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RESUMO

Avaliação de softwares para construção de mapas genéticos em plantas

Mapas genéticos são ferramentas úteis em programas de melhoramento e em es-
tudos evolutivos. Desde a publicação do primeiro mapa, vários conceitos foram propostos e
implementados em vários softwares de mapeamento. Cada software apresenta diferentes car-
acterísticas para construção de mapas. Por exemplo, aspectos como disponibilidade do código
fonte, licenças, tutoriais e sistema operacional precisam ser considerados. Há ainda pontos
importantes relacionados aos métodos estatísticos empregados. Assim sendo, nem sempre a
escolha pelos usuários é uma tarefa simples. Os objetivos aqui foram: i) apresentar os prin-
cipais software com licenças gratuitas desenvolvidos nos últimos anos; ii) construir mapas de
ligação utilizando esses programas e iii) avaliá-los do ponto de vista dos usuários. Os soft-
wares considerados foram: OneMap, Lep-MAP, HighMap, Lep-MAP2, Flipper, Lep-MAP3,
ASMap e GUSMap. Este trabalho poderá orientar os pesquisadores quanto às ferramentas
gratuitas disponíveis para construção de mapas genéticos.

Palavras-chave: Construção de mapas genéticos; Pacotes computacionais; Espécies diploides;
OneMap; Lep-MAP3
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ABSTRACT

Evaluation of software to construct genetic linkage maps in plants

Genetic maps are useful tools in breeding programs and evolutionary studies. Since
the publication of the first map, several concepts have been proposed and implemented in
various mapping software. Each software presents different characteristics for the construc-
tion of maps. For example, aspects such as availability of source code, licenses, tutorials,
and operating system need to be considered. There are also important points related to the
statistical methods employed. In this context, the users’ choice can often be a complicated
task. The objectives here were: i) to present the main software with free licenses developed
in recent years; ii) construct linkage maps using these software and, iii) evaluate them from
the point of view of users. The software considered were: OneMap, Lep-MAP, HighMap,
Lep-MAP2, Flipper, Lep-MAP3, ASMap, and GUSMap. This work can guide researchers
about the free tools available to construct genetic maps.

Keywords: Construction of genetic maps; Computer packages; Diploid species; OneMap;
Lep-MAP3
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1 INTRODUCTION

The first genetic linkage map was constructed by A. H. Sturtevant. He, who was still
an undergraduate student, suggested to use the frequency of recombinants as a quantitative
indicator of the linear distance between two genes (Sturtevant, 1913). From this idea many
methods have been developed, and consequently, genetic mapping has become a powerful tool
for genomic studies in other organisms, including several plant species (Edwards, 2005). Evo-
lutionary studies, genome assembly, and quantitative trait loci (QTL) mapping are some studies
which benefit from having a good genetic map estimate (Lefebvre et al., 1995; Harushima
et al., 1998; Oliveira et al., 2007, 2008; Sierro et al., 2014; Fierst, 2015; Zhigunov et al.,
2017; Fenton et al., 2018).

Currently, genetic linkage maps are estimated using several mapping software (Cheema
and Dicks, 2009). In general, these software have different statistical methods for grouping and
ordering molecular markers, they can cope with differing types of mapping populations and
several data sets of different sizes, and the executables are provided for different operating
systems. In addition, they have several friendly approaches, such as tutorials and graphs, which
help users during the construction of maps (Margarido et al., 2007; Rastas et al., 2013; Liu
et al., 2014; Rastas et al., 2015; Crane, 2017; Rastas, 2017; Taylor and Butler, 2017;
Bilton et al., 2018).

In relation to licenses and availability of source code, mapping software can be divided
into three groups: i) free software, ii) open source software, and iii) proprietary software. Free
software is a social movement that strives for a balance between the developer and the user
(freedom of the user). Software will be considered free if users have the freedom to run the
program (freedom 0), to study and change the program (freedom 1), to redistribute exact copies
(freedom 2), and to distribute modified versions (freedom 3). In order for freedoms 1 and 3 to be
meaningful, the source code must be opened. Open source software is another similar movement
but not identical to the free software movement. This movement strives to develop technically
superior software tools through the collaborative improvement of source code (software quality).
Proprietary software is a non-free software in which the developer or company retains intellectual
copyright of the source code (source code is closed). It is important to mention that the three
groups have free and paid licenses (Crowston and Howison, 2005).

These different characteristics can make it difficult for users to choose among them.
Thus, the present study can guide them in the tools available for the construction of genetic
linkage maps.

The work consists of one chapter organized into two parts. In the first, the aim is to
present a description considering several aspects of some software with free licences developed in
recent years. In the second, the aim is to construct linkage maps using some of these mapping
software. For this purpose, several scenarios with different numbers and types of markers were
simulated and based on these simulations the genetic maps were estimated.
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2 EVALUATION OF SOFTWARE TO CONSTRUCT GENETIC LINKAGE
MAPS IN PLANTS

2.1 Abstract

In recent years, many concepts and methods have been developed to aid the construc-
tion of genetic linkage maps. These methods were implemented in a number of software. There
are some differences between these software, such as the statistical method employed, the op-
erating system, the availability of the source code, the type of license and friendly approaches.
Therefore, the users’ choice can often be a complicated task. The objective of this work was
to present the software tools OneMap, Lep-MAP, Lep-MAP2, HighMap, Flipper, Lep-MAP3,
ASMap and GUSMap, discussing many of the main concepts involved, and to construct linkage
maps using OneMap and Lep-MAP3. For doing so, several scenarios were simulated consider-
ing a diploid plant species. Although these software have particularities, many share the same
algorithmic approaches. Results showed that the software OneMap and Lep-MAP3 had effi-
cient performance in all simulated scenarios. OneMap stood out for the help tools available to
construct the maps, while Lep-MAP3 stood out for the speed in the ordering of the markers.

2.2 Introduction

Genetic linkage maps represent the order and distance of the genes or markers along the
chromosome. They are useful in evolutionary genetic studies (Gaur et al., 2015; Butler et al.,
2017; Wu et al., 2019) and in genome assembly and validation (Fierst, 2015). Furthermore,
maps are very important for quantitative trait loci (QTL) mapping. QTLs with strong effects on
phenotypic variation have been discovered in several species and, in many cases, were successfully
exploited in breeding programs via marker-assisted selection (MAS) (Xu et al., 2000; Sibov
et al., 2003; Steele et al., 2006; Carter et al., 2009; Sun et al., 2012; Luo et al., 2017; Ren
et al., 2019).

Given the importance of the genetic linkage maps, several mapping software are avail-
able. The review of the Cheema and Dicks (2009) makes a brief description of 11 software
tools for genetic linkage map estimation, such as MAPMAKER/EXP (Lander and Green,
1987), JoinMap (Stam, 1993), and MSTmap (Wu et al., 2008). However, throughout these
10 years and even before this review, other software have been proposed, including OneMap
(Margarido et al., 2007), Lep-MAP (Rastas et al., 2013), HighMap (Liu et al., 2014); Lep-
MAP2 (Rastas et al., 2015), ASMap (Taylor and Butler, 2017), Flipper (Crane, 2017),
Lep-MAP3 (Rastas, 2017), and GUSMap (Bilton et al., 2018). They have been developed
with the purpose of trying to solve problems typical of the construction of maps. For example,
the OneMap was the first software capable to estimate integrated maps in outcrossing popula-
tions. Lep-MAP, HighMap, Lep-MAP2, and ASMap were developed to construct maps using
large data sets. While LepMap3 and GUSMap were developed to construct maps using low
coverage and depth sequencing data, respectively.

Beyond these specific characteristics, the software tools have different statistical meth-
ods to group and order the molecular markers and they can analyze different data sets. There
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are also important points such as licenses, availability of source code, operating system, and
friendly approaches that need to be considered (Cheema and Dicks, 2009).

For grouping, software such as MAPMAKER/EXP and OneMap use the nearest neigh-
bour locus strategy (Cheema and Dicks, 2009), while MSTmap and AsMap use probabilistic
graphical models (Wu et al., 2008). For ordering, several criteria and algorithms are available
and implemented in the mapping software, including the product of adjacent recombination frac-
tions (PARF) (Wilson and Rao, 1988), the sum of adjacent recombination fractions (SARF)
(Falk, 1989), the sum of adjacent LOD scores (SALOD) (Weeks and Lange, 1987), hidden
Markov model (HMM) (Lander and Green, 1987), seriation (SER) (Buetow, Kenneth H.
and Chakravarti., 1987), rapid chain delineation (RCD) (Doerge and Weir, 1994), and
multidimensional scaling (MDS) (Preedy and Hackett, 2016).

In general, the software tools can cope with inbred-based populations and outcrossing
populations or be restricted to one of two types of population. In addition, they able to analyze
various types of markers with different mixing patterns (dominant and codominant) (Collard
et al., 2005; Edwards, 2005; Cheema and Dicks, 2009).

In relation to licenses and availability of source code, they can be classified as free
software, open source software, and proprietary software. Free software ensures the freedom of
the user while open source software ensures the quality of the program, both of which have open
source codes. In contrast proprietary software has closed source code. It is important to say that
all three groups have free and paid licenses and the the executables are provided for different
operating systems such as Mac, Linux, and Windows (Crowston and Howison, 2005).

Finally, these software may contain several tools such as tutorials, graphics, heatmaps,
and research forum that will help users during the construction of maps. These tools are user-
friendly approaches and are very important because even if a program has many advanced
features, users have to be able to use them (Margarido et al., 2007; Rastas et al., 2013; Liu
et al., 2014; Rastas et al., 2015; Crane, 2017; Rastas, 2017; Taylor and Butler, 2017;
Bilton et al., 2018).

2.2.1 Genetic Linkage Maps

After the rediscovery of Mendel’s work several researchers have observed that some
genes did not segregate independently. Morgan found similar results while studying some genes
in Drosophila melanogaster. He realized that the frequency of recombinants progenies varied
considerably and suggested that the two genes were located on the same pair of homologous
chromosomes (Morgan and Cattell, 1912). Sturtevant (1913) associated this frequency of
recombination between the loci with the linear distance between them, giving origin to genetic
linkage maps.

The first genetic linkage maps in plants were constructed with morphological and cy-
tological markers (Anderson and Randolph, 1945; Butler, 1952; Dhulappanavar, 1977).
Latter, the isoenzymes were discovered (Markert and Møller, 1959) and began to be ex-
plored as biochemical markers. However, the number of isoenzymatic loci detected was still
small, especially when it was intended to obtain of higher genome coverage.
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With the advent of PCR (Polymerase Chain Reaction) and restriction enzymes, mark-
ers more abundant and based on polymorphic DNA sequence (molecular marker) began to be
used for the construction of genetic linkage maps. These markers can be dominant, such as
RAPDs (Randomly Amplified Polymorphic DNA) (Williams et al., 1990), AFLP (Amplified
Fragment Length Polymorphism) (Vos et al., 1995), and DArT (Jaccoud et al., 2001), or they
can be codominant, such as RFLPs (Restriction Fragment Length Polymorphism) (Botstein,
1980), SSRs (Simple Sequence Repeats) (Tautz, 1989), EST-SSRs (Expressed Sequence Tags
containing SSRs) (Cato et al., 2001), and SNPs (Single Nucleotide Polymorphism) (Syvänen,
2001).

SNPs are abundant in plant genomes and their utility as genetic markers has been well
established in the last decade. Recently, with next-generation sequencing (NGS) technology,
thousands of SNPs are available allowing for the construction of high-density and high-resolution
genetic linkage maps in several plant species (Ward et al., 2013; Rabbi et al., 2014; Ott et al.,
2015; Pootakham et al., 2015; Peng et al., 2016; Geyer, 2018; Somta et al., 2019).

2.2.2 Applications of the Linkage Genetic Maps

Genetic linkage maps are important in many types of genetic studies because they
provide the sequential distribution of the genes along the chromosomes of a species. In evo-
lutionary genetics, they allow the identification of synteny, rearrangements, duplications, and
deletions of chromosomal segments among species, such as cotton and Arabidopsis (Rong et al.,
2005), coffee and tomato (Lefebvre-Pautigny et al., 2010), banana and monocotyledonous
plants (D’hont et al., 2012), tobacco and potato (Sierro et al., 2014), cranberry and diploid
blueberry (Schlautman et al., 2018).

For species whose genome is not yet sequenced, genetic linkage maps provide a pow-
erful tool to understand the grouping and order of markers through the comparison of genomic
sequences to other plant species. For those species that have already been sequenced, genetic
linkage maps allow assembly and validation these genomes (Fierst, 2015).

A very important application of genetic linkage maps is the localization of genes that
control important agronomic traits such as yield, height of the plant, protein content, and some
forms of disease resistance (Zhang et al., 2004; Chutimanitsakun et al., 2011; Cui et al.,
2014; Ma et al., 2017). These traits are controlled by many genes and are known as quantitative
traits and the genome regions that contribute to variation of quantitative traits are known as
quantitative trait loci (QTL). The first QTL identification was made by Sax (1923) in a cross
between bean inbred lines using morphological markers. Subsequently, with the development of
molecular markers, the number of associations between these markers and quantitative traits
has significantly increased.

When comparing the segregation of markers with phenotypic mean values for each
individual progeny, it is possible to estimate the number, position, effects, interactions among
the QTL, and interactions between QTL and the environments. This approach has enabled the
identification of QTL in several species, such as upland cotton (Zhang et al., 2009), tropical
maize (Sibov et al., 2003), rubber tree (Souza et al., 2013), wheat (Cui et al., 2014), mayze
(Azevedo et al., 2015), millet (Ambawat et al., 2016), sugarcane (Balsalobre et al., 2017),
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and rice (Bhatia et al., 2018). QTL mapping is an effective tool in breeding programs, because
with this information breeders can define strategies and obtain superior genotypes via marker
assisted selection (MAS).

Another promising technique using QTL mapping is the study of the quantitative traits
correlation that can be caused by pleiotropy or linkage. This information is also important for
the definition of breeding strategies, as the correlation caused by linkage is transient and the
correlation caused by pleiotropy will remain in the next generations (Falconer and Mackay,
1996).

2.2.3 Construction of the Genetic Linkage Maps

The main steps to construct linkage maps are: (i) identification of polymorphism, (ii)
segregation tests, (iii) linkage analysis of markers and assigning markers to linkage groups, (iv)
ordering of the markers within linkage groups, and (v) estimation of genetic distances (Collard
et al., 2005; Cheema and Dicks, 2009).

Most mapping populations are obtained from the segregation of plants derived from
crosses between inbred lines, such as F2, backcross (BC1 and BC2), RILs (recombinant inbred
lines), and DH (doubled haploid) (Tanksley, 1993; Lynch et al., 1998). A number of genome
projects with inbred lines are available and have been instrumental in unraveling genetic variation
in economical traits (Akond et al., 2013; Lee et al., 2015; Li et al., 2017). There is, however, a
large group of important species that are outbreeding (i.e. map is done in a progeny of a cross
between two non-inbred plants). In these case, it is possible to evaluate segregation in full-sib
family or half-sib family (Grattapaglia and Sederoff, 1994; Yin et al., 2003; Bartholomé
et al., 2015; Pierro et al., 2016). Regardless of the population used, polymorphisms in the
genitors are necessary and the loci must be in linkage disequilibrium.

The identification of polymorphisms is done through molecular markers, and several
types of molecular markers, as mentioned above, can be used. They are identified and screened
across the entire mapping population, including the parents. Between them, some markers that
segregate differently than expected by Mendel’s law can be found. It is recommended not to
use these markers to build the genetic linkage map, because generally, the statistical models for
the map building process follows Mendel’s law as an assumption. However, they can be used to
saturate the map (Vogl and Xu, 2000).

Linkage analysis of molecular markers is based on the recombination fraction and odds
ratios expressed in logarithm (logarithm of odds - LOD) (Fisher, 1922; Morton, 1955; Staub
et al., 1996). The recombination fraction is calculated between all pairs of markers (two-point
tests) and values less of 0.5 are used to declare the linkage. The LOD score is the statistic used
to evaluate the significance of the test and its value takes into consideration the number of tests
performed that depend of the number of markers. For example, a LOD score of 3 between two
markers, indicates that linkage is 1000 times more likely than no linkage (Morton, 1955).

Based on the values of recombination fraction and LOD, markers are assigned to linkage
groups, which represent chromosomal segments or entire chromosomes. For the grouping several
types of solutions have been proposed such as nearest neighbour locus and probabilistic graphical
models. In nearest neighbour locus, the linkage groups are formed by sequentially adding the
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marker that has the lowest recombination fraction in comparison to the others in the cluster.
In probabilistic graphical models, a graph is structured in which the nodes are represented by
the markers. These markers are connected to each other by weighted edges as estimated by
two of recombination fraction. Subsequently, all edges with a recombination fraction above
a certain threshold are eliminated, leaving only the subgraphs that correspond to the linkage
groups (Cheema and Dicks, 2009).

In inbreeding species, all loci segregate to two alleles and all alleles from the same parent
are in the coupling phase in the F1, therefore, linkage analysis is straightforward (Lynch et al.,
1998). Contrarily, a cross between heterozygous parents may present 18 patterns of segregation
(there may be up to four different alleles per locus) and the linkage phases are usually unknown
and must be estimated (Table A.1). Initially, methods for determining linkage phases have been
proposed but these analyses have not simultaneously estimated linkage and linkage phases for
a mixed data set of markers (Ritter et al., 1990; Arús et al., 1994; Ritter and Salamini,
1996; Maliepaard et al., 1997; Ridout et al., 1998). Later, Wu (2002) developed a general
maximum likelihood algorithm that simultaneously estimates the recombination fractions and
linkage phases of all patterns of segregation.

The final step of the construction of a genetic linkage map involves the estimation of
the markers’ order and distance within linkage groups. The ordering process of the markers is
considered an optimization problem (Traveling Salesman Problem - TSP) which seeks to find
the best solution among all possible solutions (Mester et al., 2003; Tan and Fu, 2006). For m
markers, there are m!/2 possible orders to be investigated and in TSP it is impossible to obtain
an exact solution when the number of markers is large. Thus, to solve the ordering problem
there are two aspects: the choice of a criteria to optimize and the choice of an optimization
algorithm.

The optimization criteria is used to quantify a given marker order in light of the data.
There are several criteria to evaluate and compare the orders. Some are based on the re-
combination fraction between pairs of markers (two-point), such as the product of adjacent
recombination fractions (PARF) (Wilson and Rao, 1988), the sum of adjacent recombination
fractions (SARF) (Falk, 1989), the sum of adjacent LOD scores (SALOD) (Weeks and Lange,
1987), the SALOD-polymorphism information content (SALPIC) (Botstein, 1980; Olson and
Boehnke, 1990), the least squares (Weeks and Lange, 1987), and the weighted least squares
(Stam, 1993). Another criterion that can be used after the map’s construction is the hidden
Markov model (HMM) (Lander and Green, 1987). Through HMM, there is possible to ob-
tain the maximum likelihood estimator (MLE) of the values using information from all the
markers simultaneously (multipoint). These multipoint estimates can be obtained by the EM
(expectation and maximization) algorithm (Dempster et al., 1977). Good mapping software
implements this multipoint approach because it allows for the retrieval of information from the
entire linkage map, improving estimates mostly when there are dominant markers and missing
data.

Several optimization algorithms have also been proposed, including simulated anneal-
ing (Thompson, 1984; Weeks and Lange, 1987), stepwise likelihood (Lathrop et al., 1985),
branch and bound (Lathrop et al., 1985), try and ripple (Lander and Green, 1987), seri-
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ation (SER) (Buetow, Kenneth H. and Chakravarti., 1987), rapid chain delineation (RCD)
(Doerge and Weir, 1994), genetic and evolutionary algorithm (Mester et al., 2003), recombi-
nation counting and ordering (RECORD) (Van Os et al., 2005), and unidirectional growth (UG)
(Tan and Fu, 2006). Recently, Preedy and Hackett (2016) proposed and validated a robust
and fast ordering method for constructing high-density linkage maps using multidimensional
scaling (MDS). In the face of such a wide variety of methodologies, some comparative research
has been done (Olson and Boehnke, 1990; Hackett and Broadfoot, 2003; Mollinari
et al., 2009).

The distance in the map is measured in centiMorgans (cM), which is a unit that de-
scribes a in percentage (Collard et al., 2005; Cheema and Dicks, 2009). The recombination
fraction is not additive and, therefore, mapping functions are required. Several functions have
been proposed but the most used are the mapping functions of Haldane and Kosambi. The first
assumes no interference between crossover events (Haldane, 1919) and the second assumes
interference between crossover events (Kosambi, 1944).

2.2.4 Software Tools Used to Construct Genetic Linkage Maps

With the widespread use of computers, these methodologies to construct linkage maps
have been implemented into several genetic mapping software. The review of the Cheema and
Dicks (2009) makes a brief description of 11 software tools, but throughout these 10 years and
even before this review, other software were built and will be explained in more detail below:

• OneMap

OneMap was the first software developed to simultaneously estimate the linkage and link-
age phases (integrated genetic map) between markers in outcrossing species (Margarido
et al., 2007). This software analyzes different marker types containing several segregation
patterns in outcrossing species (F1) (Wu, 2002). In addition, it is capable of analyzing
populations that have homozygous parental lines in the genealogy, such as F2, backcross,
and RILs. For marker grouping, there are functions to perform the basic two-point analysis
between markers via the EM algorithm (Dempster et al., 1977). Marker ordering in link-
age groups is done using several two-point algorithms, such as SER (Buetow, Kenneth
H. and Chakravarti., 1987), RCD (Doerge and Weir, 1994), RECORD (Van Os
et al., 2005), UG (Tan and Fu, 2006), and MDS (Preedy and Hackett, 2016). To
finalize the map, the multipoint analysis can be used to check the local order of markers
and also to refine the map distance between adjacent markers.

• Lep-MAP and Lep-MAP2

Lep-MAP (Rastas et al., 2013) was developed to construct genetic linkage maps using
large data sets in a fast and accurate way. It is memory efficient and it can analyze
multiple outcrossing and inbred based families. The grouping and ordering of markers is
done using the SeparateChromosomes and OrderMarkers modules, respectively. The Order-
Markers module combines approximate solutions of TSP and multipoint analysis (HMM
and EM) (Dempster et al., 1977; Lander and Green, 1987). Although it is capable
of creating linkage maps using large data sets, above 2, 000 markers per chromosome, the
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computational time required for mapping is unfeasible. Hence, a substantially improved
version of Lep-MAP (Lep-MAP2) was built (Rastas et al., 2015). Lep-MAP2 is based
on Lep-MAP with the following improvements: it can handle all types of genetic marker
data and it is capable of creating ultra-high-density genetic linkage maps.

• HighMap

HighMap was developed to construct high-density and high-quality maps from NGS data
in outcrossing populations (Liu et al., 2014). Here, the map is built in three steps: group-
ing, ordering, and genotyping correction. In grouping, recombination fractions and LOD
scores are calculated by a two-point analysis and the linkage phases are inferred using Wu
(2002), as in OneMap. The ordering and error genotyping corrections are done through
an iterative process. This process increases order accuracy and allows for the estimation
of map distances in the presence of missing data and genotyping errors. A combination of
statistical techniques, such as the SARF criterion (Falk, 1989), the annealing algorithm
(Thompson, 1984; Weeks and Lange, 1987), and the enhanced algorithm of Gibbs sam-
pling (Geman and Geman, 1987) are used to obtain the order and genetic distances. The
Gibbs sampler is a Markov Chain Monte Carlo algorithm and, in HighMap, it is used in
the multipoint analysis. The error correction strategy of SMOOTH (van Os et al., 2005)
and the k-nearest neighbor algorithm are used to correct genotyping errors and impute
missing genotypes.

• ASMap

ASMap (Taylor and Butler, 2017) is restricted to linkage map construction in F2,
backcross, DH, and RILs. It uses the efficient MSTmap algorithm (Wu et al., 2008) to
group and order large sets of markers. In grouping, MSTmap uses the minimum spanning
tree of a graph (Cheriton and Tarjan, 1976). In ordering, several strategies such as K-
opt, node-relocation, block-optimization (Wu et al., 2008), and EM algorithm (Dempster
et al., 1977) are used.

• Flipper

Flipper (Crane, 2017) was presented at the Plant and Animal Genome XXVI (PAG) Con-
ference. According to the author, Kruskal’s algorithm (Kruskal, 1956) was implemented
in the software to produce a minimal spanning tree of genetic markers. Furthermore, ad-
ditional heuristics allow for the correction of misplaced markers and has a rudimentary
QTL finder.

• Lep-MAP3

Lep-MAP3 (Rastas, 2017) constructs maps with low coverage sequencing data. It also
reduces mapping errors by modelling recombination interference and is capable of creating
maps using large data sets. It is memory efficient and it can simultaneously use data on
multiple full-sib families, F2, backcross, DH, and RILs. It is similar to earlier versions
(Lep-MAP and Lep-MAP2) but there are some differences. The main difference is that
the input genotype likelihoods are used in each step of the map’s construction. The main
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modules of the Lep-MAP3 workflow are: ParentCall2, Filtering2, SeparateChromosomes2,
JoinSingles2All, and OrderMarkers2. Grouping and ordering is done using the Separate-
Chromosomes2 and OrderMarkers2 modules. The SeparateChromosomes2 uses the method
of maximum likelihood to estimate the recombination fraction between markers. The
marker ordering is an interactive process and is up to 450x − 2000x faster than previous
versions. The OrderMarkers2 uses HMM (Lander and Green, 1987), ORDER, MERGE,
and POLISH algorithms.

• GUSMap

Sequencing data with low depth can lead to two kinds of missing data. The first is a
missing genotype when no alleles are found and the second consists of a heterozygous
classified as homozygous when only one of the parental allele is sequenced at a specific
locus (Dodds et al., 2015; Fragoso et al., 2016). The latter is considered as a genotyp-
ing error. This error increases the frequency of inferred recombinants and consequently
results in inflated linkage maps (Lincoln and Lander, 1992; Cartwright et al., 2007;
Cheema and Dicks, 2009). Several algorithms have been developed for imputing missing
genotypes and correcting erroneous genotypes (Spindel et al., 2013; Huang et al., 2014;
Fragoso et al., 2016). However, these algorithms have been developed for inbreeding
populations and are not applicable to outcrossing populations (full-sib family). Recently,
Bilton et al. (2018) developed a new statistical method based on HMM (Lander and
Green, 1987) for modeling low depth sequencing data in full-sib families in diploid species.
This methodology is implemented in GUSMap (Genotyping Uncertainty with Sequencing
data and linkage Mapping) software. Linkage groups are formed based on two-point re-
combination fractions and LOD scores from the EM algorithm (Dempster et al., 1977).
Marker ordering is performed using multidimensional scaling (MDS) approach (Preedy
and Hackett, 2016).

2.2.5 Objectives

Considering the importance of linkage maps and consequently of the mapping software
for the study of genetics, the main objectives here were: i) to provide useful information about
software tools with free licences developed in recent years, trying to help users to decide which
one to use and ii) to construct genetic linkage maps in different scenarios using some of these
software.

2.3 Material and Methods

2.3.1 Software Tools Description

The software with free licences considered were OneMap (Margarido et al., 2007),
Lep-MAP (Rastas et al., 2013), HighMap (Liu et al., 2014), Lep-MAP2 (Rastas et al., 2015),
ASMap (Taylor and Butler, 2017), Flipper (Crane, 2017), Lep-MAP3 (Rastas, 2017),
and GUSMap (Bilton et al., 2018). They were described in chronological order of development
according to user-friendliness (tutorial, graphs, forum search) and operating systems. Additional
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information such as availability, software status, version, and last update are presented in Table
A.2 in the appendix.

2.3.2 Construction of the Genetic Linkage Maps Using OneMap and Lep-MAP3

This study was done using simulations. For this purpose, two mapping populations
(inbred-based and outcrossing), with different marker types and missing data, were considered.
The simulations were performed using PedigreeSim (Voorrips and Maliepaard, 2012).

2.3.3 Simulation of Genotypes of F2 Population

In F2, a diploid species with three metacentric chromosomes of 100 centiMorgans (cM)
was considered. This population was constructed from two inbred lines and subsequent self-
fertilization (founders of population). The founders genomes were simulated considering 1, 000

biallelic markers (SNP) equally distributed along the three chromosomes. In addition, it was
considered a fixed distance between the markers of 0.3 cM. With this information and assuming
that no crossover interferences occurred, the gametes were produced and 200 individuals were
formed.

2.3.4 Simulation of Genotypes of Outcrossing Population

The outcrossing population (F1) population was constructed from the crossing of two
heterozygous individuals (founder of population). As there may be up to 18 patterns of segrega-
tion (Wu, 2002) (Table A.1), the founders genomes were simulated considering three different
situations. In the first, 1,000 biallelic markers (B3.7; D1.10; D2.15) (SNP) were considered.
In the second, there were 324 markers with 18 patterns of segregation containing fully infor-
mative markers (segregating 1:1:1:1) and partially informative markers (missing markers and
segregating 1:2:1, 3:1, and 1:1). The latter is a mixture of the first and second scenario, with
1,000 biallelic markers (B3.7; D1.10; D2.15) and 300 markers with the remaining 15 patterns,
totaling 1,300 markers. In all situations, the markers were equally distributed along the three
chromosomes. In addition, it was considered a fixed distance between the markers of 0.3 cM,
0.93 cM and 0.08 cM in the first, the second and the third scenario, respectively. In relation
to the genome structure (ploidy, absence of interference, properties of the chromosomes) and
population size, the same information from of the F2 population was considered.

2.3.5 Software Tools

In short, four scenarios were obtained: i) an F2 population with 1, 000 SNP markers,
ii) an F1 population with 1, 000 SNP markers, iii) an F1 population with 300 markers with 18

patterns of segregation, and iv) an F1 population with 1, 300 markers (1, 000 biallelic markers
and 300 markers with 15 patterns of segregation). Each scenario was simulated 100 times
considering 10% of missing data. Some software tools presented in this study were not used
due to some limitations that will be discussed later. Therefore, from these simulations, genetic
linkage maps were constructed using the software OneMap and Lep-MAP3:

• OneMap
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OneMap was evaluated in all scenarios totaling 400 linkage maps. The maps were con-
structed in the R environment (R Development Core Team, 2017) using several func-
tions implemented in version 2.1.1 of the the OneMap package. The simulated data was
converted to .raw format and imported using the pedsim2raw and read_onemap functions,
respectively. Before the map construction, two steps of filtration were performed. In
the first, the markers with redundant information were removed using the find_bins and
create_data_bins functions. In the second, the markers with Mendelian segregation de-
viations were identified using the test_segregation function. This function performs the
chi-square test using global alpha (α) of Bonferroni correction for multiple tests. With
the select_segreg function, markers without segregation deviations were selected. From
these results, the maps were constructed. The grouping of the markers was done using
the suggest_lod, twopts, make_seq, and group functions. The markers were grouped with
a maximum recombination fraction of 0.5 and a minimum LOD recommended by the sug-
gest_lod function. The ordering of the markers within each linkage group was done using
the MDS method (Preedy and Hackett, 2016) using the mds_onemap function. The
multipoint analysis based on HMM was also implemented in the mds_onemap function to
check the local order of the markers and to refine the map distance between adjacent mark-
ers. As the data was simulated considering the absence of interference, the recombination
fractions were transformed into distances using the Haldane mapping function (Haldane,
1919). The same functions were used in all scenarios, however, in F1 populations the
twopts function simultaneously estimated the recombination fractions and linkage phases
using the methodology proposed by Wu (2002).

• Lep-MAP3

Lep-MAP3 was evaluated in scenarios i and ii totaling 200 linkage maps. In both scenarios,
the simulated data was converted to the Variant Call Format (VCF) using the pedsim2vcf
function and imported using the ParentCall2 module. Markers with Mendelian segrega-
tion deviations or redundant markers were removed using Filtering2 and JoinIdenticalLGs
modules, respectively. The linkage groups were identified using SeparateChromosomes2
module and considering a maximum recombination fraction of 0.5 and minimum LOD of
6. Singular markers were assigned to existing linkage groups using JoinSingles2All module.
The markers were ordered within each linkage group using OrderMarkers module. The
recombination fractions were transformed into distances using Haldane mapping function
(Haldane, 1919).

2.3.6 Evaluation of results

The grouping, ordering, and lengths of the linkage maps were analyzed for all simula-
tions and all scenarios. In addition, the filtering, grouping, and ordering times were counted.
Barplots and boxplots were constructed to visualize the results. All these analyses were per-
formed in the R environment (R Development Core Team, 2017).
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2.4 Results and Discussion

2.4.1 Software Tools Description

2.4.1.1 OneMap

OneMap has two tutorials that teach step by step how to construct a genetic linkage
map in inbreeding and outcrossing populations. It has graphs that allow the visualization of
raw data, of the segregation test and of the markers’ order (heat maps). These graphs are
useful because they facilitate the analysis and some diagnostics about the maps. For example,
criteria and ordering algorithms provide approximate solutions and may contain errors. Thus,
the heat maps can be useful tools in the final diagnosis of the marker ordering in a linkage
group. The stable version is available on CRAN and the version under development is available
on GitHub. Both versions are provided for Mac, Linux and, Windows. It has been widely used
to construct genetic linkage maps in several species of plants and animals (e.g. Pereira et al.
(2013); Palaiokostas et al. (2015); Hoshino et al. (2016); Nugent et al. (2017); Murube
et al. (2019).

2.4.1.2 Lep-MAP, Lep-MAP2, and Lep-MAP3

Lep-MAP (Rastas et al., 2013), Lep-MAP2 (Rastas et al., 2015), and Lep-MAP2
(Rastas, 2017) have a small tutorial and a discussion forum open to the scientific community.
The forum is a useful tool because it allows an interaction between the developer and the
users. In addition, already answered questions can help other users. It is noted that doubts are
answered in a relatively short time. Java source code and documentation are publicly available
from sourceforge and the executables are provided for Linux. Note that all versions are widely
used in plants and animals (Shearman et al., 2015; Gutierrez et al., 2018; Christensen
et al., 2018; Bai et al., 2018; Jeffries et al., 2018; Littrell et al., 2018; Zou et al., 2019).

2.4.1.3 HighMap

HighMap (Liu et al., 2014) provides heat maps and haplotype maps which help users
during the construction of maps. In addition, the executables are provided for Mac, Linux and,
Windows. High-density genetic maps were constructed in soybean (Qi et al., 2014), cucumber
(Xu et al., 2015), watermelon (Shang et al., 2016), cotton (Jia et al., 2016), sorghum (Ji et al.,
2017), peas (Zheng et al., 2018), broccoli (Yu et al., 2019), and rubber trees (An et al., 2019).

2.4.1.4 ASMap

ASMap (Taylor and Butler, 2017) contains a suite of tools to assist in the rapid
diagnosis and repair of a constructed linkage map. In addition, an overview of the software and
an illustrative example showing the complete linkage map construction process are available. It
has been available a version on CRAN and the executables are provided for Mac, Linux, and
Windows. Although this software development is recent, there are already studies using this
tool. Amalraj et al. (2019) mapped the resistance of Phytophthora root rot and identified inde-
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pendent loci from cultivated (Cicer arietinum L.) and wild (Cicer echinospermum P.H. Davis)
chickpea. Ward et al. (2019) detected QTLs specific to shoot growth and to leaf elongation.

2.4.1.5 Flipper

In Flipper (Crane, 2017), the source code is hosted on GitHub, but the README file
does not have information on the configuration, installation, and operating instructions. Ac-
cording to the author, the executables are provided for MacOSX 10.11.6, Linux, and Windows7.

2.4.1.6 GUSMap

GUSMap (Bilton et al., 2018) is unique to sequencing data because it requires infor-
mation (number of reads) of the alleles. It contains a an extensive and detailed tutorial and a
suite of tools that assists in the construction of the map. As in OneMap, the stable version is
available on CRAN and the version under development is available on GitHub. In addition, the
executables are provided for Mac, Linux, and Windows.

2.4.1.7 Additional Considerations

The initial idea was to construir genetic linkage maps using all of the software tools
with free licenses previously presented in this study. However, Lep-MAP, Lep-MAP2, HighMap,
ASMap, Flipper, and GUSMap have not been tested because of some limitations that will be
presented below.

The previous two versions of Lep-MAP3 are available to users but we have decided to
evaluate only the most current and improved version. Although the HighMap has been used
recently, the site hosting the software is temporarily unavailable. According to Taylor and
Butler (2017), ASMap is restricted to linkage map construction in inbreeding population (F2,
BC, DH, and RILs). However, the software did not support the simulated F2 mapping pop-
ulation. The Flipper not have information on the installation and operating instructions. In
addition, there is no paper about the software and the only information was presented at the
XXVI PAG conference. And finally, the GUSMap, as was said previously, it requires depth
information. Depth and coverage information is not within the scope of this study, and conse-
quently, this software can not be included in the evaluations.

2.4.2 Genetic Linkage Maps

The objective of this study was not to compare the efficiency of these software tools, but
rather to describe their characteristics and to utilize them to construct maps, when possible. A
comparative study would be unfair, because each softwares’ tools have their own particularities,
which can have a different importance to users with distinct goals. For example, some researchers
may prefer faster software, while others are looking for software that has visualization tools or
that are easier to use. Furthemore, the scenarios presented here are only a small fraction of the
substantial number of possibilities, in which the performance of these software tools may differ.
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2.4.2.1 OneMap

In OneMap (Margarido et al., 2007), the genetic linkage maps were constructed using
the four simulated scenarios. This software has graphs that allow for the visualization of raw
data, the segregation test and the markers’ order (heat maps). Therefore, the first simulation
of each scenario was used to show these tools throughout the discussion.

Before the construction of the maps, data sets from all scenarios were analyzed. In the
first scenario, the markers and missing data are randomly distributed. In addition, all markers
are codominant (Figure 2.1). This was already expected because only SNPs were considered.
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Figure 2.1. Information about raw data (left) and type segregating of marker (right) in F2

population with 1,000 markers provided by OneMap.

For outcrossing populations, it is possible to make a graphical representation of the
types of markers (segregation pattern) and the number of markers by segregation pattern, fol-
lowing the notation proposed by Wu (2002). In the second scenario, the three types of biallelic
markers (B3.7, D1.10, and D2.15) are equally frequent in the genome (Figures 2.2). In the third
scenario, the 18 types are present and equally frequent in the genome (Figure 2.3). And in
the last scenario, the 18 types are also present. However, the biallelic markers are in greater
numbers and the remaining types are less numerous (Figure 2.4).

In all scenarios, no redundant markers or markers with segregation distortion were
found. Therefore, the maps were constructed considering all simulated markers. OneMap uses
the bin strategy to eliminate these redundant markers. First, markers with the same genotypic
information are grouped into bins. Subsequently, only the most representative marker of each
bin is kept in the data set. Once the map is constructed, they can be added again.

The linkage groups were formed according to estimates of recombination fractions and
linkage phases (F1 only). In four scenarios, three groups were formed by all simulations. In
the first scenario, all the markers were assigned to a group. In contrast, in the remaining
scenarios some markers were not assigned to any group and it is also possible to observe a
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Figure 2.2. Types of segregation pattern (left) and the number of markers by segregation
pattern (right) in F1 with 1,000 markers provided by OneMap.
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Figure 2.3. Types of segregation pattern (left) and the number of markers by segregation
pattern (right) in F1 with 324 markers provided by OneMap.

higher interquartile amplitude in comparison to first scenario (Figure 2.5). However, OneMap
has additional tools and single markers can be reallocated.

The ordering of markers within linkage groups can be diagnosed using heat maps.
They are made by plotting the recombination matrix based on a color scale, in which, cool
colors (blue areas) represent weak linkage and hot colors (red areas) represent strong linkage.
Hot colors are expected to be concentrated along the diagonal while the cold colors fall far from
it. In this study, this tool was useful to evaluate the results, because, in all scenarios, some
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Figure 2.4. Types of segregation pattern (left) and the number of markers by segregation
pattern (right) in F1 with 1,300 markers provided by OneMap.
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Figure 2.5. Boxplots of the number of markers in each linkage group using OneMap. Scenario
1: F2 population with 1,000 markers. Scenario 2: F1 population with 1,000 markers. Scenario
3: F1 population with 324 markers. Scenario 4: F1 population with 1,300 markers. The x-axis
corresponds to the linkage groups and the y-axis corresponds to the number of markers.

markers are misplaced. These markers were removed and repositioned again to try to improve
the ordering, always considering the ones with smaller distances and higher likelihoods (Figures
2.6 and 2.7). The length of the linkage groups varied in all scenarios. However, the estimated
values approximated the simulated values (Figure 2.8).

In relation to the filtering and grouping, it is noticed that the larger the number of
markers the longer the time needed for the construction of these steps. In relation to the
ordering, the first scenario had the shortest time. In the other scenarios with F1 populations,
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Figure 2.6. Heat Map generated by OneMap to diagnose the order of markers within the
linkage group in F2 population with 1,000 markers (left) and F1 population with 1,000 markers
(right). In x and y axes the markers are plotted according to established order. In the right, the
blank cells represent combinations of markers whose recombination fraction can not be estimated
based on only two markers (two-point test).
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Figure 2.7. Heat Map generated by OneMap to diagnose the order of markers within the
linkage group in in F1 population with 324 markers (left) and F1 population with 1,300 markers
(right). In x and y axes the markers are plotted according to established order. The blank cells
represent combinations of markers whose recombination fraction can not be estimated based on
only two markers (two-point test).

the time also varied according to the number of markers. For example, the third scenario
with 324 markers presented the shortest ordering time while the fourth scenario with 1,300
markers presented the longer ordering time (Figure 2.9). In F1 populations, OneMap initially
estimates the recombination frequencies and the linkage phases of the markers. Subsequently,
the order, distances and linkage phases are checked using a multipoint analysis based on HMM
(Margarido et al., 2007). The higher the number of individuals, the greater the number of
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Figure 2.8. Boxplots of the lengths of the linkage groups using OneMap. Scenario 1: F2

population with 1,000 markers. Scenario 2: F1 population with 1,000 markers. Scenario 3: F1

population with 324 markers. Scenario 4: F1 with 1,300 markers. The x-axis corresponds to the
linkage groups and the y-axis corresponds to the lengths of groups.

factors used to calculate the likelihood, and the smaller the amount of information provided
by the markers, the greater the number of hidden states that must be inferred. Therefore,
depending on the number of individuals and the markers information that steps may take some
time (Lander and Green, 1987).
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Figure 2.9. Boxplots of the processing time for filtering (A), grouping (B) and ordering (C)
using OneMap. Scenario 1: F2 population with 1,000 markers. Scenario 2: F1 population
with 1,000 markers. Scenario 3: F1 population with 324 markers. Scenario 4: F1 with 1,300
markers.The x-axis corresponds to the scenarios and the y-axis corresponds to the times in
seconds.
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2.4.2.2 Lep-MAP3

Lep-MAP3 (Rastas, 2017) is a software capable of analyzing different populations
(inbreeding and outcrossing) and different marker types (SNP and microsatellites). However,
only the F2 and F1 scenarios with 1, 000 markers were used (first and second scenario).

Like OneMap, Lep-MAP3 also groups the identical markers and leaves only the most
representative marker of each group in the data set. Neither redundant markers or markers with
segregation distortion were found. Redundant markers have the same genotypic information
as other markers. They do not increase the information but increase the computational effort
during the construction of the map. Therefore, they can be removed (Liu et al., 2014). Generally,
markers with segregation distortion should also be eliminated from the data set because the
models for the map construction are based on Mendel’s laws. There are several studies about
the effect of markers with segregation distortion. In some studies, the presence of these markers
affect the order and length of the maps (Lorieux et al., 1995a,b; Xu et al., 1997; Vogl and
Xu, 2000). In others, these markers have no significant effect on map quality (Hackett and
Broadfoot, 2003). These results may be specific to the data set. Therefore, methods that
identify these markers are useful because they give the researcher the opportunity of making
their own decision.

In first scenario, 60% of the simulations formed three groups, 34% formed two groups,
and 6% formed one group. In the second scenario, 70% of the simulations formed three groups,
24% formed two groups, and 6% formed one group (Figure 2.10). In grouping, the linkage
groups represent chromosomal segments or entire chromosomes. In real populations, the markers
detected are not always uniformly distributed along the chromosomes. In addition, the frequency
of recombination is not equal along chromosomes. In these cases, probably the number of linkage
groups and chromosomes will be different (Collard et al., 2005).
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Figure 2.10. The number of linkage groups obtained in each simulation using Lep-MAP3.
Scenario 1: F2 population with 1,000 markers. Scenario 2: F1 population with 1,000 markers.

The number of markers within each linkage group are shown in (Figure 2.11). In
general, the first scenario had a smaller interquartile amplitude and the second scenario had a
higher interquartile amplitude. This occurred because some markers were not assigned to any
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group. In Lep-MAP3 it is also possible to relocate these markers into a group. This is done
using the JoinSingles2Identicals and JoinSingles2All modules.
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Figure 2.11. Boxplots of the number of markers in each linkage group using Lep-MAP3.
Scenario 1: F2 population with 1,000 markers. Scenario 2: F1 population with 1,000 markers.
The x-axis corresponds to the linkage groups and the y-axis corresponds to the number of
markers.

The length of the linkage groups varied in two scenarios. In the first scenario, the
variation between the linkage groups is higher. In the second scenario, the variation between
the groups is smaller, but is larger when compared to the first scenario. Although there are some
atypical values in both scenarios, the estimated groups presented values close to the simulated
groups indicating a good ordering (Figure 2.12).
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Figure 2.12. Boxplots of the lengths of the linkage groups using Lep-MAP3. Scenario 1:
F2 population with 1,000 markers. Scenario 2: F1 population with 1,000 markers. The x-axis
corresponds to the linkage groups and the y-axis corresponds to the lengths of groups.

Good marker ordering can be associated with multipoint estimates. OneMap and Lep-
MAP3 used HMM based multipoint estimates to check the local order of markers and also to
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refine the map distance between adjacent markers. According to Lander and Green (1987),
multipoint estimates are better than two-point estimates because they avoid the propagation of
errors generated by a lack of information between some marker combinations. This advantage is
especially important when the data set has a mixture of dominant and codominant markers. In
this case, the HMM allows for more informative markers to provide information to the others.
In Mollinari et al. (2009), methods with approaches of the multipoint type showed better
performance in different scenarios.

The processing time of each step was not very different between the scenarios (Figure
2.13). The longest step was the ordering. The ordering time in scenario 1 of Lep-MAP3 and
OneMap were similar. However, for scenario 2, the ordering time of OneMap was notably higher.
For example, OneMap took approximately 8 hours to order the markers while Lep-MAP3 took
approximately 7 minutes. The algorithms implemented in Lep-MAP3 are up to 450 to 2, 000

times faster than previous versions. According to Rastas (2017), these algorithms can order
20, 000 markers in about 1 hour using a single core.
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Figure 2.13. Boxplots of the processing time for filtering (A), grouping (B) and ordering (C)
using Lep-MAP3. Scenario 1: F2 population with 1,000 markers. Scenario 2: F1 population
with 1,000 markers. The x-axis corresponds to the scenarios and the y-axis corresponds to the
times in seconds.

2.5 Conclusions

• Although software tools have characteristics that make them unique, they also share many
methodologies and algorithmic approaches.

• OneMap and Lep-MAP3 were efficient in the construction of the genetic linkage maps
considering the different scenarios.

• The results may be different if other scenarios had been considered. In addition, different
researchers may obtain different results. Therefore, a comparative study here would be
unfair.
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APPENDIX

Table A.1. Wu (2002) Table: Possible marker genotype cross combinations and observed
marker band patterns and their offspring.

Parent Offspring
Cross type Cross Observed band Remark Observed bands Segregation No. phenotypes

A 1 ab× cd ab× cd Asymmetry ac, ad, bc, bd 1 : 1 : 1 : 1 4
2 ab× ac ab× ac Asymmetry a, ac, ba, bc 1 : 1 : 1 : 1 4
3 ab× co ab× c Asymmetry ac, a, bc, b 1 : 1 : 1 : 1 4
4 ao× bo a× b Asymmetry ab, a, b, o 1 : 1 : 1 : 1 4

B B1 5 ab× ao ab× a Asymmetry ab, 2a, b 1 : 2 : 1 3
B2 6 ao× ab a× ab Asymmetry ab, 2a, b 1 : 2 : 1 3
B3 7 ab× ab ab× ab Symmetry a, 2ab, b 1 : 2 : 1 3

C 8 ao× ao a× a Symmetry 3a, o 3 : 1 2
D D1 9 ab× cc ab× c Asymmetry ac, bc 1 : 1 2

10 ab× aa ab× a Asymmetry a, ab 1 : 1 2
11 ab× oo ab× o Asymmetry a, b 1 : 1 2
12 bo× aa b× a Asymmetry ab, a 1 : 1 2
13 ao× oo a× o Asymmetry a, o 1 : 1 2

D D2 14 cc× ab c× ab Asymmetry ac, bc 1 : 1 2
15 aa× ab a× ab Asymmetry a, ab 1 : 1 2
16 oo× ab o× ab Asymmetry a, b 1 : 1 2
17 aa× bo a× b Asymmetry ab, a 1 : 1 2
18 oo× ao o× a Asymmetry a, o 1 : 1 2
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