 progeny of 179 individuals was derived from the crossing of two commercial cultivars, 

IACSP95-3018 (female) and IACSP93-3046 (male). IACSP95-3018 is a promising clone used as a parent in the 

breeding program at IAC (Instituto Agronômico de Campinas), and IACSP93-3046 has a high level of sucrose, good 

tillering and an erect stool habit, being recommended for mechanical harvest. 

The first field experiment was set in Sales de Oliveira, SP, Brazil, in 2007. A randomized complete block 

design with four replicates was used and evaluations were carried in the harvest years of 2008 (plant cane) and 2009 

(ratoon cane). The full-sib progeny was then clonally propagated for the second field experiment that was set in 

Ribeirão Preto, SP, Brazil, in 2011. A randomized complete block design with three replicates was used and 

evaluations were carried in 2012 (plant cane), 2013 and 2014 (ratoon cane). Both parents were included in each block 

of the two experiments. All replicates were used to collect phenotypes for stalk diameter (cm), stalk height (cm) and 
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stalk weight (kg) in both experiments. Also, two blocks in each experiment were used to collect phenotypes for 

soluble solids content (Brix), sucrose content and fiber percentage. 

Genotyping 

Parents and F1 progeny were genotyped using the genotyping-by-sequencing protocol of Elshire et al. 

(2011). Reduced representation libraries were prepared using the PstI restriction enzyme. PstI is a rare-cutting 

enzyme, because its restriction site has a length of 6 bp, such that it allows a higher genotyping depth (Poland and 

Rife 2012). Four lanes containing 96-plex libraries were sequenced using the Illumina GAIIX and, subsequently, 

another four lanes with the same 96-plex libraries were sequenced using the Illumina NextSeq500 platform. All 

genotyping-by-sequencing protocols were carried at Center of Molecular Biology and Genetic Engineering, 

University of Campinas, Campinas, Brazil (CBMEG/UNICAMP). 

We performed the variant calling using a modified version of TASSEL-GBS pipeline (Pereira et al. 2018). 

This version provides exact read counts of the alleles at each SNP locus. We used default values in all plugins of the 

pipeline, except for the MergeDuplicateSNPs plugin, in which we used the argument callHets and set the misMat 

argument value to 0.3. These values were chosen in order to allow a greater number of heterozygous SNP loci to be 

kept in subsequent steps. The sequenced reads were aligned to the methyl-filtrated assembly of the sugarcane 

genome (Grativol et al. 2014), using the software Bowtie2 (Langmead and Salzberg 2012). 

We used the read count information of each SNP to estimate their ploidy level and call sample genotypes 

using the software SuperMASSA (Mollinari and Serang 2015; Pereira et al. 2018). Ploidy levels ranging from two to 

20 were evaluated and only SNPs with ploidy estimates between six and 14 were kept (Garcia et al. 2013). We also 

filtered for a minimum mean read depth per individual of 50 reads, maximum mean read depth per individual of 500 

reads, minimum posterior probability of genotype configuration (argument p) of 0.8, minimum posterior probability 

of each genotype assignment (argument n) of 0.5, and minimum call rate of 50%. We then used R package updog 

(Gerard et al. 2018) to reestimate the genotypes of the SNPs that met the filtering criteria. The updog package has the 

advantage of accounting for allelic bias, overdispersion and sequencing errors when estimating SNP genotypes, given 

a predetermined ploidy level. Finally, based on the estimates of SNP genotypes in the parents, we performed a chi-

squared segregation test on the population genotype class frequencies, considering a hypergeometric distribution of 

gametes (Mollinari and Serang 2015). Using the Bonferroni correction, only SNPs with 𝑝-values over a 5% threshold 

were kept.  

Phenotypic mixed model analysis 

Adjusted phenotypic means (i.e., BLUEs - best linear unbiased estimates) for each individual were 

obtained using a two-stage analysis (Damesa et al. 2017). All analyses were performed using ASReml-R (Butler et al. 

2009). Stage one consisted of a within-site analysis, where the genotype effect was considered fixed and the 

remaining effects were considered as random (harvest effects, blocks-within-harvest effects and genotype × harvest 

interaction effects). The covariance matrix (𝛀𝒋) for the vector of genotype effect estimates (𝒖𝒋) in site j was obtained 

from the inverse of the coefficient matrix of the mixed model equations, returned as Cfixed in the asreml object 

(Endelman et al. 2018). Stage two was a joint analysis considering the two sites, using the following linear model: 

�̂�𝑖𝑗 =  𝜇 + 𝑔𝑖 + 𝑠𝑗 + (𝑔𝑠)𝑖𝑗 + 𝑒𝑖𝑗 , 
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where �̂�𝑖𝑗 is the genotype effect estimate obtained in the stage one analysis, the parameter 𝜇 is the intercept, 𝑔𝑖 is a 

fixed effect of genotypes, 𝑠𝑗 is a random effect of sites, (𝑔𝑠)𝑖𝑗  is a random effect for the genotype × site interaction, 

and the variance of the residual 𝑒𝑖𝑗 is (𝜔𝑖𝑗)−1, where 𝜔𝑖𝑗 is the i-th diagonal element of 𝛀𝒋
−𝟏 from the stage one 

analysis (Damesa et al. 2017). The BLUEs of the genotypes obtained after this stage were subsequently used to adjust 

the genomic selection models. 

For phenotypic variance partitioning and to obtain estimates of heritability of the traits, the phenotypic 

values were standardized and the following random linear model was used for each trait: 

𝑦𝑖𝑗𝑘𝑙 =  𝜇 + 𝑔𝑖 + 𝑠𝑗 + ℎ𝑘 + 𝑏𝑙(𝑗𝑘) + (𝑔𝑠)𝑖𝑗 + (𝑔ℎ)𝑖𝑘 + (𝑔𝑠ℎ)𝑖𝑗𝑘  + 𝑒𝑖𝑗𝑘𝑙 , 

where the parameter 𝜇 is the intercept, 𝑔𝑖 is the effect of genotypes, 𝑠𝑗 is the effect of sites, ℎ𝑘 is the effect of 

harvest, 𝑏𝑙(𝑗𝑘) is the effect of replicates within sites and harvests, (𝑔𝑠)𝑖𝑗  is the effect of the genotype × site 

interaction, (𝑔ℎ)𝑖𝑘 is the effect of the genotype × harvest interaction, (𝑔𝑠ℎ)𝑖𝑗𝑘  is the effect of the genotype × site × 

harvest interaction, and 𝑒𝑖𝑗𝑘𝑙  is the residual effect. 

The estimates of heritability were obtained using: 
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where 
2

g , 
2

gs , 
2

gh , 
2

gsh , and 
2

e are the genotypic variance, the variance of the genotype × site interaction, the 

variance of the genotype × harvest interaction, the variance of the genotype × site × harvest interaction, and the 

residual variance, respectively. The values s , h , shc , and r correspond to the number of sites, the number of 

harvests, the number of combinations of sites and harvests, and the total (combined) number of replicates of both 

experiments, respectively. 

Genomic selection models 

We incorporated allele dosage information in our genomic selection models by expanding and adapting 

the GBLUP methodology for autotetraploid species proposed by Endelman et al. (2018). In sugarcane, besides the 

higher ploidy, the model also has to account for different ploidy levels among SNP loci. In order to achieve that, we 

expanded the theory by adapting the estimation of both the genomic covariance matrix of the additive values (G) 

and the genomic covariance matrix of digenic dominance values (D). 

Genomic predictions were obtained using the following linear model: 

�̂�𝑖 =  𝜇 + 𝑔𝑖 + 𝑒𝑖 , 

where �̂�𝑖 is the BLUE of the i-th individual obtained with the two-stage phenotypic analysis, 𝜇 is the intercept, 𝑔𝑖 is 

the random effect of genotypes, and 𝑒𝑖  is the random residual effect. 

We used two covariance structures in the genomic selection model: i) V Vr a+I G , and ii) 

V V Vr a d+ +I G D , where Vr  is the residual variance, Va  is the additive genetic variance, and Vd  is the 

dominance genetic variance. All analyses were performed using ASReml-R (Butler et al. 2009). 

Genomic covariance matrix of additive values (G) 
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Consider a matrix X with n rows and m columns, the rows corresponding to the individuals in the 

population and the columns corresponding to SNP loci, where each element 
ijx  corresponds to the dosage of the 

alternative allele for the j-th SNP in the i-th individual. Because the SNPs have different ploidy levels, the same value 

of allele dosage for one SNP does not represent the same genotype for other SNPs with different ploidies. For 

example, for a hexaploid SNP an allele dosage value of six represents a homozygous locus, while for an octoploid 

SNP the same value represents a heterozygous locus. 

To account for the different ploidy levels between SNPs, we used the following formula: 

12 −=Z XM , 

where M is an 𝑚 × 𝑚 diagonal matrix of ploidy values, such that each diagonal element jm  corresponds to the 

ploidy of the j-th SNP locus. The resulting matrix Z, with the same dimensions of X, has all its elements varying 

from 0 to 2, where 0 represents loci that are homozygous for the reference allele and 2 represents loci that are 

homozygous for the alternative allele, the values in between corresponding to heterozygous loci. 

The subsequent steps to obtain G are the same as for diploids (VanRaden 2008). If jp  is the frequency 

of the alternative allele at the j-th locus, we can obtain an 𝑛 × 𝑚 matrix P where the values in the j-th column all 

correspond to jp . Subtracting 2P  from Z results in the matrix W of centered genotypes. The G matrix is then 

obtained by the formula: 

( )2 1j j

j

p p
=

−

T
WW

G

 

 

Genomic covariance matrix of digenic dominance values (D) 

We first introduce the expansion of the digenic dominance values in the autotetraploid model to a 

hexaploid scenario. Higher ploidy levels can be modeled in a similar fashion. Considering a hexaploid SNP locus 

with two alleles B and b, the digenic effect for each allele pair can be obtained as demonstrated by Endelman et al. 

(2018), with the following set of equations: 

2

BB q =
 

Bb pq = −
 

2

bb p =
,                    (Eq. 1) 

where p is the allele frequency of B, q is the allele frequency of b, with 1q p= − , and   is the digenic 

dominance effect, such that: 

2BB Bb bb   = − + . 

For a hexaploid locus, seven genotypic classes are possible in a population (i.e., allele dosages ranging 

from 0 to 6). For each genotypic class, different combinations of digenic effects are present. For example, for the 

genotypic class BBBBbb, there are 6 possible combinations of two B alleles, 8 possible combinations of a B allele 

with a b allele, and 1 possible combination of two b alleles. By replacing each digenic effect by their corresponding 
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values in (Eq. 1), we obtain the total digenic dominance for each dosage of B. Table 1 shows the combinations of 

digenic effects and the total digenic dominance for each allele dosage level of a hexaploid locus. 

Table 2. Digenic effects and total digenic dominance for each allele dosage level of a hexaploid locus with alleles B and b 

Dosage of allele B Digenic effects Digenic dominance 

6 15 BB  ( )215 30 15p p − +  

5 10 5BB Bb +  ( )215 25 10p p − +  

4 6 8BB Bb bb  + +  ( )215 20 6p p − +  

3 3 9 3BB Bb bb  + +  ( )215 15 3p p − +  

2 8 6BB Bb bb  + +  ( )215 10 1p p − +  

1 5 10Bb bb +  ( )215 5p p −  

0 15 bb  ( )215 p   

The formula to obtain the total digenic dominance for a given biallelic hexaploid locus can then be 

generalized as: 

2 1
15 5 ( 1)

2
p ap a a 

 
= − + − 
 

 ,              (Eq. 2) 

where   is the total digenic dominance and a is the allele dosage. 

We used the same process described for hexaploid loci to obtain equations for other levels of ploidy. 

Table 2 shows the generalized formulas to obtain the total digenic dominance for even ploidies from six through 14. 

Table 2. Formulas for the total digenic dominance for different levels of ploidy 

Ploidy Total digenic dominance 

6 
2 1

15 5 ( 1)
2

p ap a a 
 

− + − 
 

 

8 
2 1

28 7 ( 1)
2

p ap a a 
 

− + − 
 

 

10 
2 1

45 9 ( 1)
2

p ap a a 
 

− + − 
 

 

12 
2 1

66 11 ( 1)
2

p ap a a 
 

− + − 
 

 

14 
2 1

91 13 ( 1)
2

p ap a a 
 

− + − 
 
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The formulas in Table 2 can be generalized as: 

( )
1

( 1) 1
2

 
 

= − − + − 
 

Q P PC P M X X X , 

where  represents the Hadamard product, C is an 𝑚 × 𝑚 diagonal matrix where each diagonal element 
jc  

corresponds to (
𝑚𝑗

2
), and P, M and X are as previously defined. 

Finally, the genomic covariance matrix of digenic dominance values (D) was obtained with: 

2 2(1 )j j j

j

c p p
=

−

T
QQ

D . 

Model and marker set comparisons 

We compared two models for the genotype effects, one using only the G matrix (G model) and one using 

both the G and D matrices (G+D model). We also investigated the effect of using three different sets of genotypic 

information: i) a fully informative model considering SNP markers with ploidy and allele dosage estimates, ii) 

diploidized SNP markers, and iii) simplex SNP markers. The diploidized SNP set was obtained by setting the values 

of all heterozygous loci in matrix Z to 1. By doing so, all heterozygous genotypes were effectively merged in a single 

class, regardless of their dosage. The simplex SNP set was obtained by selecting only loci that had dosage of 0 or 1 

for the reference or the alternative allele in both parents. For diploidized and simplex markers, the G and D matrices 

were obtained according to the established methodology commonly used for diploids (VanRaden 2008; Vitezica et al. 

2013). 

The models were compared in terms of predictive ability and selection coincidence. For that, 1,000 cross-

validation runs were carried, such that in each run 10% of the population was sampled and used as the validation set, 

while the remaining 90% were used as the training set. We measured predictive ability as the correlation between 

predicted breeding values and BLUEs of the individuals in the validation set. The selection coincidence was 

measured as the proportion of coincident individuals selected when using predicted breeding values or BLUEs as 

selection criteria, with a selection intensity of 50% in the validation set. 

Influence of sequencing depth 

When performing genotyping-by-sequencing in polyploids, one must account for the fact that high read 

depths are needed in order to obtain accurate estimates of allele dosage (Uitdewilligen et al. 2013; Matias et al. 2019). 

In order to verify how genotyping depth would affect the prediction accuracy of genomic selection in this polyploid 

scenario, we simulated SNP datasets obtained with fewer sequenced lanes. The simulated datasets were derived from 

the final SNP set obtained after filtering. For that, we multiplied the read depth of each allele in every locus in the 

population by a fraction k, the value of k corresponding to the number of sequenced lanes we were simulating 

divided by the original number of sequenced lanes (eight). All simulated genotyping depths and the corresponding 

values of k are shown in Table 3. 
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Table 3. Simulated genotyping depths and fraction k of the original read depth used to simulate the read depth in each scenario. 

Genotyping depth 𝒌 

6 lanes 3
4

 

4 lanes 1
2

 

3 lanes 3
8

 

2 lanes 1
4

 

1 lane 1
8

 

    

  We then reestimated the ploidy and allele dosage of the SNPs in each simulated dataset. The estimates of 

ploidy were obtained using software SuperMASSA (Mollinari and Serang 2015) with no other filtering criteria other 

than choosing only SNPs with ploidy estimates between six and 14. The estimates of allele dosage were again 

obtained using updog (Gerard et al. 2018). As the genotyping depths decrease, the increasing uncertainty when 

estimating ploidy and allele dosage could lead to inconsistent results when the process is repeated in the same 

dataset. To account for this random variation in the estimates of ploidy and allele dosage, this step was replicated 10 

times for each simulated dataset. For each simulated replicate, the ploidy and dosage estimates were used to obtain 

the G matrix and perform genomic selection. For each simulated dataset, we measured the mean predictive ability of 

1,000 cross-validation runs per replicate. Genomic selection and cross-validation were performed as described in 

previous sections. 

3.3. Results 

We were able to obtain a large number of SNPs with estimates of ploidy and allele dosage. However, the 

genomic selection models showed low prediction ability, and the prediction ability values showed little sensitivity to 

including ploidy and allele dosage information or dominance effects in the model. On the other hand, the selection 

coincidence values showed advantage of including ploidy and allele dosage estimates over using diploidized markers. 

The low values of prediction accuracy were consistent with the low genotypic variation and low to intermediate 

values of heritability observed in the phenotypic analysis of the progeny.  

 In the following we present our results in three sections. First, we present the results we obtained by 

genotyping the progeny and parents. Second, we present the results we obtained with the phenotypic data analysis of 

the progeny. Finally, we present the results we obtained using different genomic selection models with different 

genotypic datasets. 

Genotyping 

The distribution of mean read depth per individual of the SNPs we identified with TASSEL-GBS is 

shown in Fig. 1. Overall, we identified 187,224 SNPs, most of which had mean read depths close to zero. A total of 

6,550 SNPs were kept after filtering for mean read depth, posterior probability of genotypes and ploidy estimates, 

call rate, and segregation distortion in the progeny. The mean read depth per SNP per sample in the filtered set is 
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shown in Fig. 2. A total of 11 individuals had a mean read depth of zero and were considered not genotyped, thus 

being used in phenotypic analyses but not for genomic selection. The overall mean read depth of the individuals in 

the F1 progeny was of 165. The parents were genotyped at a much higher depth, with mean read depths per SNP of 

1,508 and 1,850 reads for IACSP95-3018 and IACSP93-3046, respectively. 

A summary of ploidy and allele dosage estimates of the SNPs in the filtered set is shown in Fig. 3. 

Additionally, a summary of ploidy and allele dosage estimates of SNPs that did not pass the segregation distortion 

test in the population is shown in Fig. S1 of the supplementary material. The majority of the SNPs had ploidy 

estimates of ten (31.18%) and eight (28.93%), followed by 17.88% of SNPs with ploidy estimates of 12, 15.59% with 

an estimated ploidy of six, and 6.43% with ploidy 14. Within each ploidy level, most of the genotypes were either 

homozygous for the reference allele or had only one copy of the reference allele (that is, were in nulliplex or simplex 

configuration), with allele dosages of zero and one accounting for more than 50% of the total number of genotype 

calls for ploidy levels from 6 to 12. For ploidy 14, dosage estimates were more evenly distributed among different 

levels, but there was still an excess of dosages equal to zero and one. When considering only the parents, 4,362 out 

of the 6,550 SNPs we obtained had dosage of 0 or 1 for the reference or the alternative allele. 

Phenotypic analyses 

In general, the genotypic variance had a relatively small or intermediate magnitude for all of the traits, 

with traits accordingly showing either small or intermediate heritability values. Fig. 4 shows the partitioning of the 

phenotypic variance into its main components. Variance components that are not shown had variance estimates very 

close to zero. The residual variance had a large magnitude for all of the traits, corresponding to 36%, 35%, 49%, 

58%, 48% and 34% of the phenotypic variation observed for Brix, sucrose content, fiber percentage, stalk diameter, 

stalk weight and stalk height, respectively. 

Most of the phenotypic variation of traits Brix and sucrose content was due to the effect of sites, with the 

variance due to this component respectively corresponding to 44% and 37% of the observed phenotypic variation. A 

small effect of sites was observed for stalk height, with the variance due to this component corresponding to 10% of 

the total variation. The distribution and correlation between phenotypic measurements per experimental site are 

shown in Fig. S2 of the supplementary material. The effect of harvests was intermediate for traits sucrose content, 

fiber percentage, stalk weight and stalk height, with the variance due to the harvest component corresponding to 

approximately 15% of the phenotypic variation observed for these traits. For traits Brix and stalk diameter, the 

variance due to the harvest component corresponded to 6% and 4% of the observed phenotypic variation, 

respectively. The effect of replicates within sites and harvests had a large magnitude for traits stalk height and stalk 

weight, with the variance due to this component corresponding to 30% and 24% of the observed phenotypic 

variation, respectively. For traits Brix, sucrose content, fiber percentage and stalk diameter, the variance due to the 

effect of replicates within sites and harvests corresponded to 7%, 10%, 18% and 9% of the observed phenotypic 

variation, respectively. 

The effect of genotypes had an intermediate magnitude for stalk diameter and a small magnitude for the 

other traits, corresponding to 3%, 3%, 7%, 13%, 5% and 3% of the phenotypic variation observed for Brix, sucrose 

content, fiber percentage, stalk diameter, stalk weight and stalk height, respectively. The genotypes × site interaction 

effect had an intermediate magnitude for traits fiber percentage, stalk diameter and stalk weight, with the variance 

due to the interaction component corresponding to, respectively, 13%, 15% and 10% of the observed phenotypic 

variation. For traits Brix, sucrose content and stalk height the variance due to the interaction component 



42 
 

corresponded to 4%, 2% and 6% of the observed phenotypic variation, respectively. The heritability values for traits 

Brix, sucrose content, fiber percentage, stalk diameter, stalk weight, and stalk height were of 0.31, 0.35, 0.37, 0.55, 

0.41, and 0.36, respectively. 

Genomic selection 

Overall, the predictive abilities of the genomic selection models were low, regardless of the model or 

marker set utilized. Fig. 5 shows the distribution of the predictive ability values over different cross-validation runs 

of the G and G+D models when using all the makers with full ploidy and allele dosage information, using 

diploidized makers, and using only simplex markers. 

For Brix, the G model using ploidy and allele dosage estimates showed the highest mean predictive ability 

(0.24), with a mean predictive ability higher than the mean predictive ability of the corresponding G+D model (0.21), 

and higher than the mean predictive abilities when using diploidized markers (0.18 for the G model and 0.19 for the 

G+D model) and using simplex markers (0.21 for the G model and 0.18 for the G+D model). A similar pattern was 

observed for stalk height, where the G model using ploidy and allele dosage estimates had a mean predictive ability 

of 0.22, the full ploidy G+D model had a mean predictive ability of 0.19, and when using diploidized or simplex 

markers, the mean predictive ability did not exceed 0.18 for any of the two models. 

For sucrose content, the G+D model had lower mean predictive abilities in comparison to the additive G 

model for all sets of markers, and the mean predictive abilities of the G model did not differ considerably between 

sets of markers. We observed a different pattern for stalk diameter, because the mean predictive ability of the G 

model when using ploidy and allele dosage estimates (0.18) was slightly lower than the mean predictive ability when 

using diploidized markers or simplex markers (0.20). With regard to the G+D model, the mean predictive abilities 

were equivalent for all sets of markers. A more marked difference between models was noticeable for fiber 

percentage, because when using ploidy and allele dosage estimates the mean predictive ability of the G+D model 

(0.05) was much lower than for the G model (0.12). This, in turn, was lower than the mean predictive ability when 

using diploidized markers (0.15 for the G and G+D models) and equal to the mean predictive ability of both the 

additive and additive + dominance models when using simplex markers. Lastly, for stalk weight, the mean predictive 

abilities were the highest among all traits, and the values did not differ significantly between models or sets of 

markers (ranging from 0.28 to 0.29). 

The selection coincidence varied slightly over different traits, but for all six traits the same pattern was 

observed, with a much lower mean selection coincidence when using diploidized markers than those obtained when 

using ploidy and allele dosage estimates or simplex markers. Table 4 shows the mean selection coincidence of the G 

model and the G+D model with the three contrasting marker sets. The mean selection coincidence of the G model 

when using ploidy and allele dosage estimates was equal to 0.62, 0.61, 0.57, 0.56, 0.62, and 0.59 for traits Brix, 

sucrose content, fiber content, stalk diameter, stalk weight, and stalk height, respectively. When using diploidized 

markers, the mean selection coincidence of the G model dropped to 0.32, 0.35, 0.37, 0.34, 0.38, and 0.40 for the 

same traits. Finally, when using simplex markers, the corresponding mean selection coincidences of the G model 

were 0.61, 0.61, 0.58, 0.55, 0.61, and 0.60. For all traits, the mean selection coincidences when using the G model and 

the G+D model were nearly equivalent regardless of the marker set used. The largest difference between the models 

was observed when using simplex markers for prediction of stalk height, when the mean selection coincidence of the 

G and G+D models were 0.60 and 0.57, respectively. 



43 
 

Table 4. Mean selection coincidence of genomic selection models when considering additive effects only (G) and considering 
additive and digenic dominance effects (G+D). Both models are compared when using markers with ploidy and allele dosage 
estimates (Full ploidy), diploidized markers and using only simplex markers. The values are shown for traits soluble solids content 
(Brix), sucrose content (Pol), fiber percentage (Fiber), stalk diameter (Diam), stalk weight (Weight) and stalk height (Height). 
Standard errors of the means had very low magnitude (≤ 0.006) and are not shown. 

Model Markers 
Mean selection coincidence 

Brix Diam Fiber Height Pol Weight 

G Full Ploidy 0.62 0.56 0.57 0.59 0.61 0.62 

G Diploidized 0.32 0.34 0.37 0.4 0.35 0.38 

G Simplex 0.61 0.55 0.58 0.6 0.61 0.61 

G+D Full Ploidy 0.61 0.56 0.55 0.58 0.6 0.63 

G+D Diploidized 0.31 0.35 0.36 0.4 0.34 0.38 

G+D Simplex 0.59 0.54 0.58 0.57 0.6 0.62 

  
The results obtained by downsampling the allele read depths did not show a clear pattern of decreasing 

predictive abilities as the read depth decreased. Fig. 6 shows the distribution of the predictive ability values over 

different cross-validation runs of the full ploidy G model when using SNPs with their original read depth and when 

using five simulated SNP sets with different (lower) levels of genotyping depth. Brix was the only trait for which the 

G model with the original genotyping depth (8 lanes) had the highest mean predictive ability value when compared 

to the other SNP sets. The mean predictive ability for Brix was of 0.25 when using the original genotyping depth and 

dropped to 0.23, 0.24, 0.23, 0.23 and 0.20 for the simulated sequentially decreasing genotyping depths. 

For traits sucrose content and stalk height, the highest mean predictive ability value was achieved with the 

simulated genotyping depth of 4 lanes, with decreasing mean predictive abilities values as the simulated genotyping 

depths decreased further. The mean predictive ability for sucrose content was of 0.18, 0.18, 0.19, 0.17, 0.15, and 0.12 

for the original genotyping depth, and simulated genotyping depths of 6, 4, 3, 2 and 1 lane, respectively. The mean 

predictive ability for stalk height was of 0.20, 0.21, 0.22, 0.20, 0.18, and 0.17 for the original genotyping depth, and 

for the simulated sequentially decreasing genotyping depths, respectively. 

For stalk weight, the mean predictive ability was the lowest when using the lowest simulated genotyping 

depth, but for the other levels of genotyping depth there was no consistent variation trend. The mean predictive 

ability for stalk weight was of 0.26, 0.27, 0.26, 0.24, 0.25, and 0.21 from the highest to the lowest sequencing depth. 

For fiber content, conversely, the lowest simulated genotyping depth led to the highest mean predictive ability, but 

otherwise there was no apparent pattern, as was the case for stalk weight. The mean predictive abilities for fiber 

content were 0.10, 0.12, 0.11, 0.10, 0.13, and 0.18 from the highest to the lowest sequencing depth. For stalk 

diameter also no consistent variation trend was observed, with the mean predictive ability being 0.18, 0.20, 0.17, 0.15, 

0.19, and 0.17 from the highest to the lowest sequencing depth. 

3.4. Discussion 

Our results help demonstrate the potential of using genotyping-by-sequencing to improve genomic 

studies in sugarcane, as the technique allows identifying a large number of SNPs with estimates of ploidy and allele 

dosage. Our results show that these estimates could potentially improve genomic selection in sugarcane, but also 

highlight that for this to be thoroughly achieved, good quality data is required for model training. 

In the following we present our discussion in two sections. First, we discuss the genotyping results we 

obtained. More specifically, we focus on how our results relate to current knowledge of the sugarcane genome and 
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also how they relate to what is expected from a sugarcane biparental progeny. Second, we discuss the results we 

obtained implementing genomic selection in sugarcane, giving perspectives on how to improve the prediction ability 

and achieve the full potential of including allele dosage information in the model. 

Genotyping 

We were able to identify 6,550 SNPs with high mean read depths, high posterior probability of genotypes 

and ploidy estimates, and which were segregating in the population accordingly to expected (Fig. 1). Also, despite the 

low uniformity across samples, the overall genotyping depth in the population was high (Fig 2). This was possible 

due to the genotyping-by-sequencing protocol we used. The use of a rare-cutting enzyme, the low number of 

samples per sequenced lane and high sequencing depth (8 sequenced lanes) were likely the factors that guaranteed 

the high genotyping depth we observed. These results indicate that genotyping-by-sequencing can represent a 

substantial advance for genetic studies in sugarcane, as also demonstrated by Balsalobre et al. (2017). Our SNP set 

exceeds in number of markers most recent genetic studies in sugarcane (Bundock et al. 2009; Gouy et al. 2013; Costa 

et al. 2016; Yang et al. 2017; Gutierrez et al. 2018), and is also more informative than sets of dominant or single-

dosage markers, which disregard information on other possible allele dosages. 

The ploidy estimates we obtained in the filtered dataset showed a predominance of markers with ploidies 

8 and 10, intermediate proportions of markers with ploidies 6 and 12 and a small proportion of markers with ploidy 

14 (Fig. 3). The high proportion of octoploid markers is consistent with previous estimates obtained using biparental 

progenies (Garcia et al. 2013; Balsalobre et al. 2017). The results reported by Garcia et al. (2013) considered SNPs for 

the same progeny used here, but were obtained through the Sequenom iPLEX MassARRAY platform (Gabriel et al. 

2009), which is a highly reliable genotyping method. The genomes of modern sugarcane cultivars are mostly 

composed of S. officinarum (2n = 80, x = 10) chromosomes, with contributions from S. spontaneum (2n = 40 to 128, x 

= 8) (D’Hont et al. 1996, 1998). Studies with S. spontaneum show that the species displays a wide range of 

chromosome numbers, with the five major cytotypes having 8, 10, 12, 14 and 16 sets of eight chromosomes (D’Hont 

et al. 1998). In short, our results also agree with the overall ploidy levels expected for both species. However, to date 

little is known about the behavior of sugarcane chromosomes during meiosis, and the ploidy estimate of a single 

locus might represent chromosome segments from both species. Therefore, is not possible to assign variants as 

representing specifically either S. officinarum or S. spontaneum based on their estimated ploidy levels alone. 

The high relative proportion of markers with ploidies 12 and 14 in the raw SNP dataset is likely to be an 

over-representation. Before filtering out markers that were not segregating in the population according to expected 

Mendelian proportions, the distribution of markers across ploidy values was more uniform (Fig. S1). Genotyping-by-

sequencing is likely to produce inconsistencies in the number of sites sequenced per sample (Heffelfinger et al. 2014) 

and in the number of reads per site (Jiang et al. 2016), which can result in errors when obtaining genotype estimates, 

especially for higher ploidy levels (Garcia et al. 2013). Also, incorrect genotype calls at higher ploidy levels may have 

led to more deviations from the expected segregation ratio and, thus, to more high-ploidy markers being filtered out. 

A large proportion (67%) of the SNP calls corresponded to single-dosage genotypes. A possible 

explanation is that the parents used to generate the biparental population are commercial cultivars. In breeding 

programs, cultivars are obtained after an extensive process of selection for several traits, which could lead to fixation 

of favorable alleles and, in consequence, predominance of either homozygous genotypes for favorable alleles or 

heterozygotes that have only one copy of deleterious alleles. Our results are also consistent with those observed by 
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Garcia et al. (2013) using the same biparental population. They observed that, for ploidies between six and 12, there 

was a higher proportion of single-dosage markers in comparison to the proportion observed for higher ploidy values. 

As shown in Fig. 3 and Fig. S1, for markers with an estimated ploidy of 14 the proportion of single-dosage markers 

was smaller. The results obtained by Balsalobre et al. (2017), also with a biparental population, showed 56% of their 

SNP set to be single-dosage genotype calls. 

Genomic selection 

When implementing genomic selection in breeding programs, the main factors that affect the prediction 

ability of the models are the heritability of the traits, the size of the training set used to estimate marker effects and 

the marker density used to genotype the population (Combs and Bernardo 2013; Lian et al. 2014). Our results show 

that, for all evaluated traits, the prediction abilities of the genomic selection models were low regardless of using the 

whole SNP set or only simplex markers (Fig. 5). This indicates that, with simplex markers representing more than 

50% of the dataset, the increased marker density by using SNPs with higher dosages may not have resulted in a 

higher number of markers in linkage disequilibrium to quantitative trait loci. An alternative hypothesis could be that 

the heritability of the traits and training population size are playing a bigger role in the performance of the genomic 

selection models. 

The phenotypic variance partitioning results showed that, for all traits, most of the variation observed in 

the field experiments did not stem from differences between the individuals in the F1 progeny, as the variance 

components associated to the effect of genotypes and genotype × environment interactions had low magnitude in 

comparison to other experimental sources of variation. The low magnitude of the genotypic variance indicates that 

the parents used for crossing were not contrasting enough for the traits evaluated in this study, especially for Brix, 

sucrose content and stalk height. Both parents are cultivars developed by the sugarcane breeding program at IAC, 

IACSP95-3018 and IACSP93-3046. The first two numerical digits in their identifiers indicate the year when these 

cultivars were first originated from crosses and the selection process began, respectively 1995 and 1993. The fact that 

both parents correspond to elite material from not-so-distant time points of the same breeding program could be the 

reason for the low genotypic variability generated by their crossing. 

These low values of genotypic variability resulted in low to intermediate values of heritability, which in 

turn are usually associated with lower values of predictive ability (Combs and Bernardo 2013; Lian et al. 2014). For all 

of the traits we evaluated, several studies have reported higher heritabilities when analyzing data from sugarcane 

cultivar trials (Milligan et al. 1990; Gravois and Milligan 1992; Tena et al. 2016). This indicates that implementing 

genomic selection in sugarcane is likely to be more advantageous than our results suggest. We note, however, that 

the prediction abilities we observed for each trait did not increase with increasing values of heritability, which were 

all relatively similar. Other factors such as the different genetic architecture of the traits (i.e., distribution and effects 

of quantitative trait loci across the genome) might be influencing more strongly the differences between the 

predictive performance of the models. 

The small training population size used in this study might also be playing a key role in the low values of 

predictive ability we observed. This is particularly suggested by the reduction, for most of the traits, of the predictive 

ability when including the digenic dominance effects in comparison to only using the allele dosage information to 

estimate additive effects. Including digenic dominance effects result in estimating three additional parameters (Eq. 1), 

thus requiring more observations for accurate estimates to be obtained (Button et al. 2013). With a small population 

size, the estimates of dominance effects were likely not accurate, and the predictive ability of the model decreased. 
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We hypothesize that these two factors combined (low heritabilities and small training population size) are 

probably the reason for observing no substantial difference between the predictive ability of genomic selection 

models using markers with allele dosage information or diploidized markers. We also believe that these factors were 

the main reason our downsampling results did not show the expected trend of lower sequencing depth leading to 

lower predictive abilities (Fig. 6). Under these limitations, the benefits of using high-quality allele dosage estimates 

could be masked by the low predictive power of the model. Our results demonstrate that expending more resources 

for sequencing to improve estimates of allele dosage may not always provide a return in investment if the phenotypic 

data for training the model is not adequate. 

Even though the different genotypic datasets had little impact on the predictive abilities, the advantages of 

including allele dosage estimates can be more clearly seen when looking at the mean values of selection coincidence, 

which were higher in comparison to those achieved when using diploidized markers, with a difference in selection 

coincidence of approximately 20% (Table 4). This indicates that, ultimately, including allele dosage information can 

improve the deployment of genomic selection in sugarcane breeding programs. 

Furthermore, to our knowledge genomic selection studies including allele dosage information were limited 

to the autotetraploid framework until now. Our study expands the theory to higher ploidy levels and, therefore, 

could be valuable for breeding programs implementing genomic selection on other crops with higher ploidies, such 

as sweet potato and some ornamental flowers and forage crops (Soltis et al. 2014).      

3.5. Conclusion 

Overall, including estimates of ploidy and allele dosage of the SNPs led to a modest improvement of 

genomic selection models in sugarcane. The improvement we observed is likely to be more evident with larger 

training population sets that also display higher genetic variability, which would allow the models to have more 

precision to accurately estimate both the additive and the digenic dominance effects. 
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FIGURES 

 

Figure 1. Mean sample read depth per SNP. The orange density curve corresponds to the raw SNP set without any filtering 

(187,224 SNPs) and the blue density curve corresponds to the SNPs kept after filtering (6,550 polymorphic sites).   
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Figure 2. Mean SNP read depth per sample. Both parents (IACSP93-3046 and IACSP95-3018) are highlighted. Eleven 
individuals were entirely missed in the genotyping, with a mean read depth of zero. The red line indicates the overall mean read 

depth per SNP in the F1 progeny. 
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Figure 3. Summary of the estimates of ploidy and allele dosage for 170 samples and 6,550 filtered SNPs. The bars show the total 
number of genotypes per ploidy level, and different values of allele dosage are shown by different colours. For each ploidy level, 
the corresponding percentages of the total number of genotypes are shown above the bars. 
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Figure 4. Phenotypic variance partitioning for soluble solids content (Brix), sucrose content (Pol), fiber percentage (Fiber), stalk 
diameter (Diam), stalk weight (Weight), and stalk height (Height). Contributions of variances due to the effect of sites, harvests, 
replicates, genotypes, genotype × sites interaction (GxS), and residual variance are shown.   
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Figure 5. Distribution of the predictive ability values over different cross-validation runs of genomic selection when considering 
additive effects only (G) and considering additive and digenic dominance effects (G+D). Both models are compared when using 
markers with ploidy and allele dosage estimates (Full ploidy), diploidized markers, and using only simplex markers. The values are 
shown for traits soluble solids content (Brix), sucrose content (Pol), fiber percentage (Fiber), stalk diameter (Diam), stalk weight 
(Weight) and stalk height (Height) 
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Figure 6. Distribution of the predictive ability values over different cross-validation runs of genomic selection using the SNP 
dataset with its original genotyping depth (8 lanes with 96x libraries) and using simulated SNP datasets with lower genotyping 
depths, Simulations included scenarios equivalent to the sequencing of 6 lanes, 4 lanes, 3 lanes, 2 lanes and 1 lane. The genomic 
selection model included additive effects only and the marker set used included ploidy and allele dosage estimates. The values are 
shown for traits soluble solids content (Brix), sucrose content (Pol), fiber percentage (Fiber), stalk diameter (Diam), stalk weight 
(Weight) and stalk height (Height).  
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SUPPLEMENTARY MATERIAL 

 
Figure S1. Summary of the estimates of ploidy and allele dosage for 170 samples and 15,466 SNPs not filtered for segregation 
distortion in the population. The bars show the number of SNP loci per value of ploidy, and different values of allele dosage are 
shown by different colours. For each ploidy value, the correspondent percentages of the total number of loci are shown above the 
bars. 
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Figure S2. Distribution and correlation between measurements of phenotypes for traits soluble solids content (Brix), sucrose 
content (Pol), fiber percentage (Fiber), stalk diameter (Diam), stalk weight (Weight), and stalk height (Height) in the experimental 
site of Sales de Oliveira (Orange) and in the experimental site of Ribeirão Preto (Blue). 

 


