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RESUMO 

Influência da modelagem multi-trait, dominância, e estruturação populacional na predição 

genômica em híbridos de milho 

Predição genômica de híbridos simples é uma promissora ferramenta no 
melhoramento de milho, pois permite aumentar os ganhos genéticos por unidade de 
tempo, principalmente por reduzir o tempo de seleção. Uma estratégia que pode 
aumentar a acurácia das predições genômicas é realizar esta para múltiplos caracteres 
considerando os mesmos simultâneamente, ou utilizar índices de seleção, os quais 
captam a performance dos genótipos tanto em condições ótimas como em condições 
de estresse. Além disso, fatores como dominância, variantes estruturais, e 
estruturação populacional podem influenciar a acurácia de estimativas dos valores 
genéticos genômicos (VGG). Portanto, os objetivos foram aplicar predição genômica 
em híbridos de milho (i) incluindo modelos multi-trait, (ii) incorporando desvios de 
dominância e efeitos da variação no número de cópias, e (iii) controlando a 
estruturação populacional. Para isto, dois conjuntos de milho (HELIX e USP) foram 
utilizados, consistindo de 452 e 906 híbridos simples. Os caracteres avaliados foram 
produtividade de grãos, altura de planta e espiga, senescência, e quatro índices de 
seleção. A partir das análises multi-trait dos modelos GBLUP e GK, pôde-se concluir 
que a combinação dos índices é uma alternativa viável, aumentando a acurácia 
seletiva. Além disso, os resultados sugerem que o melhor método é a predição de 
híbridos incluindo desvios de dominância, principalmente para caracteres complexos. 
Observou-se também que incluir efeitos relacionados a variação no número de 
cópias indica ser adequado, devido ao aumento da acurácia e redução do viés nos 
modelos de predição genômica. Por outro lado, a acurácia de predição não aumentou 
quando se adicionou quatro diferentes conjuntos de estruturação como covariáveis 
fixas no modelo GBLUP. No entanto, usando o escalonamento multidimensional 
não métrico e o agrupamento do fineSTRUCTURE aumentaram a confiabilidade de 
estimação do VGG para produtividade de grãos e altura de plantas, respectivamente.  

Palavras-chave: Milho tropical; Efeitos não-aditivos; Kernel Gaussiano; Variação no 
número de cópia 
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ABSTRACT 

Influence of multi-trait modeling, dominance, and population structure in genomic 

prediction of maize hybrids 

Genomic prediction of single-crosses is a promising tool in maize breeding, 
increasing genetics gains and reducing selection time. A strategy that can increase 
accuracy is applying multiple-trait genomic prediction using selection indices, which 
take into account the performance under optimal and stress conditions. Moreover, 
factors such as dominance, structural variants, and population structure can 
influence the accuracy of estimates of genomic breeding values (GEBV). Therefore, 
the objectives were to apply genomic prediction (i) including multi-trait models, (ii) 
incorporating dominance deviation and copy number variation effects, and (iii) 
controlling population structure in maize hybrids. Hence, we used two maize 
datasets (HELIX and USP), consisting of 452 and 906 maize single-crosses. The 
traits evaluated were grain yield, plant and ear height, stay green, and four selection 
indices. From multi-trait GBLUP and GK, using the combination of selection 
indices in MTGP is a viable alternative, increasing the selective accuracy. 
Furthermore, our results suggest that the best approach is predicting hybrids 
including dominance deviation, mainly for complex traits. We also observed 
including copy number variation effects seems to be suitable, due to the increase of 
prediction accuracies and reduction of model bias. On the other hand, adding four 
different sets of population structure as fixed covariates to GBLUP did not 
improve the prediction accuracy for grain yield and plant height. However, using 
nonmetric multidimensional scaling dimensions and fineSTRUCTURE group 
clustering increased reliability of the GEBV for GY and PH, respectively. 

Keywords: Tropical maize; Non-additive effects; Gaussian kernel; Copy number 
variation 
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1. INTRODUCTION 

Modern plant breeding comprises combinations of different approaches that include 

traditional methods, and the use of molecular markers as a “tool” for selecting plants with 

desirable traits. The last decade has seen tremendous advances in genome-scale data analysis, 

which was possible due to high-throughput DNA sequencing. In this way, single nucleotide 

polymorphism (SNPs), representing various regions of all chromosomes, are obtained to be 

applied in genomic studies (Guo et al. 2016). 

Quantitative traits of agricultural importance in plants are influenced by many genomic 

regions. Thus, whole genome-enabled prediction, such as Genomic Prediction (GP) or Genomic 

Selection (GS), emerged as a statistical approach to overcome this biological complexity. The main 

objective of GP, proposed by Meuwissen et al. (2001), is to improve prediction of complex traits 

based on marker information, increasing precision of selection by generating a genomic estimated 

breeding value (GEBV) for selection candidates. The accuracies of GP models are most often 

evaluated by applying validations (independent validation, fold-validation, or jackknife), where all 

genotypes are randomly divided into training and validation sets (TS, VS). The TS is used to train the 

prediction model and estimate the marker effects, and by a correlation test using the predicted with 

the observed values in the validation set, it is possible to obtain the prediction accuracy (PA). The 

procedure is repeated several times to obtain robust estimates (Zhao et al. 2015). 

The most commonly used methods in GP is the genomic best linear unbiased prediction 

(GBLUP), which utilizes a genomic relationship matrix (GRM) to estimate the genetic merit of an 

individual. The matrix defines the covariance between individuals based on observed similarity at the 

genomic level, rather than on expected similarity based on pedigree. Morota and Gianola (2014) 

reviewed whole-genome regression models using kernel methods to capture non-additive effects, 

either parametrically (GBLUP) or non-parametrically (Gaussian kernel, GK).  

Genomic prediction is superior to phenotypic selection for increasing genetic gains per unit 

time and shortening the length of the breeding cycle (Heffner et al. 2010). According to Bernardo 

(2016), GP became a bandwagon in plant breeding in the late 2000s and has been implemented in 

major seed companies routinely, especially in maize and soybean. In addition, the author argued that 

similarly with phenotypic selection, applying GP routinely might work reasonably well on average. 

However, GP still faces challenges in predicting phenotypes of highly polygenic traits due to the 

complex biological processes, which several factors could influence the estimation of GEBV, such 

as non-additive effects, population structure, and structural variations (copy number variation). 

Therefore, the objectives were to apply genomic prediction in maize hybrids (i) including multi-trait 
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models, (ii) incorporating dominance deviation and CNV effects, and (iii) controlling population 

structure. 
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2. MULTI-TRAIT GENOMIC PREDICTION FOR NITROGEN RESPONSE INDICES IN 

TROPICAL MAIZE HYBRIDS 

ABSTRACT 

In maize breeding, genomic prediction may be an efficient tool for selecting 
single-crosses evaluated under abiotic stress conditions. In addition, a promising 
strategy is applying multiple-trait genomic prediction using selection indices (SIs), 
increasing genetics gains and reducing time per cycles. In this study, we aimed (i) to 
compare accuracy of single- and multi-trait genomic prediction (STGP; MTGP) in 
two maize datasets, (ii) to evaluate prediction of four selection indices that could 
contribute to the selection of tropical maize hybrids under contrasting nitrogen 
conditions, and (iii) to compare the use of linear (GBLUP) and nonlinear 
(RKHS/GK) kernels in STGP and MTGP analyses. For either single-trait GBLUP 
and RKHS analyses, the highest values obtained of accuracy was 0.40 and 0.41 using 
harmonic mean (HM), respectively. From multi-trait GBLUP and GK, using the 
combination of selection indices in MTGP seems to be suitable, increasing the 
accuracy. Adding grain yield and plant height in MTGP, showed a slight 
improvement in accuracy compared to STGP. In general, there was a modest benefit 
of using single-trait RKHS and GK multi-trait, rather than GBLUP. 

Keywords: Abiotic stress; Single-trait genomic prediction; Gaussian kernel; GBLUP; 
Genomic heritability 

 
Published in Molecular breeding on June 8, 2017 as doi 10.1007/s11032-017-0681-1 

 

2.1. INTRODUCTION 

Tropical maize is one of the most important crops for smallholder farmers in the 

Americas, and highly dependent of nitrogen (N) fertilization to increase crop yield (Trachsel et al. 

2016). Thus, development of improved single-cross maize hybrids is critical for sustainable grain 

production (Gong et al. 2015). In breeding programs for abiotic stresses, N-use efficiency (NUE) 

represents genotypes that tend to have high yields in favorable conditions and low yields under 

stress; while N-stress tolerance represents genotypes in stressful and optimal conditions that tend 

to have satisfactory and low grain yield, respectively (Mueller and Vyn 2016). Therefore, selection 

can be performed directly under stress, indirectly under favorable conditions, or simultaneously 

under both optimal and stress conditions (Chen et al. 2016; Cecarelli et al. 1998). 

Selection indices (SIs) have been used in an attempt to identify the best individuals and 

to improve the overall genotype performance based on several quantitative traits simultaneously 
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(Cerón-Rojas et al. 2016; Ceron-Rojas et al. 2015; Dekkers 2007). Specifically for N-use 

efficiency, a SI was proposed by Craswell and Godwin (1984) and referred as N-agronomic 

efficiency (NAE). On other hand, Miti et al. (2010) presented low-N tolerance index (LNTI). 

Furthermore, some SIs as low-N agronomy efficiency (LNAE) (Wu et al. 2011) and harmonic 

mean (HM) (Jafari et al. 2009) try to take into account the performance under both optimal and 

stress conditions. Therefore, superior maize hybrids could be selected by applying genomic 

prediction using SIs as traits, increasing the efficiency of selection and requiring less time than a 

conventional breeding program (Bernardo 2014; Schulthess et al. 2016). 

Genomic prediction (GP), a promising selection method that uses marker and 

phenotypic information, has been routinely employed in maize hybrid breeding (Crossa et al. 

2014; Massman et al. 2013; Riedelsheimer et al. 2012; Cantelmo et al. 2017) and, recently, become 

an important tool in breeding for abiotic stresses as dehydration (Beyene et al. 2015; Ziyomo and 

Bernardo 2013), nitrogen (Liu et al. 2016; Fritsche-Neto et al. 2012), and heat (Heslot et al. 2014). 

However, most studies have used single-trait (ST) analysis to predict genomic estimated breeding 

values (GEBV) in a stress environment (Crossa et al. 2010; Poland et al. 2012). As far as we 

know, SIs have not been used for multiple-trait genomic prediction (MTGP) in N stress, and 

assuming SIs are genetically correlated and presents different heritabilities (Wu et al. 2011), 

applying MTGP could increase the prediction accuracies (Calus and Veerkamp 2011; He et al. 

2016; Wang et al. 2016). 

Multiple-trait and multi-environment genomic prediction has been successfully 

implemented using genomic best linear unbiased prediction (GBLUP) model (Guo et al. 2014). 

However, depending on the germplasm and genetic architecture of the trait, Bayesian methods, 

non-linear semiparametric approaches as Reproducing Kernel Hilbert Space (RKHS) and 

Gaussian kernel (GK) could produce slightly better accuracies (Cuevas et al. 2016; Montesinos-

Lopez et al. 2016; Jia and Jannink 2012; Hayashi and Iwata 2013). It is important to notice for 

RKHS and GK a few parameters must to be chosen correctly, in order to compute a genomic 

relationship matrix, such as the bandwidth parameter (h), which can be selected based on cross-

validation procedure, restricted maximum likelihood, or empirical Bayesian method (Endelman 

2011; Pérez-Elizalde et al. 2015; Morota and Gianola 2014). Furthermore, incorporating 

dominance effects in MTGP could be an efficient strategy to improve accuracy. Wang et al. 

(2016) and dos Santos et al. (2016) included dominance effects in the multi-trait GBLUP model 

in rice and maize hybrids, respectively, and found slight improvement in prediction and quality of 

variance components. 
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Therefore, our objectives were (i) to compare accuracy of single- and multi-trait 

genomic prediction for two maize datasets, (ii) to evaluate prediction of four selection indices 

that could contribute to the selection of tropical maize hybrids under contrasting nitrogen 

conditions, and (iii) to compare the use of linear (GBLUP) and nonlinear (RKHS/GK) kernels in 

STGP and MTGP analyses. 

 

2.2. Materials and methods 

2.2.1. Phenotypic dataset 

Maize dataset I 

We used 738 maize single-crosses from a diallel mating design between 49 tropical inbred 

lines, contrasting for N-use efficiency. The experimental scheme used was an augmented block 

design (unreplicated trial) consisted of 47 blocks, each with 16 unique hybrids and two checks. 

Trials were carried out in Anhembi (22°50'51"S, 48°01'06"W, 466 m) and Piracicaba, at São Paulo 

State, Brazil (22°42'23"S, 47°38'14"W, 535 m), during the second growing season of 2016 

cultivated between January to June. In both sites the hybrids were evaluated under two nitrogen 

(N) levels, low (LN) with 30 kg N ha-1, and normal (NN) with 100 kg N ha-1. 

We used plots of seven meters (m) spaced 0.50 m, with sowing density of about 57,000 

kernels per hectare, under conventional fertilization, weed, and pest control. The traits evaluated 

were grain yield (GY, ton ha-1) and plant height (PH, cm). Plots were manually harvested and GY 

was corrected to 13% moisture, the PH was measured from soil surface to the flag leaf collar on 

five representative plant within each plot. 

For the joint analysis, we used a linear mixed model to calculate best linear unbiased 

predictions (BLUPs) for the hybrids in each N condition, by fitting the following model:  

� = �� + �� + �� + �� + � 

where � is a vector of phenotypic values of hybrids; � is a vector of fixed effects of site, checks, 

and site × check; � is block within site, where �~�(0, ���
�); � is genotypic values of hybrids, 

where �~��0, ���
��; � is interaction sites × hybrids, where �~��0, ����

� �; � is a vector of 

random residuals from checks, where �~�(0, ���
�). ��

� was jointly estimated based on e sites 

with t replicated check in each site. X, V, H, and S are the incidence matrices for β, b, g, and i. 

Heterogeneous residual variance structure was assumed across sites. 

Variance components and entry-mean based heritability (h2) were obtained for GY under 

low (GYLN) and normal N (GYNN), and PH under normal N (PH), using 



12 

2 2
2 2 2 GE E
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 

 
   

 
, where ���

� is the genetic variance, ����
�  is the variance due to G x E 

interaction, ���
� is the residual variance, e is the number of sites (e = 2), and r is the number of 

replication (r = 1). The significance of the random effects of hybrid was assessed by the 

Likelihood Ratio Test (LRT), at 5% probability. Phenotypic analyses were performed using 

ASReml-R package (Butler et al. 2009). 

We plotted the BLUP mean values of the genotypes in the favorable (NN; y axis) and 

under low N conditions (LN; x axis). Two straight lines drawn at the mean value of each 

environment distributes the genotypes in four quadrants: those responsive or sensitive to N 

stress (above or below the mean value of the x axis) and those responsive or not to normal N 

application (above or below the mean value of the y axis). The genotypes responsive to normal N 

application and with a higher BLUP mean value under low N site are in quadrant I. 

 

Maize dataset II 

We used 452 maize single-crosses provided by Helix Sementes®, São Paulo, Brazil. The 

hybrids represent a partial diallel mating design between 128 tropical inbred lines. The 

experimental design used was randomized complete block with two replications. Trials were 

carried out in Ipiaçu (18°40'51"S, 49°49'19"W, 443 m) and Patos de Minas (18°35'02"S, 

46°28'10"W, 1067 m), at Minas Gerais, and Sertanópolis (23°02'39"S, 51°03'13"W, 390 m) at 

Paraná, located in Southeast and South regions of Brazil, during the first growing season of 

2014/15 from late September to early February. Two-row plots of 5 m spaced 0.70 m were used, 

and sowing density was about 63,000 kernels per hectare, under conventional fertilization, weed, 

and pest control. The traits evaluated were grain yield (GY, ton ha-1) and plant height (PH, cm). 

Plots were mechanically harvested and adjusted to 13% moisture for GY assessment, and PH 

measured from soil surface to the flag leaf collar on one representative plant within each plot. 

We used a linear mixed model to calculate BLUPs for hybrids, including site as fixed 

effect, and hybrid and interaction as random effects. Heterogeneous residual variance structure 

was assumed across sites. Variance components and entry-mean based heritability (h2) were 

obtained for GY and PH. The significance of the random effect of hybrid was assessed by LRT 

at 5% probability. Pearson’s phenotypic (rp) correlation coefficients among GY and PH was 

calculated. Phenotypic analyses were performed using ASReml-R package. 
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2.2.2. Genotypic dataset 

The genotyping of the 49 and 128 tropical inbred lines was performed by Affymetrix® 

platform, containing about 614,000 SNPs (Unterseer et al. 2014). Markers with low call rate 

(<95%), minor allele frequency (MAF, <0.05) and heterozygous loci on at least one individual 

were removed. Imputation was done based on homozigosity of an individual and marker 

frequency with missed point. High-quality polymorphic SNPs were used to build the artificial 738 

and 452 hybrids genomic matrix, deduced by combining the genotypes from its two parents. 

MAF was conducted over hybrids markers considering the threshold of 0.05, resulting in a total 

of 146,670 and 52,700 SNPs, respectively. 

2.2.3. Selection indices 

The BLUP mean of grain yield of each hybrid under low (GYLN) and normal N 

(GYNN) condition was used to estimate the selection indices NAE, LNTI, LNAE, and HM. 

After obtaining the values of selection indices, we carried out the deviance analysis (ANADEV). 

We also calculated Pearson’s phenotypic (rp) correlation coefficients among four selection indices 

and adjusted mean of grain yield. 

Nitrogen use efficiency was assessed by N-agronomic efficiency (NAE) (Craswell and 

Godwin 1984), as follows: i i( NN ) ( LN )

i
( NN ) ( LN )

GY GY
NAE

N N


 , where NAEi is the N-agronomic efficiency 

of hybrid i; GY(NN)i is the BLUP mean of grain yield (ton ha-1) in the NN condition of hybrid i; 

GY(LN)i the BLUP mean of grain yield (ton ha-1) in the LN condition of hybrid i; N(NN) is the 

amount of nitrogen (ton N ha-1) applied in the NN condition; and N(LN) is the amount of nitrogen 

(ton N ha-1) applied in the LN condition. 

 In addition, to evaluate N-stress tolerance, the low-N tolerance index (LNTI), described 

by Miti et al. (2010), was used as follows: 100i

i

( LN )

i

( NN )

GY
LNTI

GY

 
  
 
 

, where LNTIi is the low-N 

tolerance index of hybrid i; GY(NN)i  is the BLUP mean of grain yield in the NN condition of 

hybrid i; GY(LN)i the BLUP mean of grain yield in the LN condition of hybrid i. 

The low-N agronomic efficiency (LNAE), introduced by Wu et al. (2011), was used as 

follows:
( LN )i

( LN )i i
( NN )i

GY
LNAE GY

GY

 
  
 

, where LNAEi is the low-N agronomic efficiency of 

hybrid i; GY(NN)i is the BLUP mean of grain yield in the NN condition of hybrid i; GY(LN)i the 

BLUP mean of grain yield in the LN condition of hybrid i. 
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The harmonic mean (HM) was calculated using psych-R package: 

1 1

2
i

( NN )i ( LN )i

( NN ) ( LN )

HM
GY GY

X X

 

   

      
   

, where HMi is the harmonic mean of hybrid i; GY(NN)i is the 

BLUP mean of grain yield in the NN condition of hybrid i; GY(LN)i is the BLUP mean of grain 

yield in the LN condition of hybrid i; ( )NNX  is the overall BLUP mean of the NN condition; and 

( )LNX  is the overall BLUP mean of the LN condition. The expression of HM used was based on 

the harmonic mean of relative performance of predicted genetic values (Spinelli et al. 2015). 

 

2.2.4. Single- and multi-trait prediction 

From the maize dataset I, we used the BLUP mean of GYLN, GYNN, and the 

combination of the four selection indices to run additive-dominance GBLUP and RKHS for 

single-trait, and GBLUP and GK for multi-trait. From the maize dataset II, we run the same 

models described, using BLUP mean of GY and PH. 

 

GBLUP model 

Additive-dominance GBLUP for single- and multi-trait (j = 1, …, n traits) was used by 

fitting the following model: 

                                                                 a dy Xb Z a Z d e                                                   (1) 

where y is a vector of BLUP values of hybrids obtained from single-trait or multi-trait, b is 

a vector of fixed effects, a is a vector of additive genetic effects of the individuals, d is the vector 

of dominance effects, and e is a vector of random residuals. X, Za and Zd are the incidence 

matrices for b, a, and d. The distributions assumed were 2~ (0, ) a aa N G , 2~ (0, ) d dd N G , and 

2~ (0, )e me N I . Ga and Gd are the additive and dominance genomic relationship matrix (GRM), 

following the equation: 







A A
a n

i i
i 1

W W '
G

2 p (1- p )

 and 
2

1

'

4 ( (1- ))






D D
d n

i i
i

W W
G

p p

, where pi is frequency of 

one allele of the locus i and W is the matrix of incidence of markers (Da et al. 2014; VanRaden 

2008). The AW  matrix was coded as 0 for homozygote 1 1A A , 1 for heterozygote 1 2A A and 2 for 

homozygote 2 2A A , for DW was considered 0 for both homozygotes and 1 to heterozygote. 
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All variance components were determined using Bayesian generalized linear regression 

(BGLR) (Perez and de los Campos 2014) and MultiTrait Model (MTM) package (de los Campos 

and Grüneberg 2016). We reported mean estimates and standard deviations of the additive 

variance (��
�), dominance variance (��

�), error variance (��
�), and broad sense genomic heritability 

(ℎ�
�). Moreover, we calculated in ASReml-R the genetic (rg) correlation coefficients of traits in the 

maize dataset I and II, following the equation:
11 2212 / g gCOV   , where 

12COV  is the SNP additive 

genetic covariance for multiple traits; 
11g and 

22g is the SNP additive variance associated to each 

trait. 

 

RKHS and GK models 

Additive-dominance RKHS and GK was used for single- and multi-trait model (j = 1,…, 

n traits), respectively, by fitting the following model: 

     a dy Xb Z a Z d e                                                   (2) 

where y is a vector of BLUP values of hybrids obtained from single-trait or multi-trait,, b 

is a vector of fixed effects, a is a vector of additive genetic effects of the individuals, d is the 

vector of dominance effects, and e is a vector of random residuals. X, Za and Zd are the incidence 

matrices for b, a, and d. The distributions assumed were 2~ (0, ) a aa N K , 2~ (0, ) d dd N K , and 

2~ (0, ) e mN I  . Ka and Kd are the additive and dominance symmetric semipositive definite matrix 

representing the covariance of the genetic values, following the equation:
0

2
05

ia a .qK exp(-hd / )  

and 0
2

05
id d .qK exp(-hd / ) , where h is a bandwidth parameter, estimated from the Bayesian 

method (Cuevas et al. 2016); 2

iad  and 
2

idd  are the squared Euclidean distance based on a centered 

and standardized additive and dominance incidence matrix, respectively, between individuals i 

(Morota et al. 2014); and q0.05 is the fifth percentile of the same distance. The bandwidth 

parameter (h) for RKHS was estimated using one trait, and for GK we averaged the h of two 

traits. 

We reported posterior mean estimates and standard deviations of the additive variance 

(��
�), dominance variance (��

�), error variance (��
�), and broad sense genomic heritability (ℎ�

�), 

using BGLR-R and MTM-R. We used a total of 30,000 MCMC iterations, 5,000 for burn-in, and 

5 for thinning. In the multivariate model, we assumed an unstructured genetic and residual 

covariance matrix. The degree of freedom hyperparameters of the scaled inverse chi-square 

distributions and the scale parameters were all set to the total number of traits used, which in our 

case was two. 
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Validation and prediction accuracy 

From GP models, we evaluated prediction accuracy (rMP), correlation between BLUP 

values and predicted phenotypic values of the hybrids, from fifty replications, randomly sampling 

75% of the hybrids to form the training set (TS) and the rest as validation set (VS). We reported 

the average correlation and approximate P-values for pairwise comparisons of prediction 

accuracy between single- and multi-trait models based on paired t-tests applied after using 

Fisher’s Z transformation.  

 

2.3. RESULTS 

Prediction of SIs 

From the phenotypic analysis, it was found significant differences between hybrids by the 

LRT (P<0.05) for GYLN, GYNN, and PH. Entry-mean based heritability was 0.43 for GYLN, 

0.59 for GYNN, and 0.83 for PH, reflecting good accuracy of phenotypic evaluation. The 

average of BLUP mean for GYLN was 5.30, ranging from 3.14 to 8.12 ton ha-1, and for GYNN 

was 6.54, ranging from 3.56 to 10.09 ton ha-1 (Fig. 1), with a reduction of 18.96% under NN 

compared to LN condition. We identified 273 hybrids in quadrant I (Fig. 1a) responsive to 

normal N condition and presented higher mean in the unfavorable environment (low N 

condition). In quadrant III, 258 hybrids presented low grain yield evaluated in low and normal 

condition of N. 

To highlight the importance of the selection based on the environment mean, Fig. 1b 

shows the relation between the means of the ten best maize hybrid selected based on the mean 

under low N condition (mean LN), on the mean of all environments (mean ENV) and in the 

normal N condition (mean NN). The mean LN of the best hybrids selected was superior under 

low N and inferior under a favorable environment. The hybrids selected based on the means of 

the environments, presented lower-rate and higher-rate performance in the unfavorable and 

favorable conditions, respectively. 

From the selection indices, the hybrid effect was significant for NAE, LNAE, LNTI, and 

HM. The NAE mean was 17.68, ranging from -25.73 to 45.98 ton ha-1. The LNTI mean was 

81.74 %, and varied from 55.62 to 149.21 %. The LNAE mean was 4.35, and ranged from 2.02 

to 8.14 ton ha-1, while HM was 0.99, and varied from 0.59 to 1.53 among the genotypes 

(Supplemental Fig. S1). 

Phenotypic correlations (rp) of GYLN showed significant positive correlations with all 

other traits (rp=0.25 - 0.89), except for NAE (Table 1; Supplemental Fig. S1). Significant positive 
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correlations were found among GYNN with all selection indices, except for LNTI. NAE was 

negatively correlated with LNTI and LNAE. From the genetic correlations (rg) we found GYLN 

negatively correlated with LNTI, and LNAE non-significantly correlated with NAE (rg=0.16), 

reflecting differences compared to phenotypic correlation. We found that GYNN correlated 

significantly (P<0.05) with PH (rp = 0.45; rg = 0.75). 

From single- and multi-trait GBLUB analyses, we obtained the values of additive variance 

(��
�), dominance variance (��

�), error variance (��
�), and broad sense genomic heritability (ℎ�

�) for 

each trait and model (Table 2). Estimates of variance components and genomic heritability varied 

considerable among single- and multi-trait model. Single-trait ℎ�
� ranged from 0.24 to 0.38, and 

for multi-trait ℎ�
� from 0.39 to 0.88. The highest heritability estimate for the selection indices in 

single- and multi-trait was 0.38 for HM and 0.87 for NAE. 

From single-trait RKHS and multi-trait GK, we found considerable differences in 

estimates of variance components and genomic heritability among traits and models (Table 3). It 

is important to highlight, for both models, dominance variance was higher for all traits, and ℎ�
� 

ranged from 0.28 to 0.54 for single-trait, and 0.39 to 0.88 for multi-trait. The highest heritability 

estimate for single-trait was obtained for HM, and multi-trait was NAE. 

From the single-trait GBLUP model, the rMP varied from 0.12 to 0.40, with the highest 

value obtained for GYNN (0.39) and HM (0.40) (Fig. 2a). From multi-trait GBLUP model, the 

value of rMP remained the same for HM (0.40) and reduced for NAE (0.14) and LNAE (0.12) 

(Fig. 3a), when combined to each one. However, increased for LNTI (0.16) combined with HM 

(0.40), NAE (0.21) with LNTI (0.16), and LNTI (0.16) with LNAE (0.15). 

For RKHS model, we found the highest value of rMP for GYNN (0.41) and HM (0.41) 

(Fig. 2b). From GK model, the value of rMP remained the same for the combination GYLN and 

GYNN, and increased for NAE (0.21) combined with LNTI (0.15), NAE (0.22) with LNAE 

(0.14), and LNTI (0.18) with LNAE (0.14) (Fig. 3b). The rMP of GK was slightly higher compared 

to GBLUP for some traits, such as HM combined to NAE, LNTI, and LNAE (Fig. 3). 

 

Prediction of GY and PH  

From the phenotypic analysis of maize dataset II, it was found significant genetic 

differences between hybrids by LRT (P<0.05), for both traits. Entry-mean based heritability was 

0.62 and 0.86 for GY and PH, respectively. The average of BLUP mean for GY was 6.6, and 

varied from 1.53 to 10.08 ton ha-1, and for PH was 240, varying from 185 to 277 cm. The 

correlation showed that GY correlated significantly (P<0.01) with PH (rp = 0.40; rg = 0.53). 
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 From single-trait GBLUP model, estimates of genomic broad-sense heritability and 

prediction accuracy was 0.38; 0.39 (GY dataset I), 0.71; 0.55 (PH dataset I), 0.77; 0.70 (GY 

dataset II), and 0.87; 0.80 (PH dataset II) (Fig. 4a). For multi-trait GBLUP model, a significant 

increase was identified for GY in dataset I (738H). On the other hand, a slight increase of rMP was 

observed for GY in dataset II (452H) (Fig. 4a). For single-trait RKHS model, estimates of rMP was 

similar to GBLUP, except for GY 738H (Fig. 4b). For multi-trait GK model, a significant 

increase also was identified for GY in dataset I, from 0.41 to 0.43 (P<0.05), and for dataset II, a 

slight increase of rMP was observed for GY and PH. 

 

2.4. DISCUSSION 

In the present study, we identified superior maize hybrids with higher mean in low N and 

responsive to normal N condition (Fig. 1 - quadrant I). Tropical maize germplasm generally 

presents N genetic variability due to farming systems with low mineral nutrient availability, 

demonstrating potential to identify best individuals through high general combining ability 

and/or selection indices (Kumar et al. 2016; Trachsel et al. 2016). In our work, we used four 

selection indices and found genetic variation from significant effect of hybrid. Recent studies 

have demonstrated the efficiency of SIs to identify N stress tolerant and N-use efficient genotypes 

(Abdel-Ghani et al. 2013; Granato et al. 2014; Khan and Mohammad 2016). 

We identified significant positive genetic correlation of HM (rg = 0.91; rg = 0.98) and 

LNAE (rg = 0.87; rg = 0.56) with grain yield under low and normal N sites (Table 1), respectively, 

indicating the high performance of these indices to identify genotypes in both conditions. On the 

other hand, NAE was non-significant negative and positive correlated (rg = -0.01; rg = 0.88) and 

LNTI was negative associated with GYLN and GYNN, respectively. These findings, according 

to Wu et al. (2011), could result in the selection of genotypes with great difference between low 

and normal N conditions. In contrary, HM is highly associated to the environment (arithimetic) 

mean and geometric mean, and is recommended to select best genotypes adapted to stress and 

non-stress conditions (Jafari et al. 2009), which is in agreement to our study (Table 1, Fig. 1b). 

We applied single- and multi-trait genomic prediction using SIs to identify superior maize 

hybrids. For single-trait analysis, we found a high genomic broad sense heritability for HM in 

GBLUP (ℎ�
� = 0.38) and RKHS (ℎ�

� = 0.54) (Table 2), compared to the remaining indices, 

reflecting in a feasible trait for selection. In contrast, we identified lower genomic heritability for 

GY under low N availability (Table 2). Likewise, Beyene et al. (2015) found reduction in the 

estimate of heritability between grain yield under water-limited and water-sufficient sites, across a 
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diverse set of bi-parental maize populations. Several authors argued that unfavorable conditions 

interfere in the metabolism of growth (Cooper et al. 2014; Harfouche et al. 2014), reducing the 

expression of genetic variability, and thus affecting heritability. 

For single-trait RKHS analysis, we found higher dominance variances for all traits (Table 

3), which is in agreement with those of Wang et al. (2016) and dos Santos et al. (2016), that 

adding this effect substantially contributed to rice and maize hybrid prediction, respectively. In 

terms of prediction accuracy (rMP), we observed considerable differences between GYLN (0.33; 

0.33) and GYNN (0.38; 0.41), for single-trait GBLUP and RKHS models, respectively. Similar 

reduction of rMP were observed by Crossa et al. (2010) and Poland et al. (2012) for yield in maize 

and wheat, under water-limited and water-sufficient environments. In addition, Ziyomo and 

Bernardo (2013) also observed lower rMP of grain yield under water-limited (0.46) and well-

watered (0.48) sites, in a population of maize inbred lines. According to the authors, unfavorable 

conditions could affect heritability, and consequently, interfere in the estimates of prediction 

accuracy. 

For the selection indices, HM presented higher estimate of rMP (0.40; 0.41) in both single-

trait models tested, suggesting selection could be performed on this trait in predictive analysis. 

Similarly, previous studies have shown that prediction using arithmetic mean of two 

environments is better than single-environment (Wang et al. 2016). We observed a slight increase 

of rMP for GYNN, NAE, LNTI, and HM, using single-trait RKHS relative to GBLUP (Fig. 2). 

Similar findings were observed by Crossa et al. (2010) and Jiang and Reif (2015), showing better 

model performance for RKHS, which could be related to the genetic architecture of the traits 

modeled in the kernels. 

Our main strategy was to combine different selection indices in the MTGP analyses, 

attempting to explore the correlation between traits. We identified a slight increase of rMP 

comparing single- to multi-trait GBLUP (Fig. 2a; Fig. 3a), and single- RKHS to multi-trait GK 

(Fig. 2b; Fig. 3b) models. Several studies showed the same trend, which the success of the MTGP 

is highly dependent of genetically correlated traits, and a target trait with low heritability (Jia and 

Jannink 2012; Schulthess et al. 2016; Wang et al. 2016). In contrast, Schulthess et al. (2016) used 

SIs in MTGP for grain yield and protein content in rye, and recommended to perform single-trait 

prediction. In addition, a few authors argue the benefits of using MTGP over STGP, due to the 

computational issues and real gains (Alimi et al. 2013; Lee and van der Werf 2016). In our multi-

trait analyses, we found an increase of rMP for the SIs with low genomic heritability when 

combined to moderate ℎ�
� (Table 3), for example, combining HM (ℎ�

� = 0.54) and LNAE (ℎ�
� = 

0.28), resulted in an increase of rMP from 0.13 to 0.15 for LNAE, and for HM it remained the 
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same. Similar results was obtained by Hayashi and Iwata (2013) and Guo et al. (2014), that found 

accurate GEBV prediction for low heritability traits correlated with high heritability traits. 

From the MTGP analyses, GK outperformed GBLUP, showing higher or equal 

prediction accuracy for all traits, and lower standard errors. Recently, additive GK models were 

applied by Cuevas et al. (2016) and Cuevas et al. (2017) for multi-environments in wheat and 

maize datasets, and the authors attributed the better performance relative to GBLUP, due to at 

least two reasons, (i) more flexibility of the kernels to model complex marker main effects and (ii) 

marker-specific interaction effects. Liu et al. (2016) working with genomic prediction for rice 

NUE breeding, found slight higher rMP of GK compared to GBLUP. 

From the prediction of grain yield and plant height (Fig. 4), we used two different datasets 

applying single- and multi-trait GP. A considerable difference was observed in the broad sense 

genomic heritability and prediction accuracy of both datasets for GY (dataset I, ℎ�
� = 0.38, rMP = 

0.39) and GY (dataset II, ℎ�
� = 0.77, rMP = 0.70), and to PH (dataset I, ℎ�

� = 0.71, rMP = 0.55) and 

PH (dataset II, ℎ�
� = 0.87, rMP = 0.80) from GBLUP model. We observed that higher genomic 

heritability is associated to higher prediction accuracy. However, according to de los Campos et 

al. (2015) prediction and genomic heritability are two different problems, and warned about the 

true proportion of variance that can be explained by a regression on markers. 

It is important to highlight dataset I has more individuals than dataset II, and we 

observed lower rMP in this dataset for GY and PH (Fig. 4). According to several authors, 

increasing the training set size can improve the prediction accuracies (Lian et al. 2014; Mendes 

and de Souza 2016). On the other hand, simulations showed, in some cases, small TSs can be just 

as accurate as larger TS (Habier et al. 2009). Besides TS size, several factors can affect accuracy 

such as number of markers, trait heritability, effective population size, and relationship between 

test and validation set (Daetwyler et al. 2008; Habier et al. 2007; Riedelsheimer et al. 2013). In 

addition, measures as prediction error variance and coefficient of determination are well adopted 

to optimize TS (Isidro et al. 2015; Rincent et al. 2012). In our study, phenotypic precision 

(experimental design) may have led to the lower rMP of dataset I. 

We also observed a significant increase of rMP for GY in dataset I when combined to PH, 

in multi-trait GBLUP and GK relative to single-trait GBLUP and RKHS, respectively (Fig. 4). 

On contrast to dataset II, we observed a non-significant increase of rMP, for GY and PH 

comparing single- and multi-trait models. Similar results was observed by dos Santos et al. (2016), 

which did not find any improvements in rMP between plant height and kernel weight using 

multivariate models. The authors argued this result was not expected, since both traits are 

moderately correlated. Bao et al. (2015) also found no benefits of using MTGP over STGP 
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models in four traits of soybean. However, these discouraging results was argued by Schulthess et 

al. (2016), emphasizing MTGP could also be applied in a way to achieve more cycles of selection 

by unit of time similarly as STGP. 

 

2.5. CONCLUSION 

Our results suggest that the best approach is predicting hybrids based on harmonic mean, 

since it take into account the performance under optimal and nitrogen stress conditions. 

Furthermore, the combination of selection indices by multi-trait genomic prediction seems to be 

suitable, due to the increase of prediction accuracies. However, adding grain yield and plant 

height in MTGP showed a slight improvement in prediction accuracy compared to single-trait 

genomic prediction.  

The overall performance of the nonlinear GK model was superior relative to multi-trait 

GBLUP. On other hand, there was a modest benefit of using single-trait RKHS and GK multi-

trait, rather than GBLUP.  
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FIGURES 

 

Fig. 1. Performance of 738 tropical maize hybrids under low and normal N condition. (a) 

Relationship between BLUP mean of grain yield under low (GYLN) and normal N (GYNN) 

conditions. Dashed black lines represents the mean. Solid red line is the regression slope and 

95% confidence interval (red band). Quadrants represents efficient and responsive (I), non-

efficient and responsive (II), non-efficient and non-responsive (III), and efficient and non-

responsive (IV). (b) Performance of the ten best hybrids selected based on the mean under low N 

condition ( ), on the mean of all environments ( ), and in the normal N condition ( ), for 

grain yield (ton ha-1). 
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Fig. 2. Barplot of prediction accuracy from single-trait analyses. (a) GBLUP and (b) RKHS, 

for grain yield (ton ha-1) in low (GYLN) and normal (GYNN) nitrogen, N-agronomic efficiency 

(NAE, ton ton-1 N ha-1), low-N tolerance index (LNTI, %), low-N agronomy efficiency (LNAE, 

ton ha-1), and harmonic mean (HM). Data are mean ± SD estimated from fifty replications in 

independent validation. Different letters above bars indicate significant differences (P<0.05) 

between prediction accuracy for six traits from paired t-tests. 
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Fig. 3. Barplot of prediction accuracy from multi-trait analyses. (a) GBLUP and (b) GK, for 

grain yield (ton ha-1) in low (GYLN) and normal (GYNN) nitrogen, N-agronomic efficiency 

(NAE), low-N tolerance index (LNTI), low-N agronomy efficiency (LNAE), and harmonic mean 

(HM). Data are mean ± SD estimated from fifty replications in independent validation. Different 

letters above bars indicate significant differences (P<0.05) between prediction accuracy for the 

combination of traits in MTGP from paired t-tests. 
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Fig. 4. Boxplot of prediction accuracy. (a) Single- and multi-trait additive-dominance GBLUP, 

(b) single-RKHS and multi-GK, under dataset I (738 Hybrids) and dataset II (452 Hybrids), for 

grain yield (GY) and plant height (PH). Red dot and black number are representing the mean. 

Different letters bellow box indicate significant differences (P<0.05) between prediction accuracy 

for the combination of traits in STGP and MTGP from paired t-tests. 
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Supplemental Fig. S1. Scatterplot between the combinations of four selection indices (a-

f). N-agronomic efficiency (NAE, ton ton-1 N ha-1), low-N tolerance index (LNTI, %), low-N 

agronomy efficiency (LNAE, ton ha-1), and harmonic mean (HM). Solid red line is the regression 

slope and 95% confidence interval (light gray band). 
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TABLES 

Table 1 Estimate of phenotypic (rp, above the diagonal) and genetic (rg, below the diagonal) correlations 

Trait GYLN GYNN NAE LNTI LNAE HM 

GYLN - 0.64** -0.07* 0.25** 0.80** 0.89** 

GYNN 0.93** - 0.70** -0.55** 0.08* 0.92** 

NAE -0.01ns 0.88** - -0.96** -0.63** 0.37** 

LNTI -0.59** -0.80** -0.94** - 0.77** -0.20** 

LNAE 0.87** 0.56** 0.16ns 0.33** - 0.46** 

HM 0.91** 0.98** 0.73** -0.57** 0.70** - 

Traits are grain yield (ton ha-1) in low (GYLN) and normal (GYNN) nitrogen, N-agronomic efficiency (NAE, 
ton ton-1 N ha-1), low-N tolerance index (LNTI, %), low-N agronomy efficiency (LNAE, ton ha-1), and harmonic 
mean (HM, ton ha-1).  
nsNot significant; significant at 5% (*) or 1% (**) level. 

 

 

Table 2 Estimate of variance components and genetic parameters obtained by single- and multi-trait 
GBLUP analyses 

 Trait ��
� ��

� ��
� ℎ�

� 

G
B

L
U

P
 

si
n

gl
e-

tr
ai

t 

GYLN 0.070.02a 0.050.01 0.290.02 0.310.05 

GYNN 0.190.05 0.120.03 0.500.04 0.380.05 

NAE <0.010.00 <0.01 0.00 <0.010.00 0.290.05 

LNTI 11.613.06 15.104.44 65.105.73 0.290.05 

LNAE 0.070.02 0.090.03 0.510.04 0.240.04 

HM 0.0030.00 0.0010.00 0.0080.00 0.380.05 

G
B

L
U

P
 

m
ul

ti
-t

ra
it

 

GYLN 0.220.08 0.580.40 0.290.02 0.710.09 

GYNN 0.450.19 1.381.05 0.540.05 0.750.11 

NAE 0.0070.00 0.0070.00 0.0030.00 0.800.01 

LNTI 37.3 8.25 15.6 7.91 52.8 3.42 0.48  0.08 

NAE 0.006 0.00 0.01 0.00 0.003 0.00 0.87  0.01 

LNAE 0.12 0.04 0.29 0.17 0.53 0.04 0.43  0.09 

LNTI 31.2 7.70 6.38 5.03 51.1  3.60 0.44  0.06 

LNAE 0.11 0.03 0.25 0.12 0.53 0.04 0.39  0.08 

NAE 0.008 0.00 0.01 0.00 0.002 0.00 0.88 0.01 

HM 0.02 0.00 0.04 0.00 0.001 0.00 0.86  0.02 

LNTI 36.9 9.77 14.3 9.77 52.5 3.45 0.50  0.07 

HM 0.01 0.00 0.03 0.00 0.009 0.00 0.85  0.02 

LNAE 0.14 0.05 0.32 0.19 0.54 0.04 0.45  0.10 

HM 0.02 0.00 0.03 0.00 0.01 0.00 0.85  0.02 

Traits are grain yield (ton ha-1) in low (GYLN) and normal (GYNN) nitrogen, N-agronomic efficiency 
(NAE, ton ton-1 N ha-1), low-N tolerance index (LNTI, %), low-N agronomy efficiency (LNAE, ton ha-1), 

and harmonic mean (HM, ton ha-1). Additive variance (��
�), dominance variance (��

�), error variance (��
�), 

and broad sense genomic heritability (ℎ�
�). 

aData are mean ± standard deviation (SD) estimated from fifty replications in independent validation. 
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Table 3 Estimate of variance components and genetic parameters obtained by single-trait RKHS and multi-

trait GK analyses 

 Trait ��
� ��

� ��
� ℎ�

� 

R
K

H
S 

 
si

n
gl

e-
tr

ai
t 

GYLN 0.10 0.03a 0.11  0.05 0.28 0.02 0.43  0.06 

GYNN 0.22 0.06 0.26  0.13 0.43 0.03 0.52  0.07 

NAE <0.01  0.00 <0.01  0.00 <0.01  0.00 0.31  0.06 

LNTI 11.89  3.92 17.77  7.03 61.09  5.56 0.32  0.07 

LNAE 0.09 0.03 0.10  0.03 0.49 0.02 0.28  0.05 

HM 0.003 0.00 0.005  0.00 0.007  0.00 0.54  0.07 

G
K

 
m

ul
ti

-t
ra

it
 

GYLN 0.22 0.08 0.58  0.40 0.29  0.02 0.71  0.09 

GYNN 0.45 0.19 1.38  1.05 0.54  0.05 0.75  0.11 

NAE 0.007 0.00 0.007 0.00 0.003  0.00 0.80  0.01 

LNTI 37.3 8.25 15.6  7.91 52.8   3.42 0.48  0.08 

NAE 0.006 0.00 0.01  0.00 0.003  0.00 0.87  0.01 

LNAE 0.12 0.04 0.29  0.17 0.53 0.04 0.43  0.09 

LNTI 31.2 7.70 6.38  5.03 51.1   3.60 0.44  0.06 

LNAE 0.11 0.03 0.25  0.12 0.53 0.04 0.39  0.08 

NAE 0.008 0.00 0.01  0.00 0.002  0.00 0.88  0.01 

HM 0.02 0.00 0.04  0.00 0.001  0.00 0.86  0.02 

LNTI 36.9 9.77 14.3  9.77 52.5 3.45 0.50  0.07 

HM 0.01 0.00 0.03  0.00 0.009  0.00 0.85  0.02 

LNAE 0.14 0.05 0.32  0.19 0.54 0.04 0.45  0.10 

HM 0.02 0.00 0.03  0.00 0.01 0.00 0.85  0.02 

Traits are grain yield (ton ha-1) in low (GYLN) and normal (GYNN) nitrogen, N-agronomic efficiency 
(NAE, ton ton-1 N ha-1), low-N tolerance index (LNTI, %), low-N agronomy efficiency (LNAE, ton ha-1), 
and harmonic mean (HM, ton ha-1). Additive variance (��

�), dominance variance (��
�), error variance (��

�), 
and broad sense genomic heritability (ℎ�

�).  
aData are mean ± SD estimated from fifty replications in independent validation. 
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3. MODELING DOMINANCE AND COPY NUMBER VARIATION CAN IMPROVE 

PREDICTION ACCURACY OF MAIZE HYBRIDS 

ABSTRACT 

In maize breeding, heterosis is the main factor to increase crop yield in 
single-cross hybrids and is a result of non-additive effects from the action of multiple 
loci. In addition, complementation of allelic variation and gene content also may be a 
valuable contributor, especially, in the cases of higher content of copy gains in inbred 
lines. Hence, we aimed (i) to compare the accuracy of additive, dominance, and 
additive-dominance genomic prediction models in two maize hybrids datasets, (ii) to 
evaluate prediction including the copy number variation (CNV) effects into GP 
models, and (iii) to compare the use of linear (NOIA) and nonlinear (GK) kernels in 
these analyses. In HELIX dataset, we observed a pronounced increase in accuracy 
between NOIAa (0.57) and NOIAad (0.75), showing the contribution of dominance. 
For USP dataset, predicting with CNV model was the best approach regarding 
accuracy and bias for grain yield (GY), plant height (PH) and stay green (SG), 
outperforming even the additive-dominance models. Moreover, we observed a 
significant positive phenotypic correlation of small magnitude between PH and SG 
with copy number gain, showing a tendency of association between some copies with 
height and senescence of plants. The model GKa demonstrated a superiority 
compared to NOIAa for GY in both datasets, confirming the performance in 
modeling complex non-additive effects. Our results suggest predicting hybrids 
including dominance effects led to slightly higher estimates of accuracy, mainly for 
complex traits. Furthermore, exploring information of copy variants in prediction 
models could lead to better estimates of genomic breeding values. 

Keywords: Non-additive effects; Copy gain and loss; NOIA model 
 

3.1. INTRODUCTION 

In industry and public plant breeding programs, genomic prediction (GP) schemes are 

well established to increase genetic gains and reduce extensive field trials (Lado et al, 2017). In 

addition, it works reasonably well if applied routinely, in the same way as phenotypic selection 

(Bernardo, 2016; Lian et al, 2014). Recently, studies related to maize hybrid breeding have 

demonstrated that prediction accuracies can be improved by modeling genotype × environment 

interaction (Sousa et al, 2017) and non-additive effects (Santos et al, 2015). However, even having 

switched from a bandwagon to a consolidated methodology, GP still faces challenges in 

predicting phenotypes of highly polygenic traits due to the complex biological processes. 

In the context of classical quantitative genetics regarding non-additive effects, several 

works have been published in animal (Miglior et al, 1995) and plant (Bernardo, 1996) science. 

Newly, with the advance of genomic technologies, estimation of variance components based on 



36 

SNPs became more accurate and precise (Da et al, 2014; Vitezica et al, 2013), even not reflecting 

the biological effect of the genes (Huang and Mackay, 2016). In genomic prediction, it is 

common to use additive models, but some studies report low accuracy for characters that have 

heterosis or relevant epistasis (Jiang and Reif, 2015). Thus, it would be useful to exploit non-

additive effects in the GP model to increase the accuracy of selection. Furthermore, the inclusion 

models should also be a topic of interest for the application of GP in predicting heterotic 

transgressive phenotypes (Zhao et al, 2015). For instance, a simulated and real study in Eucalyptus 

breeding was reported by Denis and Bouvet (2013) and Bouvet et al (2016), respectively, where 

the authors showed that including dominance effects from a genomic realized relationship 

matrices (GRM) performed better for clone selection only when dominance effects were 

preponderant. Wang et al (2016), dos Santos et al (2016), and Resende et al (2017) included 

dominance effects in the GBLUP model in rice, maize, and Eucalyptus hybrids, respectively, and 

noticed a slight increase in accuracy.  

Therefore, several prediction models adding dominance deviation have been proposed 

including parametric, non-parametric, and Bayesian approaches (dos Santos et al, 2016; Morota et 

al, 2014). For example, the natural and orthogonal interactions (NOIA) approach (Alvarez-Castro 

and Carlborg, 2007; Vitezica et al, 2017) removes the assumption of Hardy-Weinberg equilibrium, 

showing high performance for single-crosses prediction. Also, nonlinear Gaussian kernel (GK) is 

a viable alternative method to account for small complex non-additive effects without a direct 

modeling (Morota and Gianola, 2014). It is important to notice that we use molecular markers to 

measure relatedness and build GRM, regardless of parameterization. Consequently, other 

information could be used to account for different aspects of the genome, such as gene 

expression and metabolic abundance information (Guo et al, 2016; Riedelsheimer et al, 2012; Xu 

et al, 2017), or even imprinting effects (Jiang et al, 2017; Lopes et al, 2015). In this context, on 

maize genome, several factors may influence the prediction for quantitative traits (Rodgers-

Melnick et al, 2016), leading to a biased estimation of genomic breeding value, such as genomic 

imprinting, epigenetic regions, transposons, and copy number variations. 

Copy number variants (CNVs) are duplications/deletions of large DNA segments (>1000 

base pair DNA segments) in comparison with a reference genome (Samelak-Czajka et al, 2017). 

In maize, structural genomic variation such as copy gain (duplication) and copy loss (deletion) 

may have different effects on the gene dosage and the phenotype, influencing directly in the gene 

expression (Springer et al, 2009). For instance, according to Swanson-Wagner et al (2010), over 

10% of the ~32,500 genes surveyed in the maize panel exhibited CNVs relative to the B73 

reference genome. Nowadays, with the high-throughput genomics techniques, it is possible to 
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identify CNVs from SNP data, and several algorithms are available (Abyzov et al, 2011; 

Mayrhofer et al, 2016). Even though the most common approach to detecting genomic 

intraspecific variation is SNP, CNV information could be used to capture larger variation in the 

genomic analysis (Manching et al, 2017). Thus, in breeding populations, CNVs can be tracked 

with high precision, increasing the accuracy of selection. For example, the Rhg1 locus of soybean 

is a CNV of multiple genomic units, each containing four genes, which confers resistance to 

soybean cyst nematode (Lee et al, 2016). 

However, at this point, no experimental data exist in maize breeding regarding the ability 

to predict the breeding values including copy number variation effects, or even testing non-

additive effects in a real large maize population under contrasting N condition. Thus, our 

objectives were (i) to compare the accuracy of additive, dominance, and additive-dominance GP 

models in two maize hybrids datasets, (ii) to evaluate prediction including CNV effects into GP 

models, and (iii) to compare the use of linear (NOIA) and nonlinear (GK) kernels in GP analyses. 

 

3.2. Materials and methods 

3.2.1. Phenotypic data 

USP dataset 

We used 906 maize single-crosses from a full diallel mating design between 49 tropical 

inbred lines, contrasting for N-use efficiency (Mendonça et al, 2017). The experimental scheme 

used was augmented blocks (unreplicated trial) with two checks. The trials were carried out in 

Anhembi (22°50'51"S, 48°01'06"W, 466 m) and Piracicaba (22°42'23"S, 47°38'14"W, 535 m), at 

São Paulo State, Brazil, during the second growing season (January to May) of 2016 and 2017. In 

both sites, the hybrids were evaluated under two nitrogen (N) application levels, low (LN) with 

30 kg N ha-1, and ideal (IN) with 100 kg N ha-1. Plots of seven meters (m) spaced 0.50 m were 

used under conventional fertilization, weed, and pest control. The traits evaluated were grain yield 

(GY, ton ha-1), plant height (PH, cm), and stay green (SG). No stand correction was performed as 

the effect of genotype in plant number was verified by generalized linear modeling. Plots were 

manually harvested, and GY was corrected to 13% moisture. The PH was measured from soil 

surface to the flag leaf collar on five representative plants within each plot. SG was visually 

measured using a scale ranging from one (no senescence) to five (complete senescence). 



38 

We used ASReml-R (Butler et al, 2009) to perform a joint analysis to obtain best linear 

unbiased predictions (BLUPs) for the hybrids in each N condition, by fitting the following 

model: 

� = �� + �� + �� + �� + � 

where � is a vector of phenotypic values of hybrids; � is a vector of fixed effects of 

environments (site and year), and checks; � is block within environment, where �~�(0, ���
�); � 

is genotypic values of hybrids, where �~��0, ���
��; � is interaction environment × hybrids, 

where �~��0, ����
� �; � is a vector of random residuals from checks, where �~�(0, ���

�). ��
� was 

jointly estimated based on e environment with t replicated check in each environment. X, V, H, 

and S are the incidence matrices for β, b, g, and i. Heterogeneous residual variance structure was 

assumed across environments. 

In an attempt to predict genotypes under both optimal and N stress conditions, we used 

the selection index harmonic mean (HM) (Jafari et al, 2009) following the equation: ��� =

�×���(��)�
×��(��)�

�

��(��)�
���(��)�

, where ��� is the harmonic mean of hybrid i; ��(��)�  is the BLUP mean of 

grain yield in the IN condition of hybrid i; ��(��)�
is the BLUP for grain yield in the LN 

condition of hybrid i.  

 

HELIX dataset 

We used 452 maize single-crosses provided by Helix Sementes®, São Paulo, Brazil. The 

hybrids represent a partial diallel mating design between 128 tropical inbred lines. The 

experimental design used was a randomized complete block with two replications. Trials were 

carried out in Ipiaçu (18°40'51"S, 49°49'19"W, 443 m) and Patos de Minas (18°35'02"S, 

46°28'10"W, 1067 m), in Minas Gerais State. Also, in Sertanópolis (23°02'39"S, 51°03'13"W, 390 

m), in Paraná State, Nova Mutum (13°05’S, 56°05' W, 460 m), and Sorriso (12°32’S, 55°42’W, 

365 m), in Mato Grosso State. These sites are in Southeastern, Southern, and Western of Brazil, 

respectively. The trials were conducted during the first growing season of 2014/15 from late 

September to early February. Two-row plots of 5 m spaced 0.70 m were used, and sowing density 

was about 63,000 kernels per hectare, under conventional fertilization, weed, and pest control. 

The traits evaluated were grain yield (GY, ton ha-1), plant height (PH, cm), and ear height (EH, 

cm). The dataset presented a genotypic imbalance. Plots were mechanically harvested and 

adjusted to 13% moisture for GY assessment. PH/EH was measured from soil surface to the 

flag leaf collar on one representative plant within each plot (company criteria). No stand 
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correction was performed as the effect of genotype in plant number was verified by generalized 

linear modeling. 

We used a linear mixed model in ASReml-R to predict the BLUPs for hybrids, 

considering the site as a fixed effect, and hybrid and the genotype by environment as random 

effects. Heterogeneous residual variance structure was assumed across sites. Entry-mean based 

heritability and phenotypic correlations among all trials are available on Sousa et al (2017). 

 

3.2.2. Genotypic dataset 

The genotyping of the 49 and 128 tropical inbred lines was performed using the 

Affymetrix Axiom® platform, containing about 614,000 SNPs (Unterseer et al, 2014). Markers 

with low call rate (<95%) and heterozygous loci on at least one individual were removed. In USP 

dataset, remaining missing data were imputed with Synbreed-R (Wimmer et al, 2012) and SNPs in 

LD with a pairwise r2 value greater than 0.9 were removed using SNPRelate-R (Zheng et al, 2012). 

For HELIX dataset, imputation was done based on homozygosity of an individual and marker 

frequency with missed point using snpReady-R (Granato and Fritsche-Neto, 2017). High-quality 

polymorphic SNPs were used to build the artificial 906 and 452 hybrids genomic matrix, deduced 

by combining the genotypes from the parents. Afterwards, minor allele frequency (MAF) was 

conducted over hybrids markers considering the threshold of 0.05, resulting in a total of 34,571 

and 52,700 SNPs, respectively. The frequency of heterozygous was estimated for individuals and 

markers using GAPIT-R (Lipka et al, 2012). 

 

3.2.3. CNV calling 

Raw Affymetrix (660K Axiom Maize) CEL files from 49 and 128 inbred lines were pre-

processed in Axiom Analysis Suite Software, separately, to generate normalized signal intensity 

data and genotype calls. Afterwards, the log2 DNA copy number ratios and B-allele frequency 

(BAF) values for each sample were made using the reference files in the Axiom CNV Tool 

Software (Supplementary Figure S1). Copy number variation (gain and loss) was detected using 

Nexus Trial software v. 9.0 (Biodiscovery, El Segundo CA, USA) which uses a BAM (multiscale 

reference) method using a Hidden Markov Model (HMM) to segment the genome. We removed 

gains and losses smaller than 300 Kb, and used maize ZmB73 v.5 as a reference genome. We 

identified presence and absence of copy gain (CG) and copy loss (CL) in each chromosome for 

all samples in the two datasets. 
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We built the artificial 906 and 452 hybrids genomic matrix, deduced by combining the 

genotypes from its two parents, based on the codification of CNV as ‘1’ for copy gain, ‘0’ for no 

copy, and ‘-1’ for copy loss. The final matrix was composed of a total of 321 and 283 CNVs, 

respectively. Furthermore, to visualize the genetic differences between inbred lines, a Neighbor-

Joining Tree (NJT) was generated based on the Euclidean distance of the centered and 

standardized CNV matrix. We also calculated in ASReml-R the phenotypic (rp) and genetic (rg) 

correlation coefficients between traits and CG, CL, and gain and loss ratio (G/L), following the 

equation: ����� ����
���

⁄ , where ����� is the additive genetic covariance; ���
and ���

 are 

additive variances associated with each trait. Also, we measured the association between CG and 

CL in the inbred lines and the hybrids by linear regression. 

We showed four ways to represent the formation of copy number variation in a single-

cross hybrid (H12) derived from inbred lines 1 (L1) and 2 (L2) (Figure 1). The first is a partial copy 

gain, showing L1 with CG and L2 only with the original/reference copy (Figure 1A). The second, a 

complete copy gain, with CG in the same region of the two inbred lines (Figure 1B). The third is 

a partial copy loss, with the line L2 showing a copy loss (Figure 1C); and the last, showing a copy 

loss and gain, in different lines (Figure 1 D).  

3.2.4. Prediction models 

NOIA model 

Additive-dominance NOIA (Vitezica et al, 2017) was used by fitting the following model: 

                                                             � = �� + ��� + ��� + �                                        (1) 

where � is a vector of BLUP values of the � hybrids, � is a vector of fixed effects, � is a 

vector of additive genetic effects on the individuals, � is the vector of dominance effects, and � is 

a vector of random residuals. � and Z are the incidence matrices for �, �, and �. The 

distributions assumed were �~�(0, ��
���), �~�(0, ��

���), and �~�(0, ��
���). �� and �� are 

the additive and dominance genomic relationship matrix (GRM), following the equation: �� =

����
�

�������
�� �⁄

 and �� =
����

�

�������
�� �⁄

, where � is the number of markers. The incidence matrices 

�� and �� were designed following:  

 

�� = �

−�−�����
− 2�����

�

−�1 − �����
− 2�����

�

−�2 − �����
− 2�����

�

 for genotypes �
����

����

����
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�� =

⎩
⎪
⎨

⎪
⎧−

�����������

�������������������������
�

�����������

�����������
�������������

�
�

−
�����������

�������������������������
�

 for genotypes �

����

����

����

 

 

The �� matrix was coded as 2 for homozygote ����, 1 for heterozygote ����and 0 for 

homozygote ����, for �� was considered 0 for both homozygotes and 1 to the heterozygote. 

We named the models as NOIAa (additive), NOIAd (dominance), and NOIAad (additive-

dominance). For NOIAa, we removed the dominance deviation, and for NOIAd, we removed the 

additive effects in equation (1). 

 

GK model 

Additive-dominance GK was used by fitting the following model: 

� = �� + ��� + ��� + �                                            (2) 

where � is a vector of BLUP values of the � hybrids, � is a vector of fixed effects, � is a 

vector of additive genetic effects on the individuals, � is the vector of dominance effects, and � is 

a vector of random residuals. � and � are the incidence matrices for �, �, and �. The 

distributions assumed were �~�(0, ��
���), �~�(0, ��

���), and �~�(0, ��
���). �� and �� are 

the additive and dominance symmetric semi positive definite matrix representing the covariance 

of the genetic values, following the equation: �� = ����−ℎ���

� ��.��⁄ � and �� =

����−ℎ���

� ��.��⁄ � , where ℎ is a bandwidth parameter, estimated from the Bayesian method 

(Cuevas et al, 2016); ���

�  and ���

�  are the squared Euclidean distance based on a centered and 

standardized additive and dominance incidence matrix (equal to equation 1), respectively, 

between individuals �; and ��.�� is the fifth percentile of the same distance. We named the 

models as GKa (additive), GKd (dominance), and GKad (additive-dominance). However, they do 

not model additivity and dominance directly, capturing other effects at the same time (Morota et 

al, 2014). For GKa we removed the dominance deviation, and for GKd, we removed the additive 

effects in equation (2). 

 

CNV model 

We used CNV effects for predicting phenotypes by fitting the following model: 

                                                            � = �� + Z� + �                                                         (3) 
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Where �, �, �, and � are same as those defined in the model (1). The distributions 

assumed were �~�(0, ��
���) where ��  is the relationship matrix estimated from CNV, and ��

� 

the variance due to CNV abundances. The GRM ��  is estimated using �� =
���

�
, where � is a 

� × � matrix of a scaled and centered CNV (1 for copy gain, 0 for no copy, and -1 for copy loss) 

from n single-cross hybrid and c is the total number of CNV. 

 

3.2.5. Validation and model comparison 

From GP models, we evaluated prediction accuracy (rMP), the correlation between BLUP 

and genomic estimated breeding values, from fifty replications, randomly sampling 75% of the 

hybrids to form the training set (TS) and the rest of validation set (VS). All prediction analyses 

were determined using Bayesian Generalized Linear Regression (BGLR) (Perez and de los 

Campos, 2014). We reported the posterior mean estimates and standard deviations of the SNP 

additive variance (��
�), dominance variance (��

�), error variance (��
�), narrow sense genomic 

heritability (ℎ�
� = ��

�/��
� + ��

�), the proportion of the total phenotypic variance explained by 

genomic dominance (�� = ��
�/��

� + ��
�), broad sense genomic heritability (ℎ��

� = ��
� +

��
�/��

� + ��
� + ��

�), and the deviance information criterion (��� = �(�̅) + 2��), where �(�̅) 

is the deviance at the posterior mean of the model, and �� is the effective number of parameters. 

The model with the lowest DIC value presents the best data fit. We used a total of 60,000 

MCMC iterations, 15,000 for burn-in, and 5 for thinning. We plotted the genomic relationship 

matrix of the NOIA, GK, and CNV by a heatmap graph. 

 

3.3. RESULTS 

Copy variation 

Cluster (NJ tree) analysis revealed levels of diversity for the 49 (USP) and 128 (HELIX) 

inbred lines (Figure 2), showing ten and nine groups in the cluster, respectively. We found no 

association (R2 < 0.1) between copy gains and losses in both datasets. Regarding the number of 

CNV, in the USP dataset we identified 11 CG and 14 CL in the lines, and 20 and 26 in the 

hybrids for the former and the latter, respectively (Figure 3 A and B). On the other hand, we 

observed in the HELIX dataset, 6 CG and 13 CL in the inbred lines, and 8.9 CG and 22.9 CL in 

the single-crosses (Figure 3 C and D). 
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Despite the low magnitude, the USP dataset in both N conditions showed significant 

positive rp between PH and SG with CG (Table 1). On the other hand, for GY, HM, and PH 

significant negative rp of low magnitude with CL were observed. Concerning the HELIX dataset, 

significant positive rp were found only between GY with CL and GL. Considering the genetic 

correlations, we did not find any statistical significance between any trait and CNV for either 

dataset. 

 

Predicting single-crosses using dominance deviation and CNV 

Regarding the USP dataset, the hybrids average performance for GYLN was 5.36, ranging 

from 2.39 to 7.61 ton ha-1. For GYIN the mean was 5.94, varying from 2.35 to 9.17 ton ha-1, and 

for HM it was 5.62±0.74 SD (ton ha-1) (Supplementary Figure S2A). The mean for PHLN was 

194, varying from 147 to 225 cm, and for PHIN it was 200 from 147.3 to 233.7. In its turn, the 

mean for SGLN was 3.63±0.28 SD and 3.72±0.43 SD for SGIN (Supplementary Figure S2B). 

Considering the HELIX dataset, we noticed higher BLUP mean values compared to USP dataset, 

which were 7.200.90 SD for grain yield, 24015.7 SD plant height, and 1288.6 SD for ear 

height. On the other hand, considering the frequency of heterozygosity, USP dataset showed 

higher values for individuals and markers compared to HELIX (Supplementary Figure S3). 

Heatmaps graphs revealed several groups according to the GRM, showing more adjustment for 

GK matrix in both datasets (Supplementary Figure S4; Supplementary Figure S5). 

Estimates of variance components and genomic heritability varied considerably among 

traits and models in USP dataset (Table 2 and 3). It is important to highlight, for both models 

and N conditions, CNV showed lower DIC values for PH and SG (Table 2). Comparing the 

additive models, GK was the best relationship kernel for both N conditions and all traits. 

However, considering the additive-dominance model, NOIA was slightly better than GK for all 

characters, except for PHLN (Table 2). The worst DIC values was observed for the dominance 

model. Furthermore, estimates of ℎ�
�  were higher in additive models compared to ��, for all traits 

(Table 3). For GY, PH, and SG in low N, NOIA model ℎ��
�  reached 0.48, 0.62, and 0.47, 

respectively. However, considering GK for the same traits the ℎ��
�  was 0.68, 0.81, and 0.75, 

respectively. Under ideal N condition, NOIA model ℎ��
�  reached 0.56, 0.69, and 0.59. and GK 

ℎ��
�  were 0.80, 0.86, and 0.81, respectively. The highest heritability estimate for HM was 

ℎ��
� =0.72 using GK model. Regarding the prediction accuracy (rMP), the highest values obtained 

were 0.53 and 0.60 for additive-dominance GK and NOIA for GYLN and GYIN, respectively 

(Figure 4A). For plant height, the amount of rMP remained the same for additive and additive-

dominance NOIA and GK for PHLN (0.70) and PHIN (0.73) (Figure 4B). On the other hand, 
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rMP for additive models performed slightly better for SG in both N conditions (Figure 4C), 

reaching values of 0.62 (NOIAa-SGLN) and 0.71 (NOIAa/GKa-SGIN). Considering the 

selection index HM, rMP was higher for NOIAad compared to NOIAa (Figure 4D). Surprisingly, 

rMP for dominance NOIAd was zero for all the traits tested. Nevertheless, the values for GKd was 

slightly lower than the other two effects. We highlight the performance the CNV-based model, 

which outperformed the additive-dominance models for PH and SG in both N condition. 

Considering the HELIX dataset, estimates of variance components varied slightly among 

traits and models (Table 4). The lowest DIC observed for GY was using NOIAad (489), and for 

PH and EH was considering GKad (2378 and 1990, respectively). Differently from USP dataset, 

CNV presented higher DIC values for all traits. On the other hand, the worst DIC values were 

obtained when the dominance models were used. Concerning the additive models, the GK kernel 

outperformed for all traits. The genomic heritability for GY in NOIA model was 0.24 (ℎ�
�), 0.63 

(��), and 0.87 (ℎ��
� ); and for GK was 0.10, 0.85, and 0.95 (Figure 5). In NOIAd and NOIAad 

models the proportion of the total phenotypic variance explained by genomic dominance (��) 

was higher in GY compared to PH and EH. In addition, the values of �� using GKd was 

relatively higher than NOIAd. Regarding the rMP, the highest value was detected for PH, followed 

by EH and GY. Furthermore, the additive-dominance NOIA and GK were the best models for 

all traits. Surprisingly, CNV model was one of the worst, for all characters (Figure 6). 

 

3.4. DISCUSSION 

In our work, phenotypic values between low and ideal N varied considerably for GY, and 

slightly for PH, and SG (Figure S2), which could be related to physiological issues of N stress 

(Antonietta et al, 2016; Sade et al, 2017). In addition, grain yield is negatively associated with stay 

green under low (rp = -0.27, P < 0.05) and ideal (rp = -0.40, P < 0.05) N conditions (results not 

shown), implying that a longer period of photosynthetic activity increases production. However, 

an optimal situation is to find genotypes with higher production and precocity (lower canopy 

senescence). According to Antonietta et al (2016) maize genotypes could present higher post-

silking N uptake, increasing productivity, and SG is not always linked to higher post-silking N 

accumulation. 

We found a high frequency of copy number variants at both datasets of maize inbred 

lines (Figures 2 and 3), reflecting in a significant contribution to the intra-species genetic 

variation. In this case, some transposon elements probably contributed to the induction of 

tandem sequence duplications, which is highly associated to copy gains (Dong et al, 2016; Liu et 
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al, 2017; Zhang et al, 2013), thus, contributing to the diversity of the material studied. In addition, 

these lines came from a breeding panel of N stress (USP dataset) and a company based program 

(HELIX dataset), which passed through a long selection process to become adapted to tropical 

conditions. We also noticed high mean levels of CG in USP dataset (Figure 3), and this could be 

related to the selection in extreme abiotic stress conditions, which is in agreement with 

Dassanayake and Larkin (2017) where gene duplication is one of the possible strategies to handle 

stress. We showed some cases of CNV in hybrids (Figure 1), but biologically it may be more 

complex, due to the recombination, some genes deleted or duplicated contributing to the 

phenotype, size and dosage effects of the copy, and gene action (Zmienko et al, 2014). In maize, 

recent studies indicate that unique small RNAs within the duplicated segments exhibit dosage 

secondary transcript levels, proving the importance of dosage to the phenotypic variation (Zuo et 

al, 2016). 

Based on single-crosses of the USP dataset, we found a significant positive phenotypic 

correlation between PH and SG with copy number gain, and even of low magnitude, showed a 

tendency that more CG are related to height and senescence of plants (Table 1). On the other 

hand, we found a significant negative correlation between CL and GY/PH (USP) and GY 

(HELIX). It means that lower and less productive plants are associated with high copy losses, 

suggesting that the deleted DNA segments influenced substantially the phenotype, which can be 

further studied seeking for genes and regulatory regions. These results show us that the 

association between total copy number variation and complex traits is still a complicated 

measurement, mainly, due to the lack of robust method capable of identifying the full range of 

structural DNA variation. Nevertheless, Chia et al (2012) suggest a correlation between genomic 

regions containing structural variation and QTLs for leaf architecture and resistance to northern 

and southern leaf blight in a diverse maize panel. In wheat, Wurschum et al (2015) showed that a 

specific copy number has a substantial effect on the fine-tuning of flowering time, empathizing 

the importance to adaptation. 

We did not find any correlation between copy gain and grain yield in either datasets 

(Table 1). This result was not expected since more duplicated copies could be associated with 

higher values of production or height, as they are highly polygenic (Belo et al, 2010). We agree 

that this comparison may not be so straightforward, being influenced by many factors such as 

CNV estimation, or artificially formation of hybrids based on copy number. In the scientific 

community, a strong hypothesis shows that heterosis could be highly influenced by individuals 

with high levels of gene duplication. Several studies suggested this evidence (Belo et al, 2010; 

Schnable and Springer, 2013; Springer et al, 2009; Swanson-Wagner et al, 2010), showing 
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complementation of allelic variation and variation in gene content and expression patterns, were 

significant contributors to heterosis.  

In the USP dataset we found higher dominance variances and genomic heritabilities (ℎ�
�  

, ��, ℎ��
�  ) for all traits in ideal N compared to low N (Table 3). Regarding prediction accuracy, 

we also detected considerable differences for GY, PH, and SG between both conditions. 

According to Crossa et al (2010) and Ziyomo and Bernardo (2013) unfavorable conditions could 

affect genomic heritability, and consequently, interfere in the estimates of prediction accuracy. 

Therefore, selection indices that take into account the performance under both optimal and stress 

conditions could be an alternative of prediction. In our study, the accuracy of the harmonic mean 

outperformed the GY in both conditions (Figure 4), which is in agreement with Lyra et al (2017) 

who compared four nitrogen selection indices and found higher rMP for HM. Moreover, we did 

not find any significant difference between NOIAad and GKad related to prediction accuracy for 

HM (Figure 4). However, we highlighted a slight increase for GY in low and ideal N for NOIAa 

(0.50, 0.56) and NOIAad (0.53, 0.60), GKa (0.52, 0.59) and GKad (0.53, 0.60). The rMP was almost 

the same in additive and additive-dominance models for plant height. On the other hand, additive 

models showed better performance for stay green. Thus, traits controlled by additive gene action, 

such as SG (Abdelrahman et al, 2017), may not increase accuracy including dominance effects. 

Considering the HELIX dataset, we also found higher dominance variances and broad 

sense genomic heritability (ℎ��
�  ) for GY, PH and EH (Figure 5). We identified a considerable 

increase of rMP for GY comparing NOIAad (0.75) to NOIAa (0.57), and GKad (0.74) to GKa (0.70) 

(Figure 6), suggesting the contribution of dominance to boost accuracy. According to Almeida 

Filho et al (2016), additive-dominance models may be improved considerably for traits with large 

dominance effects. We did not include epistasis, however, several studies of complex traits 

reported the benefits of including both non-additive effects (Bouvet et al, 2016; Munoz et al, 

2014; Vieira et al, 2017). Moreover, high levels of heterozygosity were found in the hybrids and 

markers (Figure S2), which could contribute to increase rMP in dominance models. It is important 

to highlight that rMP using GKa relative to NOIAa increased significantly, proving the 

performance of the method to account for marker-specific interaction effects, and complex 

marker main effects (Cuevas et al, 2017; Cuevas et al, 2016). Similar results were described in rice 

(Liu et al, 2016) and maize (Sousa et al, 2017), where the GK kernel outperformed GBLUP. We 

also observed that the rMP of NOIAd for GY was considerable higher in comparison to USP, 

showing that dominance must be modeled along with additivity. Similarly, Wolfe et al (2016) 

reported lower performance for dominance models when compared to additive in Cassava 

breeding, depending on the trait. 
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We found values greater than 0.90 for d2 in all traits and datasets for GKd models (Table 

3, Figure 5), showing higher values compared to NOIAd. Hence, all of the variation wasexplained 

by dominance, which we suspect that the Gaussian GRM is inflating the estimation of 

heritability. In contrast, it has been suggested that estimates of ℎ�
�  could be inflated in the 

presence of non-additive variation (Zuk et al, 2012). Furthermore, we observed NOIA models 

incorporating dominance in grain yield are more accurate when d2 is high. For example, for GYLN 

in NOIAd, d2 was 0.15 and accuracy was 0.50 and 0.53 to A and A-D. However, for GY in 

HELIX, d2 was 0.72 and accuracy was 0.57 and 0.75 to A and A-D. Similar results was reported 

by Almeida Filho et al (2016), which showed an increase of accuracy in additive-dominance 

models when d2 was equal to 0.2 for oligogenic and polygenic traits. 

Regarding the prediction accuracy, in the USP dataset, we noticed a higher or at least the 

same value for all traits using copy number variation as a kernel matrix compared to additive, 

dominance, and additive-dominance models (Figure 4). The performance of the method could be 

related to the real influence of copy number to the phenotypes, and in differentiating the hybrids 

concerning structural variation. However, for HELIX dataset, the CNV kernel was the worst for 

all traits (Figure 6). In this case, the copy number variation, possibly, is not directly affecting 

causative genes as other effects may do. Although, the prediction was considered high for the 

traits evaluated, showing that this kind of information could be used in breeding programs. In 

contrast, the drawback of CNV is the time required to analyze the data, since it did not show any 

outstanding values of accuracy compared to SNPs markers. In the literature, there is still a lack of 

information using copy number inside prediction or association models. A similar case was 

studied by Wurschum et al (2017), who worked with wheat genotypes including three KASP 

markers targeting Fr-A2 (CNV) as fixed effects in genomic prediction. The authors showed a 

slight increase in rMP compared to traditional RR-BLUP, and demonstrated a significant 

contribution of this structural variation to the winter hardiness in wheat. In animal breeding, 

imprinting information was included in the additive-dominance model in GP, showing significant 

difference relative to additive model (Jiang et al, 2017). Thus, further investigation is necessary to 

identify the CNVs with high effect on complex traits and combine this information inside 

prediction models. 

 

3.5. CONCLUSION 

Our results suggest that the best approach is predicting single-crosses including 

dominance effects, mainly for complex traits. Furthermore, including copy number variation 
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effects seems to be suitable, due to the increase of prediction accuracies and reduction of model 

bias. Also, the overall performance of the nonlinear gaussian kernel model was superior relative 

to the natural and orthogonal interactions model.  
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FIGURES 

 

Figure 1. Schematic representation of copy number variation considering one gene with 

two alleles (A1/A2) in complete dominance, for two inbred lines (L1/L2) and one 

derived hybrid (H12). (A) Partial copy gain, (B) complete copy gain, (C) partial copy loss, and 

(D) copy loss/gain. 
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Figure 2. Circular Neighbor-Joining Tree. Euclidean’ distance from copy number variation in 

(A) 49 and (B) 128 inbred maize lines. 

 

 

Figure 3. Scatterplot of copy number gain vs. copy number loss. USP dataset consisting of 

(A) 49 inbred lines and (B) 906 hybrids. HELIX dataset composed of (C) 128 inbred lines and 

(D) 452 single-crosses. The gray line is the regression slope and 95% confidence interval (light 

gray dotted line). 
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Figure 4. Barplot of prediction accuracy from 906 maize single-crosses. Traits evaluated in 

low (LN) and ideal (IN) nitrogen are (A) grain yield (GY, ton ha-1), (B) plant height (PH, cm), (C) 

stay green (SG), and (D) harmonic mean (HM, ton ha-1). Black numbers above bars represent the 

mean± 95% confidence intervals estimated from fifty replications in independent validation. 

Models reported are additive, dominance, and additive-dominance NOIA/GK, and CNV. 
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Figure 5. Estimate of genomic heritability from 452 maize single-crosses. Traits are (A) 

grain yield (GY, ton ha-1), (B) plant height (PH, cm), and (C) ear height (PH, cm). Narrow sense 

genomic heritability (ℎ�
�), proportion of the total phenotypic variance explained by dominance 

(d2), and broad sense genomic heritability (ℎ��
� ). Models reported are additive, dominance, and 

additive-dominance NOIA/GK, and CNV. Numbers inside plot represent the mean estimated 

from fifty replications in independent validation. 

 

 

 

Figure 6. Boxplot of prediction accuracy from 452 maize single-crosses. Traits are grain 

yield (GY, ton ha-1), plant height (PH, cm), and ear height (PH, cm). Red dots and black 

numbers represent the mean estimated from fifty replications in independent validation. Models 

reported are additive, dominance, and additive-dominance NOIA/GK, and CNV. 
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Figure S1. Example of copy number estimation based on the log2 ratios from Axiom 

CNV Tool Software. USP dataset (49 inbred lines) was used for the analysis. Each probe is 

represented as a small blue dot along the length of the ten chromosomes. Two horizontal lines 

(thresholds) was determined for copy gain (green) and copy loss (red). 
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Figure S2. Boxplot of phenotypic traits. (A) Grain yield (GY, ton ha-1) and harmonic mean 

(HM, ton ha-1), (B) plant and ear height (PH/EH, cm), and (C) stay green (SG) for USP and 

HELIX datasets. 

 



60 

 

Figure S3. Frequency of heterozygous for individuals and markers. USP dataset with (A) 

906 hybrids and (B) 34K SNPs. HELIX dataset with (C) 452 hybrids and (D) 52K SNPs. 
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Figure S4. Heatmaps of genomic relationship matrix (GRM) from 906 maize single-

crosses. (A) NOIA matrix, (B) GK matrix from grain yield ideal N, (C) CNV matrix. 
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Figure S5. Heatmaps of genomic relationship matrix (GRM) from 452 maize single-

crosses. (A) NOIA matrix, (B) GK matrix from grain yield, (C) CNV matrix. 
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TABLES 

Table 1. Estimate of phenotypic (rp) and genetic (rg) correlations 

Dataset Trait 
CG CL G/L 

rp rg rp rg rp rg 

 GYLN 0.05ns 0.16ns -0.06 * 0.08ns 0.00ns 0.18ns 

 GYIN 0.05ns 0.11ns -0.12** 0.03ns -0.02ns 0.12ns 

USP PHLN 0.06* 0.01ns -0.18** -0.08 ns -0.05ns -0.01ns 

 PHIN 0.06* 0.03ns -0.19** -0.08 ns -0.05ns 0.00ns 

 SGLN 0.10** 0.07ns -0.02ns -0.21ns 0.07* -0.10ns 

 SGIN 0.08** 0.06ns 0.04ns -0.21ns 0.09** -0.11ns 

 HM 0.05ns 0.15ns -0.09** 0.06ns 0.00ns 0.17ns 

 GY 0.00ns 0.15ns -0.14** -0.05ns -0.10** 0.06ns 

HELIX PH -0.05ns 0.04ns 0.03ns 0.08ns -0.01ns -0.03ns 

 EH 0.02ns 0.01ns -0.01ns -0.03ns 0.00ns -0.01ns 

nsNot significant; significant at 5% (*) or 1% (**) level 

Traits evaluated in low (LN) and ideal (IN) nitrogen are grain yield (GY,                

ton ha-1), plant height (PH, cm), ear height (PH, cm), stay green (SG), and 

harmonic mean (HM, ton ha-1). 

Copy gain (CG), copy loss (CL), and gain and loss ratio (G/L). 
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Table 2 Estimate of variance components from 906 hybrids (USP dataset) 

Site Model 
  GY     PH     SG     HM   

 ��
� ��

� ��
� ���  ��

� ��
� ��

� ���  ��
� ��

� ��
� ���  ��

� ��
� ��

� ��� 

LN 

NOIAa  0.150.01         - 0.390.01   1331  61.33.13         - 63.33.87 4791  0.020.00         - 0.040.00 -93.8  0.200.01         - 0.350.01 1268 

NOIAd          - 0.080.00 0.480.01 1539          - 16.30.94 1204.38 5263          - 0.010.00 0.070.00 261          - 0.080.00 0.490.01 1541 

NOIAad  0.160.01 0.090.01 0.280.01 1262  62.73.97 15.31.83 48.53.18 4747  0.020.00 0.000.00 0.030.00 -108  0.210.01 0.100.01 0.240.01 1169 

GKa  0.390.04         - 0.290.01 1275  18114.3         - 51.13.32 4746  0.090.00         - 0.040.00 -100  0.530.06         - 0.250.01 1181 

GKd          - 3.490.32 0.290.01 1281          - 87352.9 44.73.75 4762          - 0.480.03 0.030.00 -113          - 3.960.28 0.240.01 1196 

GKad  0.310.02 0.490.24 0.300.01 1278  15812.4 75.822.2 49.33.25 4732  0.080.00 0.040.00 0.040.00 -103  0.370.05 0.970.33 0.240.01 1173 

CNV  0.210.01         - 0.370.01 1304  87.75.79         - 55.54.54 4716  0.040.00         - 0.040.00 -91.1  0.300.02         - 0.330.01 1237 

IN 

NOIAa  0.260.01 - 0.500.02 1508  83.43.85 - 67.94.24 4839  0.070.00 - 0.080.00 325  - - - - 

NOIAd          - 0.12 0.00 0.67 0.02 1766          - 18.8 0.91 141 4.54 5375          - 0.02 0.00 0.18 0.00 855  - - - - 

NOIAad  0.27 0.01 0.14 0.01 0.33 0.02 1402  85.9 5.22 18.8 2.5 47.7 4.05 4756  0.08 0.00 0.02 0.00 0.07 0.00 312  - - - - 

GKa  0.69 0.07         - 0.34 0.02 1408  269 21.8         - 51.1 3.82 4766  0.27 0.01         - 0.07 0.00 317  - - - - 

GKd          - 5.42 0.41 0.34 0.02 1427          - 1089 65.4 44.0 4.34 4779          - 1.24 0.06 0.06 0.00 323  - - - - 

GKad  0.51 0.06 1.30 0.67 0.33 0.02 1402  225 21.3 122 64.6 49.4 3.78 4757  0.25 0.01 0.09 0.01 0.07 0.00 314  - - - - 

CNV  0.39 0.03         - 0.46 0.02 1465  119 8.87         - 57.9  5.28 4746  0.16 0.00         - 0.08 0.00 286  - - - - 

Additive variance (��
�), dominance variance (��

�), error variance (��
�), and deviance information criterion (DIC). 

Traits evaluated in low (LN) and ideal (IN) nitrogen are grain yield (GY, ton ha-1), plant height (PH, cm), stay green (SG), and harmonic mean (HM, ton ha-1). 
Data are mean ± standard deviation (SD) estimated from fifty replications in independent validation. 
Models reported are additive, dominance, and additive-dominance NOIA/GK, and CNV. 
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Table 3 Estimate of genomic heritability from 906 hybrids (USP dataset) 

Site Model 
 GY    PH    SG    HM  

ℎ�
�  �� ℎ��

�   ℎ�
� �� ℎ��

�   ℎ�
� �� ℎ��

�   ℎ�
� �� ℎ��

�  

LN 

NOIAa 0.28 0.05         -         -  0.48  0.06         -         -  0.33  0.05         -         -  0.34 0.06         -         - 

NOIAd         - 0.15 0.02         -          - 0.12 0.02         -          - 0.12 0.02         -          - 0.15 0.02         - 

NOIAad 0.30 0.06 0.18 0.06 0.48 0.06  0.50 0.06 0.12 0.06 0.62 0.05  0.35 0.06 0.12 0.04 0.47 0.05  0.39 0.06 0.17 0.06 0.56 0.06 

GKa 0.57 0.06         -         -  0.78 0.04         -         -  0.66 0.05         -         -  0.67 0.06         -         - 

GKd         - 0.91 0.01         -          - 0.94 0.01         -          - 0.92 0.01         -          - 0.94 0.01         - 

GKad 0.29 0.07 0.42 0.19 0.71 0.09  0.56 0.04 0.26 0.15 0.82 0.03  0.50 0.06 0.25 0.17 0.75 0.05  0.24 0.06 0.59 0.23 0.83 0.10 

CNV 0.36 0.06         -         -  0.60 0.07         -         -  0.50 0.05         -         -  0.46 0.06         -         - 

IN 

NOIAa 0.34 0.05         -         -  0.53 0.06 - -  0.46 0.05 - -  - - - 

NOIAd         - 0.16 0.02         -          - 0.12 0.02 0.07 0.02          - 0.11 0.02         -  - - - 

NOIAad 0.36 0.06 0.19 0.06 0.56 0.05  0.56 0.06 0.12 0.06 0.68 0.05  0.46 0.06 0.12 0.05 0.58 0.05  - - - 

GKa 0.66 0.05         -         -  0.84 0.04         -         -  0.76 0.04         -         -  - - - 

GKd         - 0.93 0.01         -          - 0.95 0.00         -          - 0.94 0.01         -  - - - 

GKad 0.25 0.07 0.57 0.19 0.82 0.08  0.58 0.04 0.29 0.15 0.87 0.03  0.62 0.04 0.21 0.14 0.83 0.03  - - - 

CNV 0.46 0.07         -         -  0.67 0.06          -         -  0.65 0.05         -         -  - - - 

Narrow sense genomic heritability (ℎ�
�), the proportion of the total phenotypic variance explained by genomic dominance (d2), and broad sense genomic heritability (ℎ��

� ). 
Traits evaluated in low (LN) and ideal (IN) nitrogen are grain yield (GY, ton ha-1), plant height (PH, cm), stay green (SG), and harmonic mean (HM, ton ha-1). 
Data are mean ± standard deviation (SD) estimated from fifty replications in independent validation. 
Models reported are additive, dominance, and additive-dominance NOIA/GK, and CNV. 
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Table 4 Estimate of variance components from 452 hybrids (HELIX dataset) 

Model 
GY  PH  EH 

��
� ��

� ��
� ���  ��

� ��
� ��

� ���  ��
� ��

� ��
� ��� 

NOIAa 0.28  0.02         - 0.48  0.02 764  19.3  214 17.5         - 76.6 6.05 2508
26.4 

 71.8 6.54         - 24.6 1.53 2125  19.6 

NOIAd         - 1.06  0.11 0.38  0.04 771  27.9         - 154 25.9 198 12.6 2817 17.7          - 47.6 8.79 59.6 3.98 2411  14.7 
NOIAad 0.26  0.02 0.70  0.05 0.13  0.00 489  20.9  203 12.9 90.1 8.68 44.9 5.18 2406 34.1  67.7 7.31 30.9 2.89 13.4 1.08 2005  22.7 

GKa 0.77  0.04         - 0.16  0.01 544  31.7  518 22.2         - 40.8 5.34 2388 39.2  147  11.0         - 12.9 1.18 2004  25.5 
GKd         - 4.41  0.20 0.14  0.01 509  23.5          - 764 27.1 36.9 3.69 2392 30.8          - 224  10.5 11.5 0.00 1998  23.6 

GKad 0.29  0.03 2.78  0.33 0.13  0.01 494  29.3  445 23.7 94.3 11.0 38.4 4.39 2378 35.0  124  10.9 31.7 4.88 12.0 0.98 1990  24.4 

CNV 0.44 0.04         - 0.46  0.03 769 25.2  270 23.3         - 83.9 0.02 2549 20.6  77.5 6.87         - 25.0 1.59 2138  20.2 

Additive variance (��
�), dominance variance (��

�), error variance (��
�), and deviance information criterion (DIC).  

Traits are grain yield (GY, ton ha-1), plant height (PH, cm), and ear height (PH, cm). 
Data are mean ± standard deviation (SD) estimated from fifty replications in independent validation. 
Models reported are additive, dominance, and additive-dominance NOIA/GK, and CNV. 

 

 



67 
 

4. CONTROLLING POPULATION STRUCTURE IN THE GENOMIC PREDICTION OF 

TROPICAL MAIZE HYBRIDS 

ABSTRACT 

Genomic prediction of single-crosses is a promising tool in maize breeding, 
reducing extensive field trial evaluation and increasing genetic gain per cycle. 
However, factors such as population structure (PS) can influence the accuracy of 
estimates of genomic breeding values (GEBV). In this study, we assessed PS in 452 
hybrids; and applied the information into genomic prediction schemes, using (1) 
traditional GBLUP and four adjustment methods for PS, (2) a reparameterized 
Bayesian Whole-Genome Random Regression (WGRR) model, (3) within- and 
between-group hybrids prediction, and (4) within- (W-GBLUP) and multi-group 
(MG-GBLUP) analyses in stratified groups. Three groups were identified (K1, K2, 
and K3) in the hybrids, based on fineSTRUCTURE results. Adding four different 
sets of PS as covariates to GBLUP did not improve the prediction accuracy (rMP) for 
grain yield (GY) and plant height (PH). However, using nonmetric multidimensional 
scaling dimensions and fineSTRUCTURE group clustering increased reliability for 
GY and PH, respectively. High rMP for GY and PH were observed for within-group 
hybrids L1L1 (0.79; 0.78) and low rMP for between-group hybrids L1L2 (0.43; 0.62) 
and L1L3 (0.66; 0.59). W-GBLUP analysis in the stratified groups resulted in low rMP. 
On the other hand, MG-GBLUP showed high rMP relative to W-GBLUP for both 
traits. Predicting by GBLUP with PS covariates is the best approach, increasing 
reliability and reducing bias. In addition, MG-GBLUP in stratified groups could be 
an efficient method, depending on the number of hybrids available in the breeding 
program.  

Keywords: Stratified groups; MG-GBLUP; Linkage disequilibrium; Accuracy 
 

4.1. INTRODUCTION 

Tropical maize represents one of the most diverse source of germplasm used in several 

plant breeding programs (FAN et al. 2015; TEIXEIRA et al. 2015). Recently, high-density single-

nucleotide polymorphisms (SNPs) have been used to characterize the heterotic pools via genetic 

diversity (OYEKUNLE et al. 2015) and population structure analysis (DA SILVA et al. 2015; NELSON 

et al. 2016). Moreover, the applicability of such diversity information extends to association 

studies (CHEN and LIPKA 2016), genomic prediction (MARULANDA et al. 2016), and germplasm 

architecture (BERNARDO and THOMPSON 2016). 

Population structure (PS) in maize could arise from local adaptation or diversifying 

selection (OROZCO-RAMIREZ et al. 2016). For the temperate maize, several 

subpopulations/groups (flint, dent, stiff stalk, and non-stiff stalk) were described according to 
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morphological, genetic and environmental adaptability characteristics (SCHAEFER and BERNARDO 

2013; RINCENT et al. 2014). However, the tropical materials are not well organized like the 

temperate, which can be due to the much stronger divergence of heterotic groups by long-term 

selection (WU et al. 2016). For example, in the International Maize and Wheat Improvement 

Center (CIMMYT), development of Lowland Tropical and Subtropical/Midaltitude subgroups 

began in the mid-1980s; nonetheless, temperate materials started around 100 years ago 

(UNTERSEER et al. 2016; WU et al. 2016). Detailed description of PS in maize lines of Brazil was 

reported by LANES et al. (2014). In this study, 81 microsatellite loci were screened for 90 maize 

parental inbreds of tropical hybrids to identify three heterotic pools (including tropical flint, semi-

flint, and semi-dent), which generally agreed with what have been used by Brazilian maize seed 

companies. 

Different ways to investigate PS can be classified into either non-model-based (or non-

parametric) or model-based approaches. Non-parametric methods includes principal component 

analysis (PATTERSON et al. 2006; PRICE et al. 2006), discriminant analysis of principal components 

(JOMBART et al. 2010), and nonmetric multidimensional scaling (ZHU and YU 2009). For model-

based clustering, the algorithm in ADMIXTURE v.1.23 (ALEXANDER et al. 2009), similar to 

STRUCTURE v.2.3.4, is a commonly used approach. Also, the recently developed 

ChromoPainter/fineSTRUCTURE v.2 (LAWSON et al. 2012) considers linkage disequilibrium 

(LD) patterns in the genome, aiming to make use of haplotype structure and extracting more 

information from the data. Furthermore, to identify the optimal number of clusters, methods 

such as k-means clustering (REIF et al. 2003; CROS et al. 2015; JAN et al. 2016), ADMIXTURE 

cross-validation (ALEXANDER et al. 2009), and ∆K Evanno criterion (EVANNO et al. 2005) are 

well adopted ones in practice. 

Population structure variables have been proven very useful for many different 

applications, especially in association and prediction analyses. Generally, using PS as covariates 

could control potential confounding factors and improve statistical power by reducing residual 

variance (ASCHARD et al. 2015). In association studies, principal components (PCs) and admixture 

coefficients have been successfully used as fixed effects (covariates) in mixed-model equations 

(YU et al. 2006; PRICE et al. 2010; TUCKER et al. 2014). On the other hand, using PCs in genomic 

best linear unbiased prediction (GBLUP) model may result in an ill-posed model because the PCs 

enter both as fixed effects and implicitly through the random effect (DE LOS CAMPOS and 

SORENSEN 2014). Hence, Janss et al. (2012) proposed a reparameterized Bayesian Whole-

Genome Random Regression (WGRR) model to handle this problem, drawing inferences based 

on all or some PCs, allowing a natural separation of across- and within-subpopulation genetic 
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variance. In plant breeding, GUO et al. (2014) applied this model in maize and rice populations to 

control PS, and found that the majority of genomic heritability was contributed by within-

subpopulation genetic variance and, in all traits, the prediction accuracy was reduced when 

included PS information. 

In genomic prediction, the presence of hidden or known structure, and family relatedness 

within a breeding population is critical when evaluating genomic estimated breeding values 

(GEBV), genomic heritability, and prediction accuracy, because it could lead to biased 

estimations (WINDHAUSEN et al. 2012; LEHERMEIER et al. 2014; UNTERSEER et al. 2014; ISIDRO et 

al. 2015; SPINDEL et al. 2015). Therefore, a common approach on prediction analysis is 

partitioning the genomic variability into within- and between-group components (TECHNOW et al. 

2012). In animal breeding, within-group estimates of GEBV can be more accurate than between-

group (SAATCHI et al. 2011; VENTURA et al. 2016), which can be due to non-persistent 

associations or inconsistent LD between SNPs and QTL across populations (HAYES et al. 2009; 

IHESHIULOR et al. 2016). However, in plant breeding, exploiting within-group analyses may not 

always improve prediction accuracy (SCHULZ-STREECK et al. 2012; CROS et al. 2015). It is proven 

that splitting the breeding population into subgroups could lead to a reduction of population size, 

loss of diversity, and besides that, it is assumed uncorrelated marker effects between 

subpopulations (RIEDELSHEIMER et al. 2013; ALBRECHT et al. 2014; HUANG et al. 2016). In order 

to overcome this last drawback, LEHERMEIER et al. (2015) proposed a multi-group (MG-GBLUP) 

analysis to control heterogeneity of marker effects between subpopulations, and found promising 

results depending on the genetic architecture of the trait. 

In a typical maize hybrid breeding, inbred lines of different heterotic groups are crossed, 

and although assuming that two alleles share a common genetic background in hybrids, it is 

essential to find patterns of PS, and apply this information on genome-based prediction, in an 

attempt to identify high performing hybrids (ALBRECHT et al. 2014; LEHERMEIER et al. 2015). 

Therefore, our objectives were (i) to investigate PS in a set of tropical maize inbreds and the 

derived hybrids, and (ii) to control PS in genomic predictions of hybrids in four scenarios, using: 

(1) the traditional GBLUP and four adjustment methods of PS, (2) the reparameterized Bayesian 

WGRR model, (3) within- and between-group hybrids prediction, and (4) the within- (W-

GBLUP) and multi-group (MG-GBLUP) analysis in stratified groups. 
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4.2. Materials and methods 

4.2.1.  Phenotypic data 

We used 452 maize single-crosses (hybrid dataset) provided by Helix Sementes®, São 

Paulo, Brazil. The hybrids represent a partial diallel mating design between 128 tropical inbred 

lines (inbred dataset). No heterotic group information was available. The field design used was 

randomized complete block with two replications. Experimental trials were carried out in five 

sites in southern, southeastern, and west-central regions of Brazil in the first growing season of 

2014/15. Details about the sites see SOUSA et al. (2017). The hybrids analyzed in each location 

varied, thus creating an unbalanced experiment. Two-row plots of 5 m spaced 0.70 m were used. 

Sowing density was about 63,000 kernels per hectare, under conventional fertilization, weed, and 

pest control. The traits evaluated were grain yield (GY, ton ha-1) and plant height (PH, cm). Plots 

were mechanically harvested and converted to 13% moisture, and plant height measured from 

soil surface to the flag leaf collar on one representative plant within each plot (company criteria). 

We used a linear mixed model to calculate BLUPs for hybrids, including site as fixed effect, and 

hybrid and interaction as random effects. Heterogeneous residual variance structure was assumed 

across sites. Variance components and entry-mean based heritability were obtained for GY and 

PH, and the significance of the random effects of hybrids was assessed by the Likelihood Ratio 

Test (LRT) at 5% probability, using ASReml-R (BUTLER et al. 2009). 

 

4.2.2. Genotypic data 

The genotyping of the inbreds was performed by Affymetrix® platform, containing 

614,000 SNPs (UNTERSEER et al. 2014). Markers with low call rate (<95%) and with at least one 

heterozygous combination were removed. Imputation was done based on homozygosity of an 

individual and marker frequency with missed points. Polymorphic SNP markers were used to 

build the hybrid genotype dataset, deduced by combining the genotypes from its two parents. 

Afterwards, minor allele frequency was conducted over hybrid markers considering the threshold 

of 0.05, resulting in a total of 52,700 high-quality SNPs distributed in the ten maize 

chromosomes as follows: (1) 7015, (2) 6020, (3) 6072, (4) 5953, (5) 6431, (6) 4736, (7) 5197, (8) 

4436, (9) 3529, and (10) 3311. 

Linkage disequilibrium (LD) among markers may lead to unstable estimates of PS (CAMPOY et al. 

2016; GALINSKY et al. 2016). Therefore, we thinned both datasets using PLINK v.1.9 (PURCELL et 

al. 2007) by removing SNPs that were in LD, with a pairwise r2 value greater than 0.7 within a 50-



71 
 

SNP sliding window which was advanced by 10 SNPs each time. The final genomic data was 

32,838 SNPs for the inbred dataset and 26,210 SNPs for the hybrid dataset, which was used as 

input to perform PS analysis. 

 

4.2.3. Inference of population structure 

Inbred dataset 

We used four approaches to detect PS: (a) principal component analysis (PCA), (b) 

nonmetric multidimensional scaling (nMDS), (c) ADMIXTURE, and (d) 

ChromoPainter/fineSTRUCTURE. PCA was performed using SNPRelate-R (ZHENG et al. 2012) 

in the raw SNP data (32,838 SNPs), and the results were presented as two and three-dimensional 

principal component scores plots. For nMDS analysis, labdsv-R (ROBERTS 2016) was used in the 

roger’s distance matrix, with three dimensions, and the first two dimensions were plotted. 

ADMIXTURE was used to perform a maximum likelihood estimation of individual 

ancestries; and ChromoPainter and fineSTRUCTURE was used to find patterns of haplotype 

similarity. Firstly, we applied the ChromoPainter unlinked model on haplotypes, with 10 

expectation maximization (EM) steps. Secondly, fineSTRUCTURE was used to perform Markov 

Chain Monte Carlo (MCMC) analysis with 100,000 burn-in iterations and sample iterations with a 

thinning interval of 1,000. Normalization parameter c was calculated following the unlinked case, 

c=1/(N-1), where N is the number of individuals. Visualization of the posterior distribution of 

clusters was performed using the tree-building algorithm, and the number of clusters was inferred 

by, arbitrarily setting a cut-off in the tree.  

To estimate the optimal number of clusters, the cross-validation errors from 1-12 K were 

analyzed in ADMIXTURE, and the Bayesian Information Criterion (BIC) values in k-means 

clustering, implemented in adegenet 2.0.1-R (JOMBART et al. 2015). Furthermore, to visualize the 

genetic differences between inbred lines, a neighbor-joining tree (NJT) was generated based on 

the Modified Rogers’ distance. We also investigated LD structure within 70 kb of distance among 

all pairs of markers (32,838 SNPs), using PLINK v.1.9, and the values were reported as the 

average r2 across 10 chromosomes. 

 

 

 

 

 



72 

Hybrid dataset 

We used PCA, nMDS, and fineSTRUCTURE to detect PS following the same procedure 

of the inbred dataset. In addition, we built an artificial ADMIXTURE coefficient for the hybrids, 

following the equation: 1 2
12

2
P PADM ADM

ADM


 , where ADM is the admixture coefficient of 

each parent, ranging from 0 to 1. 

In order to visualize and describe related individuals, we used Discriminant Analysis of 

Principal Components (DAPC) (JOMBART et al. 2010), using the inferred groups of 

fineSTRUCTURE. The number of principal components to be retained in the discriminant 

analysis was set to 15 following alpha-score optimization, a method that finds a trade-off between 

discriminative power and model over-fitting. We also plotted the genomic relationship matrix 

(GRM) by a network graph, in which two hybrids were linked when their relationship coefficient 

was ≥0.6. The networks were visualized using the igraph-R with the Fruchterman Reingold 

layout. 

 

4.2.4. Statistical models 

Traditional GBLUP model 

Additive-dominance GBLUP was used by fitting the following model: 

                                                              a dy Xb Z a Z d e                                                  (1) 

where y is a vector of BLUP values of hybrids, b is a vector of fixed effects, a is a vector 

of additive genetic effects of the individuals, d is the vector of dominance effects, and e is a vector 

of random residuals. X, Za and Zd are the incidence matrices for b, a, and d. The distributions 

assumed were 2~ (0, ) a aa N G , 2~ (0, ) d dd N G , and 2~ (0, )e me N I .  For genomic prediction, we used the 

non-pruned 52K SNP matrix. Ga and Gd are the additive and dominance genomic relationship 

matrix (GRM), following the equation: 


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, where pi is 

frequency of one allele of the locus i and W is the matrix of incidence of markers (VANRADEN 

2008; DA et al. 2014). The AW  matrix was coded as 0 for homozygote 1 1A A , 1 for heterozygote

1 2A A and 2 for homozygote 2 2A A , for DW was considered 0 for both homozygotes and 1 to 

heterozygote. 
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PS covariates 

We applied the Q+K model (YU et al. 2006) on genomic prediction of hybrids for GY 

and PH, using four contrasting Q approaches. A model that (a) includes first three PCs (PC), (b) 

includes three dimensions of nonmetric multidimensional scaling (nMDS), (c) includes the 

artificial admixture coefficients (ADM), and (d) includes a matrix of zeros and ones based on 

fineSTRUCTURE group clustering (FINE). The PS related variables were used as fixed 

covariates in the GBLUP model. Furthermore, to select the top PCs (PATTERSON et al. 2006), we 

evaluated the number of statistically significant principal components, measured by the Tracy-

Widom test using LEA-R (FRICHOT and FRANCOIS 2015), and added a varied number of PCs (3, 

5, 10, 14) in GBLUP. 

All variance components were determined using Bayesian generalized linear regression 

(BGLR) (PEREZ and DE LOS CAMPOS 2014) for the five mixed-models. We reported posterior 

mean estimates and standard deviations of the additive variance (��
�), dominance variance (��

�), 

error variance (��
�), and broad sense genomic heritability (ℎ�

�). We used a total of 30,000 MCMC 

iterations, 5,000 for burn-in, and 5 for thinning. 

From GP models, we evaluated prediction accuracy (rMP), correlation between BLUP 

values and predicted phenotypic values of the hybrids, from fifty replications, randomly sampling 

75% of the hybrids to form the training set (TS) and the rest as validation set (VS). In addition, 

reliability (REL) (GORJANC et al. 2015) and deviance information criterion (DIC) (SHRINER and 

YI 2009) were used to compare the model performance. REL was calculated according to the 

formula: 2
gREL = 1-(PEV / σ ) , where PEV is the variance of prediction errors of the GEBV of 

the hybrid ( ˆ
ig ). Note PEV= 2ˆ( )iS E g = ˆ

i ivar(g - g ) , where SE is the standard error. The 

model with the highest REL value presented the best precision in an earlier study (HE et al. 

2016). For DIC, the following equation was used: ( )DIC = D + 2pD , where ( )D   is the 

deviance at the posterior mean of the model, and pD is the effective number of parameters. The 

model with the lowest DIC value presents the best data fit. The mean values of rMP, REL and 

AIC estimated from fifty replications in independent were used in the overall model performance 

comparison. 

 

 

 

 

 



74 

Reparameterized Bayesian WGRR model 

The reparameterized Bayesian WGRR model, proposed by Janss et al. (2012) was used to 

make prediction for across- and within-group based on PCA. Firstly, we followed the model: 

                                            a dy U U d e                                                              

(2) 

where Ua and Ud is an n × (n - 1) matrix of the eigenvectors (principal components) of Ga 

and Gd with n individuals, and α and d is an (n - 1) × 1 vector of random effects. This model is 

equivalent to the additive-dominance GBLUP (JANSS et al. 2012; DE LOS CAMPOS and SORENSEN 

2014). Secondly, we split the model for across-group: 

                           
1 1i i

d d

a i d ii i
y U U d e 

 
                                             (3) 

and within-group: 

                                   
1 1i i

n n

a i d ii d i d
y U U d e 

   
                                            (4) 

where the model (3) represents the genomic variance explained by the first dominant d 

eigenvectors, and model (4) explains the remaining (n-d) eigenvectors. We used 3, 5, 10, 20, 40, 

60, 80, and 100 as first d elements, to compare across- and within-group prediction accuracy. We 

used a total of 30,000 MCMC iterations and 5,000 for burn-in, using the BRR model 

implemented in BGLR-R (DE LOS CAMPOS and PÉREZ‐RODRIGUEZ 2015). The prediction 

accuracy was assessed from fifty replications, randomly sampling 75% of the hybrids to form the 

training set (TS) and the rest as validation set (VS). 

 

Hybrids group formation 

We used two approaches to build groups of hybrids to assess prediction accuracy from 

fifty replications in independent validation. First, we used the inbred dataset (parents) to form 

hybrids between lines that belong to the same heterotic group (within-group hybrids) and hybrids 

between lines that belong to different groups (between-group hybrids). Second, we separated all 

452 hybrids into stratified groups. In both cases, we used fineSTRUCTURE group clustering. 

 

Within- and multi-group analysis 

We used the stratified groups (subgroups) to make inferences of hybrid prediction using 

two approaches, proposed and detailed in Lehermeier et al. (2015). The first is a stratified within-

group analysis (W-GBLUP), estimating marker effects and variance components within each K 

separately, with a specific GRM. The second method is a multivariate approach that uses multi-

group data and accounts for heterogeneity (MG-GBLUP), with population-specific marker 
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effects that can be correlated between subpopulations. We used the additive (Ga) and dominance 

(Gd) GRM, and reported posterior mean estimates and standard deviations of the additive 

variance (
2

ka ), dominance variance (
2

ka ), error variance (
2

k
 ), and broad sense genomic 

heritability (
kgh2
) for each K. We reported the posterior mean estimates and standard deviations of 

genomic correlations derived from ∑g (genomic variance-covariance matrix among groups) for 

both traits. We used a total of 30,000 MCMC iterations and 5,000 for burn-in to estimate these 

parameters, using the MTM-R package. 

The prediction accuracy of W-GBLUP and MG-GBLUP were assessed with fifty 

replications from independent validation, randomly sampling 75% of the hybrids to form the 

training set (TS) and the rest as validation set (VS). According to Lehermeier et al. (2015), MG-

GBLUP estimates different genomic values for each individual inside K, where the estimated 

values 
k

2
gσ  are specific for each K and is used as estimated values for all individuals belonging to 

that particular group. 

To each group K, marker effect based on the adjusted entry means for GY and PH were 

estimated, using rrBLUP-R (ENDELMAN 2015). Besides that, LD structure was investigated 

within 70 kb of distance among all pairs of markers, and the values were reported as the average 

r2 across 10 chromosomes. 

 

4.3. RESULTS 

Inbred PS 

In ADMIXTURE analysis, the optimal number of clusters was L=7 with the smallest 

cross-validation error (Additional file 1: Figure S1A, Figure S2). The k-means clustering identified 

L=3 with the smallest BIC value (Additional file 1: Figure S1B). The fineSTRUCTURE result is a 

coancestry heatmap, which shows the amount of shared genetic chunks between the inbred lines. 

We defined a cutoff on the maximum a posteriori tree with three groups (L), each containing 100 

(L1), 13 (L2), and 15 (L3) inbred lines (Additional file 3: Figure S3). Moreover, PCA, nMDS, and 

cluster (NJ tree) analysis also revealed levels of PS identified in both model-based clustering 

(Additional file 4: Figure S4). The first two PCs explained 5.36% and 4.24% of the total variance, 

clearly splitting the groups along the axis. However, nMDS analysis revealed that L1 and L3 were 

clustered together, but separated from L2. The relationship between LD and physical distance 

was plotted (Additional file 4: Figure S4D), and the LD decayed faster with the r² dropping to 

half its maximum value within 1.3 kb. 
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Hybrid PS 

The unlinked coancestry heatmap of fineSTRUCTURE clustered hybrids into three 

groups (K), containing 113 (K1), 121 (K2), and 218 (K3) hybrids (Fig. 1A). Three subgroups 

within-group K1 were also clearly shown. In the artificial admixture coefficients (Fig. 1B), we 

found a mixture of groups in the hybrids.  PCA and nMDS dots were color-coded based on the 

fineSTRUCTURE group clustering. The first two PCs explained 7.40% and 6.05% of the total 

variance (Fig. 1C). Furthermore, the 3-D PCA score plot (Additional file 5: Figure S5A) revealed 

a clear separation of K1 from K2, wherein PC1, PC2, and PC3 together explained 18.3% of data 

variation. The within-group individuals of K1 were spread along the axis (blue density plot), 

confirming the subgroups identified in fineSTRUCTURE (Fig. 1A; S5A). In addition, a pattern 

also was detected for nMDS analysis (Fig. 1D). Network graph revealed that individuals from K2 

and K3 are more related according to the GRM (Fig. 1E). 

The DAPC plot (Additional file 5: Figure S5B) using two discriminant functions indicated 

that K1 were highly discriminated from K2, with strong separation along the principle 

component axes. The plot did not reveal high discrimination between K2 and K3, since 

overlapping existed between groups. 

 

Hybrid prediction 

From the phenotypic analysis, it was found significant differences in the hybrids by the 

likelihood ratio test (P<0.05), for GY and PH. Entry-mean based heritability was 0.77 for GY 

and 0.86, reflecting good accuracy of phenotypic evaluation. The BLUP mean for GY varied 

from 3.39 to 9.37 ton ha-1, and for PH from 185 to 277 cm. 

Additive variance ( 2
a ), dominance variance ( 2

d ), error variance ( 2
 ), broad sense genomic 

heritability ( ), reliability (REL), and deviance information criterion (DIC), for each trait and 

model were presented in Table 1. Estimates of variance components and genomic heritability 

varied slightly among models. The rMP did not vary among all tested models for GY and PH (Fig. 

2), showing low SD for PC and nMDS. However, the highest REL and lowest DIC was observed 

in nMDS and FINE for GY. For PH, FINE and ADM was the best models for REL and DIC. 

The proportion of variance explained by the first two eigenvectors was relatively small 

(Fig. 3A). Based on Tracy-Widom test, the significant axes of variation to account for genetic 

structure were 14 (Fig. 3A). For both traits, the rMP slightly decreased when added more than 

three PCs in GBLUP model (Fig. 3B), showing that three PCs in the model could be efficient to 

account population structure. 

2
gh



77 
 

The rMP of Bayesian WGRR model (Equation 2) performed the same as the additive-

dominance GBLUP, for GY (0.74) and PH (0.80). However, the rMP for GY in across-group with 

d=3 and d=5 was 0.30 and 0.35, and for within-group was 0.62 and 0.62, respectively (Fig. 4). For 

PH, across-group with d=3, was 0.22 and for within-subpopulation 0.77. 

 

Within- and between-group hybrids prediction 

We used within- (L1L1) and between-group (L1L2, L1L3) hybrids to assess prediction 

accuracy for GY and PH (Fig. 5). Since L2L2, L2L3, and L3L3 groups were small, no prediction 

was done. We observed high rMP and hg for L1L1 and low for L1L2 and L1L3 for GY and PH, 

respectively. 

 

Within- and multi-group analysis 

We used within-group (K1, K2, and K3) hybrids to investigate genetic parameters for GY 

and PH (Table 2). For both traits, lower estimates of 2

kgh were observed from W-GBLUP 

compared with MG-GBLUP. Prediction accuracy varied between groups and traits, in both 

models. However, MG-GBLUP presented higher values of rMP relative to W-GBLUP. Posterior 

mean estimates and posterior standard deviations of genomic correlations from MG-GBLUP for 

GY varied among the three groups 0.48±0.15 (K1-K2), 0.75±0.09 (K1-K3), and 0.34±0.14 (K2-

K3). For PH, the values was 0.49±0.14 (K1-K2), 0.74±0.10 (K1-K3), and 0.34±0.16 (K2-K3). 

The relationship between LD and physical distance (kb) was plotted for K (452), K1 

(113), K2 (121), and K3 (218) (Additional file 6: Figure S6A). LD (r2) rapidly decayed in 

accordance with the highest number of individuals inside the group. For K, K1, K2, and K3 the 

LD decayed with the r2 dropping to half their maximum value within 5.5, 6.5, 10, and 11.5 kb, 

respectively. Additive marker effects distribution estimated across the groups were different for 

GY, but was similar for PH, in all ten chromosomes (Additional file 6: Figure S6A; Figure S6B). 

Pearson correlation (r) between group SNP effect for GY was 0.27 (K1-K2), 0.46 (K1-K3), and 

0.14 (K2-K3). For PH, the r was 0.33 (K1-K2), 0.38 (K1-K3), and 0.46 (K2-K3). 

 

4.4. DISCUSSION 

The most common source of tropical germplasm found in the breeding programs are 

Tusón, Tuxpeño, Antigua Composite, Suwan-1, and Cuban Flint (also called Cateto in Brazil) 

(HALLAUER and CARENA 2014), and as observed in previous studies, the number of sub-groups 

inside tropical and sub-tropical still diverge (REIF et al. 2003; MOLIN et al. 2013; WU et al. 2016). 



78 

In the present study, 128 tropical inbred lines were characterized using k-means clustering and 

two model-based approaches to identify groups/clusters. Based on k-means we classified three 

groups, which were consistent according to fineSTRUCTURE (Additional file 3: Figure S3) and 

PCA (Additional file 4: Figure S4A). In within-group L1, five distinct subgroups were revealed, 

explaining the seven groups identified in ADMIXTURE results (Additional file 2: Figure S2A). 

Another way to visualize the structure of populations is by the extent of linkage 

disequilibrium, which has influence on resolution of the genome-wide analysis (YANG et al. 2011). 

In our study, the LD decayed within 1.3 kb (Additional file 4: Figure S4D), which was consistent 

to the findings of UNTERSEER et al. (2014). These authors worked with 285 temperate and 

tropical maize lines genotyped with 600K SNPs, and found L=7 in ADMIXTURE, and observed 

fastest LD decay in (sub)tropical lines (70 kb) explained by the high heterogeneity inside group. 

CHIA et al. (2012) and YAN et al. (2009) also found fastest LD decay within distances between 5 

and 10 kb, respectively, in highly diverse tropical maize lines. 

In a maize breeding program, it is common verifying PS among inbred lines to explore 

heterosis in divergent parental crossing (FERNANDES et al. 2015; MUNDIM et al. 2015). However, 

hybrids generated from several divergent heterotic parents should present high levels of 

structuring, confirming our results identified from fineSTRUCTURE, PC, and DAPC results 

(Fig. 1 and Fig. S5). For example, within-group K1 (Fig. 1A) revealed three distinct sub-grouping, 

which can be identified in 2-D (Fig. 1C) and 3-D (Additional file 5: Figure S5) PCA graph. 

In this work, both traits showed high levels of rMP and  for GY (0.74; 0.79) and PH 

(0.80; 0.86) from traditional GBLUP (Fig. 2A-B). Similar findings were observed by MAENHOUT 

et al. (2010), MASSMAN et al. (2013) and DOS SANTOS et al. (2016). Moreover, the methods 

GBLUP, PC, nMDS, ADM, and FINE were compared in terms of rMP, REL, and AIC (Table 1). 

However, the prediction accuracy remained the same for the models. Clearly, the GRM implicitly 

captured genetic variation from PS and admixture of the hybrids. According to ISIDRO et al. 

(2015) traits are largely impacted by PS. Thus, prediction accuracies depend on the interaction of 

trait architecture and levels of PS. On contrary, including PS covariates reported herein showed 

better performance in terms of reliability and DIC, which could substantially reduce the standard 

error of the genetic variant association and depending on the causal correlation between the 

covariate and effect, increases power. 

Several studies have been successfully conducted including PC as covariates in GWAS 

analysis (WANG et al. 2011; SUKUMARAN et al. 2015; ZHANG et al. 2016). However, in genomic 

prediction studies, adding PC eigenvectors in the model have shown low rMP (DAETWYLER et al. 

2012; NEWELL and JANNINK 2014). As already reported by JANSS et al. (2012), the PCs added as 

2
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fixed effects in the GBLUP enter twice in the model, causing misleading interpretations. It can be 

seen in this study, where even being observed structuring in PC plot (Fig. 1C), including the first 

three PCs did not change rMP scenario (Fig. 2), and reduced REL for GY. Furthermore, we used 

Tracy-Widom test to select the top principal components, but the rMP remained the same when 

added the first 5, 10, and 14 significant PCs in GBLUP model for both traits (Fig. 3B). 

The prediction including three nMDS dimensions performed better than the others 

methods for GY in terms of reliability. In a GWAS analysis, ZHU and YU (2009) compared 

nMDS and PC, and found an increase in power and a decrease in false positive rate using nMDS 

associated with genomic kinship. In addition, SUKUMARAN et al. (2012) worked with PS of 300 

wheat lines for ten grain quality traits, and tested three mixed models including admixture 

coefficients, nMDS, and PCA as fixed covariates in GWAS analysis. The authors found nMDS as 

the best approach for phosphorus (P) trait. On the other hand, in our results, ADM was the 

lowest ranked method so far according to REL for GY. In contrast, for PH showed better 

performance compared to GBLUP. In animal prediction, THOMASEN et al. (2013) studied US and 

Danish Jersey cattle by including admixture coefficients estimated in STRUCTURE in the 

genomic prediction model, and did not find any improvement of prediction reliabilities. 

 To predict across- and within-group, we followed the approach proposed by JANSS et al. 

(2012), but including dominance information. Within-group could derive genomic relationships 

that do not include the contribution to genetic similarity of the 1st d principal components of Ga 

and Gd (DE LOS CAMPOS et al. 2013). In our study, rMP of traditional GBLUP (Equation 1) and 

reparameterized Bayesian WGRR model (Equation 2) were similar for both traits, but for within-

group with d=3 (PC4 to PC100) for PH (0.77) was almost similar to traditional GBLUP (0.80). 

Similar application of the model was described by GUO et al. (2014) who worked with rice and 

maize panels, and used different numbers of principal components, d=4 and d=2, in the genomic 

model, respectively. The authors found that controlling for subpopulation structure significantly 

decreased rMP in both panels, and concluded that within-group variation is a major resource of 

genetic variance. 

We observed high values of BLUP mean in L1L3 (between-group hybrid) for GY (7.65) 

and PH (240). However, the rMP was low for both traits (Fig. 5). In this case, the mean values 

could be related to high heterosis, and the rMP to low genomic relationship. One reason could be 

the fact that between-group hybrids from genetically distant parents have a low degree of 

relationship. TECHNOW et al. (2014) also observed lower prediction accuracies in single-cross 

maize hybrids when the parents are distant relatives. Therefore, applying markers to predict 

hybrids when considering diallels that involve lines from the same heterotic group may yield 
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different results than when considering factorial designs that involve two separate sets of lines 

that belong to different heterotic groups (MELCHINGER et al. 1992; CHARCOSSET and ESSIOUX 

1994). 

Within- and between-group hybrids prediction showed a clear understanding of the 

importance of relatedness among hybrids and, certainly, new methods are required to increase 

estimates of prediction between-group hybrids. This could be seen in L1L2 group which 

presented lower number of individuals compared with L1L3, and the rMP was higher (Fig. 5), 

confirming our results that unrelated individuals in the training population (TP) affected more 

the prediction. Similar results was observed by LORENZ and SMITH (2015) who observed that 

adding increasingly unrelated individuals to the TP reduced prediction compared with smaller TP 

consisting of highly related individuals. In another detailed study, RIEDELSHEIMER et al. (2013) 

compared prediction accuracies for within-population prediction using full sibs of 635 doubled 

haploid (DH) lines genotyped with 16K SNPs, and found higher values increasing the sample 

size. ALBRECHT et al. (2014) also worked with genome-based prediction within-, across- and 

whole-group of DH lines, genotyped with 56K SNPs, and found higher whole-group predictive 

ability compared with within- and across-group for grain dry matter content. 

From our findings, rMP was higher in MG-GBLUP when compared with W-GBLUP for 

both traits (Table 2). According to Lehermeier et al. (2015) MG-GBLUP allows subpopulation-

specific marker effects, borrowing the information between subpopulations. In contrast, within-

group prediction (W-GBLUP) reduces training size, nevertheless, increases the relationship 

between genotypes (RIEDELSHEIMER et al. 2012; LEHERMEIER et al. 2015; HUANG et al. 2016; 

IHESHIULOR et al. 2016; MENDES and DE SOUZA 2016). Higher estimates of rMP were observed 

from MG-GBLUP in K3, for GY (0.77) and PH (0.84) relative to the whole-group from 

traditional GBLUP, showing the efficiency of the method. However, K1 and K2 presented lower 

rMP, due to reduced sample size. For W-GBLUP, the group with the largest sample size (K3=218) 

achieved similar values of rMP relative to the whole-population (K=452) GBLUP for GY (0.73; 

0.73) and PH (0.78; 0.80), respectively (Table 1 and 2). The estimated genomic correlations 

between subpopulations K1-K3 was high for both traits, which is agreement with the GRM (Fig. 

1E). In addition, genomic heritability ( 2

kgh ) tended to be higher in MG-GBLUP relative to W-

GBLUP. According to DE LOS CAMPOS et al. (2015), prediction and genomic heritability are two 

different problems, and a model that may yield higher values of 2

kgh  may have a relatively poor 

prediction performance, and vice versa. In our case, we observed high broad sense genomic 

heritability is associated with higher prediction accuracies. 
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Recent studies showed contrasting results about whole- or within-group prediction. 

SCHULZ-STREECK et al. (2012) found better prediction accuracy joining all populations derived 

from five biparental populations of maize. RIEDELSHEIMER et al. (2012) also studied PS splitting 

the whole population in within-group of related lines, and showed that population structuring 

reduced prediction accuracy in 3.6% for SNPs relative to whole-population. On the other hand,  

MENDES and DE SOUZA (2016) working with 250 tropical maize single-crosses genotyped with 

614 AFLP marker, studied PS on the rMP within- and across-groups, and found high accuracy 

estimates for within-group prediction. 

Additive marker effects estimated across all three groups were not consistent for GY 

(Additional file 6: Figure S6B), and we observed that high variance of marker effects lead to 

higher rMP. TECHNOW et al. (2014) also found differences in additive marker effects for GY in two 

maize germplasms. Besides that, LD pattern varied across all groups, showing greater LD 

estimates when sample size is smaller. YAN et al. (2009) showed the same tendency working with 

a diverse global maize collection. 

 

4.5. CONCLUSION 

Adding four different sets of PS as covariates to GBLUP increased reliability and reduced 

bias of prediction. In addition, depending on the number of hybrids available in the breeding 

program, apply MG-GBLUP in stratified groups could be an efficient method, maintaining the 

high relatedness and a considerable training population size. Further studies is required to 

increase accuracy in between-group hybrids, which is the main goal of maize breeding.  
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FIGURES 

 

 

Figure 1. Population structure analysis in 452 tropical maize single-cross hybrids. (A) 

Coancestry heatmap of fineSTRUCTURE unlinked model. Scale shows lower (white) to higher 

(black) amount of shared genetic chunks between the individuals. On the left and top is the 

maximum a posteriori (MAP) tree. Dashed red line is the cutoff threshold splitting K1, K2, and 

K3 groups. B) Artificial admixture coefficients, where each colour represents a group (K1-K7). 

C) First two principal components, applied to raw SNP data (32,838 SNPs). The percentages in 

parentheses in the axis titles represent the variance explained by each of the two principal 

components. D) First two nonmetric multidimensional scaling (nMDS) dimensions, applied to 

Roger’s distance matrix. E) Network representation of the GRM, where individuals were linked 

when their relationship coefficient was ≥0.6 (not all hybrids are shown). Colors in B, C, and E 

indicate three groups clustered from fineSTRUCTURE results. Number of hybrids per group is 

indicated in parenthesis. Density plot shows the distribution of individuals in each group. 
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Figure 2. Comparison of prediction accuracy. Boxplots of prediction accuracy for grain yield 

(GY) and plant height (PH), from GBLUP and four fixed covariates: principal components (PC), 

nonmetric multidimensional scaling dimensions (nMDS), admixture coefficients (ADM), and 

fineSTRUCTURE group clustering (FINE). Red dots and numbers above the dashed line are 

representing the mean for each distribution. 
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Figure 3. Top principal components and comparison of prediction accuracy. (A) 

Percentage of variance explained by the principal components. The number of statistically 

significant (p<0.05) principal components, measured by the Tracy-Widom statistic, is shown in 

the black region. (B) Barplot (mean±SD) of prediction accuracy from GBLUP with 3, 5, 10, and 

14 PCs as fixed covariates.  
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Figure 4. Relationship between estimates of prediction accuracy and number of principal 

components (PC). Posterior mean of prediction accuracy across- and within-group after 

accounting for the proportion of variance due to the d eigenvectors. 
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Figure 5. Within- and between-group hybrids from a partial diallel cross mating scheme 

of 128 inbred lines. The lines are grouped in L1, L2, and L3 based on fineSTRUCTURE results. 

Inside the plot is shown the trait mean, prediction accuracy (rMP), and broad sense genomic 

heritability (hg) estimated in traditional GBLUP for GY (A) and PH (B). Top left diagram is the 

number of individuals in each group. 

 

 

 

 

Additional file 1: Figure S1. Inference of group number of 128 tropical maize inbred lines. 

(A) 5-fold cross-validation error of ADMIXTURE, and (B) BIC values of k-means clustering. 

The dashed black line shows the number of groups inferred in each method. 
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Additional file 2: Figure S2. ADMIXTURE results of 128 tropical maize inbred lines. 

Clustering assignments inferred in L7 (A), L6 (B), and L5 (C) groups. Each individual is 

represented by a single vertical line divided into L colored segments. White color separates the 

groups (L). 
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Additional file 3: Figure S3. Coancestry heatmap of fineSTRUCTURE unlinked model. 

Scale shows lower (white) to higher (black) amount of shared genetic chunks between the inbred 

lines. On the left and top is the maximum a posteriori (MAP) tree. Dashed red line is the cutoff 

threshold splitting L1, L2, and L3 groups. Dashed blue line clustered the subgroup S1, S2, S3, S4, 

and S5. 
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Additional file 4: Figure S4. A) First two (A) principal components, (B) dimensions of nMDS, 

(C) Neighbor-Joining Tree based on Modified Rogers’ distance, and (D) pattern of linkage 

disequilibrium (LD) within 70 kb of distance among all pairs of marker (32K) for 128 tropical 

maize inbreds, coloured by fineSTRUCTURE group-clustering. 

 

 



98 

 

Additional file 5: Figure S5. A) 3-D PCA score plot for the first three principal components. B) 

First two principal components of the Discriminant Analysis of Principal Components (DAPC). 

 



99 
 

 

Additional file 6: Figure S6. (A) Pattern of linkage disequilibrium (LD) within 70 kb of distance 

among all pairs of marker (26K SNPs) for 452(K), 113(K1), 121(K2), and 218(K3) individuals. 

Values reported are the average r2 across 10 chromosomes. Boxplots of additive marker effect 

estimates for (B) GY and (C) PH, obtained from rrBLUP-R, for K1, K2, and K3 groups. 



100 

TABLES 

Table 1. Genetic parameter for grain yield (GY) and plant height (PH).  

Model                                 Grain yield                                Plant height 

 2
a  2

d  2
   REL DIC  2

a  2
d  2

   REL DIC 

GBLUP 0.28 0.02a 0.24 0.01 0.130.00 0.790.04 0.540.03 47422  21214.7 38.38.82 40.83.93 0.860.04 0.830.01 239230 

PCb 0.260.02 0.24 0.01 0.130.01 0.770.02 0.510.04 48523  21414.2 35.12.94 41.75.72 0.840.02 0.860.00 239242 

nMDSb 0.290.02 0.23 0.01 0.130.01 0.780.04 0.590.03 48426  21113.2 33.83.00 42.25.50 0.840.03 0.830.03 239541 

ADMb 0.250.01 0.24 0.01 0.130.01 0.770.05 0.450.03 48525  22116.2 34.83.14 41.34.88 0.850.04 0.870.00 239036 

FINEb 0.270.02 0.23 0.01 0.130.00 0.790.02 0.540.04 47320  21014.7 34.21.87 42.14.68 0.850.04 0.890.03 239533 

Additive variance ( 2
a ), dominance variance ( 2

d ), error variance ( 2
 ), broad sense genomic heritability ( 2

gh ), reliability (REL), and deviance information criterion 

(DIC). 
aData are posterior mean ± SD estimated from fifty replications in independent validation. 
bVariables used as fixed covariates in GBLUP model. 
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Table 2 Within- (W-GBLUP) and multi-group (MG-GBLUP) analysis for K1, K2, and K3 groups. 

Model Pop 
Grain yield  Plant height 

2

ka  2

kd  2

k
  2

kgh  
MPr   2

ka  2

kd  2

k
  2

kgh  
MPr  

W
- 

G
B

L
U

P
 K1 0.300.05a 0.170.02 0.210.02 0.680.10 0.58 0.11  13117.1 55.6 5.41 70.126.43 0.710.09 0.640.09 

K2 0.200.01 0.310.04 0.180.01 0.750.04 0.60 0.14  15514.1 45.5 5.13 47.14.03 0.820.04 0.710.05 

K3 0.380.03 0.200.01 0.140.00 0.790.05 0.73 0.05  16511.2 37.8 4.31 51.07.17 0.800.06 0.780.05 

M
G

- 
G

B
L

U
P

 K1 0.450.03 0.240.01 0.210.01 0.760.01 0.63 0.12  21535.3 50.6 17.2 31.615.9 0.880.06 0.720.06 

K2 0.360.02 0.430.03 0.210.01 0.780.00 0.68 0.09  27436.3 62.7 8.07 8.431.29 0.970.00 0.780.07 

K3 0.440.03 0.240.01 0.160.00 0.800.00 0.77 0.05  22120.4 27.1 7.27 42.311.6 0.85 0.03 0.840.04 

Additive variance ( 2

ka ), dominance variance ( 2

kd ), error variance ( 2

k
 ), broad sense genomic heritability ( 2

kgh ), and prediction accuracy (
MPr ) for grain yield (GY) and plant 

height (PH). 
aData are posterior mean ± SD estimated from fifty replications in independent validation. 
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5. GENERAL CONCLUSION 

Multi-trait genomic prediction using the combination of selection indices is an excellent 

strategy to increase accuracy of selection under abiotic stress conditions. 

Including dominance deviation and copy number variation effects in single-crosses 

prediction for complex traits seems to be suitable, due to the increase of accuracies and reduction 

of model bias. 

Controlling population structure in genomic prediction models may increase reliability 

and precision of estimation of genomic breeding values in maize hybrids. 

 




