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RESUMO 

Considerações práticas para a imputação de genótipos e predição genômica aplicada a 

múltiplos caracteres e ambientes em um programa de melhoramento de milho tropical 

 

A disponibilidade de marcadores moleculares cobrindo todo o genoma, como os 

polimorfismos de nucleotídeos individuais (single nucleotide polymorphism - SNP), aliada 

aos recursos computacionais para o processamento de grande volume de dados, tornou 

possível o desenvolvimento de uma abordagem de melhoramento assistido para caracteres de 

herança quantitativa, conhecida como seleção genômica. Na última década a seleção 

genômica tem sido implementada com sucesso em uma enorme variedade de espécies animais 

e vegetais, comprovando suas vantagens sobre a seleção assistida por marcadores tradicional e 

a seleção baseada apenas em informações de parentesco. No entanto, alguns desafios práticos 

ainda podem limitar a implementação deste método em um programa de melhoramento de 

plantas. Como exemplos, citam-se o custo da genotipagem de alta densidade de um grande 

número de indivíduos e a aplicação de modelos mais complexos, que consideram múltiplos 

caracteres e ambientes. Dessa forma, este estudo teve como objetivos: i) investigar estratégias 

de identificação de SNPs e imputação que possibilitem uma genotipagem de alta densidade 

economicamente viável; e ii) avaliar a aplicação de modelos multivariados de seleção 

genômica para múltiplos caracteres e ambientes. Este trabalho foi divido em dois capítulos. 

No primeiro capítulo, comparou-se a acurácia de quatro métodos de imputação: NPUTE, 

Beagle, KNNI e FILLIN, usando dados de genotipagem por sequenciamento (genotyping-by-

sequencing – GBS) de 1.060 linhagens de milho, que foram genotipadas usando diferentes 

profundidades de cobertura. Além disso, duas estratégias de identificação de SNPs e 

imputação foram avaliadas. Os resultados indicaram que a combinação de estratégias de 

detecção de polimorfismos e imputação pode possibilitar uma genotipagem economicamente 

viável, resultando em maiores acurácias de imputação. No segundo capítulo, modelos 

multivariados de seleção genômica, para múltiplos caracteres e ambientes, foram comparados 

com suas versões univariadas. Dados de 415 híbridos avaliados na segunda safra em quatro 

anos (2006-2009) para os caracteres produtividade de grãos, número de espigas e umidade 

foram utilizados. Os genótipos dos híbridos foram inferidos in silico com base nos genótipos 

das linhagens parentais usando marcadores SNPs obtidos via GBS. No entanto, informações 

genotípicas estavam disponíveis para apenas 257 híbridos, de modo que foi necessário fazer 

uso da matriz H, a qual combina informações de parentesco genético baseadas em pedigree e 

marcadores. Os resultados obtidos demonstraram que o uso de modelos de seleção genômica 

para múltiplos caracteres e ambientes pode aumentar a capacidade preditiva, especialmente 

para predizer a performance de híbridos nunca avaliados em qualquer ambiente.  

 

Palavras-chave: Seleção genômica; Dados perdidos; Modelos multivariados; Genotipagem 

por sequenciamento 
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ABSTRACT 

Practical considerations for genotype imputation and multi-trait multi-environment 

genomic prediction in a tropical maize breeding program 

 

The availability of molecular markers covering the entire genome, such as single 

nucleotide polymorphism (SNP) markers, allied to the computational resources for processing 

large amounts of data, enabled the development of an approach for marker assisted selection 

for quantitative traits, known as genomic selection. In the last decade, genomic selection has 

been successfully implemented in a wide variety of animal and plant species, showing its 

benefits over traditional marker assisted selection and selection based only on pedigree 

information. However, some practical challenges may still limit the wide implementation of 

this method in a plant breeding program. For example, we cite the cost of high-density 

genotyping of a large number of individuals and the application of more complex models that 

take into account multiple traits and environments. Thus, this study aimed to i) investigate 

SNP calling and imputation strategies that allow cost-effective high-density genotyping, as 

well as ii) evaluating the application of multivariate genomic selection models to data from 

multiple traits and environments. This work was divided into two chapters. In the first 

chapter, we compared the accuracy of four imputation methods: NPUTE, Beagle, KNNI and 

FILLIN, using genotyping-by-sequencing (GBS) data from 1060 maize inbred lines, which 

were genotyped using different depths of coverage. In addition, two SNP calling and 

imputation strategies were evaluated. Our results indicated that combining SNP-calling and 

imputation strategies can enhance cost-effective genotyping, resulting in higher imputation 

accuracies. In the second chapter, multivariate genomic selection models, for multiple traits 

and environments, were compared with their univariate versions. We used data from 415 

hybrids evaluated in the second season in four years (2006-2009) for grain yield, number of 

ears and grain moisture. Hybrid genotypes were inferred in silico based on their parental 

inbred lines using SNP markers obtained via GBS. However, genotypic information was 

available only for 257 hybrids, motivating the use of the H matrix, which combines genetic 

information based on pedigree and molecular markers. Our results demonstrated that the use 

of multi-trait multi-environment models can improve predictive abilities, especially to predict 

the performance of hybrids that have not yet been evaluated in any environment. 

 

Keywords: Genomic selection; Missing data; Multivariate models; Genotyping-by-

sequencing 
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1 GENERAL INTRODUCTION 

 

The leveraging of heterosis has been extremely successful in affording continuous 

improvement in commercial maize grain yield. Since the beginning of the hybrid era, maize 

breeders achieved increases in grain yield that are unmatched among other cereals or oil seeds 

(Lee and Tracy 2009; Hallauer and Miranda Filho 2010). Classical maize breeding consists of 

crossing lines from different heterotic groups and measuring phenotypic performance of 

hybrids in multiple environment trials. However, phenotyping has become one of the most 

costly and laborious stages in a breeding program. Thus, genomic prediction stands out in 

virtue of its ability to reduce the time required to complete a breeding cycle, to enable an 

earlier and more efficient selection of superior genotypes, and to reduce phenotyping costs, 

representing a promising tool for use in maize breeding programs (Crossa et al. 2017; Wang 

et al. 2018). 

Genomic prediction was first proposed in 2001 by Meuwissen et al. Since then, it has 

been applied to a variety of crops and routinely practiced in breeding programs of major seed 

companies, especially for maize and soybean (Bernardo 2016). The key idea of this method is 

the simultaneous prediction of the effects of a large number of markers spread throughout the 

genome, in order to ensure that every quantitative trait locus (QTL) affecting a trait be in 

linkage disequilibrium (LD) with at least one marker. This method remained unexplored for a 

few years, because the molecular markers available at that time were limited and obtained at 

high costs. However, the emerging of next-generation sequencing technology presented the 

possibility of obtaining molecular markers densely distributed across the genome, using high-

throughput techniques such as genotyping-by-sequencing (GBS) (Elshire et al. 2011). 

Feature of GBS data are the high rates of missingness and heterozygote undercalling, 

prompting the use of approaches to impute these missing genotypes. In this scenario, several 

studies have assessed the efficiency of imputing missing data, using different methods and 

strategies (Howie et al. 2009; Cleveland et al. 2011; Hickey et al. 2012; Swarts et al. 2014; 

Bouwman et al. 2014; Nazzicari et al. 2016; Gonen et al. 2018). Besides that, the cost of 

genotyping many samples at high density is still high, representing a barrier to small or public 

plant breeding programs to routinely implement genomic prediction. Therefore, it is necessary 

to adopt low cost genotyping strategies to solve this limitation. For species for which 

genotyping chips are available, combining data from high and low density SNP arrays is a 

cost effective strategy (Jacobson et al. 2015; Hickey et al. 2015; Gorjanc et al. 2017). When 
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genotyping chips are not available, the GBS technology allows breeders to adjust the amount 

of retrieved information and its cost by choosing different restriction enzymes, regulating 

sequencing depth and the level of multiplexing (Elshire et al. 2011; Deschamps et al. 2012; 

Poland and Rife 2012). 

Currently, the majority of genomic prediction models applied are univariate ones. 

However, in breeding programs it is common to evaluate several traits simultaneously, 

because elite genotypes should concentrate favorable alleles for several traits of interest. The 

existence of genetic correlation between quantitative traits indicates that measures in one trait 

provide indirect information about other traits, a fact that can be used to improve the 

predictive ability of genomic selection (Calus and Veerkamp 2011; Jia and Jannink 2012; 

Guo et al. 2014; Dos Santos et al. 2016; Marchal et al. 2016; Lyra et al. 2017; Covarrubias-

Pazaran et al. 2018). Besides the correlation between traits, considering a model that also 

accommodate the genotype by environment interaction, is also an important issue to plant 

breeders, since genotypes are evaluated for multiple traits in multiple environments. The types 

of model that jointly take into account multiple traits and environments are referred to as 

multi-trait multi-environment (MTME) models. Nonetheless, few studies have simultaneously 

assessed multiple traits and multiple environments for genomic selection purposes 

(Montesinos-López et al. 2016; Gomes Torres et al. 2018; Ward et al. 2019). 

The complexity of applying genomic prediction in plant breeding programs arises at 

different levels and is influenced by several factors. In order to investigate some of the 

challenges faced by breeders, when applying genomic prediction to a maize breeding 

program, this work is the result of a partnership among: Embrapa Milho e Sorgo (Sete 

Lagoas, MG, Brazil), the Laboratory of Bioinformatics Applied to Bioenergy at ESALQ/USP 

("Luiz de Queiroz" College of Agriculture, University of São Paulo - Piracicaba, SP, Brazil) 

and the Sweet Corn Genomics and Breeding at University of Florida, Gainesville, FL, USA. 

In this context, we conducted two studies that are herein organized in two chapters. In the first 

chapter, we aimed to evaluate different SNP calling and imputation strategies using GBS data 

of maize lines from the Embrapa maize breeding program. Subsequently, chapter 2 focuses on 

applications of multi-trait multi-environment genomic prediction models to second season 

maize hybrids, which also originated from the Embrapa breeding program. 
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2 SNP CALLING AND IMPUTATION STRATEGIES FOR COST EFFECTIVE 

GENOTYPING IN A TROPICAL MAIZE BREEDING PROGRAM 

 

Abstract 

Genotyping-by-sequencing (GBS) datasets typically feature high rates of missingness 

and heterozygote undercalling, prompting the use of data imputation. We compared the 

accuracy of four imputation methods: NPUTE, Beagle, KNNI and FILLIN, using GBS data of 

maize inbred lines, genotyped using different multiplexing levels. Two strategies for SNP 

calling and genotype imputation were evaluated. First, only lines genotyped through 96-plex 

were used for SNP discovery, whereas both 96 and 384-plex were simultaneously used in the 

second strategy. In the first genotype imputation strategy, only the 96-plex lines were 

imputed, and next the remaining lines were appended (96-plex-imputed + 384-plex) and then 

imputed. In the second imputation strategy, we jointly imputed both datasets. We also 

investigated the impacts of including heterozygous genotypes and distinct rates of missing 

genotypes per locus. The different SNP-calling strategies and percentage of missing data did 

not substantially affect the imputation accuracy. However, the different imputation strategies 

exhibited a sizable effect. Generally, imputations were less accurate for heterozygotes. The 

scenario 96-plex-imputed + 384-plex showed accuracies similar to the 96-plex scenario. 

Beagle and NPUTE produced the highest accuracies. Our results indicate that combining 

SNP-calling and imputation strategies can enhance cost-effective genotyping, resulting in 

higher imputation accuracies. 

 

Keywords: Genotyping-by-sequencing; Unobserved genotype imputation; Beagle; KNNI; 

FILLIN; NPUTE 

 

2.1 Introduction  

 

The emergence of next-generation sequencing technology presented the possibility of 

obtaining molecular markers densely distributed across the genome, using high-throughput 

techniques such as genotyping-by-sequencing (GBS) (Elshire et al. 2011). Making use of 

these genome-wide genotyping platforms, genomic selection and genome-wide association 

studies offer great potential to accelerate and enhance selection efficiency of plant breeding 

programs (Desta and Ortiz 2014; Chang et al. 2018; Dias et al. 2018; Faville et al. 2018; Haile 

et al. 2018; Gerard et al. 2018; Kayondo et al. 2018). However, the costs of high-density 

genotyping for large numbers of individuals are still infeasible, representing a barrier to a 

more widespread adoption of these tools. Because the accuracy of genomic selection and 

power of association studies usually increase with increasing numbers of individuals and 

density of markers, low-cost genotyping strategies have to be adopted to address resource 

limitations (Jacobson et al. 2015; Han et al. 2018; Cericola et al. 2018).  
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The adoption of genomic selection in a maize breeding program allows breeders to 

genotype elite lines and to predict the performance of all possible hybrids, even if they are not 

phenotypically evaluated. This strategy reduces the costs and labor involved in field trials and 

can increase genetic gains. In any case, cost effective genotyping is crucial. A feature of GBS 

data are the high rates of missingness and heterozygote undercalling, which vary according to 

the kind of population and multiplexing level. Several studies have reported the efficiency of 

imputing missing data, using different methods and strategies (Howie et al. 2009; Cleveland 

et al. 2011; Hickey et al. 2012; Swarts et al. 2014; Bouwman et al. 2014; Nazzicari et al. 

2016; Gonen et al. 2018). An effective strategy involves genotyping some of the individuals 

at higher marker density, then using these high-density data to impute larger numbers of 

individuals genotyped at lower marker density. Genomic selection studies adopting this 

approach reported increases in the predictive accuracy (Jacobson et al. 2015; Gorjanc et al. 

2017a, b). For species for which genotyping chips are available, as is the case of economically 

important animals and some crops, combining data from high and low density SNP arrays is a 

cost effective strategy (Jacobson et al. 2015; Hickey et al. 2015; Gorjanc et al. 2017b). When 

genotyping chips are not available or their use is prohibitive, the GBS technology allows 

breeders to adjust the amount of retrieved information and its cost in different ways (Gorjanc 

et al. 2017b). For instance, choosing different restriction enzymes, regulating sequencing 

depth and the level of multiplexing (Elshire et al. 2011; Deschamps et al. 2012; Poland and 

Rife 2012). However, to the best of our knowledge, no studies have yet empirically 

investigated the combined use of SNP calling and imputation strategies to improve GBS data 

quality. 

There are several imputation methods available, but most of them were developed for 

humans (Howie et al. 2009; Browning and Yu 2009; Liu et al. 2013). However, humans are 

highly heterozygous, obligate outcrossers, show little inbreeding and much less structural 

variation than that observed in crop plants. These factors make the imputation methods 

designed for humans not necessarily optimized for use in crop systems. For this reason, it is 

worthwhile to compare different imputation methods, which may or may not allow for 

heterozygous genotypes. Situations in breeding programs where there are genotypic datasets 

with varying levels of multiplexing and heterozygosity are increasingly common. There is 

therefore scientific and practical interest in gaining knowledge about how to better explore 

such datasets in order to achieve high imputation accuracies. 
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In this paper, we compared the imputation accuracy of four imputation methods: 

NPUTE (Roberts et al. 2007), Beagle (Browning and Browning 2007), K-nearest neighbors 

imputation (KNNI) (Troyanskaya et al. 2001) and Fast Inbreed Line Library ImputatioN 

(FILLIN) (Swarts et al. 2014); which are well known algorithms implemented in freely 

available software libraries. We imputed missing genotypes from GBS data of maize inbred 

lines, genotyped using different levels of multiplexing per sequencing lane. We evaluated 

different SNP calling strategies in order to better explore the low and high multiplexing levels 

of our dataset. Because this dataset represents a panel of maize inbred lines mostly in final 

stages of the breeding program, we expected that these lines were homozygous for the 

majority of loci. However, a few of those lines were in initial stages of the breeding program 

and could thus have higher heterozygosity rates. Hence, we also evaluated the impact of 

including heterozygous genotypes on imputation accuracy. The main objective of this study 

was to evaluate different SNP calling and imputation strategies in a real maize breeding 

program scenario. 

 

2.2 Materials and methods  

 

2.2.1 Experimental data  

 

Data used in this study came from a collection of 1060 maize inbred lines from the 

Embrapa Maize and Sorghum breeding program. These lines represent dent (34%) and flint 

(51%) heterotic groups, as well as another group – here called group C (15% of the lines), 

which is unrelated to both dent and flint sources. We performed DNA extraction from young 

leaves based on the cetyl trimethylammonium bromide method (Saghai-Maroof et al. 1984). 

DNA samples were quantified using the Fluorometer Qubit® 2.0, following the 

manufacturer’s instructions (Life TechnologiesTM, USA). Samples were also evaluated on 1% 

agarose gel in Tris acetate-EDTA buffer, stained with GelRedTM (Biotium, USA) and 

recorded under UV light in the Imager Gel Doc L-PIX (Loccus Biotecnologia, Brazil). 

Genotyping-by-sequencing (GBS) was carried out at the Genomic Diversity Facility at 

Cornell University (Ithaca, NY, USA) using the standard GBS protocol (Elshire et al. 2011) 

with the restriction enzyme ApeKI. The inbred lines were split into two groups: i) 680 lines 

genotyped using 96 samples per sequencing lane (HiSeq2500 - 1 x 100bp); and ii) 380 lines 

genotyped with 384 samples per lane (NextSeq500 - 1 x 90bp). We thus expected a larger 
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number of reads per sample in the first group. Tags were aligned to the B73 reference genome 

(AGPv3) (Law et al. 2015) using the Bowtie2 aligner (Langmead and Salzberg 2012). Then, 

Single Nucleotide Polymorphisms (SNPs) were called using the GBSv2 Discovery Pipeline, 

available in the software TASSEL v. 5.2.28 (Glaubitz et al. 2014), using different strategies as 

shown below. 

 

2.2.2 SNP calling strategies 

 

We evaluated different SNP calling strategies in order to better explore the low and 

high multiplexing levels of our dataset. In our first strategy, denoted as SNP calling strategy I, 

we ran the Discovery SNP Caller Plugin using only the 680 lines genotyped with 96 samples 

per sequencing lane. In this scenario only the lines with higher depth of coverage, which have 

less missing data and lower genotyping error probability, were used for SNP discovery. We 

thus expected this to be a set of better quality SNPs, with greater power of detection and less 

false positives. Next, we ran the Production SNP Caller Plugin with all 1060 lines. By doing 

so, all lines were effectively genotyped, but only for the loci detected in the first set. For SNP 

calling strategy II, we ran the Discovery and Production SNP Caller Plugins combining both 

the high and low multiplexing sets of lines. This strategy was likely to affect the number and 

quality of discovered SNPs, because we included lines genotyped with 384 samples per 

sequencing lane throughout the SNP discovery step. Finally, we evaluated the descriptive 

statistics generated for each discovered marker and applied filters for Minor Allele Frequency 

(MAF) less than 5% and inbreeding coefficient less than 0.8. Only SNPs that passed both 

filters were used for further analyses. 

 

2.2.3 Imputation methods   

 

We performed the subsequent imputation analyses using the filtered datasets from the 

two competing SNP calling strategies. We evaluated four imputation methods: i) NPUTE 

(Roberts et al. 2007), which is based on the similarities between haplotypes of different 

individuals for the same genomic region. Different window imputation sizes were tested for 

each chromosome, and the windows with higher accuracies were chosen; ii) Beagle 

(Browning and Browning 2007), which was originally developed for human genetic studies, 

but also presents a wide application in animal and plant genetics (Law et al. 2015; Nazzicari 
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et al. 2016). This method infers haplotypes and imputes missing alleles both with known and 

unknown linkage phase, using a stochastic procedure based on Hidden Markov Models 

(HMM) to find the most likely haplotype pair for each individual. The method works 

iteratively using an expectation-maximization (EM) approach; iii) K-nearest neighbors 

imputation – KNNI (Troyanskaya et al. 2001), which is a method based on the weighted 

average of the k closest markers; iv) Fast Inbreed Line Library ImputatioN – FILLIN (Swarts 

et al. 2014), an imputation method optimized for inbred populations implemented in the 

software TASSEL v. 5 (Glaubitz et al. 2014). It is based on haplotype reconstruction around 

recombination break points. Imputation is carried out in two steps: first, the inference of 

haplotype takes place (FILLINFindHaplotypesPlugin), followed by imputation of missing 

data based on the resulting haplotypes (FILLINImputationPlugin). 

 

2.2.4 Imputation scenarios  

 

We initially cleaned the two datasets by removing indels and non-biallelic markers. 

Next, we used two contrasting approaches to compare the influence of heterozygous 

genotypes, by either keeping or removing any non-homozygous genotype calls. Because our 

dataset contains a collection of maize inbred lines mostly in final stages of the breeding 

program (F6 – F7), we expected that these lines were homozygous for the majority of locus. 

However, a few of those lines were in initial stages of inbreeding (F3 – F4) and could thus 

have higher heterozygosity rates (up to 25% and 12.5%, respectively). 

For each of these scenarios, we then evaluated two different imputation strategies to 

leverage the varying levels of multiplexing. Towards this end, we first imputed only the 680 

lines genotyped with 96 samples per sequencing lane. We expected that the imputation 

accuracy of this dataset would be higher, because these lines have higher depth of coverage. 

Later we appended to these imputed data the remaining 380 lines, which were genotyped with 

384 samples per sequencing lane, and finally performed the imputation of the remaining 

missing data. The competing strategy consisted of jointly imputing the high and low 

multiplexing datasets in a single step.  

In addition to the imputation strategies, we aimed to evaluate the impacts of the rate of 

missing data per marker on the imputation accuracies. Then, we filtered the SNP data to have 

a maximum of 10, 20, 50 or 80% missing data per marker, generating four sub-datasets. We 

used these four sub-datasets, in addition to the unfiltered dataset, to perform the imputation 
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analyses. For each of these datasets, we randomly introduced an additional 10% missing 

genotypes, based on which imputation accuracy could be measured. All the SNP calling and 

imputation strategies are summarized in Figure 1.  

 

 

 

Figure 1 Summary of (A) SNP calling and (B) Imputation strategies. Blue color indicate 

SNP calling strategy I, whereas gray color indicate SNP calling strategy II. The imputation 

strategies showed in B were applied to all the four imputation methods evaluated. MAF = 

minor allele frequency. F = inbreeding coefficient. Het = heterozygous. NF = not filtered 
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2.2.5 Imputation accuracy and computational time 

 

For each imputation scenario, we used the artificial missing genotypes to measure the 

overall imputation accuracy and the accuracy for each genotype class. The imputation 

accuracy was computed as the proportion of correct imputation, measured as the number of 

correctly imputed missing data divided by the total number of artificially missing data points.  

We also measured the computational time required for imputation to be completed in 

each analysis as an indicator of the software relative performance. To ensure consistency, all 

jobs were separately submitted to the same computing platform, a multi node server with two 

Intel® Xeon® E5-2650 v4 @ 2.20 GHz CPUs, with a total of 48 threads, and 256 GB of 

RAM.  

 

2.2.6 Software 

 

We used the software TASSEL v.5.2.28 (Glaubitz et al. 2014) and the open-source 

environment for statistical programming R (R Core Team, 2018) for data handling, editing, 

summarizing results and figure design. We ran the KNNI method in R using the function 

KNNIcatimpute from the R package Scrime (Schwender and Fritsch 2015). The Beagle 

imputation method is implemented in the Beagle software version 4.1 (Browning and 

Browning 2016) and was run using default parameters. We used the TASSEL v.5.2.28 

(Glaubitz et al. 2014) plugin FILLINFindHaplotypesPlugin followed by 

FILLINImputationPlugin to perform the imputation procedure using the FILLIN algorithm 

(Swarts et al. 2014), considering the options –accuracy and –proSitesMask to calculate the 

accuracy. For the NPUTE method we used the NPUTE software v.1 (Roberts et al. 2007).  

 

2.3 Results 

 

2.3.1 Genotypic data   

 

Using our SNP calling strategy I, i.e., with only the 680 lines with higher depth of 

coverage for SNP discovery, we found 1,227,281 SNPs. We initially removed SNPs that did 

not pass the MAF and inbreeding coefficient filters, generating 475,253 SNPs (Figure 2). 

Comparatively, we found 1,116,281 SNPs with our SNP calling strategy II, i.e., using all the 



24 

 

 

1060 lines with high and low depths of coverage for SNP discovery. We again removed SNPs 

with the same filtering criteria, resulting in 444,409 SNPs (Figure 2). As expected, the 

number of SNPs found with SNP calling strategy II was slightly smaller, possibly due to the 

lower detection power with this higher multiplexing dataset. The mean depth of coverage was 

3.04 and 0.77 reads per locus per sample, for the lines genotyped using 96 and 384 samples 

per sequencing lane, respectively. The number of markers found per chromosome and missing 

data per locus for each SNP calling strategy are in Supplementary Figures 1 and 2, 

respectively. The number of markers found per chromosome followed similar patterns with 

both SNP calling strategies (Supplementary Figure 1). In addition to the higher number of 

markers found with SNP calling strategy I the number of missing data per locus was also 

higher (Supplementary Figure 2). After removing indels and non-biallelic markers, the 

different filters of allowed missing data (10%, 20%, 50%, 80% and no filter) generated 

12,957, 42,053, 173,328, 368,351, and 474,367 markers, respectively, for SNP calling 

strategy I; and 17,508, 50,793, 187,440, 380,955, and 443,940 markers, respectively, for SNP 

calling strategy II.         

 

   

Figure 2 (A) Minor allele frequency (MAF) and (B) Inbreeding coefficient distributions 

for two alternative SNP calling strategies. Solid blue line corresponds to SNP calling strategy 

I, i.e., SNP identification using only the 680 lines genotyped with 96 samples per sequencing 

lane, followed by genotype calling with all 1060 lines. Dashed gray line corresponds to SNP 

calling strategy II, i.e., SNP identification and genotype calling using all 1060 samples. A 

total of 1,227,281 and 1,116,281 markers are represented in SNP calling strategies I and II, 

respectively 
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2.3.2 Imputation accuracy   

 

Accuracies are reported for each combination of SNP calling and imputation strategies 

(Figures 3 – 6). Comparing the imputation accuracies between the SNP calling strategies I and 

II, we did not observe pronounced differences. When removing heterozygous markers, we 

observed that Beagle and NPUTE outperformed all other imputation methods in most 

scenarios evaluated (Figures 3 and 4). The KNNI method presented a computational 

limitation and in most evaluated scenarios did not run to completion. Interestingly, however, 

in some cases it outperformed all other methods. For example, in the joint imputation of the 

whole dataset, the total and major homozygous accuracies of the KNNI method were slightly 

higher than all other methods when the rate of allowed missing data per locus was 20%. 

FILLIN resulted in considerably smaller accuracies in all scenarios evaluated. 

Contrary to our expectations, the allowed missing data per locus did not substantially 

adversely affect the imputation accuracy, with most methods showing a (nearly) flat response 

to increased missing data (Figure 3 and 4). KNNI showed decreasing imputation accuracy 

with increasing missing data. On the other hand, FILLIN showed increasing imputation 

accuracy with increasing missing data in the imputation strategy 96 plex imputed + 384 plex 

and, particularly in the SNP calling strategy II, for the 96 + 384 plex scenario (Figure 4).  

When not removing the heterozygous genotypes, we assessed the imputation accuracy 

with only the Beagle method, because it accepts all genotype classes, while NPUTE and 

FILLIN require exclusively homozygous genotypes. Although the KNNI method accepts 

heterozygous genotypes, its computational limitations precluded further evaluation. The 

accuracy for heterozygous genotypes was considerably lower than for the two homozygous 

genotypes (Figures 5 and 6). Again, the allowed missing data per locus did not affect the 

imputation accuracy. 

We observed extensive differences between the two different imputation strategies 

(Figures 3 – 6). As expected, the 96 plex imputation scenario always showed the best 

accuracies, while the 96 + 384 plex performed the worst. Interestingly, the imputation 

scenario 96 plex imputed + 384 plex showed imputation accuracies similar to the 96 plex 

scenario. This opens up the possibility of combining high and low depth GBS data without 

compromising the imputation accuracy. 
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Figure 3 Imputation accuracy using SNP calling strategy I, i.e., SNP identification using only the 680 lines genotyped with 96 samples per 

sequencing lane, followed by genotype calling with all 1060 lines, removing heterozygous genotypes. Each row represents imputation accuracy 

for different genotypic classes: total imputation accuracy, major homozygous accuracy and minor homozygous accuracy. Each column represents 

an imputation strategy: 96 + 384 plex, 96 plex and 96 plex imputed + 384 plex. The X-axis represents the different filters of allowed missing data 

per locus (10%, 20%, 50%, 80% and not filtered). Line colors represent the four imputation methods: Beagle (solid red), FILLIN (dotted green), 

KNNI (dashed blue) and NPUTE (dashed purple) 
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Figure 4 Imputation accuracy using SNP calling strategy II, i.e., SNP identification and genotype calling using all 1060 samples, removing 

heterozygous markers. Each row represents imputation accuracy for different genotype classes: total imputation accuracy, major homozygous 

accuracy and minor homozygous accuracy. Each column represents an imputation strategy: 96 + 384 plex, 96 plex and 96 plex imputed + 384 

plex. The X-axis represents the different filters of allowed missing data per locus (10%, 20%, 50%, 80% and not filtered). Line colors represent 

the four imputation methods: Beagle (solid red), FILLIN (dotted green), KNNI (dashed blue) and NPUTE (dashed purple)  
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Figure 5 Imputation accuracy using SNP calling strategy I, i.e., SNP identification using 

only the 680 lines genotyped with 96 samples per sequencing lane, followed by genotype 

calling with all 1060 lines, not removing heterozygous markers for the Beagle imputation 

method. Each row represents imputation accuracy for different genotype classes: total 

imputation accuracy, major homozygous accuracy, minor homozygous accuracy and 

heterozygous accuracy. The X-axis represents the different filters of allowed missing data per 

locus (10%, 20%, 50%, 80% and not filtered). Line colors represent the three imputation 

scenarios: 96 + 384 plex (solid red), 96 plex (dotted green) and 96 plex imputed + 384 plex 

(dashed blue) 
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Figure 6 Imputation accuracy using SNP calling strategy II, i.e., SNP identification and 

genotype calling using all 1060 samples, not removing heterozygous markers for the Beagle 

imputation method. Each row represents imputation accuracy for different genotype classes: 

total imputation accuracy, major homozygous accuracy, minor homozygous accuracy and 

heterozygous accuracy. The X-axis represents the different filters of allowed missing data per 

locus (10%, 20%, 50%, 80% and not filtered). Line colors represent the three imputation 

scenarios: 96 + 384 plex (solid red), 96 plex (dotted green) and 96 plex imputed + 384 plex 

(dashed blue) 
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2.3.3 Computation time 

 

We tracked the amount of time required to complete the imputation process for each 

method and imputation scenario, in each SNP calling strategy, with and without removing 

heterozygotes (Tables 1 and 2). The number of markers for the different filters of allowed 

missing data varied considerably, which reflected in the computation times. FILLIN required 

by far the least computational times (Table 1). Even in the most complex scenario, i.e., a 

higher number of markers and 96 plex imputed + 384 plex, the time required to complete the 

imputation process was never more than a few minutes. The second fastest method was 

Beagle, which however required noticeably more time in more complex scenarios (Tables 1 

and 2). NPUTE was the slowest algorithm overall, except for some scenarios where KNNI 

was slower (Table 1). 

In general, running times for the imputation strategy 96 plex were much lower than for 

situations that included the samples sequenced at lower depth. The second imputation strategy 

in amount of time required was the 96 + 384 plex. Finally, the 96 plex imputed + 384 plex 

imputation strategy largely exceeded the others in amount of time required to complete the 

imputation process (Tables 1 and 2). 
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Table 1 Running times for the different imputation methods for each allowed missing data 

per locus (10%, 20%, 50%, 80% and not filtered) and respective number of markers, in each 

imputation and SNP calling strategy, removing the heterozygous markers 

SNP calling 

strategy* 
Imputation 

strategy 
Allowed 

missing data 

per locus 

Number of 

markers 
Imputation 

method 
Running time 

(HH:MM:SS) 

I 

96 plex 

10% 12957 

Beagle 00:02:37 

KNNI 00:07:29 

NPUTE 00:42:39 

FILLIN 00:00:12 

20% 42053 

Beagle 00:18:18 

KNNI 00:56:47 

NPUTE 04:24:57 

FILLIN 00:00:35 

50% 173328 

Beagle 01:23:00 

KNNI 21:19:08 

NPUTE 20:56:10 

FILLIN 00:01:51 

80% 368351 

Beagle 02:58:00 

KNNI 107:06:20 

NPUTE 38:34:20 

FILLIN 00:03:49 

NF 474367 

Beagle 03:25:00 

KNNI - 

NPUTE 41:25:49 

FILLIN 00:04:30 

96 plex 

imputed + 384 

plex 

10% 12957 

Beagle 04:17:24 

KNNI - 

NPUTE 02:48:06 

FILLIN 00:00:13 

20% 42053 

Beagle 29:28:46 

KNNI - 

NPUTE 15:58:28 

FILLIN 00:00:54 

50% 173328 

Beagle 43:28:34 

KNNI - 

NPUTE 84:54:03 

FILLIN 00:02:53 

80% 368351 

Beagle 61:54:41 

KNNI - 

NPUTE 163:19:23 

FILLIN 00:07:03 

NF 474367 

Beagle 54:25:08 

KNNI - 

NPUTE 189:12:28 

FILLIN 00:07:07 

(continued) 
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Table 1 (continued) 

SNP calling 

strategy* 
Imputation 

strategy 
Allowed 

missing data 

per locus 

Number of 

markers 
Imputation 

method 
Running time 

(HH:MM:SS) 

I 96 + 384 plex  

10% 12957 

Beagle 01:11:34 

KNNI - 

NPUTE 01:30:01 

FILLIN 00:00:15 

20% 42053 

Beagle 02:57:11 

KNNI 07:32:04 

NPUTE 09:28:58 

FILLIN 00:00:45 

50% 173328 

Beagle 04:17:45 

KNNI 07:32:04 

NPUTE 43:46:57 

FILLIN 00:02:49 

80% 368351 

Beagle 06:16:15 

KNNI - 

NPUTE 77:52:46 

FILLIN 00:05:28 

NF 474367 

Beagle 06:21:13 

KNNI - 

NPUTE 83:50:49 

FILLIN 00:06:33 

II 96 plex 

10% 12957 

Beagle 00:03:41 

KNNI 00:15:52 

NPUTE 00:57:22 

FILLIN 00:00:18 

20% 42053 

Beagle 00:27:06 

KNNI 06:53:51 

NPUTE 05:31:46 

FILLIN 00:00:36 

50% 173328 

Beagle 01:40:45 

KNNI 10:10:12 

NPUTE 24:51:52 

FILLIN 00:02:05 

80% 368351 

Beagle 03:26:19 

KNNI 117:56:04 

NPUTE 41:17:26 

FILLIN 00:04:05 

NF 474367 

Beagle 03:33:55 

KNNI - 

NPUTE 42:56:24 

FILLIN 00:04:30 

(continued) 
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Table 1 (continued) 

SNP calling 

strategy* 
Imputation 

strategy 
Allowed 

missing data 

per locus 

Number of 

markers 
Imputation 

method 
Running time 

(HH:MM:SS) 

II 

96 plex 

imputed + 384 

plex 

10% 12957 

Beagle 03:14:19 

KNNI - 

NPUTE 03:00:25 

FILLIN 00:00:20 

20% 42053 

Beagle 18:47:42 

KNNI - 

NPUTE 16:42:40 

FILLIN 00:00:50 

50% 173328 

Beagle 42:42:46 

KNNI - 

NPUTE 78:20:06 

FILLIN 00:03:07 

80% 368351 

Beagle 69:25:25 

KNNI - 

NPUTE 155:48:01 

FILLIN 00:07:41 

NF 474367 

Beagle 57:18:19 

KNNI - 

NPUTE 179:39:53 

FILLIN 00:09:06 

96 + 384 plex 

10% 12957 

Beagle 01:41:32 

KNNI - 

NPUTE 02:52:14 

FILLIN 00:00:27 

20% 42053 

Beagle 03:02:00 

KNNI 13:10:43 

NPUTE 15:59:20 

FILLIN 00:01:13 

50% 173328 

Beagle 04:26:05 

KNNI - 

NPUTE 48:18:38 

FILLIN 00:04:14 

80% 368351 

Beagle 06:28:54 

KNNI - 

NPUTE 74:41:06 

FILLIN 00:08:41 

NF 474367 

Beagle 08:09:11 

KNNI - 

NPUTE 81:20:55 

FILLIN 00:09:37 

*SNP calling strategy I: SNP identification using only the 680 lines genotyped with 96 samples per sequencing 

lane, followed by genotype calling with all 1060 lines. SNP calling strategy II: SNP identification and genotype 

calling using all 1060 samples 
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Table 2 Running times for Beagle for each allowed missing data per locus (10%, 20%, 50%, 

80% and not filtered) and respective number of markers, in each imputation and SNP calling 

strategy, considering the heterozygous markers 

SNP calling 

strategy* 

Imputation 

strategy 

Allowed 

missing data 

per locus 

Number of 

markers 

Running time 

(HH:MM:SS) 

I 

96 plex  

10% 12957 00:27:02 

20% 42053 01:08:07 

50% 173328 04:01:21 

80% 368351 04:51:47 

NF 474367 05:20:26 

96 plex 

imputed + 384 

plex 

10% 12957 02:28:25 

20% 42053 05:29:07 

50% 173328 11:43:59 

80% 368351 17:24:06 

NF 474367 21:10:02 

96 + 384 plex 

10% 12957 01:28:59 

20% 42053 02:56:30 

50% 173328 07:33:40 

80% 368351 08:29:33 

NF 474367 11:16:18 

II 

96 plex 

10% 17508 00:21:33 

20% 50793 01:00:56 

50% 187440 03:12:39 

80% 380955 06:25:55 

NF 443940 07:13:19 

96 plex 

imputed + 384 

plex 

10% 17508 03:08:15 

20% 50793 06:55:54 

50% 187440 13:15:22 

80% 380955 20:52:30 

NF 443940 21:48:30 

96 + 384 plex 

10% 17508 01:47:01 

20% 50793 03:17:01 

50% 187440 06:44:40 

80% 380955 12:24:20 

NF 443940 12:41:05 

*SNP calling strategy I: SNP identification using only the 680 lines genotyped with 96 

samples per sequencing lane, followed by genotype calling with all 1060 lines. SNP calling 

strategy II: SNP identification and genotype calling using all 1060 samples 

 

2.4 Discussion  

 

Results from our study indicate that combining SNP calling and imputation strategies 

can enhance cost effective genotyping, resulting in higher imputation accuracies. These 

approaches thus allow a more widespread adoption of genomic selection and genome-wide 

association studies in plant breeding programs. The different SNP calling strategies aimed to 

better explore the high and low multiplexing levels of our dataset and yielded different 

number of markers. Even after we removed SNPs with MAF less than 5% and inbreeding 

coefficient less than 0.8, the SNP calling strategy I, i.e., using only the high coverage dataset 
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to discover SNPs, produced 30 thousand more markers than the alternative scheme. Across 

the MAF plots, we observed that minor allele frequencies closer to zero were less frequent 

using only lines genotyped with 96 samples per sequencing lane (Figure 2). The higher 

coverage dataset likely enabled greater power of detection and less false positives. With 

regard to the inbreeding coefficient, both SNP calling strategies showed similar patterns, with 

slightly higher values with SNP calling strategy II (Figure 2). It is more difficult to call 

heterozygous SNP with the lower depth dataset, such that the homozygous genotypes tend to 

be called more frequently (Swarts et al. 2014). Overall, the SNP calling strategies did not 

greatly affect the imputation accuracy, but had influence on the number of markers found 

(Figures 3 – 6). 

In SNP genotype imputation it is important to evaluate not only the total imputation 

accuracy, but also the per-class accuracy. Data balancedness refers to the ratio that each 

genotype class (AA, AB, BB) appears. Classification problems are more difficult when the 

data is unbalanced, that is, the three classes appear at different frequencies in the dataset. Data 

balancedness is directly related to MAF, because very low MAFs arise when a class is 

underrepresented (Hickey et al. 2012; Nazzicari et al. 2016). Insofar as the classes of missing 

genotypes appear at different frequencies, the total imputation accuracy can be dominated by 

the most frequent class. The imputation accuracy tends to be higher for the more frequent 

genotype class, and the overall imputation accuracy will predominantly represent the 

imputation accuracy of that class. Indeed, we found significantly higher error rates in the less 

frequent class for all imputation methods.  

Beagle and NPUTE produced the best imputation results with accuracies close to 

100% in the imputation strategies 96 plex and 96 plex imputed + 384 plex, in most scenarios 

of missing data. The KNNI method did not work in most evaluated scenarios. With large 

amounts of missing data, the complexity of the imputation problem increases and complicates 

the identification of k neighbors that are close enough to the data point to be imputed 

(Nazzicari et al. 2016). Probably as a consequence of the curse of dimensionality (Marimont 

and Shapiro 1979), scenarios with large amounts of missing data could not be imputed with 

KNNI. FILLIN performed poorly in all tested scenarios, which may be explained by the fact 

that this algorithm is optimized for homogeneous inbred populations, while our dataset 

consists of a collection of lines from different heterotic groups. Similar results using Beagle, 

KNNI and FILLIN were observed in a study with GBS data from rice and alfalfa (Nazzicari et 

al. 2016). 
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The allowed missing data per locus did not reflect on the imputation accuracy for 

Beagle and NPUTE methods (Figure 3 and 4). Nonetheless, in the 96 plex imputation 

strategy, with larger quantities of missing genotypes, KNNI showed a decrease in imputation 

accuracy. In the 96 plex imputation strategy, FILLIN also showed decreasing imputation 

accuracy with increasing missing rates for total and major homozygous imputation accuracies. 

However, overall in more stringent scenarios, with only 10 to 20% allowed missing data, 

imputation accuracy for all classes in the scenarios 96 plex imputed + 384 plex and 96 + 384 

plex, as well as the minor homozygous accuracy in the scenario 96 plex were reduced for the 

FILLIN method. 

Despite working with inbred maize lines, some of them were in the initial stages of the 

breeding program (F3 – F4) and were not yet completely endogamic. Including heterozygous 

genotypes complicated the imputation problem, because this dataset showed relatively few 

heterozygotes, which are more susceptible to genotyping errors. As a consequence, the 

heterozygous accuracy was considerably lower than for both homozygote classes (Figure 3 

and 4).  

The complexity of the problem directly affected the running time required to complete 

the imputation process. KNNI and NPUTE were the most demanding methods, with 

computation times growing both with the number of markers and with the number of missing 

genotypes to be imputed. The 96 plex imputed + 384 plex imputation strategy exceeded 

substantially the others in amount of time required. We believe that, despite the smaller 

amount of missing data to impute, the initial step of identifying the haplotypes is likely more 

time consuming because there are more informative loci. Considering both imputation 

accuracy and computational time, the best imputation method was Beagle (Tables 1 and 2). In 

addition, this method allows for heterozygote genotypes, which is an interesting feature for 

panels that include individuals with few generations of inbreeding. 

Several works have explored imputation strategies combining high and low density 

genotyping (Hickey et al. 2012, 2015; Huang et al. 2012; Mulder et al. 2012; Gorjanc et al. 

2017a; Gonen et al. 2018). These studies, however, do not focus on combining SNP calling 

and imputation strategies, using real GBS data. In this paper, we investigated the impact on 

imputation accuracies of combing different SNP calling and imputation strategies, using a real 

dataset of lines from a maize breeding program genotyped with GBS. We believe that our 

study is a first stage of what can be done regarding SNP calling and imputation strategies with 

GBS data. Further research is necessary, for example, to set out the number of high coverage 
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individuals necessary to ensure high imputation accuracy of low coverage individuals. We 

suggest that some key individuals could be genotyped using lower multiplexing levels, while 

others might be included in larger pools. This set of key individuals should be well thought 

out to represent the entire diversity of heterotic groups in the breeding program.  

Our results indicate that designing the SNP calling and imputation strategies in order 

to better explore the different depths of coverage considerably improves the imputation 

accuracy, besides reducing costs, since higher multiplexing levels are considerably cheaper. 

Bringing together SNP calling strategies using only high coverage data to discover variants, 

followed by genotype calling for all sequenced samples, with the imputation strategy 96 plex 

imputed + 384 plex produced the larger number of SNPs and higher imputation accuracies. 

These combined strategies encompass a wide range of applications in breeding programs, 

representing an opportunity to reduce costs and time by optimizing the genotyping process.  
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Supporting information 

 

 

Supplementary Figure 1  Number of markers found per chromosome for two alternative 

SNP calling strategies. Blue bars correspond to SNP calling strategy I, i.e., SNP identification 

using only the 680 lines genotyped with 96 samples per sequencing lane, followed by 

genotype calling with all 1060 lines. Gray bars correspond to SNP calling strategy II, i.e., 

SNP identification and genotype calling using all 1060 samples 
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Supplementary Figure 2  Missing data per discovered marker for two alternative SNP 

calling strategies. Solid blue line corresponds to SNP calling strategy I, i.e., SNP 

identification using only the 680 lines genotyped with 96 samples per sequencing lane, 

followed by genotype calling with all 1060 lines. Dashed gray line corresponds to SNP 

calling strategy II, i.e., SNP identification and genotype calling using all 1060 samples 
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3 GENOMIC PREDICTION APPLIED TO MULTIPLE TRAITS AND 

ENVIRONMENTS IN SECOND SEASON MAIZE HYBRIDS 

 

Abstract 

Genomic selection has become a reality with the reduction in genotyping costs. 

Especially in maize breeding programs, it emerges as a promising tool for predicting hybrid 

performance. The dynamics of a commercial breeding program involve the evaluation of 

several traits simultaneously in a large set of environments. Therefore, multi-trait multi-

environment (MTME) genomic prediction models can leverage these data sets by exploring 

the correlation between traits and GxE interaction. Herein, we assess predictive abilities of 

univariate and multivariate genomic prediction models in a maize breeding program. To this 

end, we used data from 415 maize hybrids evaluated in four years of second season field trials 

for the traits grain yield, number of ears and grain moisture. Genotypes of these hybrids were 

inferred in silico based on their parental inbred lines using single nucleotide polymorphism 

markers obtained via genotyping-by-sequencing. Because genotypic information was 

available for only 257 hybrids, we used the single-step procedure to obtain the H matrix for 

all 415 hybrids, combining pedigree and genomic relationship information. Our results 

demonstrated that the use of MTME models improved the predictive abilities, especially to 

predict the performance of hybrids that have not been evaluated in any environment. 

However, the computational requirements of this kind of model could represent a limitation to 

its practical implementation and further investigation to resolve this bottleneck is necessary. 

 

Keywords: Genotype-by-environment interaction; Genetic correlation; GBLUP; Multivariate 

models 

 

3.1 Introduction 

 

The Brazilian maize production is currently concentrated in the second season, from 

February to June, representing more than 66% of the production in the 2017/2018 season 

(Conab, 2019). The second season is an alternative crop rotation system in the Center-South 

region, with maize grown mostly after soybean, contributing to a greater profitability of the 

Brazilian agribusiness. However, this ensuing season poses some challenges, such as diseases 

and, especially, water deficiency stress. Much of the progress made in growing maize in the 

second season is due to genetic improvement in drought tolerance. Due to climate changes 

and the limitation of water resources, yield stability even under water stress is a highly 

desirable feature in agriculture nowadays (Cooper et al. 2014). 

Maize breeding programs for the second season target genotypes that are highly 

productive under normal growing conditions, but which are able to maintain good 

performance even under conditions of water scarcity. The biggest challenge faced by breeders 

remains in the fact that grain yield is a quantitative trait, strongly influenced by environmental 
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effects and showing low heritability under stress conditions (Comstock 1978; Hallauer and 

Miranda Filho 2010). Therefore, to increase the experimental precision of phenotypic 

evaluations under water deficiency, a large number of replicates and adequate plot sizes are 

required (Edmeades et al. 1999; Bãnziger et al. 2000). However, phenotyping accounts for a 

large part of the cost of a plant breeding program, limiting progress by restricting the number 

of evaluated genotypes and the sizes of experiments. 

A large number of hybrids can be obtained from the cross of a relatively small number 

of lines in a maize breeding program (Technow et al. 2014). Due the financial unfeasibility of 

evaluate all these possible hybrids in field trials, predicting hybrid performance through 

genomic selection is an attractive alternative to maize breeders. Since proposed by Meuwissen 

et al. 2001, genomic selection models have been applied to a variety of crops and become an 

important tool in maize hybrid breeding (Bernardo 2009; Massman et al. 2013; Dias et al. 

2018; Fristche-Neto et al. 2018; Han et al. 2018). Besides the opportunity to reduce costs and 

labor involved in field trials, this approach allows an early and more efficient selection, 

increasing genetic gains. These models were initially applied in a univariate context, by using 

a separate model for a single environment and a single trait. However, breeders commonly 

evaluate several traits simultaneously in a large set of environments, because elite genotypes 

should concentrate favorable alleles for various traits of interest and perform well in different 

target environments. As a prime consequence, the use of univariate approaches does not 

match the reality of many programs that seek to estimate the magnitude of the Genotype-by-

Environment (GxE) interaction and explore the genetic correlation between important 

agronomic traits.     

The presence of genetic correlation between quantitative traits implies that measures 

in one trait indirectly provide information about other traits, which can be used to improve the 

predictive ability of genomic selection. However, univariate genomic selection models do not 

take advantage of this shared information. Multivariate genomic selection models, known as 

multi-trait models, allow the information between secondary traits to be explored through 

modeling of the covariance between them. The main factors that have been reported to 

contribute to increasing predictive ability of multi-trait models are: traits highly correlated 

with the trait of interest, low heritability coefficients for the target trait, but high for the 

correlated trait (Calus and Veerkamp 2011; Jia and Jannink 2012; Guo et al. 2014; Dos Santos 

et al. 2016; Marchal et al. 2016; Lyra et al. 2017; Covarrubias-Pazaran et al. 2018). Grain 

yield is the trait of major interest in a maize breeding program and it is a direct function of its 
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components: number of ears per plant, number of rows of grain in the ear, number of grains 

per row, ear length, ear diameter, average grain weight and grain depth (Jugenheimer 1976). 

Because these traits are less complex than the grain yield, with higher heritability coefficients, 

and are highly correlated to it, they are feasible to perform indirect selection for grain yield. 

Several studies reported higher predictive abilities using models that consider high-heritability 

secondary trait information, in addition to grain yield (Henderson and Quaas 1976; Mrode and 

Thompson 2005; Malosetti et al. 2008; Piepho et al. 2008). 

In addition to the correlation between traits, the relationship among environments, in 

terms of the GxE interaction patterns, is also a relevant issue to plant breeders. Burgueño et al. 

2012 were the first to accommodate the GxE interaction in the context of genomic selection. 

Following this study, other also examined the possibility of increasing the predictive ability in 

several crops by incorporating the GxE interaction (Lopez-Cruz et al. 2015; Cuevas et al. 

2016; Ferrão et al. 2017; Sousa et al. 2017; Roorkiwal et al. 2018). Proper understanding of 

GxE interaction provides valuable information and can help breeders to predict completely 

untested combinations of hybrids and environments through the use of cross validation 

schemes as proposed by (Burgueño et al. 2012). 

The large amount of phenotypic data collected in breeding programs across years is a 

valuable source of information, of which genomic selection is recently taking advantage. 

Nonetheless, the quality and unbalanced nature of these historical data raise a new challenge 

to plant breeders - how to optimally exploit this kind of data (Gapare et al. 2018). Few studies 

have simultaneously assessed multi-trait and multi-environment (MTME) models for genomic 

selection (Montesinos-López et al. 2016; Gomes Torres et al. 2018; Ward et al. 2019). 

Therefore, our objectives were to: i) evaluate the applicability of a MTME model, ii) compare 

the results of using this model with its univariate counterparts, iii) predict completely new and 

untested hybrids and years. Historical data from three traits from second season maize hybrids 

of the Embrapa breeding program were used to this end.  

 

3.2 Materials and methods 

 

3.2.1 Plant material 

 

The genetic material consisted of 415 hybrids evaluated in field trials for four years 

(2006-2009) in Campo Mourão, Paraná, Brazil. Of the 415 hybrids, 304 are single cross 
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hybrids, 76 are triple cross hybrids, 19 are double cross hybrids and 16 are commercial 

checks. The experimental design of the phenotypic trials from 2006 to 2008 was a 10 × 10 

squared lattice design with two replicates, where 100 hybrids were evaluated. In 2009, 125 

hybrids were evaluated side-by-side in two trials. In each trial, 60 hybrids and four common 

checks were evaluated using an 8 × 8 lattice design with two replicates. The connection across 

years was based in a few common checks (Table S1). 

The evaluated traits were grain yield (GY), determined by weighing all the grains in 

each plot, adjusted to 13% of grain moisture and converted to tons per hectare (t/ha); number 

of ears (NE), consisted of counting all ears in each plot; and percentage of grain moisture 

(GM), assessed with the Wintersteiger Classic Plot Combine automatic harvester 

(Wintersteiger AG, Austria), which automatically weighs each parcel and infers the moisture 

via NIRS (near-infrared spectroscopy). 

 

 

3.2.2 Phenotypic analysis  

 

We computed the best linear unbiased estimation (BLUE) for each trial and trait, using 

the following mixed model:  

 

𝑦ijk = 𝜇 + 𝑟k + 𝑔i + 𝑏j(k) + 𝜀ijk [1] 

 

where 𝑦ijk is the phenotype of the 𝑖th genotype in block 𝑗, replicate 𝑘; 𝜇 is the common 

intercept; 𝑟k is the fixed effect of replicate 𝑘; 𝑔i  is the fixed effect of the 𝑖th genotype;  𝑏j(k)is 

the random effect of block 𝑗, in replicate 𝑘; and 𝜀ijk is a random non-genetic effect. Outliers 

were removed by deleting observations with residuals that deviated more than four times the 

standard deviation. 

The broad-sense and narrow-sense heritability were computed based on model [1], but 

considering the genotype effects as random. Also, in order to compute the narrow-sense 

heritability we assumed that 𝑔𝑖 ~ 𝑀𝑉𝑁(0, 𝑯), where 𝑯 represents the relationship matrix of 

additive effects. We then estimated the heritability based on the following equation: 
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where 𝜎𝑔
2 is the total genetic variance component and the additive variance component for the 

broad-sense and narrow-sense heritability, respectively, and 𝜎𝑒
2 is the residual variance 

component. The BLUE and heritability coefficients were estimated using the ASREML-R 

package version 3.0 (Butler et al. 2009) in the R environment v.3.5.1 (R Core Team 2018). 

 

3.2.3 Genotypic data 

 

A collection of 1060 maize inbred lines from the Embrapa Maize and Sorghum 

breeding program were genotyped, of which 228 are parents of hybrids used in this study. We 

performed DNA extraction from young leaves based on the cetyltrimethylammonium bromide 

method (Saghai-Maroof et al. 1984). DNA samples were quantified using the Fluorometer 

Qubit® 2.0, following the manufacturer’s instructions (Life TechnologiesTM, USA). Samples 

were also evaluated on 1% agarose gel in Tris-acetate-EDTA buffer, stained with GelRedTM 

(Biotium, USA) and recorded under UV light in the Imager Gel Doc L-PIX (Loccus 

Biotecnologia, Brazil). Genotyping-by-sequencing (GBS) was carried out at the Genomic 

Diversity Facility at Cornell University (Ithaca, NY, USA) using the standard GBS protocol 

(Elshire et al. 2011) with the ApeKI restriction enzyme. The inbred lines were genotyped in 

two different batches: first, we genotyped eight libraries of 96 samples each, with one HiSeq 

2500 sequencing lane per library; next, we genotyped one library of 384 samples with 

NextSeq500 in a single lane. Tags were aligned to the B73 reference genome (AGPv3) (Law 

et al. 2015) using the Bowtie2 aligner (Langmead and Salzberg 2012). Then, single nucleotide 

polymorphisms (SNPs) were called using the GBSv2 Discovery Pipeline, available in the 

software TASSEL v. 5.2.28 (Glaubitz et al. 2014), using SNP calling strategy I described in 

Chapter 2. We applied filters for Minor Allele Frequency (MAF) less than 5% and inbreeding 

coefficient less than 0.8. Subsequently, we performed imputation of missing data using 

Beagle software version 4.1 (Browning and Browning 2016). Before imputation, we removed 

indels, non-biallelic SNPs and considered heterozygous loci as missing data. Because Beagle 

can introduce heterozygous genotypes, after imputation we again removed heterozygous loci. 

Finally, from the genotypes of the 228 parental lines we inferred the genotypes of 257 single 

cross hybrids. 
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3.2.4 H matrix  

 

The hybrids used in this study were originated from 296 inbred lines that belong to 

three different heterotic groups: Dent (116 lines), Flint (126 lines) and another group herein 

denominated group C (54 lines). Pedigree information was available for all 415 hybrids, but 

only 257 of those were (indirectly) genotyped. In this situation, the use of the single-step 

approach, where the pedigree relationship matrix A and the genomic relationship matrix G are 

combined into one matrix called H, is a practical way to combine these two sources of 

information (Legarra et al. 2009; Misztal et al. 2009; Aguilar et al. 2010; Christensen and 

Lund 2010).  

The genomic relationship matrix G was computed following the method described by 

Yang et al. (2010). The pedigree relationship matrix A was computed based on Henderson’s 

recursive method described in Mrode (2005). Both G and A matrices were obtained using the 

R package AGHMATRIX (Amadeu et al. 2016). We implemented the H matrix using the two 

scaling factors, τ and ω, as proposed by Misztal et al. (2010) and Tsuruta et al. (2011): 

 

𝐇τ ,ω
−1 =  𝐀−1 +  (

0 0
0 (τ𝐆−1 − ω𝐀22

−1 )
)  [3] 

 

We further evaluated the effect of these factors on the accuracies of genomic 

prediction models. Using the approach presented by Martini et al. (2018), we searched for the 

optimal values of τ and ω by evaluating 420 combinations, varying both parameters on grids 

defined by the intervals [−1, 1] for ω and [0.1, 2] for τ, in steps of size 0.10 in both cases. To 

evaluate the performance of each parameter combination, we constructed 420 different H 

matrices in R, one for each combination of the scaling factors, and used these to estimate the 

breeding values using the single-step procedure for each single-trait single-environment 

(STSE) model fitted. 

 

3.2.5 Genomic prediction models 

 

The genomic prediction model used in this study was the GBLUP (Genomic Best 

Linear Unbiased Prediction) (VanRaden 2008). We fitted univariate and multivariate models 

via a Bayesian approach, as detailed below.  
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3.2.5.1 Single-trait single-environment model 

 

Using the STSE model the genomic estimated breeding values (GEBV) were obtained 

for each of the three traits evaluated, separately for each of the four environments, as follows:  

 

𝑦𝑖 = 𝜇 + 𝐺𝑖 +  𝜀𝑖 [4] 

 

where 𝑦𝑖 is the previously obtained BLUE of the 𝑖th genotype (𝑖 = 1, … , 𝑛), where 𝑛 

indicates the number of hybrids evaluated in the environment at hand; 𝜇 is the intercept; 𝐺i is 

the random effect of the 𝑖th genotype, such that 𝐺𝑖  ~ 𝑀𝑉𝑁(0, 𝑯); and 𝜀𝑖 is a random non-

genetic effect, with 𝜀𝑖 ~ 𝑀𝑉𝑁(0, 𝑰). 𝑯 represents the relationship matrix of additive effects 

and 𝑰 is an identity matrix for the residual effects. 

 

3.2.5.2 Multi-trait single-environment model 

 

Combining information of the three evaluated traits, separately in each of the four 

environments, we obtained the GEBV using the multi-trait single-environment (MTSE) 

model:  

 

𝑦𝑖𝑐 = 𝜇 + 𝐺𝑖𝑐 + 𝜀𝑖𝑐 [5] 

 

where 𝑦𝑖𝑐 is the BLUE of the 𝑖th genotype for trait 𝑐 (𝑐 = 1, … , 3); 𝜇 is the intercept; 𝐺ic is 

the random effect of the 𝑖th genotype for trait 𝑐, 𝐺𝑖𝑐 ~ 𝑀𝑉𝑁(0, 𝑯 ⊗  𝚺𝒄 ); and 𝜀𝑖 is a random 

non-genetic effect, 𝜀𝑖𝑐 ~ 𝑀𝑉𝑁(0, 𝑰 ⊗ 𝑹𝒄). In this model, 𝚺𝒄 is the variance-covariance 

(VCOV) matrix for the additive genetic effects of the three traits, with dimension 3 × 3. 𝑹𝒄 

represents the VCOV matrix for the residual effects of the three traits, also with dimension 

3 × 3. We assumed an unstructured form for the genetic  𝚺𝒄  and residual 𝑹𝒄 VCOV matrices, 

which allows the assumption of heterogeneity of variance and presence of a specific genetic 

correlation for each combination of trait and environment. 
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3.2.5.3 Single-trait multi-environment model 

 

Through the single-trait multi-environment (STME) model, we obtained the GEBV 

separately for each of the three traits, but jointly modeling the four environments (years), as 

follows:  

𝑦𝑖𝑗 = 𝜇 + 𝐺𝑖𝑗 +  𝜀𝑖𝑗 [6] 

 

where 𝑦𝑖𝑗 is the BLUE of the 𝑖th genotype, in the 𝑗th environment (𝑗 = 1, … ,4); 𝜇 is the 

intercept; 𝐺ij is the random effect of the 𝑖th genotype, in the 𝑗th environment, with 

𝐺ij ~ 𝑀𝑉𝑁(0, 𝑯 ⊗  𝚺𝒋); and 𝜀𝑖𝑗 is a random non-genetic effect, such that 𝜀𝑖𝑗 ~ 𝑀𝑉𝑁(0, 𝑰 ⊗

𝑹𝒋). 𝚺𝒋 is the VCOV matrix for the additive genetic effects in the 𝑗 environments, with 

dimension 4 × 4. 𝑹𝒋 represents the VCOV matrix for the residual effects in the j 

environments, with dimension 4 × 4. We again assumed an unstructured form for the genetic 

𝚺𝒋 and residual 𝑹𝒋  VCOV matrices. 

 

3.2.5.4 Multi-trait multi-environment model 

 

In our most complex model, for MTME genomic selection, we jointly modeled all 

traits and environments, in order to obtain the GEBV for each trait in each environment:  

 

𝑦𝑖𝑗𝑐 = 𝜇 + 𝐺𝑖𝑗𝑐 +  𝜀𝑖𝑗𝑐 [7] 

 

where 𝑦𝑖𝑗𝑐 is the previously obtained BLUE of the 𝑖th genotype, in the 𝑗th environment, for 

trait 𝑐; 𝜇 is the common intercept; 𝐺ijc is the random effect of the 𝑖th genotype, in the 𝑗th 

environment, for the trait 𝑐, 𝐺𝑖𝑗𝑐  ~ 𝑀𝑉𝑁(0, 𝑯 ⊗ 𝚺𝒋𝒄); and 𝜀𝑖𝑗𝑐 is a random non-genetic 

effect, 𝜀𝑖𝑗𝑐 ~ 𝑀𝑉𝑁(0, 𝑰 ⊗ 𝑹𝒋𝒄 ). 𝚺𝒋𝒄 represents the VCOV matrix for the additive genetic 

effects in the four environments for the three traits, with dimension 12 × 12. In this case, this 

matrix models variances and covariances for all combinations of traits and environments. 

Similarly, 𝑹𝒋𝒄 represents the VCOV matrix for the residual effects in each trait × environment 

combination, with dimension 12 × 12. We assumed an unstructured form for the genetic and 

residual VCOV matrices. 
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3.2.6 Cross validation schemes 

 

To assess the performance of each model we used the predictive ability as measured 

by cross-validation. To this end, we implemented three different schemes. In our first cross-

validation scheme (hereinafter denoted as CVR), the complete pool of individuals was 

randomly split in five folds, such that four of them were used as a training set, while the 

remaining group was used as a testing set. This procedure was repeated five times, using a 

different set of individuals as the testing set each time. Therefore, at the end of the process all 

individuals had their GEBV. This CVR scheme was applied to models 4, 5, 6 and 7 as 

described above. In order to compare the models applied to single-environments with those 

applied to multi-environments, we also evaluated the CVR scheme using the same 

training/testing partition of single-environment models to the multi-environment ones. 

In the multi-environment context, as described above for models 6 and 7, we evaluated 

two different cross-validation schemes in order to take advantage of the correlated 

information between environments, according to the ideas presented by Burgueño et al. 

(2012). First, we aimed to measure the ability of the model to predict the performance of 

hybrids that have not been evaluated in any environment (hereinafter denoted as CV1). In CV1 

we randomly assigned the hybrids to a 5-folds scheme, but in this case ensuring that hybrids 

in the testing set had not been evaluated in any environment. Alternatively, to assess the 

ability of the model to predict performance based on data from different years we assigned 

years to folds (such scheme is hereinafter denoted as CV2). In CV2 we had as many folds as 

years, thus when analyzing the 𝑖th fold, hybrids from the 𝑖th year were assigned to the testing 

set and all the hybrids from other years were used as the training set. In all cross-validation 

schemes, the predictive abilities were estimated by Pearson’s correlation coefficient between 

the GEBV and the corresponding BLUE. 

 

3.2.7 Computational implementation 

 

All genomic prediction models were implemented in the MCMCGLMM R-package 

(Hadfield 2010). A total of 30000 MCMC samples were generated, assuming a burn-in period 

and sampling interval (thin) of 6000 and 5 iterations, respectively. To check the convergence 

of the models we used the Geweke criteria (Geweke 1992) implemented in the coda R-

package, as well as the visual inspection of trace plots of the chains.  
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3.3 Results  

 

3.3.1 H matrix  

 

Based on the evaluation of the 420 combinations of τ and ω scaling factors for each 

STSE model fitted, we found common optimal values of τ = 0.1 and ω = -0.8. It is important 

to note that the maximum predictive ability did not substantially differ between the parameter 

combinations tested; for example, they ranged from 0.33 to 0.42 for GY in 2006.  

The heatmap of the H matrix across hybrids grown in different years and common 

checks showed that the patterns between years differed considerably, with hybrids grown in 

2008 being less correlated with the others (Figure 1). We stress that 2008 was the year with 

less hybrids (34) for which genotypic information was available (Supplementary Table 1). 

Among the 11 checks, nine were exclusive to a single environment, and only four were 

genotyped (Supplementary Table 1). We can also observe a pattern of lower relatedness 

between the checks (Figure 1). 

 

 

Figure 1  Heatmap of the H matrix across hybrids cultivated in different years and common 

checks. A total of 415 hybrids were evaluated 
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3.3.2 Genetic parameters  

 

Broad-sense and narrow-sense heritability coefficients varied considerably between 

traits (Table 1). Overall, the heritabilities were higher for GM and lower for NE, ranging from 

0.70 to 0.91 and 0.13 to 0.55, respectively. For GY the broad-sense heritability did not show 

large variation among years, ranging from 0.51 in 2008 to 0.59 in 2007. However, we 

observed larger variation between years for the narrow-sense heritability, from 0.18 in 2006 to 

0.41 in 2008. The lowest narrow-sense heritability for NE was seen in 2006, with a coefficient 

of 0.03. The differences between broad- and narrow-sense heritabilities were less pronounced 

for GM, with no observed difference in 2007 (ℎ2 = 0.91). The phenotypic means also varied 

considerably between years, ranging from 3.80 to 8.04, 34.02 to 40.19 and 16.43 to 31.88, for 

GY, NE and GM, respectively.   

 

Table 1  Phenotypic mean, broad-sense and narrow-sense heritability coefficients for each 

trait and year evaluated. Grain yield (GY) in t/ha, number of ears (NE) per plot and grain 

moisture (GM) in percentage 

Trait Year Phenotypic mean Broad-sense h2 Narrow-sense h2 

GY 

2006 5.62 0.51 0.18 

2007 3.80 0.59 0.26 

2008 5.58 0.56 0.41 

2009 8.04 0.52 0.28 

NE  

2006 40.19 0.36 0.03 

2007 34.02 0.13 0.07 

2008 34.6 0.32 0.11 

2009 39.45 0.55 0.21 

GM 

2006 31.88 0.77 0.67 

2007 25.63 0.91 0.91 

2008 29.05 0.70 0.50 

2009 16.43 0.85 0.80 

 

Genetic correlations estimated based on the full MTME model showed that 

correlations varied noticeably across years, for each of the three traits (blocks closer to the 

diagonal in Figure 2). For GY, 2009 showed lower correlation coefficients, presenting 

negative correlations with years 2007 (-0.13) and 2008 (-0.38). Genotype effects in 2006 were 
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negatively correlated with all others for NE. In general, the GM was the trait with lowest 

correlation between years, particularly for 2006 and 2009. However, the years 2007 and 2008 

showed the highest correlation (0.80) compared to the other traits. 

We observed a large number of small and negative values of genetic correlation 

between traits. Overall, the correlations between traits varied considerably across years. GY 

and NE were more positively correlated, with a peak correlation of 0.86 between GY in 2008 

and NE in 2007. On the other hand, GY and NE presented the highest negative correlation, -

0.67 between GY in 2007 and NE in 2006.  

 

 

 

Figure 2  Genetic correlations between combinations of traits and years, estimated based on 

the multi-trait multi-environment (MTME) model EA1

EA3 EA2

EA4 Australian isolatesBrazilian isolates
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3.3.3 Genomic prediction 

 

Predictive abilities varied considerably when comparing STSE and MTSE models 

(Figure 3). The MTSE models were superior to the STSE only in 2007 for GM (0.68 for 

STSE and 0.70 for MTSE) and in 2009 for NE (0.47 for STSE and 0.49 for MTSE). However, 

even in these cases, we note that the differences were minimal. Within each trait, the 

predictive abilities differed greatly across years. For example, values for GY ranged from 

0.30 in 2009 to 0.54 in 2007 and 0.21 in 2009 to 0.53 in 2007 for STSE and MTSE models, 

respectively.  

For the ME models using the CVR cross-validation scheme (Figure 4), we observed 

that the predictive abilities were lower than those observed with the SE models (Figure 3). 

Only for GY did the MTME model outperform the STME model in terms of predictive 

ability, but we note that both values were low (0.07 for STME and 0.15 for MTME). For GM 

the difference between STME and MTME was low, but the variance was higher in the MTME 

scenario. On the other hand, NE showed higher variance and predictive ability with the STME 

model (0.36) compared to the MTME model (0.28).  

 

 

Figure 3  Predictive abilities of single-trait single-environment (STSE) and multi-trait single-

environment (MTSE) models obtained with CVR cross validation scheme, for the traits grain 

yield (GY), number of ears (NE) and grain moisture (GM). Diamonds correspond to the mean 

predictive abilities 
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When we used the same training/testing partition of single-environment models to fit 

multi-environment models, we observed that the most complete model MTME outperformed 

all the others, except for NE  in 2006 (Figure 5).  

The prediction of non-evaluated hybrids using the cross-validation scheme CV1 showed 

similar predictive abilities for GY when compared to the cross-validation scheme CVR. 

However, for NE and GM the multi-trait models also outperformed the single-trait ones when 

using the cross-validation scheme CV1 (Figure 6). This is contrast to the results found using 

the cross-validation scheme CVR (Figure 4).  

 

 

Figure 4  Predictive abilities of single-trait multi-environment (STME) and multi-trait multi-

environment (MTME) models obtained with the CVR cross validation scheme, for the traits 

grain yield (GY), number of ears (NE) and grain moisture (GM). Diamonds correspond to the 

mean predictive abilities 
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Figure 5  Predictive abilities of single-trait single-environment (STSE), single-trait multi-

environment (STME), multi-trait single-environment (MTSE) and multi-trait multi-

environment (MTME) models obtained with the CVR cross validation using the same 

training/testing partitioning of single-environment models, for the traits grain yield (GY), 

number of ears (NE) and grain moisture (GM). Diamonds correspond to the mean predictive 

abilities 

 

The results from the cross-validation scheme CV2 even revealed negative predictive 

abilities (Figure 7). This reflects difficulties in accurately predicting hybrid performance in 

different years. However, it is important to note that for some specific years and traits the 

predictive abilities achieved with CV2 were comparable to those obtained with SE models. 

For example, in 2006 the predictive ability of the STME model for GY was 0.40, similar to 

the value of 0.42 found with STSE in the same year (Figures 3 and 7). The comparison 
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between MT and ST models when using the CV2 scheme did not show any clear pattern, with 

substantial variation across traits and years.  

 

 

Figure 6  Predictive abilities of single-trait multi-environment (STME) and multi-trait multi-

environment (MTME) models obtained with the CV1 cross validation scheme, for the traits 

grain yield (GY), number of ears (NE) and grain moisture (GM). Diamonds correspond to the 

mean predictive abilities 
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Figure 7  Predictive abilities of single-trait multi-environment (STME) and multi-trait multi-

environment (MTME) models obtained with the CV2 cross validation scheme, for the traits 

grain yield (GY), number of ears (NE) and grain moisture (GM)  

 

3.4 Discussion 

 

Genomic prediction models have been widely adopted in plant breeding of a variety of 

species, especially in maize (Bernardo 2009; Massman et al. 2013; Dias et al. 2018; Fristche-

Neto et al. 2018; Han et al. 2018). However, the adoption of models that simultaneously take 

into account multiple traits and multiple environments has been much more limited 

(Montesinos-López et al. 2016; Gomes Torres et al. 2018; Ward et al. 2019). In this study, we 

applied genomic prediction to MTME trials of second season maize hybrids and compared 

their predictive abilities with univariate models. 

It is well known that the genetic correlation between traits, as well as the fact that the 

trait of interest be of low heritability and the correlated trait be of high heritability, are key 

factors for the success of multi-trait models (Calus and Veerkamp 2011; Jia and Jannink 

2012; Guo et al. 2014). However, when major quantitative trait loci (QTL) are not present, 

that is, for complex polygenic traits, the benefits of multi-trait models are limited even with 



62 

 

 

heritability differences among highly correlated traits (Jia and Jannink 2012). Moreover, 

studies based on real maize data sets using multi-trait genomic prediction models have 

reported little benefit of applying multivariate models (Dos Santos et al. 2016; Lyra et al. 

2017; Lado et al. 2018). Our results indicated a similar pattern, where in general the multi-

trait models did not show higher predictive abilities than the single-trait counterparts. One 

hypothesis for this similarity is the complexity of the data set considered in this study. 

Overall, we observed low to moderate values of correlation and heritabilities across the three 

traits evaluated. For example, for NE the narrow-sense heritability values were close to zero 

in 2006, 2007 and 2008.  Similarly, low values were also observed for GY trait. It is also 

worthwhile to highlight that the correlations and heritabilities varied considerably across 

years, showing the challenges of dealing with the quality and unbalanced nature of our 

historical data.   

Besides the correlation between traits, a model that also accommodates the GxE 

interaction mimics in a more realistic way the type of data generated in plant breeding 

programs, where genotypes are evaluated for multiple traits in multiple environments. 

Because in single-environment models the training and testing sets are exposed to the same 

environmental effects, it is biologically reasonable to expect higher predictive abilities than in 

scenarios that take multiple environments into account. When we compared STSE with 

MTSE models, we found that univariate models often outperformed the multivariate ones, in 

terms of predictive abilities. However, when we compared SE models with ME models we 

observed the opposite behavior. In this situation, the most complex MTME models 

outperformed all the others. This shows that multivariate models can improve the predictive 

ability of genomic prediction by appropriately taking into account the GxE interaction and the 

correlation between traits to.  

We assessed the predictive ability for different combination of models using cross-

validation schemes that mimic real scenarios in the maize breeding program. In the CVR 

scheme the complete pool of individuals was randomly split in five folds. For CV1 we 

randomly assigned the hybrids to a 5-folds scheme, ensuring that hybrids in the testing set had 

not been evaluated in any environment. Finally, in CV2 we assigned years to folds. For GY, 

we found similar results when comparing the CVR with CV1 schemes. However, for NE and 

GM the CV1 scheme showed higher predictive abilities using multi-trait models. It is 

noteworthy that, for this particular data set, the CVR and CV1 schemes are in fact very similar, 

because few hybrids are common between years. In any case, for two traits we did observe an 
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advantage of multivariate models when hybrids had not been evaluated in any environment, 

despite this limited connection between trials. The most challenging scenario was the 

prediction of hybrid performance in different years, as we observed with our cross-validation 

scheme CV2.  

It is important to note that the lack of all hybrids genotyped made necessary the use of 

the single-step procedure, through the H matrix, representing a complicating factor in our 

study. The impact of this matrix in the predictive abilities of genomic prediction models has 

been widely discussed in the animal breeding context (Pszczola et al. 2011; Christensen et al. 

2012; Legarra et al. 2014; Martini et al. 2018; Teissier et al. 2019). However, in a plant 

breeding context the single step-procedure is less widespread and its impact in the prediction 

ability should be further investigated. Motivated by the possibility of combining information 

from the kinship and genomic relationship, here we are proposing to use the H matrix for 

genomic prediction of maize hybrids. To this end, we estimated the scaling factors τ and ω, – 

both important parameters to define how the A and G matrixes will be combined – as 

proposed by Misztal et al. (2010) and Tsuruta et al. (2011). In any case, we note that this 

blending is just one of several possibilities to approach the problem.  

The use of a Bayesian inference in this study emerged as an alternative to the 

commonly used Restricted Maximum Likelihood (REML) estimation method. We had 

previously attempted to fit the same models used here with procedures based on REML, but 

could not achieve convergence. A similar problem was also reported in a study using MTME 

genomic prediction models in maize (Gomes Torres et al. 2018). Another study with MTME 

genomic prediction models applied to unbalanced wheat trials, despite reporting the use of 

REML, also documented convergence problems for several traits, highlighting the limitation 

of this technique when using a multivariate approach (Ward et al. 2019). As an alternative, we 

used algorithms based on Markov Chain Monte Carlo (MCMC) methods and implemented in 

the MCMCGLMM R-package. As a limitation, the computational requirements of the Bayesian 

method presented here may be challenging for practical applications. We evaluated different 

variance-covariance structures for the genetic and residual terms, and noticed that the 

computational time required to fit the more complex structure (unstructured) was not different 

from the simplest one (identity). Because using an unstructured matrix to model (co)variances 

reflects assumptions that are biologically more realistic, we chose to model the genetic and 

residual terms using this kind of structure. 

The work presented here is an initial investigation of what could be done with MTME 
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models for prediction of hybrid maize, and we believe that the results are promising to justify 

further research. One important extension would be to incorporate dominance effects in the 

genomic prediction models, by leveraging the heterosis phenomenon. Several studies 

including non-additive effects have been conducted and reported the benefits of taking these 

effects into account (Dos Santos et al. 2016; Resende et al. 2017; Dias et al. 2018). On the 

other hand, other studies reported little advantage in terms of predictive ability when 

considering non-additive effects in the model (Muñoz et al. 2014; Nishio and Satoh 2014; 

Kumar et al. 2015; Minamikawa et al. 2017; Enciso-Rodriguez et al. 2018). The additive 

effects capture a large part of dominant and higher-order interaction effects, being difficult to 

properly separate the additive and dominance effects in genetic analyses (Varona et al. 2018). 

Besides that, the genetic architecture of a trait influences the proportion of each variance 

component (Huang and Mackay 2016). The non-additive genetic variance is expected to be 

low for most traits (Hill 2010; Crow 2010). For these reasons, the fact that the inclusion of 

non-additive effects in genomic prediction models provides little or no improvement in 

predictive abilities is somewhat reasonable. In this work, we also tried to investigate the 

consequences of including dominance effects into the models. However, due to the 

computational limitations we at first modeled dominance in the STSE models. We found little 

or no advantage of including this effect and thus decided that the steep computational 

demands for this kind of analysis were not justifiable in our more complex models. 

Finally, we believe that our work also helps to better understand the practical 

challenges to successfully applying MTME genomic prediction models to a second season 

maize breeding program. We demonstrated that the use of MTME models can increase 

predictive ability when compared to univariate ones. However, in some cases we did not 

observe any improvement, which can at least partly be explained by the low correlation 

between traits and small heritability differences that we found. Besides that, the low levels of 

connection between trials in different environments and the necessity of using the single-step 

procedure highlight the complexity of the historical data we used. We believe that further 

research is needed to explore ways of dealing with these limitations, which represent the 

reality of a commercial maize breeding program. This study additionally suggests that there is 

room for further work in optimizing multivariate genomic prediction models in Bayesian and 

frequentist frameworks, allowing the practical application of these complex models. 
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Supporting information 

 

Supplementary Table 1 – Connections between experiments across years. The diagonal 

numbers represent the number of hybrids evaluated in each year. The off-diagonal 

numbers represent the number of common checks between different years. Numbers 

between parentheses represent the number of hybrids for which genotypic data were 

collected 

Year 2006 2007 2008 2009 

2006 100 (65) - - - 

2007 3 (1) 100 (68) - - 

2008 2 (0) 2 (1) 100 (34) - 

2009 0 1 (1) 3 (1) 125 (93) 

 

 

 


