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RESUMO 

Dinâmica subcelular do peptídeo endógeno AtPep1 e seus receptores em Arabidopsis: 

implicações na imunidade de plantas 

Neste trabalho, foi investigada a dinâmica subcelular do peptídeo elicitor de planta 

AtPep1 e suas implicações nas respostas de defesa. Primeiramente, é fornecida uma 

introdução do sistema imune inato de plantas com ênfase na imunidade ativada por moléculas 

elicitoras derivadas de organismos invasores ou da mesma planta, após seu reconhecimento 

por receptores localizados na membrana plasmática (PTI responses).  Peptídeos endógenos 

que têm sido reportados em Arabidopsis como ativadores de PTI são descritos, dando especial 

destaque para o peptídeo AtPep1 e seus receptores PEPRs. O tráfego de endomembranas em 

plantas é introduzido, abrangendo as vias de internalização, endocitose mediada por proteínas 

clathrinas (CME) e endocitose mediada por receptor (RME). No capítulo seguinte, foram 

avaliadas estratégias para o estudo in vivo da dinâmica subcelular do AtPep1. Para isso a 

proteína precursora do AtPep1 (PROPEP1) foi fusionada a GFP e sua localização visualizada, 

encontrando que PROPEP1 é associado com o tonoplasto e acumula dentro do vacúolo, fato 

que sugere uma função de armazenamento do PROPEP1 para esta organela, desde onde é 

liberado em caso de uma situação de perigo dando origem ao AtPep1. Adicionalmente, foram 

produzidas versões biologicamente ativas do AtPep1 marcado com fluróforos. No capítulo 

três foram combinados genética clássica e genética química com visualizações in vivo para 

estudar o comportamento de um AtPep1 bioativo e marcado fluorescentemente na células 

meristemática da ponta da raiz de Arabidopsis, sendo encontrado que AtPep1 se liga 

rapidamente na membrana plasmática numa forma dependente de receptor. Em seguida, o 

complexo AtPep1-PEPR foi internalizado via CME e transportado para o vacúolo, passando 

através do endossomo primário e secundário. Quando o funcionamento da CME foi 

comprometido, as respostas ao AtPep1 também foram afetadas. Estes resultados fornecem a 

primeira visualização in vivo de um peptídeo de sinalização em plantas, mostrando sua 

dinâmica e destino intracelular. O papel regulatório durante as respostas induzidas pelo 

AtPep1 do co-receptor BRI1-associated kinase 1 (BAK1) foram investigadas (Capítulo 

quatro). Nossos resultados confirmaram que BAK1 interage com PEPRs numa forma 

dependente do ligante e indicam que BAK1 modula sinalização e endocitose do AtPep1, no 

entanto quando ausente, BAK1 pode ser substituído por seus homólogos SOMATIC 

EMBRYOGENESIS RECEPTOR-LIKE KINASE os quais poderiam ter funções adicionais 

durante as repostas induzidas pelo AtPep1. Eventos de fosforilação após a formação do 

complexo PEPR-BAK1 parecem ditar as bases moleculares da internalização e sinalização do 

AtPep1. Finalmente, são discutidos os resultados encontrados nesta pesquisa numa 

perspectiva geral, destacando a relevância destas descobertas na área de pesquisa em que 

estão inseridos, o potencial que representa o uso de ligantes marcados fluorescentemente 

como ferramenta para o estudo de complexos entre ligante-receptor, a disponibilidade do 

sistema  AtPep1-PEPRs como modelo de estudo da endocitose em plantas e sua relação com 

sinalização, e os futuros desafios na área.  

Palavras-chave: Peptídeos de sinalização; Receptores reconhecedores de padrões; PTI; 

AtPep1 – PEPR; Endocitose 
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ABSTRACT 

Subcellular dynamics of the endogenous elicitor peptide AtPep1 and its receptors in 

Arabidopsis: implications for the plant immunity 

 

This work investigated the subcellular dynamics of the plant elicitor peptide AtPep1 

and its interplay with plant defense responses. First, an introduction of the plant innate 

immunity system is provided with emphasis on pattern trigger immunity (PTI), which is based 

on the recognition of “non-self” and “self” elicitor molecules by surface-localized pattern-

recognition receptors (PRRs). Then, the Arabidopsis endogenous peptides that act as self-

elicitor molecules are presented, with details on AtPep1 and its PEPR receptors. Plant 

endomembrane trafficking is described, encompassing endocytic pathways, clathrin mediated 

endocytosis (CME) and receptor-mediated endocytosis (RME). In the next chapter, we 

explored strategies for the in vivo study of the subcellular behavior of AtPep1; to this end, we 

fused the precursor protein of AtPep1 (PROPEP1) to GFP and assessed its localization. We 

found that PROPEP1 was associated with the tonoplast and accumulated in the vacuole, 

suggesting that this organelle could work as the station where PROPEP1 is stored and later 

released, only in a danger situation, hence initiating AtPep1. Moreover, we generated AtPep1 

versions labeled with fluorescent dyes and demonstrated that this peptide could be 

fluorescently tagged without loss of its biological activity. In chapter 3, we combined 

classical and chemical genetics with life imaging to study the behavior of a bioactive 

fluorescently labeled AtPep1 in the Arabidopsis root meristem. We discovered that the labeled 

AtPep1 was able to bind the plasma membrane very quickly in a receptor-dependent manner. 

Subsequently, the PEPR-AtPep1complex was internalized via CME and transported to the 

lytic vacuole, passing through early and late endosomal compartments. Impairment of CME 

compromised the AtPep1 responses. Our findings provide for the first time an in vivo 

visualization of a signaling peptide in plant cells, thus giving insights into its intracellular fate 

and dynamics. The role of the coregulatory receptor BRI1-associated kinase 1 (BAK1) in 

AtPep1-responses was also investigated (chapter 4). Our results confirmed that BAK1 

interacts with PEPRs in a ligand-dependent manner and indicate that BAK1 modulates 

AtPep1 signaling and endocytosis, but that, when absent, it might be replaced by homologous 

SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) proteins that could have 

additional functions during the AtPep1 signaling. Furthermore, phosphorylation events after 

the formation of PEPR-BAK1 complexes seem to dictate the molecular bases of AtPep1 

internalization and signaling. Finally, we discussed our findings in a more general 

perspective, highlighting the important findings for the plant endomembrane trafficking field, 

the potential use of fluorescently labeled ligands as a tool to study ligand-receptors pairs, the 

availability of AtPep1-PEPRs as an excellent model to study endocytosis and its interplay 

with signaling, and the future challenges in the field. 

 

Keywords: Plant signaling peptides; PTI; Pattern –recognition receptors; AtPep1-PEPR; 

Endocytosis 

  



22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

SAMENVATTING 

De Subcellular dynamiek van de endogene elicitor peptide AtPep1 and zijn receptor in 

Arabidopsis: implications voor de immuniteit van de plant 

Dit werk onderzoekt de subcellulaire dynamica van de “plant elicitor peptide” AtPep1 en de 

wisselwerking met de verdedigingsresponsen van planten. In de inleiding wordt het 

immuunsysteem van planten beschreven met de nadruk op de patronen die de immuniteit 

activeren, en die gebaseerd zijn op de herkenning van “niet-eigen” en “eigen” moleculen door 

de aan de oppervlakte-gelocaliseerde herkenningsreceptoren. De endogene peptiden van 

Arabidopsis worden beschreven die zich als zelf-elicitoren of auto-immuniteitsopwekkers 

gedragen met een focus op AtPept1 en zijn receptoren. Verder wordt het 

endomembraantransport in planten besproken, waarbij dieper wordt ingegaan op clathrine 

gemedieerde endocytose (CME). In het volgend hoofdstuk bestuderen wij de strategieën voor 

het onderzoek naar de in vivo subcellulair localisatie van AtPep1. Hiervoor maakten wij een 

fusie tussen zijn precursorproteïne (PROPEP1) en GFP, en bepaalden zijn lokalisatie. We 

vonden dat PROPEP1 was geassocieerd met de tonoplast en accumuleerde in de vacuole, wat 

erop wijst dat dit organel zou kunnen fungeren als opslagplaats voor PROPEP1. In het geval 

van een immuun response wordt het precursor peptide vrijgegeven, en ontstaat AtPep1. 

Verder genereerden we versies van AtPep1 die verbonden zijn met fluorescente kleurstoffen, 

zonder het verlies van zijn biologische activiteit. In hoofdstuk 3 combineerden we klassieke 

en chemische genetica met “life”-beeldvorming om het gedrag te bestuderen van een 

bioactieve en fluorescente vorm van AtPept1 in het wortelmeristeem van Arabidopsis. We 

ontdekten dat het fluorescente AtPep1 in staat was zeer snel de plasmamembraan te binden in 

een receptor-afhankelijke wijze. Vervolgens werd de receptor (PEPR) in complex met AtPep1 

geïnternaliseerd via CME en naar de lytische vacuole getransporteerd doorheen de vroege en 

late endosomale compartimenten. Inhibitie van CME bracht de AtPep1 geïnduceerde 

responsen in het gedrang. Dankzij onze resultaten werd voor de eerste keer een signaalpeptide 

gevisualiseerd in vivo in plantencellen, waardoor inzicht werd verschaft in zijn intracellulair 

lot en dynamica. De rol van de co-regulatorische receptor BRI1-associated kinase 1 (BAK1) 

in de responsen van AtPep1 werd ook onderzocht (hoofdstuk 4). Onze resultaten bevestigden 

dat BAK1 interageert met PEPRs in een ligand-afhankelijke wijze; tevens duiden ze aan dat 

BAK1 AtPep1 geïnduceerde signalisatie en endocytose moduleert. BAK1 kan, bij 

afwezigheid, vervangen worden door de homologe proteïnen SOMATIC EMBRYOGENESIS 

RECEPTOR-LIKE KINASE (SERK), die bijkomende functies zouden kunnen hebben tijdens 

AtPep1 geïnduceerde signalisatie. Daarenboven, fosforylatie na de vorming van de complexen 

PERP-BAK1 kan de moleculaire basis van de internalisering en signalering van AtPep1 te 

dicteren. Tenslotte bespreken wij onze resultaten in een meer algemeen perspectief. We 

leggen de nadruk op de voorname bevindingen betreffende het endomembraantransport van 

het PEPR- AtPep1 receptor-ligand complex, we wijzen op het potentieel gebruik van 

fluorescente liganden als middel om receptor-ligand complexen te bestuderen en op de 

geschiktheid van AtPep1 en PEPRs als model om endocytosis in relatie tot immuun 

signalisatie te onderzoeken. Finaal vermelden we de toekomstige uitdagingen in het veld. 

Keywords: Planten signalisatie peptides; Patroonherkenning receptor; PTI; AtPep1-PEPR; 

Endocytose 
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1 INTRODUCTION  

1.1 Plant defense 

Plants have the ability to use sunlight energy to transform CO2, water and other 

elements, into organic molecules that become the primary food source of many organisms. 

These organisms can be beneficial to plant growth, but many of them have detrimental effects 

on plant development and long-term survival (JONES; DANGL, 2006). Moreover, because of 

their sessile life style, plants cannot avoid danger organisms by simply running away and 

have, therefore, evolved stunning defense strategies to stop invading organisms, thus allowing 

plants to successfully colonize different environments on earth. The first obstacle that an 

organism must overcome before it succeeds in invading the plants is the presence of 

structural, enzymatic or chemical preformed barriers, such as waxy cuticles, lignified cell 

walls, thorns, trichomes, antimicrobial enzymes and secondary metabolites (BOYAJYAN et 

al., 2014; THORDAL-CHRISTENSEN, 2003). Once these barriers are breached, the invaders 

are confronted with a refined plant immune system designed to perceive elicitor molecules 

derived from the invading organisms and from the already attacked plant cells (BOLLER; 

FELIX, 2009; MACHO; ZIPFEL, 2014). 

1.1.1 The plant immune system 

Plants, unlike mammals, lack a somatic adaptive immune system and mobile defender 

cells that access most part of the organism. Instead, plants rely on the innate immunity of each 

cell and on systemic signals emanating from infection sites (JONES; DANGL, 2006). The 

plant innate immunity is based on the recognition of potentially invading organisms and 

subsequent induction of protective responses, comprising a two-tier perception system 

(DODDS; RATHJEN, 2010). The first layer is mediated by the recognition of specific 

microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs) by surface-

localized pattern-recognition receptors (PRRs) that induce basal responses termed PRR-

triggered immunity (PTI) (BOYAJYAN et al., 2014; MACHO; ZIPFEL, 2014). As 

exogenous elicitors are conserved and widely distributed within pathogens and non-pathogens 

from invading organisms (MEDZHITOV; JANEWAY, 1997), we chose to use the term 

MAMPs to refer to elicitors from invading organisms throughout this thesis. Additionally, 

PTI can be activated by endogenous host-derived elicitor molecules (damage-associated 

molecular patterns [DAMPs]) that are released upon pathogen perception or pathogen-

induced cell damage, and recognized as danger/alarm signals (BOLLER; FELIX, 2009; 
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MACHO; ZIPFEL, 2014). As most of the MAMPS are essential for the life style of the 

pathogens, they cannot easily be amended to evade recognition; however, the existence of PTI 

has instigated the necessity for plant pathogens to evolve a suite of diverse effector molecules 

that are secreted into host cells to interfere with specific steps of pathogen detection or 

subsequent downstream signaling responses (PUMPLIN; VOINNET, 2013). In most cases, 

these effectors are virulence factors because they promote microbial growth and disease 

(BOLLER; FELIX, 2009; DODDS; RATHJEN, 2010; PUMPLIN; VOINNET, 2013). As a 

counter defense to the action of virulence effectors, the second layer of plant immunity 

appears, based on a large family of mostly intracellular plant receptors of the nucleotide-

binding leucine-rich repeat domain class (R proteins) that recognize virulence effectors 

directly or by monitoring the integrity of their endogenous targets; as a consequence, 

responses, called effector-triggered immunity (ETI) that is stronger than PTI, are induced and 

lead, in many cases, to hypersensitive responses characterized by rapid apoptotic cell death 

and local necrosis (BOLLER; FELIX, 2009; BOYAJYAN et al., 2014; DODDS; RATHJEN, 

2010; MACHO; ZIPFEL, 2014; PUMPLIN; VOINNET, 2013). 
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Figure 1 – Schematic of the plant immune system. Pathogens of different life styles release MAMPs (Shapes are 

color coded to the pathogens) into the extracellular space as they colonize plants. (1) MAMPs are 

recognized by the extracellular domain of PRR and initiate PTI. Many PRRs interact with 

coregulatory receptors to initiate PTI signaling pathway. (2) Host-derived elicitor molecules DAMPs 

are released upon pathogen perception or pathogen-induced cell damage, and they are recognized by 

PRRs to amplify PTI. (3) Pathogens deliver a suite of effector proteins into host cells through 

specialized structures. (4) These effector are addressed to specific subcellular locations where they 

can interfere with PTI and facilitate virulence. (5) However, intracellular nucleotide-binding (NB)-

LRR receptors NLRs can recognize virulence effectors directly (5a) or by monitoring the integrity of 

their endogenous targets (5b), triggering ETI. (TTSS) type III secretion system. Modified from 

Dangl et al. (2013). Decoy represent an alteration of a host virulence target, like the cytosolic domain 

of a PRR.  

1.1.2 Pattern recognition receptors 

Pattern recognition receptors are localized in the plasma membrane and perceive 

MAMPs or DAMPs of “non-self” and “self” origin, respectively. They are either receptor 

kinases (RKs) that have a ligand-binding ectodomain, a single-pass transmembrane domain, 

and an intracellular kinase domain, or receptor-like proteins (RLPs), which share the same 

overall structure but lack an intracellular kinase domain (ZIPFEL, 2014). As RLPs do not 

possess an intracellular signaling domain, they are believed to rely on the interaction with one 
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or several RKs to propagate the signal induced by the receptor-ligand binding (TOR; LOTZE; 

HOLTON, 2009; ZIPFEL, 2014) 

As evidence of their biological relevance, the Arabidopsis thaliana genome is 

predicted to encode more than 600 RKs and 56 RLPs and the rice (Oryza sativa) genome 

encodes more than 1000 RKs and 90 RLPs (DARDICK et al., 2007; FRITZ-LAYLIN et al., 

2005; SHIU; BLEECKER, 2003), although not all RKs and RLPs are PRRs, some of which 

being related to different physiological processes (SHIU; BLEECKER, 2003). According to 

their sequence analysis, RKs can be classified into 21 structural classes depending on the 

structure of their extracellular domain, with the leucine-rich repeats (LRR) RKs, being the 

largest family with at least 233 members divided into 16 subfamilies (LEHTI-SHIU et al., 

2009; SHIU; BLEECKER, 2001; SHIU et al., 2004). Furthermore, RKs can also be grouped 

into RD and non-RD kinases, according to the presence or absence of the so-called RD motif, 

which refers to a conserved arginine (R) located in front of an aspartate (D) in the catalytic 

loop that facilitates phosphotransfer (DARDICK; SCHWESSINGER; RONALD, 2012; 

SHIU; BLEECKER, 2003). Currently, all characterized plant RKs that carry the non-RD 

kinase motif are involved in the recognition of MAMPs, suggesting that it might be a 

hallmark of PRRs, but this characteristic cannot be extended to all PRRs because RKPRRs 

that recognize DAMPs belong to the RD kinases (BOLLER; FELIX, 2009; DARDICK; 

SCHWESSINGER; RONALD, 2012; SCHWESSINGER; RONALD, 2012). 

Presently, in spite of the large number of genes predicted to encode RKs and RLPs, 

only a minority of PRRs has been characterized and few ligands have been identified. The 

first successfully characterized ligand-PRR pair was the bacterial flagellin (or the derived 

peptide flg22) recognized by the LRRRK FLAGELLING SENSIN2 (FLS2) (GOMEZ-

GOMEZ; BOLLER, 2000). Initially, FLS2 was identified in the model plant Arabidopsis, but 

functional orthologs have already been found in a wild relative of tobacco (Nicotiana 

benthamiana), rice, tomato (Solanum lycopersicum), and grapevine (Vitis vinifera) (HANN; 

RATHJEN, 2007; ROBATZEK et al., 2007; TAKAI et al., 2008; TRDA et al., 2014). 

Another well-characterized PRR, is the EF-Tu RECEPTOR (EFR) that recognizes the 

conserved N-acetylated epitope elf18 of the first 18 amino acids of the bacterial elongation 

factor Tu (ZIPFEL et al., 2006). Nevertheless, whereas flg22 seems to be recognized by most 

higher plants, the ability to perceive elf18 seems restricted to the plant family Brassicaceae 

(BOLLER; FELIX, 2009). 
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RK, receptor kinase; RLP, receptor-like protein; LRR, leucine-rich repeats domain; EGF, epidermal growth 

factor (EGF)-like domain; Lec, lectin-domain; LysM, lysine motif domain; AtPeps, Arabidopsis elicitor 

peptides; AtPIPs, Arabidopsis PIP peptides; OGs, oligogalacturonides; eATP, extracellular ATP; flg22, bacterial 

flagellin peptide; elf18, epitope of the bacterial elongation factor Tu; PGN, Peptidoglycans; eMAX, enigmatic 

bacterial PAMP partially purified from Xanthomonas axonopodis pv. citri; PGs endopolygalacturonases 

As an example of RLPPRRs, in Arabidopsis, there are two RLPs with lysine motif 

(LysM)-containing ectodomains, AtLYM1 and AtLYM3, that specifically bind peptidoglycans 

(PGNs) that are the major components of the cell walls of both Gram-positive and Gram-

negative bacteria (ERBS; NEWMAN, 2012; WILLMANN et al., 2011). Interestingly, the 

PGN-induced responses are impaired in the absence of the LysMRK CERK1 that does not 

bind PGN itself (WILLMANN et al., 2011), implying that PGN perception in Arabidopsis 

employs a multimeric receptor system, comprising PGN-binding LysMRLPs and signaling-

transducing LysMRKs, such as CERK1 (ZIPFEL, 2014). Moreover, CERK1 has also been 

Table 1 – Arabidopsis PRRs and their respective ligands  

Receptor Receptor 

type 

Extracellular 

domain 

ligand Ligand 

Type 

References 

PEPR1/2 RK LRR AtPeps DAMPS (HUFFAKER; PEARCE; 

RYAN, 2006; 

YAMAGUCHI et al., 

2010) 

RLK7 RK LRR AtPIPs (HOU et al., 2014) 

WAK1 RK EGF OGs (BRUTUS et al., 2010) 

DORN1/ 

LecRK-I.9 

RK Lec eATP (CHOI et al., 2014) 

FLS2 RK LRR flg22 MAMPs (CHINCHILLA et al., 

2006; GOMEZ-GOMEZ ; 

BOLLER, 2000) 

EFR RK LRR elf18 (ZIPFEL et al., 2006) 

CERK1 RK LysM Chitin (MIYA et al., 2007) 

LYK4/5 RK LysM Chitin (PETUTSCHNIG et al., 

2010; WAN et al., 2012) 

LYM1/3 RLP LysM PGN (WILLMANN et al., 

2011) 

LYM2 RLP LysM Chitin (FAULKNER et al., 2013; 

PETUTSCHNIG et al., 

2010) 

ReMAX RLP LRR eMAX (JEHLE et al., 2013) 

RBGP1 RLP LRR PGs (ZHANG et al., 2014) 
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shown to be required for chitin perception, the major constituent of fungal cell walls. 

However, in contrast to PGNs, the extracellular domains of CERK1 specifically bind chitin 

oligomers that act as bivalent ligands, leading to the homodimerization of CERK1 and 

generation of chitin-induced signaling (LIU et al., 2012; MIYA et al., 2007). 

As stated above, PRRs can also sense DAMPs that are self-molecules available for 

recognition only after cell/tissue damage or pathogen recognition (ZIPFEL, 2014). To date, in 

Arabidopsis, the best-characterized DAMP-PRR pairs correspond to the AtPep peptides and 

the LRRRKs PEPR1 and PEPR2 (BARTELS; BOLLER, 2015) that will be presented further 

in detail. Recently, the PIP1 and PIP2 peptides have been shown also to bind the receptor-like 

kinase 7 (RLK7) (HOU et al., 2014). Besides peptides, in Arabidopsis, DAMPs can also be 

lytic plant cell wall fragments, such as oligogalacturonides (OGs) that are perceived by the 

epidermal growth factor (EGF) motif-containing the RK wall-associated kinase 1 (WAK1) 

(BRUTUS et al., 2010), and extracellular adenosine 5'-triphosphate (eATP) that is recognized 

by the receptor DORN1/LecRK-I.9 (CHOI et al., 2014). 

1.1.3 Coregulatory receptor kinases 

RKs also can act as regulatory proteins that do not necessarily interact with a ligand, 

but are important facilitators or suppressors of signaling activation and allow signaling cross-

talk at the plasma membrane, coordinating the different signals perceived in the apoplast to 

ensure the proper downstream signaling (SCHWESSINGER; RONALD, 2012). For instance, 

members of the SERK family have been shown to redundantly hetero-oligomerize with other 

RKs, albeit with different affinities, and to regulate multiple physiological programs (AAN 

DEN TOORN; ALBRECHT; DE VRIES, 2015; POSTEL et al., 2010; ROUX et al., 2011). In 

Arabidopsis, the SERK family consists of five close homologs (SERK1 to SERK5) that have 

arisen through gene duplications, are all characterized by a small extracellular domain 

consisting of 4.5-5 LRRs and by the presence of a typical serine and proline-rich motif after a 

truncated extracellular LRR domain, and belong to the LRRRK subclass II (AAN DEN 

TOORN; ALBRECHT; DE VRIES, 2015; HECHT et al., 2001). 

Among the SERK members, SERK3/BAK1 (hereafter referred as BAK1) is the most extensively 

studied and, because it has been shown to be required for the proper functionality of numerous RKs, 

it has been proposed as a multifunctional adaptor molecule implicated in plant development, cell 

death control, and innate immunity (HE et al., 2007; POSTEL et al., 2010; ROUX et al., 2011; 

SCHWESSINGER et al., 2011). BAK1 was originally discovered to dimerize with the main 

brassinosteroid (BR) receptor BRASSINOSTEROID-INSENSITIVE1 (BRI1) (LI et al., 2002; 
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WANG et al., 2001). Later on, its rapid ligand-dependent interaction with PRRs (FLS2 and EFR) 

and PEPRs has been documented as well (CHINCHILLA et al., 2007; POSTEL et al., 2010; 

SCHULZE et al., 2010; SCHWESSINGER et al., 2011). This interaction appears to be functionally 

important because null mutants of BAK1 displayed impaired defense responses upon perception of 

a plethora of fungal, bacterial, and oomycete-derived conserved microbial signatures, indicating 

that it is a positive regulator of PRRs. However, this impairing differs between MAMPs and 

residual responses might still be found (CHINCHILLA et al., 2009; CHINCHILLA et al., 2007; 

RANF et al., 2011; SCHWESSINGER et al., 2011), possibly due to the BAK1 substitution in the 

receptor complex by other members of the SERK family (BOLLER; FELIX, 2009). Indeed, the 

closest BAK1 homolog, SERK4/BKK1 (hereafter referred as BKK1), plays a partially redundant 

role during PTI signaling and forms ligand-dependent complexes with EFR and FLS2 (ROUX et 

al., 2011). Partially redundant roles among other SERK family members have been observed with 

BRI1 that interacts with four out of five members of the SERK family (SERK1 to SERK4) (GOU et 

al., 2012; HE et al., 2007; LI et al., 2002). Recently, the identification of a novel mutant allele, 

bak1-5, which is specifically impaired in PTI signaling without displaying any other pleiotropic 

defects in BR signaling or cell death control, confirmed that BAK1 contributes significantly to 

disease resistance against biotrophic and hemibiotrophyc pathogens (ROUX et al., 2011; 

SCHWESSINGER; RONALD, 2012; SCHWESSINGER et al., 2011).  

The specificity of bak1-5 to affect immunity responses is determined by a single amino acid 

substitution (Cys to Tyr at position 408) in the kinase domain that reduces the phosphorylation 

status, probably by affecting the recruitment or activation of downstream signaling components 

(SCHWESSINGER et al., 2011). Phosphorylation events are the earliest responses after formation 

of ligand-induced complexes and they have been proposed to modulate the downstream responses 

of BAK1 and its interacting partners (SCHULZE et al., 2010; SCHWESSINGER et al., 2011). In 

supporting of this hypothesis, the recently mapped phosphorylation patterns of BAK1 associated 

with different RK partners (BRI1, FLS2, and EFR) revealed that differential phosphorylation 

patterns of RKs resulted from the altered BAK1 phosphorylation status, suggesting that these 

phosphorylation events could be the molecular basis for selective regulation of multiple BAK1-

dependent pathways (WANG et al., 2014). 

Additionally, BAK1 can also associate with members of the BAK1-interacting receptor (BIR) 

of the RK family, predicted to be very similar in structure as BAK1 (GAO et al., 2009; 

HALTER, et al., 2014b). Interaction between BIR2 and BAK1 has recently been found to 

occur in the absence of MAMP perception, preventing interaction with the ligand-binding 

FLS2; however, perception of MAMPs leads to BIR2 release from the BAK1 complex and 
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enables the recruitment of BAK1 into the FLS2 complex. These findings imply that BIR2 act 

as a negative regulator of PTI by limiting the BAK1-receptor complex formation in the 

absence of ligands (HALTER, et al., 2014a; HALTER, et al., 2014b).  

1.1.4 Receptor-like cytoplasmic kinases as direct substrates of PRR complexes 

In addition to coregulatory receptor kinases, cytoplasmic partners are also required to 

link the PRR activation with the downstream intracellular signaling. In recent years, receptor-

like cytoplasmic kinases (RLCKs) have emerged as direct substrates of PRR complexes and 

key positive regulators of PTI signaling (MACHO; ZIPFEL, 2014). Currently, the RLCK 

Botrytis-induced kinase 1 (BIK1) that is part of the large multigenic RLCKVII subfamily, has 

been shown to be an important regulator of the activation of PRR complexes that mediate the 

innate immunity in Arabidopsis and interact constitutively with FLS2, EFR, CERK, PEPRs 

and BAK1 (LIU et al., 2013; LU et al., 2010; ZHANG et al., 2010). The ligand-binding 

activation of PRR complexes results in a rapid BIK1 phosphorylation that dissociates from 

the receptors to trigger the downstream signaling (LU et al., 2010; ZHANG et al., 2010). 

BIK1 and its closely related proteins (PBLs) seem to have partially redundant functions 

during PTI, but specific roles have been suggested because PBL1, PBL2 and PBL5 can also 

regulate flg22-induced responses, whereas only PBL1 additionally interacted with PEPR1 

(LIU et al., 2013; ZHANG et al., 2010). The requirement of different RLCKs for specific PTI 

responses suggests that the choice of specific RLCKs as PRR substrates constitutes another 

layer in the signaling branching regulation from PRR complexes (MACHO; ZIPFEL, 2014). 

1.1.5 Pattern-triggered immunity responses 

Most of the known PRRs heteromerize with coregulatory receptor kinases (BAK1 or 

other RK) almost instantaneously after ligand perception, followed by phosphorylation and 

activation of the intracellular kinase domain of both receptors and subsequent activation of a 

sequential set of early and long-term responses as well as downstream signaling cascades to 

adapt to the imminent attack (BOLLER; FELIX, 2009; MACHO; ZIPFEL, 2014; SCHULZE 

et al., 2010; SCHWESSINGER et al., 2011). Some of these responses are routinely used as 

read-outs to study PRRs and their ligands. 

In the first minutes after MAMPs/DAMPS perception, changes in the ion fluxes can be 

detected, including H
+
 and Ca

2+
, leading to membrane depolarization (MITHÖFER; EBEL; 

FELLE, 2005). The effects on H
+
 fluxes can be clearly observed in suspensions of cultured 

cells in which they lead to alkalinization of the liquid growth medium (BOLLER, 1995). 

Recently, calcium-dependent protein kinases (CDPKs), acting as Ca
2+

 sensor protein kinases, 
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have been reported to be major mediators of the early PTI immune signaling (BOUDSOCQ et 

al., 2010). Another very early response is the production of reactive oxygen species (ROS) 

that acts as antibiotic agents directly and as secondary signals to induce intracellular and 

systemic signaling events (APEL; HIRT, 2004). The initial downstream signaling of PTI 

includes also the activation of so-called mitogen-activated protein (MAP) kinases (MAPKs), 

considered key regulatory elements in the early transduction of MAMPs/PAMPs-PRRs 

signaling (HETTENHAUSEN; SCHUMAN; WU, 2014). In Arabidopsis, triggered PRRs 

induce activation of MPK3 and MPK6, starting with a lag phase of approximately 1–2 min 

and peaking after 5–10 min (RANF et al., 2011). MAPK activation leads to induction of some 

early defense-related genes, such as some members of the WRKY transcription factor family 

(ASAI et al., 2002). Interestingly, MAPKs and Ca
2+

-dependent protein kinases seem to 

function independently and the transcriptional reprogramming that results from the MAPK 

activity differs from the modulations achieved through the CDPK activity (BOUDSOCQ et 

al., 2010). 

 

 

 

 

 

 

 

 

 

Figure 2 - Proposed model of pattern trigger immunity responses based on studies of known ligand-PRRs pairs. 

MAMPs/DAMPs are recognized by the respective PRR and almost instantaneously the activated PRR 

interact with a coregulatory receptor kinase followed by phosphorylation and activation of the 

intracellular kinase domain of both receptors. Then, a set of very early responses including increased 

of intracellular calcium, extracellular alkalinization, ROS production, and MAPK and CDPK 

activation by phosphorylation occur. Subsequently, the activated receptors are removed from the 

plasma membrane by endocytosis and a massive transcriptional reprogramming is detected. Finally, 

late responses are found hours or days after the MAMP/DAMP stimuli, including stomata closure, 

callose deposition and seedling growth inhibition   
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Following the initial responses, pattern recognition results in a massive transcriptional 

reprogramming. Transcriptomic studies in Arabidopsis indicated that as early as 30 min after 

flg22 treatment, almost 1000 genes were up-regulated and approximately 200 genes were 

down-regulated (ZIPFEL et al., 2004). Additional studies also revealed a similar pattern of 

gene regulation upon elf26 and chitin application, suggesting a stereotypical response to 

MAMPs and DAMPs (NAVARRO et al., 2004; RAMONELL et al., 2002; ZIPFEL et al., 

2006). Most up-regulated genes encode enzymes involved in the synthesis of antimicrobial 

compounds and proteins involved in signal perception and transduction, including RKs, 

transcription-regulatory factors and phosphatases (NAVARRO et al., 2004; RAMONELL et 

al., 2002; ZIPFEL et al., 2006). The fact that several RKs are present implies that the early 

gene induction plays a role as positive feedback to increase the PRR perception capabilities 

(BOLLER; FELIX, 2009). Although transcriptomic studies have shown an overlap in genes 

induced by different MAMPs and DAMPs, assessment of transcriptional changes in long-term 

patterns resulting from exposure to flg22 and oligosaccharides (OGs) derived from the plant 

cell walls over an extended time course revealed that the transcriptional regulation can differ 

not only in timing and amplitude, but also in gene activation during flg22 elicitation and not 

during OG responses (DENOUX et al., 2008). Thus, although different elicitor molecules 

may trigger conserved transcriptional responses, specific aspects depend on the sensed 

elicitor. 

Another interesting aspect of PTI is the endocytosis of the PRRs that has been first 

demonstrated by using GFP-labeled FLS2 that, after flg22 stimulation (30-60 min) is 

translocated from the plasma membrane via vesicle-mediated endocytosis and targeted to 

endosomal sorting (BECK et al., 2012; ROBATZEK; CHINCHILLA; BOLLER, 2006). 

Similar observations have also been documented for the LeEIX2 receptor in tobacco after 

stimulation with the fungal protein elicitor ethylene-inducing xylanase (EIX) (BAR; AVNI, 

2009; SHARFMAN et al., 2011), suggesting that this process could be a hallmark of triggered 

PRR activation. Although an increasing amount of data indicates that endocytosis is part of 

the PRR response, its role during PTI signaling, trafficking machinery and subcellular 

dynamics of the process is still poorly understood.  

Subsequently to early PTI events, late responses are detected hours or days after the 

MAMP/DAMP stimuli, including stomata closure, callose deposition and seedling growth 

inhibition (BOLLER; FELIX, 2009; MELOTTO et al., 2006). Stomata are considered a 

constitutively natural access for a significant number of microbes; therefore, plants can 

restrict pathogen entry by closing stomata or by inhibiting stomata opening (MELOTTO et 
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al., 2006). Callose deposition is also a hallmark of PTI responses of which the biological 

relevance is not clear, but that can be detected approximately 16 h after MAMP treatment 

(GOMEZ-GOMEZ; FELIX; BOLLER, 1999). If MAMP/DAMP perception continues for 

days, a seedling growth inhibition in a concentration-dependent manner can be detected, 

suggesting a switch of resource allocation from growth to a defense program; nevertheless, 

the physiological role and molecular details of this response is under debate (BOLLER; 

FELIX, 2009; KROL et al., 2010; LOZANO-DURAN; ZIPFEL, 2015). Downstream of PTI, 

plant hormones can be involved, mainly salicylic acid (SA), ethylene and jasmonic acid (JA), 

that further finely modulate immune responses, spreading the message of imminent danger to 

yet unaffected tissues (PIETERSE et al., 2012).  

 

1.2 Endogenous plant elicitor peptides 

As indicated above, in addition to elicitor molecules derived from invading organisms, 

plants also recognize host-derived molecules, referred as DAMPs, to activate PTI. Known 

DAMPs are, for instance, cell wall fragments, such as OGs and cellulose fragments, cutin 

monomers, eATP and peptides (CHOI et al., 2014; FERRARI et al., 2013; KAUSS et al., 

1999; YAMAGUCHI; HUFFAKER, 2011). Significant progress has been achieved in 

identifying new endogenous peptide elicitors among the different classes of DAMPs and in 

delineating their downstream signaling mechanism (YAMAGUCHI; HUFFAKER, 2011). 

Generally, these small (5-100 amino acids in length) peptides are categorized as plant 

signaling peptides; within this category, the endogenous plant peptides are grouped that 

coordinate multiple and very diverse biological and physiological plant responses 

(GHORBANI et al., 2014). Because of the aims of this thesis, I will present only the signaling 

peptides related to plant immunity. 

Plant elicitor peptides are released from large precursor proteins and have been 

classified with respect to their precursor protein structure in three major groups: (i) peptides 

derived from precursor proteins without an N-terminal secretion signal, (ii) peptides derived 

from precursor with an N-terminal secretion signal, and (iii) peptides derived from proteins 

with distinct primary functions (ALBERT, 2013; YAMAGUCHI; HUFFAKER, 2011). 

1.2.1 Peptides derived from precursor proteins without an N-terminal secretion signal 

This category includes the 18-amino-acid peptide systemin that was the first isolated 

peptide with a hormone characteristic and that had been shown to be involved in systemic 

responses to wounding in tomato (PEARCE et al., 1991). Systemin derives from the C-
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terminus of a 200-amino-acid precursor protein, prosystemin, that mainly accumulates in the 

cytosol of vascular phloem parenchyma cells (MCGURL et al., 1992) via a still unknown 

cleavage mechanism. Systemin induces JA biosynthesis in the neighboring cells, leading to 

induction of proteinase inhibitors, anti-nutritive proteins, and plant volatiles to deter plant 

herbivores (DEGENHARDT et al., 2010; OROZCO-CARDENAS; MCGURL; RYAN, 

1993). Systemin homologs have only been found in the Solanoideae subfamily of the 

Solanaceae family (CONSTABEL; YIP; RYAN, 1998) and so far the systemin receptor has 

not been identified. 

In Arabidopsis, the first isolated DAMP peptide was the plant elicitor peptide1 (Pep1) 

that binds two RK PRRs with high affinity PEPRs (YAMAGUCHI et al., 2010). AtPep1 that 

is a representative member of a protein family composed by eight members derives from the 

C-terminus of a 92-amino-acid precursor protein AtPROPEP1 (BARTELS et al., 2013; 

HUFFAKER; PEARCE; RYAN, 2006). The AtPep-PEPR system will be presented in detail 

(see below). 

Another peptide that could fit within this category is the recently identified 25-amino-

acid peptide Kiss of death (KOD) that has been proposed as an early regulator of programmed 

cell death (PCD)  (BLANVILLAIN et al., 2011). Although no direct link with plant immunity 

has been demonstrated yet, the KOD gene is induced upon biotic and abiotic stresses, 

suggesting that this peptide could also act as a potential DAMP, but further clarifying studies 

are needed (ALBERT, 2013; BLANVILLAIN et al., 2011). Interestingly, in contrast to 

systemin and AtPep1, KOD seems to be directly translated as the active form, because the 

corresponding gene only encodes the active 25-amino-acid sequence, avoiding the cleaving-

off from a precursor protein (BLANVILLAIN et al., 2011). 

1.2.2 Peptides derived from precursor with an N-terminal secretion signal 

This group comprises the secreted peptides, including the hydroxyproline-rich 

systemin (HypSys) peptides that are derived from a precursor protein with an N-terminal 

secretion signal for the cell wall matrix localization (PEARCE et al., 2001). Two distinct 18-

amino-acid HypSys were first isolated from tobacco leaves (NtHypSysI and NtHypSysII), 

derived from one single precursor protein encoded by one single gene (PEARCE et al., 2001). 

Orthologs of NtHypSys have only been isolated in Solanaceae and Convolvulaceae 

(NARVÁEZ-VÁSQUEZ; OROZCO-CÁRDENAS; RYAN, 2007). The amino acid sequence 

of HypSys resembles that of systemin, but, due to their passage through the secretory system, 

the polyprolines are hydroxylated and then glycosylated with pentose sugar chains (PEARCE 
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et al., 2001). HypSys peptides have been described as important plant immunity amplifiers 

and triggers, especially during herbivore attack, but also during interaction with other plant 

pathogens (BHATTACHARYA et al., 2013). The HypSys receptor still remains to be 

identified. 

Recently, in Arabidopsis, members of a new peptide family, termed PAMP-induced 

peptides (AtPIP) have been shown to activate immune responses and to enhance resistance 

against Pseudomonas syringae and Fusarium oxysporum (HOU et al., 2014). These peptides 

are derived from the C-terminus of precursor proteins (prePIPs) with an N-terminal signal 

peptide, localized in the pericellular apoplastic space, of which the transcripts are up-

regulated in plants exposed to MAMPs (HOU et al., 2014). Interestingly, transgenic plants 

expressing the GFP gene under control of the prePIP1 promoter exhibited fluorescent tissues 

corresponding either with potential entry points or proliferation routes for invading organisms 

(HOU et al., 2014). Genetic and biochemical evidence suggested that Receptor Kinase 7 

(RLK7) functions as PIP1 receptor (HOU et al., 2014). 

1.2.3 Peptides derived from proteins with distinct primary functions 

The first peptide that had been discovered to regulate immunity in plants derives from 

a protein with other primary functions and belongs to the family of inceptin peptides. These 

acidic 11-13-amino-acid peptides originate from the chloroplastic ATP synthase that is 

broken down in the gut of fall armyworm larvae (SCHMELZ et al., 2006, 2007). Inceptin 

treatments of cowpea (Vigna unguiculata) leaves was shown to trigger plant defense 

responses, such as production of SA, JA, and metabolites with defensive roles that together 

reduce fall armyworm growth (SCHMELZ et al., 2006, 2007). The elicitor activity of 

inceptins seems to be specific for Phaseolus and Vigna genera (SCHMELZ et al., 2007).  

The Glycine max (soybean) subtilase peptide (GmSubPep) is another member of this 

peptide category. GmSubPep is a 12-amino-acid-long peptide that was discovered embedded 

in the protein-associated domain of a putative extracellular subtilase and, like other DAMPs, 

is able to trigger extracellular alkalinization and to induce the expression of defense- and 

stress-related genes (PEARCE et al., 2010). The mechanism of the GmSubPep release from 

the subtilase and its receptor has not yet been identified. 
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1.3 The system of plant elicitor peptides (Peps) and PEPRs  

1.3.1 Plant elicitor peptides (Peps) 

The Peps are a family of defense–inducible peptides. The first member has been 

isolated in Arabidopsis (AtPep1) from an extract of wounded leaves by means of an elicitor-

induced alkalinization activity assay with Arabidopsis suspension–cultured cells 

(HUFFAKER; PEARCE; RYAN, 2006). AtPep1 is a 23-amino-acid-long peptide derived 

from the C-terminus of a 92-amino-acid precursor protein PROPEP1 that lacks a secretion N-

terminal signal (HUFFAKER; PEARCE; RYAN, 2006). Originally, the PROPEP family in 

Arabidopsis has been described as consisting of seven members, but an additional PROPEP 

has recently been identified by more sensitive bioinformatic tools (BARTELS et al., 2013; 

HUFFAKER; PEARCE; RYAN, 2006). Based on sequence homology of the SSGR/KxGxxN 

motif, all eight PROPEPs are predicted to contain a putative AtPep (AtPep1 to AtPep8) of 23 

to 29 amino acids in length at the C-terminus (BARTELS et al., 2013). Although only AtPep1 

and AtPep5 have been biochemically isolated from Arabidopsis leaves, the other peptides 

have been synthetized and their activity confirmed (BARTELS et al., 2013; HUFFAKER; 

PEARCE; RYAN, 2006). The presence of PROPEPs has been expected in numerous species, 

including important crops (HUFFAKER; PEARCE; RYAN, 2006), and has been functionally 

validated in maize (Zea mays). The participation of ZmPep1 and ZmPep3 has been 

demonstrated during maize immunity responses, suggesting that the PROPEP family is 

largely conserved across the plant kingdom and that such Peps might probably play a role as 

general defense mediators (HUFFAKER; DAFOE; SCHMELZ, 2011; HUFFAKER et al., 

2013).  

Exogenous applications of AtPeps induce a set of similar responses, hinting at 

functional redundancy (BARTELS et al., 2013; YAMAGUCHI et al., 2010). However, 

bioinformatic analysis and expression localization assessment revealed that the expression 

pattern of PROPEPs differs temporally and spatially under normal conditions and in response 

to various stresses (BARTELS et al., 2013), thus implying differential physiological roles 

within the AtPep members (BARTELS; BOLLER, 2015; BARTELS et al., 2013). 

1.3.2 Perception of Peps by PEPRs 

The perception of AtPeps is mediated by binding to the extracellular LRR domain of 

two RKsPRR, designated PEPRs. PEPR1 is able to detect all eight AtPeps, whereas PEPR2 

can only detect AtPep1 and AtPep2 (BARTELS et al., 2013). PEPR1 was identified by 

photoaffinity labeling and further purification from Arabidopsis extracts. As the T-DNA 
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mutants of pepr1 were only partially compromised in AtPep1-induced responses 

(YAMAGUCHI; PEARCE; RYAN, 2006), additional receptors were looked for. PEPR2 was 

subsequently identified by phylogenetic analysis, and its role as AtPep1 receptor was 

experimentally demonstrated (KROL et al., 2010; YAMAGUCHI et al., 2010). The double 

pepr1 pepr2 mutant completely abolished the AtPeps immune responses, indicating that they 

are the only receptors able to perceive this family of peptides (KROL et al., 2010; 

YAMAGUCHI et al., 2010). PEPRs belong to the XI subgroup of LRRRKs and are classified 

as kinases with an arginine-aspartic acid (RD) motif in the catalytic site that are different from 

FLS2 and EFR that are non-RD kinases (YAMAGUCHI et al., 2010). Non-RD kinases 

generally show weak autophosphorylation activity, and there is a significant correlation 

between the absence of this motif and a role in the early events of innate immune signaling 

(DARDICK; SCHWESSINGER; RONALD, 2012). 

Recently, the crystal structure of the extracellular LRR domain of PEPR1 

(PEPR1LRR) in complex with AtPep1 has been revealed, demonstrating that the conserved C-

terminal portion of AtPep1 dominates the AtPep1 binding to PEPR1LRR; moreover, the non-

conserved N-terminal sides of AtPeps might possibly contribute to the preferential recognition 

of AtPep1 and AtPep2 by PEPR2 over the other AtPeps (TANG et al., 2015).  

1.3.3 Signaling mediated by Peps-PEPRs 

After recognition of AtPeps by PEPRs, different signaling responses are activated that 

are greatly similar to those triggered by the receptors FLS2 and EFR, when the bacterial 

MAMPs flg22 and elf18 are perceived, respectively (BARTELS; BOLLER, 2015). Upon 

ligand binding, PEPRs interact with the coreceptor BAK1 followed by phosphorylation of 

both BAK1 and PEPRs (SCHULZE et al., 2010; TANG et al., 2015). Additionally, the RLCK 

BIK1 that constitutively interacts with PEPR1 and probably with PEPR2 also gets 

phosphorylated (LIU et al., 2013). Then, induction of ion fluxes across the plasma membrane, 

ROS and ethylene production, and MPK3 and MPK4 activation are quickly triggered (KROL 

et al., 2010; RANF et al., 2011; YAMAGUCHI; PEARCE; RYAN, 2006). AtPeps also lead to 

a transcriptional reprogramming, inducing expression of pathogen defense genes, such as 

PDF1.2, MPK3, PR-1 and WRKY (HUFFAKER; RYAN, 2007; YAMAGUCHI et al., 2010). 

Interestingly, exogenous AtPeps also induce the expression of their own precursor genes 

(except AtPep6) and their receptors, potentially indicating a positive feedback loop in the 

signaling of AtPeps-PEPRs (HUFFAKER; RYAN, 2007; YAMAGUCHI et al., 2010). 

Callose deposition and seedling growth inhibition occur when seedlings are maintained in the 
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presence of AtPeps (KROL et al., 2010; LIU et al., 2013; RANF et al., 2011). Curiously, in 

contrast to flg22 that affects the whole seedling, the inhibitory effect of AtPep perception 

impairs mainly root growth (KROL et al., 2010; RANF et al., 2011).  

1.3.3 Peps as amplifiers of innate immunity 

AtPeps have proposed to act mainly as amplifiers of innate immunity. This role is 

proposed because they mediate immunity responses, and the expression of their precursor 

proteins and receptors are induced upon biotic stresses, such as microbial infection, bacterial 

elicitors, wounding and JA and ethylene application (BARTELS; BOLLER, 2015; 

YAMAGUCHI; HUFFAKER, 2011). However, additional role in different physiological 

processes have been considered as well (BARTELS et al., 2013; GULLY et al., 2015).   

As amplifiers, in a danger situation, AtPeps are believed to be released from their 

precursor proteins (PROPEPs) into the extracellular spaces, where they subsequently bind 

their receptors located at the plasma membrane of neighboring cells, thus triggering defense 

responses and, hence, spreading the message (BARTELS; BOLLER, 2015; YAMAGUCHI; 

HUFFAKER, 2011). However, this assumption is based mostly on data generated from 

genetic and biochemistry experiments. The subcellular dynamics of the AtPep1-PEPR 

complex remains largely unknown. 

 

1.4 Plant endomembrane system and trafficking 

Plant cells possess a sophisticated endomembrane system that physically and 

functionally interconnects membranous compartments, allowing exchange of materials, such 

as proteins, polysaccharides, and lipids to their suitable cell locations (MORITA; SHIMADA, 

2014). This system needs to be well-coordinated to maintain cellular homeostasis and to 

generate accurate responses toward different environmental stimuli such as challenges by 

microorganisms (INADA; UEDA, 2014). The plant endomembrane system includes the 

plasma membrane, the trans-Golgi network/early endosome (TGN/EE), multivesicular 

body/prevacuolar compartment (MVB/PVC), vacuoles, the Golgi apparatus and the 

endoplasmic reticulum (PIZARRO; NORAMBUENA, 2014). Material is transported within 

the plant endomembrane system through sequential steps including budding, movement and 

vesicle fusion (BONIFACINO; GLICK, 2004). Recently, the plant membrane trafficking 

pathways have been proposed to be classified into several major categories: (i) the secretory 

pathway that transports newly synthesized proteins from the endoplasmic reticulum to the 

plasma membrane and/or the extracellular space; (ii) the vacuolar transport pathway that 
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delivers newly synthesized or internalized proteins to the vacuole; (iii) the endocytic pathway 

that transports proteins localized at the plasma membrane or extracellular cargos to an 

intracellular compartment, and (iv) the recycling pathway when proteins are sorted back to the 

plasma membrane (INADA; UEDA, 2014). Nevertheless, in view of the aims of this thesis, I 

will describe in detail the endocytic pathway only. 

1.4.1 Plant endocytosis 

Endocytosis can be defined as a dynamic process by which cells take up extracellular 

material and cell surface proteins via vesicle compartments and that is controlled by a 

network of regulatory proteins (FAN et al., 2015). In the last decade, endocytosis in plant 

cells has received considerable attention, demonstrating its pivotal role in a plethora of 

cellular processes, including nutrient uptake, hormonal regulation, signaling transduction, and 

pathogen defense (DU et al., 2013; IRANI et al., 2012; LUSCHNIG; VERT, 2014; 

ROBATZEK; CHINCHILLA; BOLLER, 2006; TAKANO et al., 2005). Endocytosis has been 

more extensively studied in animals than in plants. Endocytosis in animals occurs through 

multiple mechanisms that fall into two main groups: phagocytosis that is related with the 

uptake of large particles and pinocytosis that is associated with the uptake of fluids and 

solutes. Pinocytosis can be further divided into macropinocytosis, clathrin-mediated 

endocytosis (CME), and clathrin-independent endocytosis (CIE) (CONNER; SCHMID, 

2003). In plants, CME is accepted as the predominant endocytosis route and has been well 

characterized (BAISA; MAYERS; BEDNAREK, 2013; GADEYNE et al., 2014), whereas 

other mechanisms have only been suggested (BANDMANN; HOMANN, 2012; BARAL et 

al., 2015; LI et al., 2012). 

1.4.2 Clathrin-mediated endocytosis  

Presently, CME has been proposed to require a series of sequential and highly 

coordinated steps, including (i) nucleation that defines the sites on the plasma membrane 

where clathrin will be recruited and vesicles will bud, (ii) cargo recognition/selection, when 

cargo-specific adaptor proteins are mobilized, (iii) vesicle coat assembly, where clathrin 

triskelia are recruited from the cytosol to the adaptor proteins to help organize the formation 

of clathrin-coated pits (CCPs), (iv) scission, when CCPs maturate and are separated from the 

plasma membrane to form clathrin-coated vesicles (CCVs), and finally (v) uncoating, when 

the coat falls off from the CCVs, the uncoated vesicles fuse with an intracellular compartment 

for further processing and the clathrin machinery goes back into the cytoplasm to be reused in 

another round of CCV formation (BAISA; MAYERS; BEDNAREK, 2013; CHEN; IRANI; 
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FRIML, 2011; FAN et al., 2015; MCMAHON; BOUCROT, 2011). These steps have been 

considered mainly based on research carried out in animals and yeast, but the CME 

machinery in plants is still poorly defined, despite the recent discoveries toward 

understanding CME in plants. However, CME seems to be evolutionarily conserved, because 

of the presence of several homologous CME effectors in plants, animals and yeast, but 

important kingdom-specific modifications have been evidenced (GADEYNE et al., 2014). 

Clathrin consists of three heavy chain subunits and three light chain molecules that 

interact to self-assemble into a triskelion structure (FAN et al., 2015). The Arabidopsis 

genome encodes two functionally redundant clathrin heavy chain (CHC1 and CHC2) and 

three clathrin light chain (CLC1 to CLC3). Genetic studies of all five subunits support the 

conserved mechanism of CME in plants and its importance for growth and development 

(CHEN; IRANI; FRIML, 2011; KITAKURA et al., 2011; WANG et al., 2013). The chc2 

single mutants and dominant-negative CHC transgenic lines have been shown to be defective 

in bulk endocytosis and in internalization of plasma membrane proteins (KITAKURA et al., 

2011). 
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Figure 3 - Proposed model of clathrin-mediated endocytosis (CME) in plants (FAN et al., 2015). CME can be 

divided into five steps. (1) Clathrin-coated endocytic vesicle formation starts with the association of 

adaptor protein complex-2 (AP2)) with the plasma membrane (PM) via binding to 

phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. (2) The membrane-associated AP-2 recruits 

clathrin and the unidentified accessory proteins. After initiation, AP-2 binds to various cargo proteins 

through its σ2 and µ2 subunits. With the aid of accessory proteins, AP-2 continues to recruit clathrin, 

which polymerizes and forms a clathrin coat around the newly formed membrane invagination. (3) 

When the clathrin-coated vesicles (CCVs) mature, the GTPase dynamin-related protein (DRP) is 

recruited at the neck of the vesicle and (4) is responsible for the detachment of the vesicle from the 

PM. (5) Once the vesicles have been pinched off, the coated components are disassembled and release 

the cargo-containing endocytic vesicles into the cytoplasm. In plants, the cortical actin cytoskeleton 

has been implicated in the regulation of clathrin-coated pit (CCP) dynamics at the PM 

Besides clathrin, other components of the CME machinery have been reported, 

including components of the adaptor protein complex 2 (AP2) that represents the core 

complex during the cargo recognition/selection of the CME in animals (COCUCCI et al., 

2012). The AP2 complex of Arabidopsis that has been shown to be similar to its mammalian 

counterpart consists of four subunits (DI RUBBO et al., 2013) and the ap-2 mutants of 

Arabidopsis have been found to be defective in BR responses and reproductive organ 

development (DI RUBBO et al., 2013; YAMAOKA et al., 2013). In support of the idea that 

CME presents evolutionary modifications in plants, a unique multisubunit protein complex, 

designated the TPLATE complex (TPC), has been reported to be mobilized early on to 

endocytic plant foci during CME, without clear yeast and animal homologs (GADEYNE et 
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al., 2014). The dynamin-related proteins DRP2A and DRP2B have also been described in 

Arabidopsis as players during the scission of CCPs (TAYLOR, 2011). 

1.4.3 Intracellular destination of endocytic cargos 

Following internalization from the plasma membrane, endocytosed material is 

delivered to the EEs. In plants, the TGN has been suggested to possess the EE function and to 

be the first site for endocytic cargo delivery (DETTMER et al., 2006; VIOTTI et al., 2010). 

From the TGN/EE the cargo may be recycled back to the plasma membrane or continues 

along the endocytic pathway for possible degradation (VIOTTI et al., 2010). Currently, the 

best characterized recycling pathway is that of the ADP-ribosylation factor guanine-

nucleotide exchange factor (ARF-GEF) that is involved in the constitutive recycling of PIN-

FORMED (PIN) proteins and BR receptor BRI1 (GELDNER et al., 2001; GELDNER et al., 

2007; TEH; MOORE, 2007). In Arabidopsis the sorting functions of the TGN/EEs are 

associated with the V-ATPase activity (DETTMER et al., 2006) that can modulate the pH 

homeostasis within this organelle (LUO et al., 2015). Recently, it was shown that inhibition of 

V-ATPase activity causes substantial alkalinisation of the TGN/EE that in turn negatively 

affects recycling, providing evidence that acidification of this organelle is indispensable for 

this process in plants (LUO et al., 2015).  

Whether the cargo is directed to be degraded instead of recycling, it is transported to 

the MVBs/late endosome with intraluminal vesicles that finally fuse to the vacuole (SINGH et 

al., 2014). In Arabidopsis, the endosomal maturation from the TGN/EE to MVB has been 

proposed to originate in a subdomain of the TGN/EE that recruits Rab5-like ARA7 and 

subsequently matures into an MVB (SCHEURING et al., 2011; SINGH et al., 2014). The 

intraluminal vesicles at the MVBs are responsible for the isolation of cargos from the cytosol 

and they are formed through the endosomal sorting complex required for transport (ESCRT) 

machinery (HENNE; BUCHKOVICH; EMR, 2011). Posttranslational modifications have 

been shown to regulate sorting of endocytic cargos. Ubiquitination is considered a targeting 

signal that directs membrane proteins for degradation (SCHEURING et al., 2012) and 

phosphorylation has also been reported as an important cue to regulate endocytosis; for 

instance, plasma membrane and constitutive endocytosis of PIN auxin transporters are 

misregulated when their phosphorylation state is altered (MICHNIEWICZ et al., 2007; 

ZHANG, JING et al., 2010). 

1.4.4 Receptor-Mediated Endocytosis  
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Receptor-mediated endocytosis (RME) is the uptake of soluble ligands from the 

extracellular space, after binding to specific plasma membrane-localized receptors (DI 

RUBBO; RUSSINOVA, 2012). The first indications of RME in plants were obtained from 

the study of a 
125

I-labeled elicitor that was able to bind the cell surface and to internalize in a 

temperature- and energy-dependent process into a soybean cell suspension, but neither the 

identity of the receptor nor the nature of the elicitor molecule were known (HORN; 

HEINSTEIN; LOW, 1989). Subsequently, studies of the plasma membrane receptors have 

demonstrated the involvement of RME in different physiological processes, including plant 

development and plant immunity, mainly through research on the BR receptor BRI1 (IRANI 

et al., 2012) and flg22 receptor FLS2 (BECK et al., 2012; ROBATZEK; CHINCHILLA; 

BOLLER, 2006). 

The internalization of receptors can either be constitutive or ligand induced. BRI1 and 

FLS2 can constitutively recycle in the absence of their respective ligands, BR and flg22 

(BECK et al., 2012; GELDNER et al., 2007). Moreover, after treatments with the ligands, 

both receptors undergo ligand-induced endocytosis (BECK et al., 2012; IRANI et al., 2012). 

However, differences in the temporal dynamics of the ligand-induced endocytosis of BRI1 ( ̴ 

2 min after ligand application) and FLS2 ( ̴ 30 min after ligand application)  are evidenced 

(BECK et al., 2012; CHOI et al., 2013; IRANI et al., 2012), suggesting that the RME 

pathways are regulated by distinct mechanisms in plant cells, probably related to the ligand 

nature. 

Usually, after the ligand-binding of the receptors, various signaling events are 

triggered, leading to specific cell responses (GELDNER; ROBATZEK, 2008; HAN; SUN; 

CHAI, 2014).Therefore, RME functions as a spatial and temporal modulator of the signaling 

outputs by (i) attenuating the signaling strength or duration by moving the activated receptor 

to lytic compartments or (ii) re-localizing active receptor to signaling endosomes from where 

signaling is sustained or initiated de novo (DI RUBBO; RUSSINOVA, 2012; GELDNER; 

ROBATZEK, 2008; SORKIN; VON ZASTROW, 2009). Both functions have been well-

documented in animals, but the interplay between RME and signaling in plants is still a matter 

of debate. Recently, in Arabidopsis has been found that blocking endocytosis of active BRI1-

ligand complexes at the plasma membrane enhanced BR signaling, whereas retaining BRI1-

ligand complexes at the TGN/EE did not affect signaling (IRANI et al., 2012). Thus, 

indicating that the majority of BR signaling is initiated from the plasma membrane pool of 

BRI1 and that its endocytosis is not essential for the downstream signaling activity. Different 

from BRI1 seems to be the case of LeEix2 receptor in tobacco, as ligand-induced signaling 
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triggered by EIX is impaired when endocytosis of LeEix2 is blocked (BAR; AVNI, 2009; 

2014). Similar observations have been reported for the FLS2 endocytosis that, when blocked 

with wortmannin (an inhibitor of phosphoinositide 3-kinase and phosphoinositide 4-kinase) or 

by mutations in its phosphorylation sites, leads to defective pathogen responses due to 

impaired flg22 signaling (ROBATZEK; CHINCHILLA; BOLLER, 2006; SALOMON; 

ROBATZEK, 2006). Furthermore, recent work suggests that FLS2 trafficking might be 

associated differentially with the immunity responses triggered by flg22 (SMITH et al., 

2014a, 2014b). These findings imply that appropriate RME trafficking may be required for 

specific signaling responses that could also take place in endosomal compartments; however, 

this remains to be clarified.  

As the plant genomes encode hundreds of plasma membrane receptors (SHIU; 

BLEECKER, 2003; SHIU et al., 2004), it is tempting to argue that RME is a mechanism that 

is amply used to modulate physiological responses. However, future studies are needed to 

clarify the modulation of endocytic pathways, the machinery involved, and the biological role 

of endocytosis during signal transduction cascades. So far, RME has been mainly studied 

through live imaging of genetically engineered fluorescent protein-tagged receptors 

(GELDNER; ROBATZEK, 2006), but RME can also be visualized with fluorescently labeled 

ligands (DI RUBBO; RUSSINOVA, 2012). This approach would allow faster assays, because 

different plant genotypes could be assessed when treated with labeled ligands, avoiding plant 

transformation or crossing steps that are needed when fluorescent protein-tagged receptors are 

used. Nevertheless, labeling molecules is a challenging task, because addition of an extra 

molecule can easily abolish or modify the biological activity. Recently, a BR analog labeled 

with a small fluorophore, Alexa Fluor 647, allowed the specific tracking of the endocytosis of 

the BRI1-ligand complexes in Arabidopsis meristem root tip cells, hence showing the 

potential of this approach (IRANI et al., 2012). Therefore, for further understanding of plant 

endocytosis, the identification of bona fide endocytosed ligand cargos that can be labeled with 

molecular probes without compromising their biological activity is required. 
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1.5 Aims of this thesis 

The main focus of my Ph.D. research has been to understand the subcellular 

dynamics of plant signaling peptides and their interplay with signaling that have not been 

reported yet. To this end, I chose as a model the well-characterized plant immunity-related 

peptide AtPep1, because information about its signaling responses and components are 

available, including the identification of its plasma membrane-localized receptors. Moreover, 

AtPep1 is able to trigger quick, but transient immunity responses, thus providing an excellent 

scenario to study trafficking and signaling in general. Therefore, the aims of this thesis were 

the following: 

 

 Develop a fluorescent tool to study the subcellular dynamics of AtPep1 

 Investigate whether AtPep1 and its receptor undergo internalization 

 Elucidate the trafficking pathway, mechanism and machinery of the AtPep1 

internalization  

 Examine the role of endocytosis during the AtPep1 signaling 

 Clarify the role of BAK1, the coreceptor of AtPep1 receptors, in the internalization and 

signaling of AtPep1 
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Abstract 

Plant signaling peptides are now recognized as important regulators in cell-to-cell 

communication, of which some well-studied have generated robust information about their 

signaling mechanisms and responses. However, the subcellular dynamics of plant signaling 

peptides remains to be investigated. In the present study, we explored two strategies for the in 

vivo study of the subcellular behavior of the Arabidopsis thaliana plant elicitor peptide1 

(AtPep1), known to derive from the C-terminus of a 92-amino-acid precursor protein 

PROPEP1 and to induce innate immune responses in a receptor-dependent manner. First, we 

fused the PROPEP1 to GFP and assessed its localization via confocal microscopy. We found 

that PROPEP1 was associated with the tonoplast and accumulated in the vacuole, suggesting 

that this organelle could work as the station where PROPEP1 is stored and later released, only 

in a danger situation, hence originating AtPep1. Next, we generated AtPep1 versions labeled 

with fluorescent dyes and demonstrated that this peptide could be fluorescently tagged 

without loss of its biological activity, thus providing a powerful tool for cell biology studies 

aiming to understand the AtPep1 subcellular dynamics and its interplay with signaling. This 

approach could be extended for other plants signaling peptides. 

 

Keywords: Signaling peptides; AtPep1; PROPEP1; PTI; Fluorescent labeling  
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2.1 Introduction  

Signaling peptides have emerged as an important class of regulators in cell-to-cell 

communication networks in eukaryotes. Over the last decade, they have been shown to 

mediate a variety of developmental processes and physiological responses in plants, including 

innate immunity (YAMAGUCHI AND HUFFAKER, 2011; GHORBANI et al., 2014). Most 

plant signaling peptides identified to date are recognized by membrane-localized receptor 

kinases (Endo et al., 2014). This peptide-receptor interaction has been shown to be essential 

for initiating intracellular signaling cascades. Although the signaling mechanisms and 

responses of some plant signaling peptides are well studied, their subcellular dynamics is yet 

poorly understood, mainly due to the absence of tools that allow the monitoring of the 

behavior of these molecules in vivo. 

AtPep1 is a well-characterized signaling peptide of 23 amino-acids that belongs to a 

family of eight members and is derived from the C-terminus of a 92-amino-acid precursor 

protein PROPEP1 (Figure 1) that lacks a classical signal sequence to enter the secretory 

pathway, but has been predicted to be secreted by an unconventional pathway (BARTELS et 

al., 2013; HUFFAKER; PEARCE; RYAN, 2006). AtPep1 has been shown to mediate plant 

immunity responses in association with its receptors PEPR1 and PEPR2 (KROL et al., 2010; 

YAMAGUCHI; PEARCE; RYAN, 2006) and its application to trigger responses reminiscent 

of pattern-triggered immunity (PTI), including extracellular alkalinization, intracellular Ca
2+

 

elevation, induction of defense-related gene expression, and root growth inhibition 

(HUFFAKER; RYAN, 2007; KROL et al., 2010; RANF et al., 2011). Recently, the crystal 

structure of the leucine-rich repeat (LRR) domain of PEPR1 and structure-activity studies of 

AtPep1 have revealed that the C-terminus portion of the peptide is vital for binding of its 

receptors and for its biological activity (PEARCE et al., 2008; TANG et al., 2015). 

 

 

 

Figure 1 – Amino acid sequence of the precursor protein of AtPep1, PROPEP1. The AtPep1 sequence is located 

at the C-terminus of PROPEP1 

AtPep1 has been proposed to act as an amplifier molecule during plant immunity 

responses and in a danger situation to be released from its precursor protein into the 

extracellular space, where it subsequently binds its receptors located at the plasma membrane 

of neighboring cells, triggering defense responses and, hence, spreading the message 
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(BARTELS; BOLLER, 2015; YAMAGUCHI; HUFFAKER, 2011). This inducible and 

transient behavior of AtPep1 makes it an excellent candidate to initiate subcellular dynamics 

studies of plant signaling peptides. 

In the last decades, advanced microscopy tools have appeared that permit the study of 

organic molecules at the cellular level, but require that molecule of interest is labeled with a 

tag to allow its detection. Labeling molecules is a challenging task, because the addition of an 

extra molecule can easily abolish or modify the biological activity. For instance, when the 

multifunctional leucine-rich repeat receptor kinase BAK1 is fused with C-terminal tags, such 

as the green fluorescent protein (GFP), it is not fully functional in PTI (NTOUKAKIS et al., 

2011). Classical labeling methods of plant peptides made use of radiolabeling with 
125

I, 
35

S, or 

3
H, and, more recently, labeling with acridinium esters has also been documented 

(BUTENKO et al., 2014; YAMAGUCHI; PEARCE; RYAN, 2006); however, these probes 

are used mainly for biochemical assays and their usage for studies involving life imaging is 

limited. 

Currently, companies manufacture a wide variety of fluorescent dyes that can link 

covalently organic molecules, thus allowing molecular study through approaches involving 

fluorescent detection similar to that of confocal microscopy (GOLDYS, 2009). Although 

labeling of plant signaling peptides has not been reported, other kinds of plant ligands have 

been successfully tagged with fluorescent dyes, for instance, the brassinosteroid (BR) 

hormone analog castasterone labeled with the fluorescent probe Alexa Fluor 647, which is 

used routinely to study subcellular dynamics of BR and its receptor in Arabidopsis thaliana 

cells (DI RUBBO et al., 2013; IRANI et al., 2012). Two of the extensively used fluorescent 

dyes in imaging are Cyanine and Rhodamine that comprise different members or derivatives 

with multiple absorption and fluorescence emission spectral profiles. These dyes are usually 

amine-reactive probes that reacting with aliphatic amines of the target protein, thus forming a 

carboxamide bond (LYTTLE et al., 2000; SPENCE; JOHNSON, 2010; WESSENDORF; 

BRELJE, 1992). 

Here, we explored two approaches to generate tools that could be used to study the 

subcellular dynamics of AtPep1 via confocal microscopy. Initially, the precursor protein of 

AtPep1 was fused to GFP and its localization assessed. As previously reported, the PROPEP1 

was associated to the tonoplast (BARTELS et al., 2013), but, additionally, accumulated into 

the vacuole, suggesting that this organelle could work as the place where PROPEP1 is stored 

and released later only in a danger situation, to give rise AtPep1 that fulfills its proposed role 

as amplifier of innate immunity responses. However, we were unsuccessful in proving this 



66 

 

assumption and need further experiments for clarification. Next, we showed that AtPep1 can 

be labeled with fluorescent dyes without loss of its biological activity, providing a valuable 

tool for cell biology studies aiming at understanding the AtPep1 subcellular dynamics and its 

interplay with signaling. This labeling approach could be extended for other signaling 

peptides and could be used as tool for ligand-receptor studies in plants. 

2.2 Results  

2.2.1 PROPEP1-GFP is associated with the tonoplast and stored in the vacuole 

AtPep1 is believed to need to reach the extracellular medium and to be released via a 

still unknown cleavage mechanism from its precursor protein to bind the extracellular domain 

of its plasma membrane receptors PEPR1 and PEPR2 (HUFFAKER et al., 2006; 

YAMAGUCHI et al., 2010). As the subcellular dynamics of this process is not well 

understood, we aimed at developing a tool to study the subcellular behavior of AtPep1. To 

this end, we generated a transgenic Arabidopsis line constitutively expressing its precursor 

protein PROPEP1 fused at the C-terminus to the fluorescent protein GFP under the promoter 

35S. When the subcellular localization of this protein was assessed in epidermal cells of 

cotyledons and root tips of five-day-old transgenic seedlings, the GFP signal was detected 

associated mainly to the tonoplast (Figure 2) as previously reported for PROPEP1-YFP 

(BARTELS et al., 2013). Aggregations into the vacuole were also observed in both 

cotyledons and meristem root tips cells tissues.  

 

 

 

 

 

 

 

 

 

 

Figure 2 - Association of the PROPEP1-GFP protein with the tonoplast in different tissues. Confocal images of 

cotyledon and meristem root tip cells of five-day-old Arabidopsis transgenic lines, expressing 

PROPEP1-GFP under the control of the cauliflower mosaic virus 35S promoter. Similar results were 

obtained in three independent transgenic lines. Scale bars, 10 μm. DIC, differential interference 

contrast 
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As the fluorescent properties of GFP are negatively affected at low pH (KNEEN at al., 

1998), we thought that information of PROPEP1-GFP localization in subcellular 

compartments with acidic pH , such as the vacuole and the apoplast (SHEN et al., 2013) could 

have been missed. In attempt to improve the GFP signal and overcome the issue imposed by 

the low pH, we employed a strategy to raise the cellular pH of transgenic plants expressing 

PROPEP1-GFP. For that, five-day-old seedlings were incubated for 24 h before imaging in 

the dark in half-strength Murashige and Skoog (½MS) or in the dark in MES-buffered solid 

medium at pH 7.2 (Figure 3) (KNEEN et al., 1998; ZHENG et al., 2004; HURTH et al., 

2005). Moreover, to label the plasma membrane, FM4-64 staining (2 µM, 20 min) was used 

(BOLTE at al., 2004). We found that in addition to labeling of the tonoplast, the GFP 

fluorescence was accumulated into the vacuole when seedlings were kept in the dark in ½MS 

(Figure 3A) or in the dark in alkaline medium (Figure 3B). These observations suggest that 

PROPEP1 is not just associated to the tonoplast as reported (Bartels et al., 2013), but might 

also be stored into the vacuole.  

 

 

 

 

 

 

 

 

 

Figure 3 – Storage of the PROPEP1-GFP protein into the vacuole. Confocal images of the root meristem 

epidermal cells of five-day-old Arabidopsis transgenic lines expressing PROPEP1-GFP kept 24 h in 

the dark in ½MS (A) or in the dark and in a solid alkaline medium (B) before imaging. Co-staining 

with FM4-64 (2 µM, 20 min, red channel) highlights the plasma membrane. Similar results were 

obtained in three independent transgenic lines. Scale bars, 10 μm 

 

The association of GFP signal with the tonoplast and its accumulation into the vacuole 

together with the proposed role of AtPep1 as amplifier of immune responses (Huffaker and 

Ryan, 2007; Yamaguchi and Huffaker, 2011), led us to hypothesize that the pro-peptide might 

be stored on the tonoplast and/or in the vacuole under normal conditions; however, upon 

biotic stresses the PROPEP1 is delivered to the extracellular medium, where the active 
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peptide AtPep1 is released and binds its receptors to initiate responses. To test this hypothesis, 

we evaluated the PROPEP1-GFP localization in the root meristem epidermal cells of five-

day-old seedlings after exposition for 1 h to an elicitor cocktail solution, containing 1µM of 

AtPep1 and 1 µM of flg22 that resembled biotic stresses, in the presence or not of the fungal 

inhibitor brefeldin A (BFA 50 µM) (Figure 4) that has been described as a secretion inhibitor 

forming typical structures, designated BFA bodies (NEBENFUHR et al., 2002; ROBINSON 

et al., 2008). GFP signal was neither detected outside of cells delimited by FM4-64 (Figure 

4A and 4B) nor into BFA bodies stained with FM4-64 (Figure 4B). Together these findings 

suggest that PROPEP1-GFP was not released through a BFA-dependent pathway upon 

AtPep1 and flg22 treatment.  

 

 

 

 

 

 

 

 

Figure 4 – Unmodified subcellular localization of PROPEP1-GFP upon AtPep1 and flg22 elicitation. (A) 

Confocal images of root meristem epidermal cells of Arabidopsis transgenic lines expressing 

PROPEP1-GFP, treated for 1h with an elicitor cocktail solution (1 µM AtPep1 and 1 µM flg22) or 

(B) pretreated with BFA (30 min, 50 µM) and treated for 1 h with the elicitor cocktail solution in 

the presence of BFA. Co-staining with FM4-64 (2 µM, 20 min red channel) highlights the plasma 

membrane. Similar results were obtained in three independent transgenic lines. Scale bars, 10 μm 

 

2.2.2 PROPEP1-GFP does not induce expression of AtPep1-responsive genes 

Transgenic lines expressing pro35S:PROPEP1 have been reported to express the 

AtPep1-responsive gene PDF1.2 at higher levels than those found in wild-type plants 

(HUFFAKER; RYAN, 2007). Therefore, we examined by RT-PCR analysis whether the 

expression of this gene also increased in the transgenic pro35S:PROPEP1-expressing lines. 

Besides PDF1.2, we also evaluated the expression of the gene coding for the AtPep1 receptor 

PEPR1 that had been shown to be induced upon AtPep1 elicitation (YAMAGUCHI et al., 

2010). In any of three independent transgenic lines evaluated were found increased expression 

levels of PDF1.2 or PEPR1 (Figure 5), suggesting that the activity of PROPEP1 may be 

affected by the addition of GFP at the C-terminus.  
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Figure 5 – Gene expression analysis of AtPep1-responsive genes by PROPEP1-GFP overexpression. RT-PCR 

analysis of the PDF1.2 and PEPR1 genes in Six-day-old seedlings of three independent transgenic 

lines expressing pro35S:PROPEP1-GFP. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 

At1g13440) was used as a loading control. Similar results were obtained in three independent 

experiments 

2.2.3 AtPep1 can be labeled with the Cy5 dye 

As an alternative strategy to study subcellular dynamics, we covalently linked a 

synthetic AtPep1 with the fluorescent probe Cy5 that produces a signal in the far-red of the 

spectrum. This tool would allow us to monitor the AtPep1 behavior through assays based on 

fluorescent detection. AtPep1 was labeled with Cy5 in a single reaction with purifications 

steps, including acidic dialysis followed by HPLC purification. When the reaction product 

was passed through HPLC, two additional peaks occurred in the HPLC chromatogram that 

were not detected in the HPLC chromatogram of pure AtPep1 (Figures 6 and Figure 

Supplemental 1). The first peak was eluted after 3 min and corresponded to the unconjugated 

dye, whereas the second one eluted approximately after 13 min and contained the AtPep1 

successfully labeled with Cy5. Because most of the AtPep1 remained unlabeled, as indicated 

by the large peak observed between 10 and 11 min that matched the peak in the 

chromatogram of the pure AtPep1 (Figure Supplemental 1), probably the labeling reaction did 

not have a good performance.  
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Figure 6 – Cy5 labeling of AtPep1. The HPLC chromatogram of the binding solution AtPep1 and Cy5 is shown 

with the corresponding retention times. Arrows point to the peaks of the indicated molecule. Graph 

line represents concentration of acetonitrile (ACN) during the separation. ABS, absorbance 

The AtPep1 fraction labeled with Cy5 (Cy5-AtPep1) was collected and quantified by 

measuring the integration of the corresponding HPLC peak by means of as reference curve 

previously defined. This fraction was used to evaluate the biological activity of the labeled 

peptide by assessing the alkalinization of the extracellular medium in the cell culture and the 

gene expression of the AtPep1 receptor PEPR1 in seedlings (Figure 7). Cy5-AtPep1 was able 

to alkalinize the extracellular medium, but its half-maximal activity (2.5 nM) was lower than 

that of the unlabeled AtPep1 (0.25 nM) (Figure 7A). RT-PCR analysis revealed that Cy5-

AtPep1 was able to induce the expression of PEPR1 in six-day-old Arabidopsis seedlings, 

although the induction level seemed higher for unlabeled AtPep1, as indicated by the intensity 

of the amplified band upon Cy5-AtPep1 treatment that was weaker than that of the band 

amplified upon treatment with the unlabeled peptide (Figure 7B). These results showed that 

AtPep1 was successfully labeled with the molecular probe Cy5 and that the labeled peptide 

was active.  
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Figure 7 – Biological activity of AtPep1 and Cy5-AtPep1. (A) pH of the extracellular medium of Arabidopsis 

cell suspension measured after 20 min of exposure to different concentrations of AtPep1 or Cy5-

AtPep1. Error bars indicate S.D. (n=9 wells). (B) RT-PCR analysis of PEPR1 gene expression in 

Arabidopsis seedlings treated with 100 nM of AtPep1 or Cy5-AtPep1 for 60 min. Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH, At1g13440), was used as loading control and water as control. 

These experiments were done three times with similar results 

2.2.4 Cy5-AtPep1 labels the plasma membrane of Arabidopsis root meristem epidermal cells 

As Cy5-AtPep1 was biologically active, we examined whether the fluorescence of this 

molecular probe could be detected in vivo through confocal microscopy. To this end, 5-day-

old Col-0 seedlings were incubated for 10 min with different concentrations of Cy5-AtPep1 

and the root meristem epidermal cells were visualized after washing off the excess peptide. 

When the Cy5-AtPep1 concentration was lower than 1 µM, no fluorescence signal could be 

detected (data not showed), but at higher concentrations (10 µM), a fluorescence signal 

outside of the cell was observed (Figure 8). These results showed the potential of this 

fluorescent probe to be used to study the subcellular dynamics of AtPep1. 

 

 

 

 

 

 

 

Figure 8 – Binding of Cy5-Atpep1 in the plasma membrane of Arabidopsis root cells. Five-day-old Arabidopsis 

seedlings were treated with different concentrations of Cy5-AtPep1 for 10 min, washed, and 

epidermal root meristem epidermal cells visualized under a confocal microscope. Scale bar, 10 µm 
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2.2.5 TAMRA-AtPep1 is a bioactive fluorescently labeled AtPep1 

Alternatively to Cy5 labeling, we synthesized an AtPep1 labeled with the 5-TAMRA 

dye at the N-terminus (TAMRA-AtPep1). TAMRA is smaller in size (430 Da) than Cy5 (792 

Da) (MUJUMDAR et al., 1993; LYTTLE et al., 2000) and is detected at the red end of the 

spectrum (Figure Supplemental 2). TAMRA-AtPep1 was purchased from Life Technologies 

that synthetizes peptides with the FMOC solid-phase technology (ALBERICIO, 2000). We 

evaluated if TAMRA-AtPep1 is biologically active by assessing four different known AtPep1 

responses (Figure 9) (HUFFAKER et al., 2006; KROL et al., 2010; YAMAGUCHI et al., 

2010). First, we monitored the alkalinization activity in Arabidopsis cell suspension after 20 

min of exposure to different concentrations of TAMRA-AtPep1 and found that TAMRA-

AtPep1 displayed a dose-response activity in a manner similar to that of the unlabeled AtPep1 

(Figure 9A). Then, we investigated the cytosolic calcium mobilization in vivo upon treatment 

with the labeled and unlabeled peptide (10 nM) with transgenic Arabidopsis plants expressing 

the cytosol-localized Ca
2+

 sensor protein aquorin (HARUTA et al., 2008); both peptides had 

similar total luminescence counts over a period of 360 sec (Figure 9B). When the root length 

of seedlings growing on medium containing 50 nM TAMRA-AtPep1 or AtPep1 was 

examined, an inhibitory effect of the root growth was observed in both cases, but the outcome 

of the unlabeled AtPep1 was stronger (Figure 9C) and higher concentrations of TAMRA-

AtPep1 were needed to obtain an inhibitory effect similar to that of AtPep1. Finally, we 

evaluated through RT-PCR analysis whether the PEPR1 expression was induced by TAMRA-

AtPep1 in six-day-old Arabidopsis seedlings. As expected, the expression of this gene was 

clearly induced upon treatment with the labeled peptide as seen for AtPep1 (Figure 9D). 

Furthermore, the TAMRA-AtPep1 fluorescence was monitored in vivo via confocal 

microscopy that is quickly detected at the plasma membrane of epidermal Arabidopsis root 

meristem cells at nanomolar concentrations. These results are presented in the Chapter 3 of 

this thesis.  
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Figure 9 – Biological activity of AtPep1 labeled with the TAMRA dye. (A) Measurement of the pH of 

Arabidopsis cell suspensions after 20 min of exposure to different concentrations of AtPep1 or 

TAMRA-AtPep1. Error bars indicate standard deviation (n=9 wells). (B) Total luminescence of 

aequorin-expressing Arabidopsis plants subjected to the aquorin Ca
2+

 assay and treated with 10 nM 

AtPep1 or TAMRA-AtPep1. Error bars indicate S.D. (n=9 seedlings). (C) Root growth inhibition of 

Col-0 in the presence of AtPep1 or TAMRA-AtPep1. Error bars indicate standard deviation (n=10 

seedlings). (D) RT-PCR analysis of PEPR1genes in six-day-old Arabidopsis seedlings treated for 

60 min with 100 nM AtPep1 or TAMRA-AtPep1. Glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH, At1g13440) was used as a loading control and water as control. These experiments were 

repeated at least twice with similar results 

 

2.3 Discussion  

Here, we examined two different approaches to generate tools that can be used for cell 

biology studies of Atpep1. First, we produced plants expressing constitutively the AtPep1 

precursor protein PROPEP1 fused to GFP. Interestingly, the PROPEP1-GFP signal was 

associated to the tonoplast in epidermal cells of cotyledons as well as of root epidermal cells. 

The same observation has recently been reported in transgenic plants expressing PROPEP1-

YFP, but not AtPep1-YFP that is localized in the cytoplasm (BARTELS et al., 2013), 
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confirming that PROPEP1-YFP and PROPEP1-GFP fusions are associated with the tonoplast 

and indicating that an unknown localization signal or interaction domain forwarding it to the 

tonoplast is present at the N-terminus. An exciting future study would be to investigate how 

the different N-terminus domains of PROPEP1 affect this protein localization. As PROPEP1 

lacks a transmembrane domain, it is also an open question how this protein is attached to the 

tonoplast. An explanation might be the existence of a PROPEP1 receptor protein localized at 

the tonoplast (BARTELS et al., 2013), but this issue remains to be clarified.  

By assessing the PROPEP1-GFP signal under conditions that improve the GFP signal, 

besides the signal present at the tonoplast, we detected a strong accumulation of GFP 

fluorescence in the vacuoles; in contrast, we were not able to identify any fluorescence signal 

at the apoplast, suggesting that PROPEP1-GFP is not mainly exported to the extracellular 

medium under normal conditions. These observations together with the fact that AtPep1 is 

expected to bind its receptors outside of the plasma membrane (YAMAGUCHI; 

HUFFAKER, 2011), led us to wonder whether vacuoles work as organelles where PROPEP1 

is stored and later released only in a danger situation, thus fulfilling its proposed role as 

amplifier of innate immunity responses. However, it cannot be discarded that the GFP 

fluorescence inside the vacuole belongs to free GFP that was released from the PROPEP1-

GFP, hence is needed further experiments to check the nature of this GFP signal. 

In attempt to test our assumption that the tonoplast or vacuoles serves as a storage 

organelle for PROPEP1, we treated transgenic PROPEP1-GFP-expressing Arabidopsis 

seedlings with an elicitor cocktail composed of AtPep1 and the biotic stress-stimulating 

MAMP flg22. However, we were unable to detect any change in the subcellular localization 

of PROPEP1-GFP under our experimental conditions. This finding suggests that biotic stress 

induced by DAMPs and/or MAMPs cannot induce the release of PROPEP1-GFP from the 

vacuole, however additional experiments are needed to confirm it. Currently, the molecular 

circumstances that enable and promote the release of AtPep1 into the extracellular space are a 

matter of debate. Furthermore, besides its amplifier role during plant immunity responses 

after detection of danger signals, such as MAMPs (e.g. flg22), a model in which AtPep1 is 

released upon loss of cellular integrity due to damage has also been proposed (BARTELS; 

BOLLER, 2015). The damage model is based on the involvement of Atpep1 with JA and 

ethylene signaling that is required for the integration of responses against herbivores and 

necrotrophic pathogens (HUFFAKER et al., 2006; HUFFAKER; RYAN, 2007; BARTELS; 

BOLLER, 2015). These pathogens could lead to an impaired cellular integrity that allows the 
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release of PROPEP1 or AtPep1 to the extracellular environment (BARTELS; BOLLER, 

2015). Future experiments are needed to clarify how AtPep1 reaches the apoplast. 

As PROPEP1 lacks a known secretion or subcellular localization signal and 

PROPEP1-GFP fusion proteins do not localize to the secretory pathway as illustrated by our 

experiments with BFA that is a drug capable of blocking the default secretory machinery into 

BFA bodies (DETTMER et al., 2006; ROBINSON et al., 2008), PROPEP1 is probably 

released from the vacuole through an unconventional protein secretion mechanism. The 

release of leaderless secretory proteins to the cell exterior via unconventional routes has been 

amply studied in animals and yeast, reporting cases that involve fusion of lysosome with the 

plasma membrane (DING et al., 2012). However, leaderless secretion pathway has just begun 

to be understood in plants. PROPEP1 appears to be a good candidate to investigate this 

process in plants. 

Plants stably expressing pro35S:PROPEP1-GFP did not show induced expression 

levels of AtPep1-responsive genes as reported for plants expressing pro35S:PROPEP1 

(HUFFAKER; RYAN, 2007), implying that addition of a GFP tag (27 kDa) at the C-terminus 

of AtPep1 can compromise the ability of the peptide to bind its receptors and to induce 

immunity responses. This assumption is supported by recent studies that demonstrate that the 

C-terminus portion of AtPep1 dominates the binding of this peptide to it receptors and that 

deletion of the last residue of Atpep1 significantly compromised the AtPep1-PEPR1 

interaction and responses (PEARCE et al., 2008; TANG et al., 2015). Future approaches must 

consider addition of a fluorescent protein between the C-terminus of PROPEP1 that contains 

the active peptide and the N-terminus with the precursor protein, thus allowing an eventual 

cleavage of the C-terminus given the origin of GFP-AtPep1. 

The second approach examined in this work was related to the AtPep1 labeling with a 

dye aiming at developing a molecular probe that can be used to study the subcellular 

dynamics of AtPep1 when applied exogenously. Presently, companies offer different dyes to 

tag peptides and successful examples exist in the animal field (BECKER et al., 2001; JIN et 

al., 2006). In plants, was reported that a fluorescent labeled version of the peptide CLE19 that 

is involved in the regulation of Arabidopsis root meristem, is located predominantly in the 

intercellular spaces of the root meristem cells. However, biological assays showing the 

activity of this fluorescent-tagged CLE19 were not presented (FIERS et al., 2005).     

Initially, we used the Cy5 dye to label a synthetic AtPep1 that belongs to the group of 

cyanine reagents known to be intensely fluorescent and highly water soluble and, thus, 

provides significant advantages over other existing fluorophores (WESSENDORF; BRELJE, 
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1992). Cy5 used to label the peptide contains a chemical NHS ester that is predicted to react 

with primary amines to yield stable amide bonds (HERMANSON, 2013). Therefore, we 

expected efficient labeling because AtPep1 has six sites that might potentially link with Cy5, 

including the N-terminus of the chain and five lysines that present a primary amine group in 

their side-chain. However, after purification through HPLC of the product of the linking 

reaction, only a minor portion of the peptide was labeled. To improve the yield of the AtPep1 

labeling with Cy5 in future attempts, we could alter the protein concentrations and mainly the 

pH, because the amine groups of the peptide can be protonated in function of the pH, 

disturbing the acylation reaction with the NHS-ester group (MUJUMDAR et al., 1993).  

Interestingly, both the Cy5-AtPep1 and the TAMRA-AtPep1 were able to induce 

AtPep1-responses, thus indicating that a fluorescent tag at the N-terminus does not abolish the 

AtPep1 activity. Moreover, when fluorescent probes were evaluated by confocal microscope, 

both Cy5-AtPep1 and TAMRA-AtPep1were able to bind the plasma membrane of epidermal 

cells of the Arabidopsis root tip meristem. However, TAMRA-AtPep1 showed activity and 

plasma membrane binding in lower concentrations than Cy5-AtPep1. This could be related 

with the nature of the dye that would differentially affect the activity of the peptide. Another 

possibility is that the amount of Cy5-AtPep1 was underestimated, as the quantification was 

based on a reference curve defined for unlabeled AtPep1 and not for a labeled peptide. As all 

AtPep1 responses are triggered at nanomolar concentrations, the use of a molecular probe 

biologically active at lower concentrations would certainly provide more accurate results 

when the subcellular dynamics of AtPep1 are investigated. In general, our results showed that 

signaling peptides can be labeled with fluorescent dyes, becoming a powerful tool for ligand-

receptor studies in plants.  
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2.4 Materials and Methods  

2.4.1 Plant material and growth conditions 

Arabidopsis thaliana (L.) Heyhn., accession Columbia (Col-0), was used for all the 

experiments. Seeds were sterilized, maintained for 2 days at 4ᵒC in the dark, and germinated 

on vertical half-strength Murashige and Skoog (½MS) medium (1% [w/v] sucrose) agar 

plates, pH 5.8 at 22ᵒC in a 16-h/8-h light/dark cycle for 5 days. Transgenic plants 

overexpressing PROPEP1-GFP under the control of the constitutive promoter 35S 

(pro35S:PROPEP1-GFP) were obtained by amplifying using specific primers (Supplemental 

table 1) and cloning the 276-bp fragment containing the AtPROPEP1 cDNA into the binary 

vector pK7FWG2 (KARIMI; INZE; DEPICKER, 2002). Arabidopsis was transformed with 

Agrobacterium tumefaciens by means of the floral dip method (CLOUGH; BENT, 1998). 

Primary transformants were selected on kanamycin (50 mg/L) ½MS medium. T3 

homozygous lines were used for microscopic analyses. 

2.4.2 Imaging 

Arabidopsis seedlings were imaged on a FluoView 1000 inverted confocal microscope 

(Olympus) equipped with a water-corrected 60× objective (NA1.2). The excitation 

wavelength was 488 nm for GFP, 555 for FM4-64, and 635 for Cy5. Emission was detected 

between 500–530 nm for GFP, 570–670 nm for FM4-64, and 640–680 nm for Cy5. 

For the detection assay of the Cy5-AtPep1 fluorescent signal, 5-day-old seedlings were dipped 

into 500 µL at the indicated concentrations of Cy5-AtPep1 dissolved in ½MS medium, pulsed 

for 10 min, washed with ½MS liquid medium three times, and transferred to coverslips for 

visualization of the meristem epidermal cells. 

2.4.3 Treatments to improve GFP signals 

Five-day-old seedlings were transferred to darkness at 22ᵒC on vertical ½MS medium 

(1% [w/v] sucrose) agar plates, pH 5.8 or 7.2 for 24 h before imaging. The alkaline pH was 

stabilized by addition of 20 mM of 2-(N-morpholino) ethanesulfonic acid (MES) buffer 

(Sigma-Aldrich).  

2.4.4 Peptides and Chemicals 

The AtPep1 (ATKVKAKQRGKEKVSSGRPGQHN) peptide with a HPLC purity of 

95.16% and molecular weight of 2491.78 and AtPep1 labeled with 5’-

carboxytetramethylrhodamine at the N-terminal (TAMRA-AtPep1) with a HPLC purity of 

97.07% and molecular weight of 2905.75 were purchased from Life Technologies. The flg22 
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(QRLSTGSRINSAKDDAAGLQIA) peptide with a HPLC purity of 95% and a molecular 

weight of 2272.50 was acquired from Genscript (catalog No. RP19986). The peptides were 

dissolved in water to obtain peptide stocks of 100 µM. Further dilutions were done with ½MS 

medium. The inhibitors BFA (50 mM DMSO stock) were purchased from Sigma-Aldrich. 

FM4-64 was acquired from Molecular Probes (2 mM water stock). All chemicals were diluted 

in ½MS medium to prepare solution at the final concentrations. 

2.4.5 Elicitor cocktail treatment 

Five-day-old seedlings were incubated for 1 h into 1 mL of liquid ½MS medium 

containing the elicitor cocktail solution composed of 1 µM AtPep1 and 1 µM flg22 and then 

imaged. For cotreatment with BFA, seedlings were pretreated with 1 mL liquid ½MS medium 

containing 50 µM BFA, then added to cocktail solution, kept in the presence of BFA, and 

imaged after 60 min. Treatments were performed in combination with the endosomal marker 

FM4-64 at room temperature. For FM4-64 staining, seedlings were incubated for 5 min in 

1 mL ½MS liquid medium containing 4 µM of the dye plus the respective treatment. Control 

treatments were done with equal amounts of DMSO. All washed steps and imaging were 

carried out in the presence of the respective treatment. 

2.4.6 AtPep1 Labeling 

The synthetic AtPep1 peptide was fluorescently labeled with Fluorolink
TM

 Cy5-

reactive (GE Healthcare). The peptide was dissolved at 1 mg/mL in sodium carbonate-sodium 

bicarbonate buffer (SOUTHWICK et al., 1990), added to the dye vial (1 mL), and mixed 

thoroughly. The reaction was incubated for 2 h and mixed every 10 min. For separation of the 

labeled AtPep1 from the free dye and the unlabeled AtPep1, the linking solution was first 

dialyzed with a 1 kDa (GE-Healthcare) membrane against 1 L of TFA buffer (0.2%) for 48 h 

at 4ᵒC. The TFA buffer was replaced every 24 h. Then, the solution was passed through high-

performance liquid chromatography (HPLC) with a HPLC C18 column, previously 

equilibrated with 0.1% formic acid (v/v). A 20 min gradient from 0 to 50% acetonitrile (v/v) 

with 0.1% (v/v) formic acid was applied after injection of the linking solution. To determine 

the collected time points of the fractions, the chromatographs of the linking reaction run was 

compared with a run of the, previously injected, unlabeled peptide. Finally, the amount of 

fully labeled AtPep1 was estimated by calculating the integration of the corresponding peak, 

using as reference a previously defined concentration curve of AtPep1. 
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2.4.7 Alkalinization Assay  

The alkalinization assay has been described previously (YAMAGUCHI; PEARCE; 

RYAN, 2006). Briefly, 1mL cell suspension (5 days after subculture) was transferred into 

each well of a 24-well plate (Corning) and allowed to equilibrate on an orbital shaker at 120 

rpm for 1 h. The pH of the medium was measured at the time points at the indicated peptide 

concentrations with a EA940 pH meter (Orion) with a semi-micro pH electrode (Orion). 

2.4.8 RT-PCR 

 Six-day-old seedlings were used for all gene expression experiments. Total RNA was 

extracted with Trizol reagent (Life Technologies), according to the manufacturer’s 

instructions, followed by DNAse I treatment (Life Technologies) to remove any residue of 

genomic DNA, and quantified with a Nanodrop spectrophotometer (Thermo Scientific). cDNa 

was synthesized from 1µg total RNA with Improm-II Reverse Transcriptase (Promega). 

The AtPep1-induced genes PEPR1 and PDF1.2 were analyzed. The GAPDH gene was used 

as a control. The primers used are described in Supplementary Table 1. For the PCR 

reactions, 1 µL cDNA was used. The reactions were placed in the thermocycler under the 

following conditions: 94°C for 2 min and appropriate cycle numbers of 94°C for 20 sec, 60°C 

for 30sec, and 72°C for 45 sec. These experiments were repeated at least three times. 

2.4.9 Ca
2+

 Mobilization Assay 

The cytoplasmic Ca
2+

 assay in Arabidopsis seedlings has been described previously 

(HARUTA et al., 2008; MORATO DO CANTO et al., 2014). The induced Ca
2+

 signaling was 

evaluated by monitoring the level of cytosolic Ca
2+

 in Arabidopsis seedlings. Seedlings were 

studied of the Arabidopsis line homozygous for a single insertion of a transgene encoding a 

cytoplasmically expressed aequorin driven by the cauliflower mosaic virus 35S promoter. 

Seeds were sterilized as described before and plated on ½MS medium without vitamins. The 

plates were kept under constant light at 24°C [150 µE m
-2

.s
-1

 (E, Einstein; 1 E, 1 mol of 

photons)] for 4 days. A single seedling was transferred into each well of a 96-well white 

microplate (Thermo Labsystems) containing 200 mL of ½ MS medium supplemented with 

2.5 mM coelenterazine cp (Biotium) and incubated in the dark at 24°C for 16 h. In each plate 

well containing a single seedling, TAMRA-AtPep1 or AtPep1 was added at a final 

concentration of 10 nM. The resulting luminescence emission was monitored with a 

microplate reader (Biotec ELx 800) for 24 time points during approximately 360 sec after 

addition of the respective peptide. Water was used as control. 
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2.4.10 Root growth assay 

Seeds were sown on ½MS solid medium, stratified for 2 days at 4°C in the dark, and 

placed vertically in the light. Ten days after germination, seedlings were transferred to square 

transparent Petri dishes with solid ½MS medium supplemented with or without the indicated 

amount of AtPep1 and incubated for 4 more days; then, the plates were scanned and the root 

growth measured. For measurements, scanned images were processed and evaluated with the 

ImageJ software. 

 

Supplemental information 

 

 

 

 

 

 

Supplemental Figure 1 – HPLC chromatogram of the AtPep1 with its corresponding retention time. Arrows point 

the peaks of AtPep1. Graph line represents concentration of acetonitrile (ACN) during 

the running. ABS, absorbance 
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Supplemental Figure 2 – Chemical structure (A), and fluorescent spectra (B) of 5-TAMRA. Colored areas 

represent the excitation (blue) and emission (red) wave lengths. M.W: molecular weight  

Source: http://www.lifetechnologies.com/be/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-

spectraviewer.html 

Supplemental Table 1 – Primer used for cloning and RT-PCR analysis 

Gene Primer Sequence 5’ – 3’ 

Cloning   

PROPEP1 
Forward  CACCGATAACACAAAAGTTTCGGTTGA 

Reverse CTGAGTTTAAAGATCGAGAAACATGCA 

RT-PCR   

GAPDH 
Forward  TTGGTGACAACAGGTCAAGCA 

Reverse AAACTTGTCGCTCAATGCAA 

PEPR1 
Forward GTTTTGGCTGAGGAAAGACG 

Reverse ACATTGTACCGTGCAGACCA 

 

PDF1.2 

Forward AACCTTGAAGGAGCCAAACA 

Reverse CACACGATTTAGCACCAAAGA 
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Abstract 

Recently, a growing number of small signaling peptides has been found to play 

important roles in a variety of biological and physiological responses in plants. Among them, 

the plant elicitor peptide1 (Pep1) has been shown to induce innate immune responses and to 

be expressed upon biotic stresses. In Arabidopsis thaliana, the AtPep1 binds the plasma 

membrane receptors PEPR1 and PEPR2 with high affinity. Although a large amount of 

information about the PEPR-mediated signaling components and responses is available, the 

subcellular dynamics of the AtPep1-PEPRs remains largely unknown. In the present study, we 

combined classical and chemical genetics with life imaging to study the behavior of a 

bioactive fluorescently labeled AtPep1 in the Arabidopsis root meristem. We discovered that 

AtPep1 was able to label the plasma membrane very quickly in a receptor-dependent manner. 

Subsequently, the PEPR-AtPep1 complex was internalized via clathrin-mediated endocytosis 

(CME) and transported to the lytic vacuole, passing through early and late endosomal 

compartments. Impairment of CME compromised the AtPep1 responses. Our findings provide 

an in vivo visualization of a signaling peptide in plant cells, thus giving insights into its 

intracellular fate and dynamics and serving as an excellent model to study the implications of 

endocytosis in plant immunity. 

 

Keywords: Endocytosis; AtPep1; PEPR; Clathrin-mediated endocytosis; Plant immunity 
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3.1 Introduction  

Plants are sessile organisms exposed throughout their life time to changing 

environments to which they need to adapt constantly. Therefore, accurate communication 

networks are needed to respond efficiently and to ensure survival. Several molecules have 

been described as essential players during plant responses, among which plant signaling 

peptides are highlighted for their role in cell-to-cell communication that works as molecular 

message between cells and tissues (GHORBANI et al., 2014). Recently, a growing number of 

small signaling peptides have been discovered to play an active role in a variety of biological 

and physiological responses in plants (GHORBANI et al., 2014; YAMAGUCHI; 

HUFFAKER, 2011). Signaling peptides are secreted into the apoplast where they are 

recognized by the extracellular domains of the plasma membrane-localized receptors in order 

to trigger intracellular signaling (ENDO; BETSUYAKU; FUKUDA, 2014). Although the 

Arabidopsis thaliana genome is predicted to encode more than 600 receptors and more than 

1,000 potential peptide ligands (CZYZEWICZ et al., 2013), currently, only a few peptide-

receptor pairs have been identified. 

One well-characterized peptide-receptor pair is the plant elicitor peptide1 (AtPep1) and 

its receptors PEPR1 and PEPR2 (KROL et al., 2010; TANG et al., 2015; YAMAGUCHI et 

al., 2010). AtPep1 is a 23-amino-acid peptide that belongs to a family of eight members and is 

derived from the C-terminus of a 92-amino-acid precursor protein AtPROPEP1 (BARTELS et 

al., 2013; HUFFAKER; PEARCE; RYAN, 2006). AtPep1 has been shown to mediate defense 

signaling in a receptor-dependent manner, triggering responses reminiscent of pattern-

triggered immunity (PTI), including intracellular Ca
2+

 elevation, extracellular alkalinization, 

reactive oxygen species production, mitogen-activated protein (MAP) kinase activation, 

induction of defense-related gene expression, root growth inhibition, and interaction with 

defense-related phytohormones (HUFFAKER; PEARCE; RYAN, 2006; KROL et al., 2010; 

RANF et al., 2011; ROSS et al., 2014).  

Although information about the AtPep1 signaling responses is available, the 

subcellular localization and dynamics of AtPep1 are totally unknown. Internalization of 

signaling peptides via endocytosis has long been known in animal cells, where it plays a key 

role in the regulation of intracellular signaling (CLAGUE, 1998). Interestingly and despite the 

ever-growing number of plant signaling peptides, internalization has not been reported in 

plants thus far. AtPep1 receptors are structurally similar to the plasma membrane-localized 

receptor kinases FLAGELLING SENSIN2 (FLS2) and BRASSINOSTEROID 
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INSENSITIVE1 (BRI1) that undergo endocytosis both independently and dependently of 

their ligands, the bacterial peptide flagellin 22 (flg22) and the brassinosteroid (BR) hormone, 

respectively (BECK et al., 2012; IRANI et al., 2012; RUSSINOVA et al., 2004). Endocytosis 

in animals cells is clathrin-mediated (CME) or clathrin-independent (CIE) according to the 

protein machinery involved in the formation of vesicles (WIEFFER; MARITZEN; HAUCKE, 

2009). In plants, CME is well characterized (BAISA; MAYERS; BEDNAREK, 2013; 

GADEYNE et al., 2014; LI et al., 2012), whereas CIE has only been suggested (BARAL et 

al., 2015; LI et al., 2012). During CME, clathrin-coated vesicles (CCV) are created through 

polymerization of clathrin that form triskelions of three clathrin heavy chain (CHC) and three 

clathrin light chain (CLC) proteins. The triskelions build a cage that coats vesicles that bud 

off from the plasma membrane (KIRCHHAUSEN, 2009). Genetic studies of two CHC and 

three CLC genes encoded in Arabidopsis support the conserved mechanism of CME in plants 

and its importance for growth and development (CHEN; IRANI; FRIML, 2011; KITAKURA 

et al., 2011; WANG et al., 2013). Recently, CHC2 has also been found to modulate plant 

defense responses (WU et al., 2015), although, in general, the role of CME in plant immunity 

has not been addressed completely. Once internalized, the receptor-ligand complexes in plants 

enter the endocytic trafficking route, first reaching the trans-Golgi network/early endosome 

(TGN/EE) compartments where the cargo is further sorted, either for recycling back to the 

plasma membrane or for degradation into the vacuole via the multivesicular body (MVB)/late 

endosome (LE) compartments (BAR; AVNI, 2014; IRANI; RUSSINOVA, 2009; VIOTTI et 

al., 2010). Thus, endocytosis can control the outcome of receptor-mediated signaling by 

regulating the amount of the respective receptors and ligands at the plasma membrane. In 

animals, besides signaling initiated from the plasma membrane, endosomes have also been 

shown to be signaling platforms in various signaling pathways (MURPHY et al., 2009; 

RAJAGOPALAN, 2010). Although there are no reasons for the absence of endosomal 

signaling in plants, its role is still not well understood. 

Over the past few years, significant progress has been made on the characterization of 

CME in plants, but its machinery, regulation, and role during signaling are still poorly defined 

when compared to the counterpart systems in animals (BAISA; MAYERS; BEDNAREK, 

2013). To gain insights into CME in plants, bona fide endocytosed ligand cargos have to be 

identified that can be tagged with fluorescent probes allowing their study via life imaging. 

However, this task is challenging because the addition of an extra molecule to a ligand can 

easily abolish its activity. Labeled plant endocytic cargos and the trace of their trafficking 
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routes from the plasma membrane into the cell would provide bases to better understand the 

role of endocytosis during signaling in plants. 

Here, taking advantage of the bioactive fluorescently labeled signaling peptide TAMRA-

AtPep1 in combination with genetics, chemicals, and confocal live-cell imaging tools, we 

studied the subcellular dynamics of this plant signaling peptide and its receptor, as well as the 

interplay between trafficking and signaling of this ligand-receptor pair. We found that 

TAMRA-AtPep1 was able to label the plasma membrane very quickly in a receptor-dependent 

manner. Subsequently, the receptor-ligand complex was internalized via CME and transported 

to the lytic vacuole, passing through TGN/EE and MVB. We also detected that CME 

impairment compromised the AtPep1 responses, suggesting a role during signaling. Our 

findings provide the in vivo visualization of a signaling peptide in plant cells, thus giving 

insights into its intracellular fate and dynamics, and serving as an excellent model to study the 

implications of endocytosis in plant immunity. 

3.2 Results  

3.2.1 AtPep1 labeled the plasma membrane in a receptor-dependent manner 

Although recent crystal structure analyses have revealed the mechanism of the 

AtPep1-induced activation of the receptor PEPR1 (TANG et al., 2015), the intracellular fate 

of the active PEPR remains as yet unknown. To simultaneously monitor the localization of 

the AtPep1-bound and presumably active PEPRs in living cells, we synthesized a 

fluorescently labeled AtPep1, designated TAMRA-AtPep1. TAMRA-AtPep1 was bioactive at 

nanomolar concentrations, but slightly less than the nonlabeled AtPep1 (Chapter 2, this 

thesis). The intracellular localization of TAMRA-AtPep1 was studied in wild type 

Arabidopsis root meristem epidermal cells. Five-day-old seedlings were incubated for 1, 10, 

60 and 600 sec with 100 nM of the TAMRA-AtPep1 fluorescent probe and visualized 

immediately after washing off the excess peptide. A plasma membrane labeling of TAMRA-

AtPep1 in the root epidermal cells was observed as fast as after 1 sec of incubation 

(Supplemental Figure 1). As AtPep1 binds two plasma membrane receptor, PEPR1 and 

PEPR2 with high affinity (KROL et al., 2010; TANG et al., 2015; YAMAGUCHI; PEARCE; 

RYAN, 2006), we tested the ability of TAMRA-AtPep1 to label the plasma membrane in root 

cells of the double homozygous mutant pepr1pepr2 (KROL et al., 2010). In contrast to the 

wild type, incubation of pepr1pepr2 mutant seedlings with TAMRA-AtPep1 (100 nM, 60 sec) 

did not result in a plasma membrane labeling as the wild type treated with the TAMRA 

fluorophore alone for the same time (Figure 1A). These results demonstrate that the TAMRA-
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AtPep1 binding to the plasma membrane in the root meristem cells depends on the presence of 

the PEPR1 and PEPR2. The specificity of theTAMRA-AtPep1 binding to the plasma 

membrane was evaluated by a competition assay in which unlabeled AtPep1 was tested for its 

ability to compete with TAMRA-AtPep1. When seedlings were pretreated with a 10-fold 

excess of unlabeled AtPep1 for 5 min, TAMRA-AtPep1 was no longer found in the plasma 

membrane, but pretreatment with flg22, known to bind and activate the FLS2 receptor 

(BAUER et al., 2001; ZIPFEL et al., 2004) did not affect the TAMRA-AtPep1 labeling 

(Figure 1B and 1C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – TAMRA-AtPep1 labeled the plasma membrane in a receptor-dependent manner. (A) Root meristem 

epidermal cells of Col-0 and pepr1pepr2 seedlings treated with TAMRA-AtPep1 (100 nM, 60 sec), 

and Col-0 seedlings treated with the TAMRA fluorophore alone (100 nM, 60 sec).  (B) Seedlings 

were incubated with varying doses of AtPep1 or flg22 for 5 min, then treated with TAMRA-AtPep1 

for 10sec, washed and imaged. (C) Quantification of the plasma membrane intensity in (B). Error 

bars indicate S.D. (n=48 cells). Scale bars, 1 µm 
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3.2.2 PEPR1 and PEPR2 are expressed in the Arabidopsis root meristem 

As we used Arabidopsis root meristem epidermal cells as our in vivo imaging model 

system and the TAMRA-AtPep1 binding was receptor-dependent, we investigated whether 

the plasma membrane binding of the labeled AtPep1 correlates with the expression pattern of 

its receptors in the root meristem cells. TAMRA-AtPep1 was found to label the plasma 

membrane of the different cell types in the root depending on the incubation time with the 

fluorescent probe and 60 sec of incubation were sufficient to label all cells in the root 

meristem (Figure 2A). However, previous promoter-β-glucoronidase (GUS) reporter studies 

of the PEPR1 and PEPR2 genes have revealed that the two receptors are expressed in 

Arabidopsis leaves and in differentiated root cells, but not in the root tip (BARTELS et al., 

2013; MA et al., 2014). In agreement, the PEPR1 promoter fused to the nuclear localization 

signal (NLS)-green fluorescent protein (GFP) was expressed in the mature root tissues, but 

not in the root meristem, whereas the PEPR2 promoter activity was mostly restricted to the 

vascular tissue in the whole root (Supplemental Figure 2A). Because the TAMRA-AtPep1 

efficiently labeled the plasma membrane of root meristem cells, we wanted to clarify this 

discrepancy in localization pattern. To this end, the genomic sequences of PEPR1 and PEPR2 

fused to GFP under their native promoters were expressed into the double pepr1pepr2 mutant 

and, subsequently, their expression pattern and subcellular localization in the root meristem 

were evaluated. The two chimeric proteins, PEPR1-GFP and PEPR2-GFP were functional 

and complemented the double pepr1pepr2 mutant as assessed by growth of the transgenic 

lines on medium containing 100 nM AtPep1 and estimation of root growth inhibition 

(Supplemental Figure 2B). In all transgenic plants, root growth was significantly inhibited as 

seen for the wild type and opposite to the pepr1pepr2 mutant that was completely insensitive 

to the AtPep1 application (KROL et al., 2010; MA et al., 2014). Whereas the expression 

pattern of the PEPR2-GFP protein was similar to that of the proPEPR2:NLS-GFP fusion, the 

PEPR1-GFP signal was detected in root cells in the differentiation zone but also in the root 

meristem, in correlation with the TAMRA-AtPep1 localization (Figure 2B; Supplemental 

Figure 2C). Altogether, our results suggest that PEPR1 is the main receptor for AtPep1 in the 

root meristem. 
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Figure 2 – Correlation of PEPR1 expression with TAMRA-AtPep1 localization. (A) TAMRA-AtPep1 labeled the 

plasma membrane of all cellular layers in the root tip after 60 sec of incubation. (B) Root tip 

localization of PEPR1-GFP and PEPR2-GFP expressed under their endogenous promoters in the 

pepr1pepr2 double mutant. Five-day-old seedlings were visualized. Scale bars, 10 µm 

3.2.3 AtPep1 undergoes receptor-mediated endocytosis 

To monitor the behavior of the bioactive fluorescently labeled AtPep1 over time when 

applied to live cells, Arabidopsis seedlings were pulsed with 100 nM of TAMRA-AtPep1 for 

10 sec, washed three times with liquid medium to remove the excess peptide, and imaged at 

different time points (the time after the wash hereafter is referred as a chase) (Figure 3A). 

After a 10-min chase, most of the TAMRA fluorescence was associated with the plasma 

membrane. Some vesicle-like structures were visible inside the cell after a 20-min chase and 

became more evident after 40 min. Later (90 min), the fluorescent signal was concentrated 

into structures that resembled vacuoles. The TAMRA-AtPep1 internalization was temperature 

dependent, because seedlings treated with TAMRA-AtPep1 at 4
o
C did not show fluorescence 

accumulation inside the cells, although labeling of the plasma membrane was observed 

(Supplemental Figure 3).  

Next, we investigated whether the PEPR1 and PEPR2 also undergo internalization 

after stimulation with their ligand, AtPep1. Therefore, we used pepr1pepr2 double mutant 

Arabidopsis plants complemented by the stable expression of PEPR1-GFP or PEPR2-GFP 

with the RPS5A promoter to allow robust expression of both receptors in the root meristem 

cells (WEIJERS et al., 2001) (Supplemental Figure 2B). As TAMRA-AtPep1 (100 nM) 

internalized clearly in vesicle-like compartments after a chase of 40 min (Figure 3A), the 

subcellular localization of PEPR1-GFP was evaluated in similar time points (after a chase of 5 

and 40 min) following treatments with different AtPep1 concentrations (10-sec pulse, three 

washouts) (Supplemental Figure 4A). Although some vesicle-like structures labeled with 

PEPR1-GFP were detected even without AtPep1 treatment, their presence was induced by 



94 

 

AtPep1 in a time- and dose-dependent manner. Especially, the vesicles were more abundant 

after a chase of 40 min when the seedlings were treated with the nonlabeled peptide at a 

concentration of 100 nM.  

To determine if the PEPR1 internalization followed a similar to TAMRA-AtPep1 

dynamics, pepr1pepr2/proRPS5A:PEPR1-GFP seedlings were pulsed with AtPep1 (100 nM, 

10 sec, three washouts) and imaged over time. Comparable to TAMRA-AtPep1, the PEPR1-

GFP signal was first associated with the plasma membrane (10-min chase), later (20-min 

chase) vesicles-like structures began to appear and became more abundant after a 40-min 

chase. At later time points (90-min chase), PEPR1-GFP accumulated in the vacuole (Figure 

3B). In contrast, PEPR1-GFP remained localized in the plasma membrane after treatment 

with flg22 (Figure 3B), suggesting that the PEPR1 internalization is specifically induced by 

its ligand. Differences in the temporal dynamics of PEPR1-GFP internalization were not 

detected when AtPep1 was applied as a continuous pulse (Supplemental Figure 4B).  

Next, we studied the subcellular dynamics of AtPep1-PEPRs, ligand-receptor 

complexes in root meristem epidermal cells of pepr1pepr2/proRPS5A:PEPR1-GFP and 

pepr1pepr2/proRPS5A:PEPR2-GFP plants (Supplemental Figure 5). Seedling were pulsed 

with TAMRA-AtPep1 (100 nM, 10 sec) and imaged after washout. TAMRA-AtPep1 and 

PEPR1-GFP underwent endocytosis as a complex and followed the same temporal dynamics 

as previously shown individually for TAMRA-AtPep1 and PEPR1-GFP (Supplemental Figure 

5A). High values of Pearson’s correlation coefficient were obtained when TAMRA-AtPep1 

colocalized with either PEPR1-GFP or PEPR2-GFP (Supplemental Figures 5A and 5B). 

Thus, our observations are consistent with the view that AtPep1 is internalized by receptor-

mediated endocytosis. 
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Figure 3 - Internalization of TAMRA-AtPep1 and PEPR1-GFP. (A) Internalization of TAMRA-AtPep1. Five-

day-old seedlings were treated with TAMRA-AtPep1 (100 nM, 10 sec), washed with liquid medium 

and root tip epidermal cells were imaged after the indicated time points. (B) Internalization of 

PEPR1-GFP after treatment with AtPep1. Application of flg22 and mock (water) did not change the 

PEPR1-GFP localization. Five-day-old pepr1pepr2 seedlings complemented with PEPR1-GFP 

expressed under the RPS5A promoter were treated with the respective elicitors for 10 sec and washed. 

Root tip epidermal cells were imaged after the indicated time. Scale bars, 10 µm 

3.2.4 AtPep1-PEPR complexes traffic to the vacuole via TGN/EE and MVB compartments 

Until now, live-cell microscopy studies of PEPRs have not been carried out. To better 

understand the endocytic route of PEPRs in the context of their ligand, we incubated various 

fluorescence-tagged endomembrane makers with TAMRA-AtPep1 (100 nM, 10-sec pulse, 

three washouts) and assessed their colocalization after a 40-min chase by counting manually 

the amount of colabeled vesicles that were considered positive when the colocalization value 

calculated by the Pearson’s correlation coefficient was higher than 0.5. TAMRA-AtPep1 

colabeled partially with compartments that were marked by known TGN/EE markers, 18% 

with VHA-a1-GFP (DETTMER et al., 2006) (Figure 4A), 28% with SYP61-CFP (ROBERT 

et al., 2008), and 37% with GFP-SYP42-GFP (UEMURA et al., 2012) (Supplemental Figures 
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6A and 6B). Further, TAMRA-AtPep1 colabeled the MVBs marked by the Arabidopsis Rab5 

GTPase homologs YFP-ARA7 (GELDNER et al., 2009) (84%) (Figure 4B) and ARA6-GFP 

(GOH et al., 2007) (76%), and by the R-SNARE GFP-VAMP727 (EBINE et al., 2008) 

(65%). (Supplemental Figures 6B and 6C). As expected, the receptor-ligand complexes only 

partially overlapped with the Golgi compartments (5%) marked by the SNARE YFP-

MEMB12 (GELDNER et al., 2009) (Figure 4C). TAMRA-AtPep1 finally accumulated in the 

vacuole delimited by GFP-VAMP727 that, besides the MVBs also marked the tonoplast 

(EBINE et al., 2008) (Figure 4D). Thus, our live-cell imaging analyses show that TAMRA-

AtPep1 and, presumably, its bound receptors follow an endocytic trafficking route from the 

plasma membrane to the vacuole, passing through the TGN/EEs and MVBs.  
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Figure 4 – Endocytic route of TAMRA-AtPep1 in Arabidopsis root epidermal meristem cells. (A)TAMRA-AtPep1-labeled 

vesicles colocalized partially with the TGN/EE marker VHA-a1-GFP. Arrows and arrowheads marked 

colocalized and not colocalized vesicles. Graph indicates the percentage of TAMRA-AtPep1-positive vesicles 

labeled by VHA-a1-GFP. n=318. (B) Majority of TAMRA-AtPep1-vesicles labeled the MVB marker YFP-

ARA7 (arrows). Graph indicates the percentage of TAMRA-AtPep1-positive vesicles labeled by YFP-ARA7. 

n=345. (C) TAMRA-AtPep1-vesicles did not colocalize with the Golgi compartments marked by YFP-MEMB12. 

Graph indicates the percentage of TAMRA-AtPep1-positive vesicles labeled by YFP-MEMB12. n=312. (D) 

TAMRA-AtPep1 fluorescence accumulated into the vacuoles, delimited by the tonoplast marker GFP-VAMP727, 

after a chase of 90 min. Five-day-old seedlings were treated with  TAMRA-AtPep1 (100 nM, 10 sec), washed 

with liquid medium and root tip epidermal cells were imaged after 40-min chase (A, B and C) or 90 min (D). 

Only the TAMRA-AtPep1-positive vesicles presenting a colocalization value over 0.5 calculated by the Person’s 

correlation coefficient were considered as colocalized. n=TAMRA-AtPep1-positive vesicles. Scale bars, 10 µm 
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3.2.5 AtPep1-PEPRs trafficking is largely independent of the V-ATPase activity at the 

TGN/EE 

Our previous studies revealed that when internalized the brassinosteroid receptor, 

BRI1-ligand pair colabeled more than 80% of the TGN/EE compartments marked by the 

VHA-a1-RFP (IRANI et al., 2012), a number significantly higher than that observed in the 

case of TAMRA-AtPep1 (Figure 4A). Thus, we investigated whether the trafficking route of 

the AtPep1-PEPR complexes required the function of the vacuolar H+-ATPase (V-ATPase) in 

the TGN/EE. To this end, we took advantage of a specific TGN/EE inhibitor acting on the V-

ATPase, namely ConcanamycinA (ConcA) (DETTMER et al., 2006). Initially, we examined 

the subcellular dynamics and localization of TAMRA-AtPep1 (100 nM, 10-sec pulse, three 

washouts, 40, 60, and 90-min chase) when applied to transgenic lines that expressed the 

TGN/EE fluorescent marker, VHA-a1-GFP in the presence of ConcA (Figure 5A). 

Surprisingly, after a chase of 40 min the fluorescent probe did not accumulate in typical 

ConcA bodies, as seen for the VHA-a1-GFP, although some colocalization between the 

TAMRA-AtPep1-positive vesicles and VHA-a1-GFP-positive ConcA bodies was observed. 

The same phenotype was found when TAMRA-AtPep1 was internalized in seedlings 

expressing -SYP61-CFP and GFP-SYP42 in the presence of ConcA (Supplemental Figure 7). 

Furthermore, TAMRA-AtPep1 internalization was not blocked in the presence of ConcA, 

although the trafficking might be delayed because after a 60-min chase a high amount of 

vesicles were still visualized in the presence of ConcA, in contrast to the control in which a 

reduced amount of vesicles was observed and the fluorescence started to accumulate into the 

vacuole (Figure 5A). After a 90-min chase, the TAMRA-AtPep1 signal was clearly 

concentrated into vacuoles in the DMSO control, but in the presence of ConcA, a small 

population of TAMRA-AtPep1-positive vesicles was still visible, in addition to the signal into 

vacuoles. Similar effects in the subcellular dynamics of this fluorescent probe were observed 

in the deetiolated3 (det3) mutant that is defective in the V-ATPase activity (Figure 5B) 

(SCHUMACHER et al., 1999).  
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Figure 5 – Impaired activity of the vacuolar H+-ATPase did not block the trafficking of TAMRA-AtPep1 to the 

vacuole. (A) TAMRA-AtPep1 subcellular localization in Arabidopsis root epidermal meristem cells 

of transgenic seedlings expressing the TGN/EE marker VHA-a1-GFP in the presence of 

ConcanamycinA (ConcA) and DMSO (mock control) over time. Five-day-old seedlings were 

pretreated with ConcA (2 μM, 30 min), subsequently treated with TAMRA-AtPep1 (100 nM, 10-sec 

pulse, three washouts), in the presence of ConcA (2 μM) for 40, 60, and 90 min before imaging. 

Arrows and arrowheads marked colocalized and not colocalized vesicles of TAMRA-AtPep1 with 

VHA-a1-GFP ConcA bodies, respectively. (B) Internalization of TAMRA-AtPep1 (100 nM, 10-sec 

pulse, three washouts) in five-day-old deetiolated3 (det3) mutant seedlings and imaged after 40, 60 

and 90-min chase. Scale bars, 10 µm 

 

Our findings were further supported by monitoring the subcellular dynamics of 

PEPR1-GFP in the presence of ConcA and in combination with the endosomal tracer FM4-

64, that previously was shown to accumulate into the TGN/EE-positive ConcA bodies but 

whose trafficking to the tonoplast was blocked by the V-ATPase inhibitor (DETTMER et al., 

2006). For this experiment we pretreated five-day-old pepr1pepr2/proRPS5A:PEPR1-GFP 

seedlings with ConcA (30 min, 2 µM), then pulsed or not with AtPep1 (100 nM, 10 sec, three 
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washouts), in the presence of FM4-64 (4 µM, 5 min, 3 washouts) and kept all the time in the 

presence of ConcA (2 µM) until imaging for the indicated time. Seedlings stained with FM4-

64 pretreated and treated with DMSO were used as control (Figure 6A-C). Without AtPep1 

elicitation, the localization of PEPR1-GFP was not significantly affected in the presence of 

ConcA, although at later points some GFP-positive compartments were seen in either the 

proximity of or colocalizing with the FM4-64-positive ConcA bodies (Figure 6B). After 

pretreatment with ConcA and AtPep1 application in the presence of the inhibitor, a 

considerable portion of PEPR1-GFP vesicles clearly colocalized with FM4-64 into the ConcA 

bodies, still better visualized after 40- and 60-min chases (Figure 6C). However, as seen for 

TAMRA-AtPep1 (Figure 5), the trafficking of PEPR1-GFP to the vacuoles was not blocked. 

Though, more control experiments are required to evaluate if the trafficking of PEPR1-GFP in 

the presence of ConcA is delayed. However, this might be the case as in the absence of 

ConcA, after a 60-min AtPep1 elicitation, most of the PEPR1-GFP fluorescence accumulated 

into the vacuoles (Figure 3B), whereas in the presence of ConcA this pattern was observed 

after 90 min (Figure 6C). Based on these results, we can conclude that the trafficking of the 

AtPep1-PEPR complexes to the vacuole was not largely compromised by the impaired V-

ATPase activity in the TGN/EE. 
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Figure 6 – The endocytosis of AtPep1-PEPR1 complexes was not blocked by the TGN/EE inhibitor 

ConcanamycinA (ConcA). Subcellular localization of PEPR1-GFP in Arabidopsis root epidermal 

meristem cells in the presence of mock control (DMSO) (A), ConcA (2 µM) (B), ConcA (2 µM) 

and AtPep1 (100 nM for 10 sec) (C) over time. Five-day-old pepr1pepr2 seedlings complemented 

with PEPR1-GFP expressed under the RPS5A promoter were pretreated with ConcA (30 min, 2 

µM), then exposed or not to AtPep1, stained with FM4-64 (4 µM, 5 min, three washouts) and kept 

all the time in the presence of ConcA (2 µM) until imaging for the indicated time. Arrows and 

arrowheads indicate PEPR1-GFP colocalized and not colocalized vesicles with FM4-64 ConcA 

bodies, respectively. Insets, 3× magnification showing details of the PEPR1-GFP vesicles. Scale 

bar, 10 µm 
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3.2.6 Inactive PEPR is not recycled and its secretion but not its endocytosis is ARF-GEF-

dependent 

Previously, most of the plant plasma membrane proteins, including receptors, have 

been shown to constitutively cycle between plasma membrane and endosomal compartments, 

which is a mechanism to modulate their abundance and activity (BECK et al., 2012; 

GELDNER et al., 2001; GELDNER et al., 2007). Therefore, we investigated whether PEPR1 

also undergoes recycling. For this purpose, we applied the fungal inhibitor brefeldin A (BFA) 

that is commonly used to block recycling in plants (ROBINSON; JIANG; SCHUMACHER, 

2008). Upon treatment with BFA (50 µM, 60 min), PEPR1-GFP fluorescence accumulated 

clearly in BFA bodies as revealed by co-staining with FM4-64 (4 µM, 5 min, three washouts)  

(Figures 7A and 7B), which is sensitive to BFA treatment (BOLTE et al., 2004). To clarify 

the origin of these BFA bodies (PEPR1-GFP secretion or recycling), 50 µM of the protein 

synthesis inhibitor cycloheximide (CHX) (PESTOVA; HELLEN, 2003) was added 60 min 

before and during BFA treatment (Figure 7C). In this case no BFA bodies were detected, 

suggesting that most PEPR1 fluorescence signals visualized into BFA bodies without CHX 

belonged to newly synthetized, but not recycled, PEPR1 proteins. 

Next, the PEPR1-GFP fluorescence was visualized after 40- and 60-min chases of 

AtPep1 elicitation (100 nM, 10 sec, three washouts) in the presence of BFA (50 µM) (Figure 

7D). After a 40-min chase, the PEPR1-GFP fluorescence accumulated into BFA bodies 

(probably derived from secretion), together with a population of vesicles similar to that shown 

previously without BFA (Figure 3B). Interestingly, most of these vesicles were arranged 

around the BFA bodies and some of them seemed to colocalize with the BFA bodies (Figure 

7D inset). After a 60-min chase, the PEPR1-GFP fluorescent signal was also visualized in the 

vacuole, indicating that the ligand-induced internalization of PEPR1 was not blocked. To 

confirm this observation, we evaluated the internalization of TAMRA-AtPep1 (100 nM, 10-

sec pulse, three washouts) in the presence of BFA (50 µM) (Figures 7E). The treatment was 

carried out on transgenic plants expressing the endosomal marker VHA-a1-GFP that had been 

previously detected in the core of BFA bodies (DETTMER et al., 2006; ROBINSON; JIANG; 

SCHUMACHER, 2008). As expected, the localization pattern for TAMRA-AtPep1 in the 

presence of BFA was similar to that seen for PEPR1-GFP, with vesicles surrounding the BFA 

bodies and some of them apparently localized into the BFA bodies after a 40-min chase, and 

vacuolar accumulation of TAMRA-AtPep1 fluorescence after a 60-min chase (Figure 7E). 

These observations suggest that the endocytic trafficking of AtPep1-PEPR complexes is not 

compromised in the presence of BFA. 
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Figure 7 – Inactive PEPR is not recycled and its secretion but not its endocytosis is ARF-GEF-dependent. (A-C) Subcellular 

localization of PEPR1-GFP in the presence of mock control (DMSO) (A), BFA (50 µM) (B), and CHX+BFA (50 

µM) (C). Plants were pretreated with CHX (50 µM) for 1 h (C). (D) Subcellular localization of PEPR1-GFP after 

40 and 60 min of AtPep1 elicitation (10-sec pulse) in the presence or not of BFA (50 µM). For these experiments 

(A –D) five-day-old pepr1pepr2 seedlings complemented with PEPR1-GFP expressed under the RPS5A promoter 

were used, and stained with FM4-64 (4 µM, 5 min, and three washouts). (E) Subcellular localization of TAMRA-

AtPep1 in the presence or not of BFA. Seedlings expressing VHA-a1-GFP were treated with TAMRA-AtPep1 for 

10 sec, washed, kept in the presence or absence of BFA (50 µM), and imaged after 40 and 60 min. Insets show 

details of BFA bodies at 2.5× magnification. Scale bars, 10 µm 

3.2.7 AtPep1-PEPR1 complexes undergo clathrin-mediated endocytosis 

CME is the major known route for internalization of plant plasma membrane-localized 

receptors in plants (CHEN; IRANI; FRIML, 2011; DI RUBBO et al., 2013; GADEYNE et 
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al., 2014). To gain further insight into the internalization mechanism of AtPep1-PEPR 

complexes, we used genetic and chemical approaches to study the role of CME during this 

process. First, we characterized the internalization of TAMRA-AtPep1 in the single CHC2 

knockout mutants (chc2-1 and chc2-2) that are defective in FM4-64 endocytosis 

(KITAKURA et al., 2011), and in the double mutant of the CLC genes, CLC2 and CLC3 

(clc2-1/clc3-1) (WANG et al., 2013). In both chc2 mutant alleles, the intracellular 

accumulation of TAMRA-AtPep1 (100nM, 10-sec pulse, 2-3 min of washout, 40-min chase) 

was reduced when compared with the wild type, implying that the endocytosis was impaired. 

In contrast, defects in the TAMRA-AtPep1 uptake were not detected in the double clc2-

1/clc3-1 mutant (Figures 8A and 8B). To corroborate these observations, we took advantage 

of the β-estradiol-inducible line, named XVE:AX2, expressing the clathrin-interacting protein 

AUXILIN2 (AUX2), of which the overexpression has been reported to block CME in plants 

(ADAMOWSKI, M., FRIML, J. UNPUBLISHED). 

When seedlings were incubated for 24 h on solid medium supplemented with 5 µM β-

estradiol, the TAMRA-AtPep1 internalization (100 nM, 10-sec pulse, three- washout, 40-min 

chase) as well as the FM4-64 uptake (4 µM, 5 min, three washouts, 30-min chase) were 

totally blocked at the plasma membrane (Figure 8C). β-estradiol induction of auxilin 

expression was confirmed phenotypically by the plant growth arrest (Supplemental Figure 8). 

Finally, we used the ES9-17 compound that has been proposed as a tool to dissect CME in 

plants because of its specific CHC-binding ability (DEJONGHE, 2015). When Arabidopsis 

seedlings were exposed to ES9-17 (10 µM) in the presence of TAMRA-AtPep1, the TAMRA-

AtPep1 internalization was inhibited (Figure 8D). Altogether these findings indicate that 

AtPep1-PEPR complexes are internalized via CME. 
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Figure 8 – The internalization of TAMRA-AtPep1 is clathrin-dependent. (A) Five-day-old seedlings of Col-0, 

clc2-1clc3-1, chc2-1 and chc2-2 mutants were treated with TAMRA-AtPep1 for 10 sec, washed, 

imaged after 40-min chase. (B) Graph illustrating the ratio between the plasma membrane signal 

intensity divided by the intracellular signal intensity of images in (A) (n=45 – 51cells). Error bars 

indicate S. D.  P values (Student’s t test): * < 0.01 relative to Col-0. (C) The internalization of FM4-

64 (left) (4µM, 5 min, three washouts, 30-min chase) and TAMRA-AtPep1 (right) (100 nM, 10-sec 

pulse, three washouts, 40-min chase) was blocked after induction of AUXILIN2 expression in 5-day-

old XVE:AX2 seedlings with 5 µM β-estradiol for 24 h. (D) The internalization of TAMRA-AtPep1 

was blocked in the presence of the ES9-17 compound. Five-day-old Col-0 seedlings were pretreated 

for 20 min with the ES9-17 and kept in its presence after TAMRA-AtPep1 treatment (100 nM, 10-

sec pulse, three washouts, 40-min chase).  For all experiments root epidermal meristem cells were 

imaged. Scale bars, 10 µm 

 

3.2.8 AtPep1 signaling responses are compromised when CME is impaired 

We next address the question if impairment of CME will affect AtPep1-responses by 

monitoring over time the phosphorylation of the MAP kinases MPK6 and MPK3 (RANF et 

al., 2011). When XVE:AX2 seedlings incubated for 24 h on solid medium supplemented with 

5 µM β-estradiol to block endocytosis by inducing AUX2 were treated with AtPep1 (20 nM), 

at all assessed time points activation of MPK3 and MPK6 was strongly reduced (Figure 9A). 

To clarify that this negative effect in MAPK activation is caused by the induction of AUX2 

and not by β-estradiol, we evaluated the AtPep1-induced MAPK phosphorylation in Col-0 

seedlings incubated for 24 h on solid medium supplemented with 5 µM β-estradiol, but not 

differences with the control treatment were detected (Supplemental Figure 9).      
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In addition, we evaluated the root growth inhibition of the chc2-1 and chc2-2 mutants 

in the presence of 50 nM and 100 nM of AtPep1. Both alleles displayed a significant root 

growth inhibition, but they were less sensitive than Col-0 in the presence of 50 nM of AtPep1 

(Figure 9B). These results suggest that CME is required to trigger AtPep1 responses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 – AtPep1 responses were compromised by impaired CME. (A) Reduced AtPep1-induced (20 nM) 

MAPK activation after induction of AUXILIN2 expression in the XVE:AX2 genotype with 5 µM β-

estradiol for 24 h. MAPK phosphorylation was detected by immunoblotting with anti-phospho-

p44/p42-MPK antibody detecting the pTE-pY motif of MPK6 and MPK3. The immunoblot was 

reprobed with anti-tubulin to show protein loading. Individual MPKs were identified by molecular 

mass and indicated by arrows. (B) Root growth inhibition of Col-0, chc2-1 and chc2-2 in the 

presence of 50 nM and 100 nM AtPep1 (n=12 plants). Root growth is presented relative to untreated 

control. Error bars indicate standard deviation. P values (Student’s t test): ** < 0.01 relative to Col-

0. These experiments were repeated at least twice with similar results 
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3.3 Discussion  

3.3.1 AtPep1, PEPR1 and PEPR2are coexpressed and colocalized in the Arabidopsis root 

meristem and are internalized together 

Because of the absence of cell mobility and the presence of rigid cell walls, well-

coordinated cell-to-cell communication networks play an essential role in plant responses to 

the environment that need to happen quickly to adapt soon to the new surroundings. The 

crucial relevance of signaling peptides into these communication networks is becoming more 

evident, but the knowledge about their subcellular dynamics and their relationship with the 

signaling responses is poorly characterized, mainly due to the lack of cell biology tools that 

allow plant signaling peptides to be studied in vivo. A well-characterized signaling peptide is 

AtPep1 that is associated with plant immune responses (HUFFAKER; PEARCE; RYAN, 

2006; YAMAGUCHI; HUFFAKER, 2011). In our work, we used a bioactive fluorescently 

labeled AtPep1, TAMRA-AtPep1, to address the issue exposed above. 

Kinetics study of TAMRA-AtPep1 showed that the fluorescently labeled probe was 

able to label very quickly to the plasma membrane of root meristem cells in a receptor-

dependent manner. Our findings are in agreement with previous work that revealed with 

biochemistry methods that receptor-ligands complexes are formed within seconds 

(CHINCHILLA et al., 2007; SCHULZE et al., 2010; YAMAGUCHI; PEARCE; RYAN, 

2006), but our data provided the visualization of the ligand binding in living cells.  

Previously, the AtPep1 receptors have been found not expressed in the root tips 

(BARTELS et al., 2013), but our cell biology system showed that TAMRA-AtPep1 labeled 

the plasma membrane of the cells in this tissue in a receptor-dependent manner. Therefore, we 

reinvestigated the expression patterns of both receptors in Arabidopsis roots by means of 

transgenic lines expressing the genomic fragments of PEPR1 and PEPR2 fused to GFP under 

their endogenous promoters. Interestingly, the expression patterns differed from the one 

reported for the transcriptional fusion of the PEPR1 receptor (BARTELS et al., 2013). The 

PEPR1-GFP protein was detected in most root meristem cells, supporting the observed 

TAMRA-AtPep1 localization. The differences in expression between the PEPR1 

transcriptional and translational GFP fusions can be explained by either the presence of 

intronic transcriptional regulatory sequences or by less likely protein movement. Indeed, 

several studies have shown that the transcriptional enhancer can also be located in the 3’ of 

the transcription initiation site, in exons, introns, or even on the transcribed RNA itself 

(JEONG et al., 2006; KOOIKER et al., 2005; OGBOURNE; ANTALIS, 1998). 
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After plasma membrane labeling, the TAMRA-AtPep1 was internalized in a 

temperature-dependent manner. The same spatiotemporal dynamics were found for PEPR1-

GFP when treated with AtPep1, but not with flg22, hinting at this process specificity. In 

addition, TAMRA-AtPep1 and PEPR-GFP fusions were internalized as complexes from the 

plasma membrane to the vacuole, similarly as described previously for the BRI1 receptor and 

the fluorescent BR analog AFCS (IRANI et al., 2012). 

In plants, the receptor-mediated endocytosis has been shown to be involved in 

different physiological processes, including development and plant immunity, mainly by the 

study of the BR receptor BRI1 (IRANI et al., 2012) and flg22 receptor FLS2 (BECK et al., 

2012; ROBATZEK; CHINCHILLA; BOLLER, 2006). Because PEPRs, BRI1, FLS2 as well 

as most of the receptors of other signaling peptides described so far are structurally similar 

(ENDO; BETSUYAKU; FUKUDA, 2014), internalization of the ligand-receptor pairs can be 

a common mechanism executed by plant cells in order to remove them from the plasma 

membrane. 

We found that AtPep1-PEPR complexes transited in early and late endosomal 

compartments and finally accumulated into the vacuole, a common fate for ligands and 

receptors once internalized, where they are degraded, thus allowing desensitization of the 

signal (BENYA et al., 1994; IRANI et al., 2012; MURPHY et al., 2005). Therefore, the 

vacuolar targeting of AtPep1-PEPR complexes can be interpreted as a mechanism to 

desensitize cells of the AtPep1 stimulus, but a signal relay inside the cells cannot be 

discarded. Interestingly, the temporal dynamics of the AtPep1-PEPR complexes differed from 

those of BRI1 and its ligand that internalized more quickly (2 min after ligand application) 

(IRANI et al., 2012), but were more similar to those of the FLS2 receptor, in which 

endosomes were visualized in leaves 30 min after flg22 application (BECK et al., 2012). 

Hence, the endocytosis pathways are coordinated in different ways in plant cells, probably 

related to the signaling responses. 

3.3.2 The importance of the TGN/EE for AtPep1-PEPR complexes trafficking 

Taking advantage of TAMRA-AtPep1 in combination with transgenic plants 

expressing different fluorescent endosomal markers, we mapped the endocytic route of 

AtPep1-PEPR complexes. As TGN/EE is the first compartment in which most of the early 

endocytosed cargos are localized (DETTMER et al., 2006; VIOTTI et al., 2010), we expected 

a higher colabeling of this compartment with TAMRA-AtPe1, as previously observed for the 

AFCS-BRI1 complex (IRANI et al., 2012). Surprisingly, TAMRA-AtPe1 showed a low 
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colocalization with different TGN/EE markers with the lowest colocalization values observed 

for VHA-a1 and somewhat higher values for SYP61 and SYP42, in contrast to the ARA7 and 

ARA6 late endosomal markers for which high colocalization values were obtained. These 

results can be explained by two scenarios, first, most of the AtPep1-PEPR complexes are 

internalized directly to MVBs without passing through the TGN/EE and, second, the AtPep1-

PEPR complexes are transported via a VHA-a1-negative part of the TGN/EE that rapidly 

matures into ARA7/ARA6-positive compartments. Previously, based on visualizations of the 

activated FLS2 endocytosis in Nicotiana benthamiana, it has been reported that the flg22-

activated FLS2 traffics via only the ARA7- and ARA6-positive endosomes (BECK et al., 

2012). In addition, the existence of a transient compartment with intermediate properties 

between TGN/EE and late endosomes has been proposed to mediate the FLS2 internalization. 

The hybrid identity of these compartments was defined by the colocalization between ARA7 

with the TGN/EE marker SYP61, but not with the TGN/EE marker VHA-a1 (CHOI et al., 

2013). FLS2 and PEPRs are receptors related to plant defense and share signaling 

mechanisms, therefore they probably present similar trafficking routes, in which ligand-pair 

complexes are associated with transient TGN/EE populations or subdomains excluded from 

VHA-a1, but marked with SYP42/SYP61. This specific SYP42/SYP61-positve TGN/EE 

population or subdomains could later precede the ARA7-dependent TGN/EE maturation into 

MVBs. This assumption is in agreement with recent studies showing that ARA7 is also found 

at the TGN/EE and that the endosomal maturation in Arabidopsis appears to originate in a 

TGN/EE subdomain that recruits ARA7 (SCHEURING et al., 2011; SINGH et al., 2014; 

STIERHOF; EL KASMI, 2010). Regardless, further studies are needed to assess the possible 

TGN/EE partitioning during the AtPep1-PEPR internalization. It would be essential to 

evaluate the subcellular dynamics of different TGN/EE markers in combination with ARA7 

after elicitation with AtPep1. 

The differential regulatory role of the TGN/EE during the AtPep1-PEPR 

internalization is also supported by our experiments with the V-ATPase inhibitors ConcA and 

genetically with the det3 mutant. ConcA inhibits the V-ATPase activity that causes loss of the 

TGN/EE identity, impairs the MVB maturation, and blocks vacuolar transport (DETTMER et 

al., 2006; SCHEURING et al., 2011; VIOTTI et al., 2010). Intriguingly, the transport of 

TAMRA-AtPep1 and PEPR1-GFP complexes to the vacuole was not blocked by ConcA, 

although some colocalization between TAMRA-AtPep1 and VHA-a1-positive ConcA bodies 

occurred. These observations imply that the AtPep1-PEPR complexes are trafficking either 

through compartments accumulated into the ConcA bodies or in their close proximity, but, 
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nonetheless, the physiological effect of this drug does not block their trafficking to the 

vacuole, same effect was previously reported for the boron transporter BOR1 at high boron 

concentration (TAKANO et al., 2005). Recently, the plant TGN/EE has been shown to be 

acidic (pH 6.0) and to be probably a V-ATPase-dependent process, because pharmacological 

interference of the V-ATPase activity with ConcA caused drastic alkalinization and disturbed 

its behavior (HUSS et al., 2002; MARTINIERE et al., 2013; SHEN et al., 2013). Thus, is 

tempting to assume that the pH of the TGN/EE can modulate its function, as seen in animal 

and yeast cells along endocytic and secretory pathways (HUANG; CHANG, 2011; KANE, 

2006). Following this line or reasoning it is possible to argue that there is a pH-dependent 

cargo sorting mechanism that operates at the plasma membrane. If this were correct, it will 

explain why vacuolar transport of some endocytic cargos, such as AFCS and FM4-64, is 

completely blocked in the presence of ConcA (DETTMER et al., 2006; IRANI et al., 2012), 

whereas the trafficking of AtPep1-PEPR complexes to the vacuole is only slightly delayed. 

Other important remarks that fit into our assumption is that AtPep1 induces extracellular 

medium and possibly apoplast alkalinization, and that the interaction with its receptors 

depends on pH (HUFFAKER; PEARCE; RYAN, 2006; TANG et al., 2015), hence it could be 

that the AtPep1-PEPR complexes are transported through endosomal compartments with an 

alkaline pH, thus ensuring that peptides and receptors reach the end of their intracellular 

journey. Considering the fast emergence of new tools that allow measurements of pH in vivo, 

an interesting project would be to investigate the effects of different cargos in the pH of 

subcellular compartments and their relationships with plant trafficking and signaling. 

 

3.3.3 Recycling does not regulate the pool of inactive PEPRs at the plasma membrane 

The fungal toxin BFA induced the accumulation of the PEPR1-GFP signal into BFA 

bodies, but these bodies were not detected in seedlings in which the protein synthesis was 

inhibited, implying that most signals detected into BFA bodies derived from secreted instead 

of recycled proteins. It remains to be tested, however, if inhibition of the protein synthesis 

affects endocytosis of PEPR1. Although we cannot exclude the possibility of a BFA-

insensitive recycling pathway or very slow recycling, our results suggest that abundance and 

activity of the AtPep1 receptors are not mainly regulated by recycling as for BRI1, FLS2, 

BOR1, and PIN proteins (BECK et al., 2012; GELDNER et al., 2007; TAKANO et al., 2005; 

TANAKA et al., 2013). Absence or low recycling rates of PEPRs could be due to their 

function. PEPR receptors are proposed to function as innate immunity amplifiers and their 
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expression to be induced by AtPeps, indicating a positive feedback loop in the AtPep-PEPR 

signaling (YAMAGUCHI; HUFFAKER, 2011; YAMAGUCHI et al., 2010). In this context, 

PEPRs are internalized just upon AtPep perception and replaced later by newly synthetized 

PEPR proteins. This hypothesis is supported by the presence of the PEPR1-GFP intracellular 

vesicles without exogenous AtPep1 that was still visualized in the presence of BFA and CHX; 

these vesicles can represent PEPR1-GFP internalization triggered by endogenous peptides 

that are maintained at a low rate under normal conditions as a form to regulate the AtPep1 

receptor pool, in agreement with the ubiquitous AtPeps and PEPRs expression at low basal 

levels (BARTELS et al., 2013; HUFFAKER; PEARCE; RYAN, 2006). Confirming that the 

major effect of BFA is related to secretion and recycling, we did not found any appreciable 

effect during the AtPep1-PEPR1 trafficking, the same was reported for the activated FLS2 

receptor and the fluorescent BR analog AFCS (BECK et al., 2012; IRANI et al., 2012). 

3.3.4 AtPep1-PEPR endocytosis is mediated by clathrin and CME impairment compromises 

the AtPep1 responses 

Although direct evidence of CME in plant signaling peptides has been not reported so 

far, we provided some solid proof that the AtPep1-PEPR endocytosis is mediated by clathrin 

proteins. First, we found a delayed internalization of TAMRA-AtPep1 in chc2-1 and chc2-2, 

as reported for FM4-64 (KITAKURA et al., 2011); curiously, no internalization defects of 

this molecular probe were detected in the double mutant clc2-1/clc3-1, hinting at a minor role 

of these proteins and/or at a partial redundancy with CLC1 that shares 55% amino acid 

identity with CLC2 and CLC3 (WANG et al., 2013). Additionally, the TAMRA-AtPep1 

endocytosis was totally impeded when the clathrin-interacting and CME-blocking protein 

AUXILIN2 was overproduced (ADAMOWSKI, M., FRIML, J. UNPUBLISHED), and in the 

presence of the ES9-17 compound that targets CHC proteins inhibiting CME (DEJONGHE, 

2015). Collectively, our results showed that internalization of AtPep1/PEPRs complexes is 

clathrin-mediated, highlighting CME as the dominant route for endocytosis in plants.  

It is well known that after association between AtPep1 and its receptors at the plasma 

membrane, swift and transient plant immunity signals are transmitted (KROL et al., 2010; 

YAMAGUCHI; HUFFAKER, 2011; YAMAGUCHI et al., 2010). Therefore, we examined 

the role of the endocytosis during AtPep1 responses. The chc2-1 and chc2-2 mutants were less 

sensitive to AtPep1 in the root growth assay when 50 nM of the peptide was used, but at 

higher concentrations, this effect was not observed, probably because, albeit delayed, the 

TAMRA-AtPe1 endocytosis still operated; hence, high concentrations of AtPep1 might mask 
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the effect in the signaling. Phosphorylation of MPKs was strongly reduced when endocytosis 

was blocked by the induced overexpression of the clathrin-interacting protein auxilin, 

although low activation levels were still detected, indicating that MPK signaling can be 

initiated from the plasma membrane, but for full activation, a functional CME is needed. 

Although the defects in the AtPep1 responses could not be attributed to a specific inhibition of 

the AtPep1-PEPR endocytosis, because the CME is affected in a general manner, these 

defects could also reflect impairment of the endosomal signaling that would not operate when 

endocytosis is blocked. Endosomal signaling has been amply documented for animals 

(MURPHY et al., 2009; RAJAGOPALAN, 2010), but its role in plants is still not well 

understood. Our biological system provides a suitable model to further clarify the interplay 

between plant trafficking and signaling. 
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3.4 Material and Methods  

3.4.1 Plant material and growth conditions 

All mutants and transgenic lines used in this study were in the background of the 

Arabidopsis thaliana accession Columbia (Col-0). Seeds were sterilized, maintained for 2 

days at 4ᵒC in the dark, and germinated on vertical half-strength Murashige and Skoog (½MS) 

medium (1% [w/v] sucrose) agar plates, pH 5.8 at 22ᵒC in a 16-h/8-h light–dark cycle for 5 

days with a light intensity of 120 µE
.
m

-2.
s

-1 
(E, Einstein; 1E = 1mol of photons). The 

following mutant and transgenic Arabidopsis lines have been described previously: 
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pepr1/pepr2 (KROL et al., 2010), chc2-1 and chc-2 (KITAKURA et al., 2011), clc2-1/clc3-1 

(WANG et al., 2013), det3 (SCHUMACHER et al., 1999), GFP-VAMP727 (EBINE et al., 

2008), VHA-a1-GFP (DETTMER et al., 2006), SYP61-CFP (ROBERT et al., 2008), GFP-

SYP42 (UEMURA et al., 2012), YFP-ARA7 and YFP-MEMB12 (GELDNER et al., 2009), 

ARA6-GFP (GOH et al., 2007), For induction of β-estradiol-inducible line, XVE:AX2, 

seedlings were germinated as described before, transferred 4 days after germination for 24 h 

to ½MS plates containing 5 µM β-estradiol (Sigma-Aldrich) and then used for the respective 

assays; ethanol instead of β-estradiol was used as control. 

3.4.2 Generation of constructs 

The PEPR1 and PEPR22 putative promoters and coding sequences were amplified by 

PCR with KaPaHIFI polymerase (Sopachem) from genomic DNA (accession Col-0) with 

specific primers (Table 1). The obtained fragments were introduced into pDONR entry 

vectors (pDONRP4-P1R promoter sequences and pDONR221 coding sequences) by means of 

the Gateway system-compatible attB sites (Invitrogen). 

To create transcriptional reporter vectors of PEPR1 and PEPR2, the entry clones 

pDONRP4-P1R-proPEPR1/2 were introduced into the destination vector 

pMK7S*NFm14GW (KARIMI et al., 2007) with the Gateway-based cloning (Invitrogen) to 

yield pMK7S*NFm14GW-proPEPR1/2:NLS-GFP. 

The entry vectors pDONRP4-P1R-proPEPR1/2 and pDONR221-PEPR1/2 were used 

in a triple LR reaction (MultiSite-Gateway, Invitrogen), combining pDONRP2-P3R-GFP and 

pB7m34GW (KARIMI; DE MEYER; HILSON, 2005) to yield pB7m34GW-

proPEPR1/2:PEPR1/2-GFP that expressed the AtPep1 receptors fused in-frame to GFP. To 

make constructs expressing the AtPep1 receptors under the promoter RPS5A, during the triple 

LR reaction the entry vector pDONRP4-P1R-proPEPR1/2 was replaced by pDONRP4-P1R-

proRPS5A (GADEYNE et al., 2014), producing the pB7m34GW-proRPs5A:PEPR1/2-GFP 

vectors. 

3.4.3 Generation of Arabidopsis transgenic lines 

Plants were transformed with Agrobacterium tumefaciens by means of the floral dip 

method (Clough & Bent, 1998). Plants expressing NLS-GFP under the endogenous promoters 

of PEPR1 and PEPR2 were transformed into Col-0 background. Primary transformants were 

selected on ½MS medium containing kanamycin (50 mg/l). The proRPS5A:PEPR1/2-GFP 

construct was dipped into the pepr1/pepr2 mutant background and transformants were 

selected on ½MS medium containing 10 mg/l phosphinothricin. 
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3.4.4 Peptides 

The peptide AtPep1 (ATKVKAKQRGKEKVSSGRPGQHN) with a HPLC purity of 

95.16% and molecular weight of 2491.78, and the peptide AtPep1 labeled with 5’-

carboxytetramethylrhodamine at the N-terminal (TAMRA-AtPep1) with a HPLC purity of 

97.07% and molecular weight of 2905.75 were purchased from Life Technologies. The 

peptide flg22 (QRLSTGSRINSAKDDAAGLQIA) with a HPLC purity of 95% and a 

molecular weight of 2272.50 was acquired from Genscript (catalog No. RP19986).The 

peptides were dissolved in water to obtain peptide stocks of 100 µM. Further dilutions were 

done with ½MS medium. 

3.4.5 Imaging 

Arabidopsis seedlings were imaged on a FluoView 1000 inverted confocal microscope 

(Olympus) equipped with a water-corrected 60× objective (NA1.2) at digital zoom 3; for the 

evaluation of the TAMRA-AtPep1 plasma membrane-binding pattern at the different cell 

layers of the root meristem and of the root expression pattern of the AtPep1 receptors, a 

digital zoom 1 was used. The excitation wavelength was 488 nm for GFP and YFP, 458 nm 

for CFP and 559 for TAMRA and FM4-64. Emission was detected between 500 – 530 nm for 

GFP and YFP, 460 – 500 for CFP and 570 – 670 for TAMRA and FM4-64. For TAMRA-

AtPep1, the intensity was manipulated with the Olympus software. 

3.4.6 TAMRA-AtPep1 application and competition assays 

For the plasma membrane binding assay, 5-day-old seedlings were dipped into 500 µL 

of 100 nM  TAMRA-AtPep1 dissolved in ½MS medium, pulsed for different times as 

indicated, washed with ½MS liquid medium three times, and transferred to coverslips for 

visualization of the meristem epidermal cells under the confocal microscope. For the 

competition assay, seedlings were pretreated with 0, 0.1, 1, 10, 100, 1000, and 10000 nM of 

AtPep1 or flg22 for 5 min and washed with ½MS medium three times before being dipped 

into TAMRA-AtPep1 for 10 sec. For quantification, images were converted to 8-bit images 

and fixed regions of interest were selected to measure the fluorescent intensity of the plasma 

membrane and background into the intracellular space with imageJ, then the relative plasma 

membrane fluorescence was calculated by dividing the plasma membrane intensity by the 

background intensity. Six epidermal cells from eight plants were quantified. 
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3.4.7 TAMRA-AtPep1 internalization assay 

Five-day-old seedlings were dipped into 500 µL of 100 nM TAMRA-AtPep1 

dissolved in ½MS medium for 10 sec, washed with ½MS liquid medium three times, kept in 

500 µL of ½MS medium over a piece of parafilm placed in a Petri plate, and then imaged for 

the indicated time points. To compare the TAMRA-AtPep1 uptake between the clathrin 

mutants and the Col-0 wild type, images were quantified with imageJ. To this end, images 

were first converted to 8-bit images; subsequently, the entire plasma membrane and 

intracellular space were selected with the brush tool size 5 pixels and the polygon selection 

tool, respectively; then, the average intensity of the top 100 highest pixels for both plasma 

membrane and intracellular space was used to obtain a ratio between plasma membrane and 

intracellular fluorescence. Six epidermal cells from eight plants were quantified. 

3.4.8 Colocalization analysis 

For the colocalization analysis of confocal images acquired by confocal laser 

microscopy, imageJ was used with the plugin PSC colocalization (FRENCH et al., 2008) that 

allowed to obtain the Pearson correlation coefficient as colocalization readout, as well as a 

pixel distribution diagram, called scatter plot, in which the pixels in the green image are used 

as the Y-coordinate of the scatter plot and the intensity of the corresponding pixels in the red 

image as the X-coordinate. For colocalization between TAMRA-AtPep1 and PEPR1-GFP and 

PEPR2-GFP, the regions of interest were selected and colocalization analysis was carried out 

with a threshold of 10. To the determine the percentage of vesicles of TAMRA-AtPep1 

colocalized with VHAa1-GFP, GFP-SYP42, SYP61-CFP, ARA7-YFP, ARA6-GFP, 

VAMP727-GFP and MEMB12-YFP, each individual TAMRA-AtPep1 spot was selected as 

individual region of interest and colocalization was analyzed with a threshold of 10, 

considering as positively labeled endosomes the spots of which the Person correlation value 

was over 0.5. A threshold of 10 was used in order to avoid noise and it was calculated 

measuring the background gray value present at the analyzed images. 

3.4.9 Chemical treatments 

The inhibitors BFA (50 mM DMSO stock), ConcA (2 mM DMSO stock) and CHX 

(50 mM DMSO stock) were purchased from Sigma-Aldrich. FM4-64 was acquired from 

Molecular Probes (2 mM water stock). Compound ES9-17 was provided by Dejonghe. 

(2015)) (10 mM DMSO stock). All chemicals were diluted in ½MS medium to prepare final 

concentration solutions. 
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Five-day-old seedlings were incubated for the indicated times into 1 mL of liquid 

½MS medium containing 10 µM ES9-17, 2 µM ConcA, 50 µM BFA, 50 µM CHX or in 

combination between BFA and CHX. For seedlings expressing the PEPR1-GFP inhibitor, 

treatments were performed in combination with the endosomal marker FM4-64 at room 

temperature. For FM4-64 staining, seedlings were incubated for 5 min in 1 mL of ½MS liquid 

medium containing 4 µM of the dye plus the respective inhibitor treatment. Control 

treatments were done with equal amounts of DMSO. All washed steps and imaging were 

carried out in the presence of the respective inhibitors. 

3.4.10 MAP kinase assay 

Six-day-old seedlings were treated with 2 mL of 20 nM AtPep1 dissolved in ½MS 

medium for 0, 5, 10, 15, and 30 min. Per each time point, 50-60 seedlings were ground to a 

fine powder in liquid nitrogen and solubilized in better lacus buffer (SCHWESSINGER et al., 

2011): 50 mM Tris-HCl, pH 7.5; 100 mM NaCl; 15 mM EGTA; 10 mM MgCl2; 1 mM NaF; 

1 mM Na2MoO4.2H2O; 0.5 mM NaVO3; 30 mM b-glycerophosphate; 0.1% IGEPAL CA 630; 

100 nM calyculin A (CST); 0.5 mM PMSF; and 1% protease inhibitor cocktail (Sigma-

Aldrich, P9599)]. The extracts were vortexed, kept on ice for 15 min, vortexed for 1 min, 

centrifuged at 12,700 rpm (4°C, 25 min), and then supplemented with 5×SDS loading buffer. 

An aliquot of the supernatant was brought over to a new tube before addition of the SDS 

loading buffer, to be used for protein quantification the through Bradford assay (Bio-Rad). 

Total protein (20 mg) was separated by SDS-PAGE with 10% precast polyacrylamide gels 

(Bio-Rad) and blotted onto PVDF membranes (Bio-Rad). Immunoblots were blocked with 

bovine serum albumin (BSA) 5% (w/v) (Sigma-Aldrich) in 1× Tris-buffered saline Tween 

0.1% (TBS-T) for 2 h. Subsequently, the protein was washed 3× with TBS-T and incubated 

overnight at 4°C with anti-p42/44 MAPK primary antibodies (1:2000; Cell Signaling 

Technology) diluted in 1× TBS-T supplemented with 5% BSA. After three washing steps 

with TBS-T, the membrane was incubated for 2 h with anti-rabbit-HRP (horseradish 

peroxidase) conjugated secondary antibody (1:20,000 GE-Healthcare). Membranes were 

developed with the Western Lightning® Plus–ECL [enhanced chemiluminescence substrate 

(Perkin-Helmer) and Amersham Hyperfilm ECL (GE-Healthcare). Finally, the immunoblot 

was reprobed with the anti-tubulin antibody (1:50000 sigma) to determine equal loading. 

3.4.11 Root growth assay 

Seeds were sown on ½MS solid medium, stratified for 2 days at 4°C in the dark, and 

place in the light vertically. Four days after germination, seedlings were transferred to square 
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transparent Petri dishes with solid ½MS medium supplemented with or without the indicated 

amount of AtPep1 and incubated for 4 further days; then, the plates were scanned and the root 

growth measured. For measurements, scanned images were processed and evaluated with 

Rootreader2D software (http://www.plantmineralnutrition.net/rr2d.php) and plotted relative to 

untreated control. 

3.4.12 Statistical analysis 

P values were calculated with a two-tailed Student’s t-test using the Excel software. 

 

Supplemental Information 

 

 

 

 

 

Supplemental Figure 1 – Kinetics of TAMRA-AtPep1 plasma membrane labeling in Arabidopsis root epidermal 

meristem cells. (A) TAMRA-AtPep1 labeled the plasma membrane within seconds after 

application. Seedlings were treated with TAMRA-AtPep1 (100 nM) for different time 

points, washed, and visualized under a confocal microscope. (B) Quantification of the 

plasma membrane fluorescence in (A) (n= 48 cells).  Error bars indicate S.D 
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Supplemental Figure 2 – Expression pattern of the receptors PEPR1 and PEPR2 and subcellular localization of AtPep1 in the 

Arabidopsis root. (A) Expression pattern of proPEPR1::NLS-GFP and proPEPR2::NLS-GFP in the 

differentiation zone (top) and meristem  (bottom) of the Arabidopsis root of five-day-old seedlings. 

(B) Mutant complementation. PEPR1 and PEPR2 fused to GFP and expressed under their 

endogenous promoters or under RPS5A promoter complemented the pepr1pepr2 double mutant. 

Root growth inhibition analysis of Arabidopsis Col-0, pepr1pepr2, pepr1pepr2/proPEPR1:PEPR1-

GFP, pepr1pepr2/proPEPR2:PEPR2-GFP, pepr1pepr2/proRPs5A:PEPR1-GFP, 

pepr1pepr2/proRPS5A:PEPR2-GFP seedlings (n=10). Seedlings were germinated on ½ MS 

medium and then transferred for 4 days to ½ MS medium supplemented with AtPep1 (100 nM). 

Root growth is presented relative to untreated control. Error bars indicate S.D. P values (Student’s t 

test): * < 0.001 relative to untreated control. Four independent transgenic lines were analyzed for 

each construct. (C) Localization of PEPR1-GFP and PEPR2-GFP expressed under their 

endogenous promoter in the pepr1pepr2 mutant in the differentiation zone of the roots of root of 

five day old seedlings. Scale bars, 30 µm 
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Supplemental Figure 3 – The internalization of TAMRA-AtPep1 is temperature dependent. Five-day-old 

Arabidopsis Col-0 seedlings were incubated at 4ᵒC for 2 h before treatment with 

TAMRA-AtPep1 (100 nM, 10 min) washed and left for another 40 min at 4ᵒC before 

imaging. The same TAMRA-AtPep1treatment was carried out for seedlings at room 

temperature. Scale bar, 10 µM   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 4 – PEPR1-GFP internalization upon AtPep1 elicitation. (A) PEPR1-GFP internalization was triggered 

by AtPep1 in a dose-response manner. Seedlings were treated with different concentrations of 

AtPep1 for 10 sec, washed with liquid medium, and imaged after a chase of 5 and 40 min. (B) 

PEPR1-GFP internalization upon constant elicitation with AtPep1. For these experiments, five-day-

old pepr1pepr2 seedlings complemented with PEPR1-GFP expressed under the RPS5A promoter 

were used . Scale bars, 10 µm 
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Supplemental Figure 5 - AtPep1 and its receptors internalized as a complex. Internalization of TAMRA-

AtPep1/PEPR1-GFP complexes in (A) and TAMRA-AtPep1/PEPR2-GFP complexes 

in (B). Five-day-old pepr1pepr2 seedlings complemented with PEPR1-GFP or 

PEPR2-GFP expressed under the RPS5A promoter were treated with TAMRA-

AtPep1 for 10 sec, washed with liquid medium, and imaged at the indicated times. As 

colocalization indicator, the Pearson correlation r(P) was calculated for images in (A) 

and (B). Scale bars, 10 µm 
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Supplemental Figure 6 – Colocalization of TAMRA-AtPep1with different endosomal markers. TAMRA-AtPep1 

marked vesicles colocalized with the TGN/EE markers GFP-SYP42 (A) and CFP-

SYP61 (B), and the LE/MVB markers ARA6-GFP (C) and GFP-VAMP727 (D). Five-

day-old seedlings were treated with TAMRA-AtPep1 (100 nM, 10 sec), washed with 

liquid medium and root meristem epidermal cells were imaged after 40-min chase. 

Graphs present the percentage of the marker line and the positively labeled TAMRA-

AtPep1-vesicles (n=307 – 336). Only the TAMRA-AtPep1-positive vesicles presenting 

a colocalization value over 0.5 calculated by the Person’s correlation coefficient were 

considered as colocalized. n = TAMRA-AtPep1-positive vesicles. Scale bars, 10 µm  
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Supplemental Figure 7 – Partial colocalization of the TAMRA-AtPep1 vesicles with the TGN/EE markers GFP-

SYP42 and CFP-SYP61 in the presence of ConcanamycinA (ConcA). Seedlings were 

pretreated with ConcA (2 μM, 30 min), subsequently treated with TAMRA-AtPep1 for 

10sec, washed, and kept in the presence of ConcA for 40 min before imaging. Arrows 

and arrowhead indicate colocalized and not colocalized structures, respectively. Scale 

bar, 10 µm 

 

 

 

 

 

 

 

 

 

Supplemental Figure 8 – Induction of AUXILIN2 expression inhibits the root growth.  5-day-old XVE:AX2 

seedlings transferred for 24 h to ½ MS medium not supplemented (-) or supplemented 

(+) with 5 µM β-estradiol to induce AUXILIN2 expression. Red circles marked the 

length of the root when transferred to the correspondent medium 
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Supplemental Figure 9 – AtPep1-induced MAPK activation is not affected by β-estradiol in wild type 

Arabidopsis plants. MAPK activation in 5-day-old Col-0 seedlings transferred for 

24 h to ½ MS medium not supplemented (-) or supplemented (+) with 5 µM β-

estradiol, and subsequently treated with AtPep1 (20 nM) for the indicated times. 

MAPK phosphorylation was detected by immunoblotting with anti-phospho-

p44/p42-MPK antibody detecting the pTE-pY motif of MPK6 and MPK3. The 

immunoblot was reprobed with anti-tubulin to show protein loading. Individual 

MPKs were identified by molecular mass and indicated by arrows 

 

Supplemental Table 1 – Primers used for cloning 

DNA region Primer Sequence 5’ – 3’ 

Coding PEPR1 Forward GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGAAGAATCTTGGG

GGGTTGTTC 

Reverse GGGGACCACTTTGTACAAGAAAGCTGGGTACCGAACTGAATCAGAGG

AGCA 

Coding PEPR2 Forward GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGAGGAATCTTGGGT

TACTCG 

Reverse GGGGACCACTTTGTACAAGAAAGCTGGGTAGTGAACTGAACCCGAAG

TGCTTCT 

Promoter 

PEPR1 

Forward GGGGACAACTTTGTATAGAAAAGTTGCTTCACTGATCTGTTTGTTGCA

AAC 

Reverse GGGGACTGCTTTTTTGTACAAACTTGCCTGAGTTTAAAGATCGAGAA

ACATG 

PromoterPEPR

2 

Forward GGGGACAACTTTGTATAGAAAAGTTGCTATTAGGGTGGTCTATCGGT

CAG 

Reverse GGGGACTGCTTTTTTGTACAAACTTGCATTAGAGCTCAAGAGACTGA

AATATG 

 

 

 



124 

 

References  

 

BAISA, G.A.; MAYERS, J.R.; BEDNAREK, S.Y. Budding and braking news about clathrin-

mediated endocytosis Current Opinion in Plant Biology, London, v. 16, n. 6, p. 718-725, 

2013. 

 

BAR, M.; AVNI, A. Endosomal trafficking and signaling in plant defense responses. Current 

Opinion in Plant Biology, London, v. 22, p. 86-92, 2014. 

 

BARAL, A.; IRANI, N.G.; FUJIMOTO, M.; NAKANO, A.; MAYOR, S.; MATHEW, M.K. 

Salt-induced remodeling of spatially restricted clathrin-independent endocytic pathways in 

Arabidopsis root. The Plant Cell, Rockville, v. 27, n.4,p. 1297-1315, 2015. 

 

BARTELS, S.; LORI, M.; MBENGUE, M.; VAN VERK, M.; KLAUSER, D.; HANDER, T.; 

BONI, R.; ROBATZEK, S.; BOLLER, T. The family of Peps and their precursors in 

Arabidopsis: differential expression and localization but similar induction of pattern-triggered 

immune responses. Journal of Experimental Botany , Oxford, v. 64, n. 17, p. 5309-5321, 

2013. 

 

BECK, M.; ZHOU, J.; FAULKNER, C.; MACLEAN, D.; ROBATZEK, S. Spatio-temporal 

cellular dynamics of the Arabidopsis flagellin receptor reveal activation status-dependent 

endosomal sorting. The Plant Cell, Rockville, v. 24, n. 10, p. 4205-4219, 2012. 

 

BENYA, R.V.; KUSUI, T.; SHIKADO, F.; BATTEY, J.F.; JENSEN, R.T. Desensitization of 

neuromedin B receptors (NMB-R) on native and NMB-R-transfected cells involves down-

regulation and internalization. The Journal of Biological Chemistry, Baltimore, v. 269,       

n. 16, p. 11721-11728, 1994. 

 

BOLTE, S.; TALBOT, C.; BOUTTE, Y.; CATRICE, O.; READ, N.D.; SATIAT-

JEUNEMAITRE, B. FM-dyes as experimental probes for dissecting vesicle trafficking in 

living plant cells. Journal of Microscopy, Hoboken, v. 214, n. 2, p. 159-173, 2004. 

 

CHEN, X.; IRANI, N. G.; FRIML, J. Clathrin-mediated endocytosis: the gateway into plant 

cells Current Opinion in Plant Biology, London, v. 14, n. 6, p. 674-682, 2011. 

 

CHINCHILLA, D.; ZIPFEL, C.; ROBATZEK, S.; KEMMERLING, B.; NURNBERGER, T.; 

JONES, J.D.; FELIX, G.; BOLLER, T. A flagellin-induced complex of the receptor FLS2 and 

BAK1 initiates plant defence. Nature, London, v. 448, n. 7152, p. 497-500, 2007. 

 

CHOI, S.W.; TAMAKI, T.; EBINE, K.; UEMURA, T.; UEDA, T.; NAKANO, A. RABA 

members act in distinct steps of subcellular trafficking of the flagellin sensing2 receptor. The 

Plant Cell, Rockville, v. 25, n. 3, p. 1174-1187, 2013. 

 

CLAGUE, M. J. Molecular aspects of the endocytic pathway. Biochemical Journal, London, 

v. 336, p. 271-82, 1998. 

CZYZEWICZ, N.; YUE, K.; BEECKMAN, T.; DE SMET, I. Message in a bottle: small 

signalling peptide outputs during growth and development. Journal of Experimental 

Botany, Oxford, v. 64, n. 17, p. 5281-5296, 2013. 

 



125 

 

DETTMER, J.; HONG-HERMESDORF, A.; STIERHOF, Y.D.; SCHUMACHER, K. 

Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in 

Arabidopsis. The Plant Cell, Rockville, v. 18, n. 3, p. 715-730, 2006. 

 

DI RUBBO, S.; IRANI, N.G.; KIM, S.Y.; XU, Z.Y.; GADEYNE, A.; DEJONGHE, W.; 

VANHOUTTE, I.; PERSIAU, G.; EECKHOUT, D.; SIMON, S.; SONG, K.; KLEINE-

VEHN, J.; FRIML, J.; DE JAEGER, G.; VAN DAMME, D.; HWANG, I.; RUSSINOVA, E. 

The clathrin adaptor complex AP-2 mediates endocytosis of brassinosteroid insensitive1 in 

Arabidopsis. The Plant Cell, Rockville, v. 25, n. 8, p. 2986-2997, 2013. 

 

DEJONGHE, W.  Endomembrane traffic and brassinosteroid signaling from a small 

molecule perspective. 2015. 237p. Thesis (PhD in sciences: Biochemistry and 

Biotechnology) – VIB Department of Plant Systems Biology, Gent University, Gent, 2015.  

 

EBINE, K.; OKATANI, Y.; UEMURA, T.; GOH, T.; SHODA, K.; NIIHAMA, M.; 

MORITA, M.T.; SPITZER, C.; OTEGUI, M.S.; NAKANO, A.; UEDA, T. A SNARE 

complex unique to seed plants is required for protein storage vacuole biogenesis and seed 

development of Arabidopsis thaliana. The Plant Cell, Rockville, v. 20, n. 11, p. 3006-3021, 

2008. 

 

ENDO, S.; BETSUYAKU, S.; FUKUDA, H. Endogenous peptide ligand-receptor systems for 

diverse signaling networks in plants. Current Opinion in Plant Biology, London, , v. 21,        

p. 140-146, 2014. 

 

FRENCH, A.P.; MILLS, S.; SWARUP, R.; BENNETT, M.J.; PRIDMORE, T.P. 

Colocalization of fluorescent markers in confocal microscope images of plant cells. Nature 

Protoc, London, v. 3, n. 4, p. 619-628, 2008. 

 

GADEYNE, A.; SANCHEZ-RODRIGUEZ, C.; VANNESTE, S.; DI RUBBO, S.; ZAUBER, 

H.; VANNESTE, K.; VAN LEENE, J.; DE WINNE, N.; EECKHOUT, D.; PERSIAU, G.; 

VAN DE SLIJKE, E.; CANNOOT, B.; VERCRUYSSE, L.; MAYERS, J.R.; ADAMOWSKI, 

M.; KANIA, U.; EHRLICH, M.; SCHWEIGHOFER, A.; KETELAAR, T.; MAERE, S.; 

BEDNAREK, S.Y.; FRIML, J.; GEVAERT, K.; WITTERS, E.; RUSSINOVA, E.; 

PERSSON, S.; DE JAEGER, G.; VAN DAMME, D. The TPLATE adaptor complex drives 

clathrin-mediated endocytosis in plants. Cell, Cambridge, v. 156, n. 4, p. 691-704, 2014. 

  

GELDNER, N.; FRIML, J.; STIERHOF, Y.D.; JURGENS, G.; PALME, K. Auxin transport 

inhibitors block PIN1 cycling and vesicle trafficking. Nature, London, v. 413, n. 6854,           

p. 425-428, 2001. 

 

GELDNER, N.; HYMAN, D.L.; WANG, X.; SCHUMACHER, K.; CHORY, J. Endosomal 

signaling of plant steroid receptor kinase BRI1. Genes & Development, New York, v. 21,          

n. 13, p. 1598-1602, 2007. 

 

GELDNER, N.; DENERVAUD-TENDON, V.; HYMAN, D.L.; MAYER, U.; STIERHOF, 

Y.D.; CHORY, J. Rapid, combinatorial analysis of membrane compartments in intact plants 

with a multicolor marker set. The Plant Journal, Oxford, v. 59, n. 1, p. 169-178, 2009. 

 

GHORBANI, S.; FERNANDEZ SALINA, A.; HILSON, P.; BEECKMAN, T. Signaling 

peptides in plants. Cell & Developmental Biology, Oxford, v. 3, n. 2, p. 1-11, 2014.  



126 

 

GOH, T.; UCHIDA, W.; ARAKAWA, S.; ITO, E.; DAINOBU, T.; EBINE, K.; TAKEUCHI, 

M.; SATO, K.; UEDA, T.; NAKANO, A. VPS9a, the common activator for two distinct types 

of Rab5 GTPases, is essential for the development of Arabidopsis thaliana The Plant Cell, 

Rockville, v. 19, n. 11, p. 3504-3515, 2007.  

 

HUANG, C.; CHANG, A. pH-dependent cargo sorting from the Golgi. The Journal of 

Biological Chemistry, Bethesda, v. 286, n. 12, p. 10058-10065, 2011. 

 

HUFFAKER, A.; PEARCE, G.; RYAN, C.A. An endogenous peptide signal in Arabidopsis 

activates components of the innate immune response. Proceedings of the National Academy 

of Sciences of the United States of America, Washington, v. 103, n. 26, p. 10098-10103, 

2006. 

 

HUSS, M.; INGENHORST, G.; KONIG, S.; GASSEL, M.; DROSE, S.; ZEECK, A.; 

ALTENDORF, K.; WIECZOREK, H. Concanamycin A, the specific inhibitor of V-ATPases, 

binds to the V(o) subunit c. The Journal of Biological Chemistry, Baltimore, v. 277, n. 43, 

p. 40544-40548, 2002. 

 

IRANI, N.G.; DI RUBBO, S.; MYLLE, E.; VAN DEN BEGIN, J.; SCHNEIDER-PIZON, J.; 

HNILIKOVA, J.; SISA, M.; BUYST, D.; VILARRASA-BLASI, J.; SZATMARI, A.M.; 

VAN DAMME, D.; MISHEV, K.; CODREANU, M.C.; KOHOUT, L.; STRNAD, M.; 

CANO-DELGADO, A.I.; FRIML, J.; MADDER, A.; RUSSINOVA, E. Fluorescent 

castasterone reveals BRI1 signaling from the plasma membrane. Nature Chemical Biology, 

London, v. 8, n. 6, p. 583-589, 2012. 

 

IRANI, N.G.; RUSSINOVA, E. Receptor endocytosis and signaling in plants. Current 

Opinion in Plant Biology, London, v. 12, n. 6, p 653-659, 2009. 

 

JEONG, Y.M.; MUN, J.H.; LEE, I.; WOO, J.C.; HONG, C.B.; KIM, S.G. Distinct roles of 

the first introns on the expression of Arabidopsis profilin gene family members. Plant 

Physiology, Lancaster, v. 140, n. 1, p. 196-209, 2006. 

 

KANE, P.M. The where, when, and how of organelle acidification by the yeast vacuolar H+-

ATPase. Microbiology and Molecular Biology Reviews, Washington, v. 70, n. 1, p. 177-

191, 2006. 

 

KARIMI, M.; DE MEYER, B.; HILSON, P. Modular cloning in plant cells. Trends in Plant 

Science, Oxford,  v. 10, n. 3, p. 103-105, 2005. 

 

KARIMI, M.; BLEYS, A.; VANDERHAEGHEN, R.; HILSON, P. Building blocks for plant 

gene assembly. Plant Physiology, Lancaster, v. 145, n. 4, p. 1183-1191, 2007. 

 

KIRCHHAUSEN, T. Imaging endocytic clathrin structures in living cells. Trends in cell 

biology, Cambridge, v. 19, n. 11, p. 596-605, 2009. 

 

KITAKURA, S.; VANNESTE, S.; ROBERT, S.; LOFKE, C.; TEICHMANN, T.; TANAKA, 

H.; FRIML, J. Clathrin mediates endocytosis and polar distribution of PIN auxin transporters 

in Arabidopsis. The Plant Cell, Rockville, v. 23, n. 5, p. 1920-1931, 2011. 

 



127 

 

KOOIKER, M.; AIROLDI, C.A.; LOSA, A.; MANZOTTI, P.S.; FINZI, L.; KATER, M.M.; 

COLOMBO, L. Basic pentacysteine1, a GA binding protein that induces conformational 

changes in the regulatory region of the homeotic Arabidopsis gene SEEDSTICK. The Plant 

Cell, Rockville, v. 17, n. 3, p. 722-729, 2005. 

 

KROL, E.; MENTZEL, T.; CHINCHILLA, D.; BOLLER, T.; FELIX, G.; KEMMERLING, 

B.; POSTEL, S.; ARENTS, M.; JEWORUTZKI, E.; AL-RASHEID, K.A.; BECKER, D.; 

HEDRICH, R. Perception of the Arabidopsis danger signal peptide 1 involves the pattern 

recognition receptor AtPEPR1 and its close homologue AtPEPR2. The Journal of Biological 

Chemistry, Baltimore,  v. 285, n. 18, p. 13471-13479, 2010. 

 

LI, R.; LIU, P.; WAN, Y.; CHEN, T.; WANG, Q.; METTBACH, U.; BALUSKA, F.; 

SAMAJ, J.; FANG, X.; LUCAS, W.J.; LIN, J. A membrane microdomain-associated protein, 

Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for 

seedling development. The Plant Cell, Rockville, v. 24, n. 5, p. 2105-2122, 2012. 

 

MA, C.; GUO, J.; KANG, Y.; DOMAN, K.; BRYAN, A.C.; TAX, F.E.; YAMAGUCHI, Y.; 

QI, Z. AtPEPTIDE RECEPTOR2 mediates the AtPEPTIDE1-induced cytosolic Ca(2+) rise, 

which is required for the suppression of Glutamine Dumper gene expression in Arabidopsis 

roots. Journal of Integrative Plant Biology, Beijing, v. 56, n. 7, p. 684-694, 2014. 

 

MARTINIERE, A.; BASSIL, E.; JUBLANC, E.; ALCON, C.; REGUERA, M.; SENTENAC, 

H.; BLUMWALD, E.; PARIS, N. In vivo intracellular pH measurements in tobacco and 

Arabidopsis reveal an unexpected pH gradient in the endomembrane system. The Plant Cell, 

Rockville, v. 25, n. 10, p. 4028-4043, 2013. 

 

MURPHY, A.S.; BANDYOPADHYAY, A.; HOLSTEIN, S.E.; PEER, W.A. Endocytotic 

cycling of PM proteins. Annual Review of Plant Biology, Palo Alto, v. 56, p. 221-251, 2005. 

 

MURPHY, J.E.; PADILLA, B.E.; HASDEMIR, B.; COTTRELL, G.S.; BUNNETT, N.W. 

Endosomes: a legitimate platform for the signaling train Proceedings of the National 

Academy of Sciences of the United States of America, Washington, v. 106, n. 42, p. 17615-

17622, 2009. 

 

OGBOURNE, S.; ANTALIS, T.M. Transcriptional control and the role of silencers in 

transcriptional regulation in eukaryotes. Biochemical Journal, London, v. 331, p. 1-14, 1998. 

 

PESTOVA, T.V.; HELLEN, C.U. Translation elongation after assembly of ribosomes on the 

Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator 

tRNA. Genes & Development, New York, v. 17, n. 2, p. 181-186, 2003. 

 

RAJAGOPALAN, S. Endosomal signaling and a novel pathway defined by the natural killer 

receptor KIR2DL4 (CD158d). Traffic, Hoboken, v. 11, n. 11, p. 1381-1390, 2010. 

 

RANF, S.; ESCHEN-LIPPOLD, L.; PECHER, P.; LEE, J.; SCHEEL, D. Interplay between 

calcium signalling and early signalling elements during defence responses to microbe- or 

damage-associated molecular patterns. The Plant journal, Oxford, v. 68, n. 1, p. 100-113, 

2011. 

 



128 

 

ROBATZEK, S.; CHINCHILLA, D.; BOLLER, T. Ligand-induced endocytosis of the pattern 

recognition receptor FLS2 in Arabidopsis. Genes & development, New York, v. 20, n. 5, p. 

537-42, 2006. 

 

ROBERT, S.; CHARY, S. N.; DRAKAKAKI, G.; LI, S.; YANG, Z.; RAIKHEL, N.V.; 

HICKS, G.R. Endosidin1 defines a compartment involved in endocytosis of the 

brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1 Proceedings of the 

National Academy of Sciences of the United States of America, Washington,  v. 105, n. 24, 

p. 8464-8469, 2008. 

 

ROBINSON, D.G.; JIANG, L.; SCHUMACHER, K. The endosomal system of plants: 

charting new and familiar territories. Plant Physiology, Lancaster, v. 147, n. 4, p. 1482-1492, 

2008. 

 

ROSS, A.; YAMADA, K.; HIRUMA, K.; YAMASHITA-YAMADA, M.; LU, X.; 

TAKANO, Y.; TSUDA, K.; SAIJO, Y. The Arabidopsis PEPR pathway couples local and 

systemic plant immunity. The EMBO Journal, Oxford, v. 33, n. 1, p. 62-75, 2014. 

 

RUSSINOVA, E.; BORST, J.W.; KWAAITAAL, M.; CANO-DELGADO, A.; YIN, Y.; 

CHORY, J.; DE VRIES, S. C. Heterodimerization and endocytosis of Arabidopsis 

brassinosteroid receptors BRI1 and AtSERK3 (BAK1). The Plant Cell, Rockville, v. 16,              

n. 12, p. 3216-3229, 2004. 

 

SCHEURING, D.; VIOTTI, C.; KRUGER, F.; KUNZL, F.; STURM, S.; BUBECK, J.; 

HILLMER, S.; FRIGERIO, L.; ROBINSON, D.G.; PIMPL, P.; SCHUMACHER, K. 

Multivesicular bodies mature from the trans-golgi network/early endosome in Arabidopsis. 

The Plant Cell, Rockville, v. 23, n. 9, p. 3463-3481, 2011. 

 

SCHULZE, B.; MENTZEL, T.; JEHLE, A.K.; MUELLER, K.; BEELER, S.; BOLLER, T.; 

FELIX, G.; CHINCHILLA, D. Rapid heteromerization and phosphorylation of ligand-

activated plant transmembrane receptors and their associated kinase BAK1. The Journal of 

Biological Chemistry, Baltimore, v. 285, n. 13, p. 9444-94451, 2010. 

 

SCHUMACHER, K.; VAFEADOS, D.; MCCARTHY, M.; SZE, H.; WILKINS, T.; CHORY, 

J. The Arabidopsis det3 mutant reveals a central role for the vacuolar H(+)-ATPase in plant 

growth and development. Genes & Development, New York, v. 13, n. 24, p. 3259-3270, 

1999. 

 

SHEN, J.; ZENG, Y.; ZHUANG, X.; SUN, L.; YAO, X.; PIMPL, P.; JIANG, L. Organelle 

pH in the Arabidopsis endomembrane system. Molecular Plant, Saint Paul, v. 6, n. 5,            

p. 1419-1437, 2013. 

 

SINGH, M.K.; KRUGER, F.; BECKMANN, H.; BRUMM, S.; VERMEER, J.E.; MUNNIK, 

T.; MAYER, U.; STIERHOF, Y.D.; GREFEN, C.; SCHUMACHER, K.; JURGENS, G. 

Protein delivery to vacuole requires SAND protein-dependent Rab GTPase conversion for 

MVB-vacuole fusion. Current Biology, London, v. 24, n. 12, p. 1383-1389, 2014. 

 

STIERHOF, Y.D.; EL KASMI, F. Strategies to improve the antigenicity, ultrastructure 

preservation and visibility of trafficking compartments in Arabidopsis tissue. European 

Journal of Cell Biology, Stuttgart, v. 89, n. 2/3, p. 285-297, 2010. 



129 

 

 

TAKANO, J.; MIWA, K.; YUAN, L.; VON WIREN, N.; FUJIWARA, T. Endocytosis and 

degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron 

availability Proceedings of the National Academy of Sciences of the United States of 

America, Washington, v. 102, n. 34, p. 12276-12281, 2005. 

 

TANAKA, H.; KITAKURA, S.; RAKUSOVA, H.; UEMURA, T.; FERARU, M.I.; DE 

RYCKE, R.; ROBERT, S.; KAKIMOTO, T.; FRIML, J. Cell polarity and patterning by PIN 

trafficking through early endosomal compartments in Arabidopsis thaliana. PLoS Genetics, 

San Francisco, v. 9, n. 5, p. e1003540, 2013. 

 

TANG, J.; HAN, Z.; SUN, Y.; ZHANG, H.; GONG, X.; CHAI, J. Structural basis for 

recognition of an endogenous peptide by the plant receptor kinase PEPR1. Cell Research, 

New York, v. 25, n. 1, p. 110-120, 2015. 

 

UEMURA, T.; KIM, H.; SAITO, C.; EBINE, K.; UEDA, T.; SCHULZE-LEFERT, P.; 

NAKANO, A. Qa-SNAREs localized to the trans-Golgi network regulate multiple transport 

pathways and extracellular disease resistance in plants. Proceedings of the National 

Academy of Sciences of the United States of America, Washington, v. 109, n. 5, p. 1784-

1789, 2012. 

 

VIOTTI, C.; BUBECK, J.; STIERHOF, Y.D.; KREBS, M.; LANGHANS, M.; VAN DEN 

BERG, W.; VAN DONGEN, W.; RICHTER, S.; GELDNER, N.; TAKANO, J.; JURGENS, 

G.; DE VRIES, S.C.; ROBINSON, D.G.; SCHUMACHER, K. Endocytic and secretory 

traffic in Arabidopsis merge in the trans-golgi network/early endosome, an independent and 

highly dynamic organelle. The Plant Cell, Rockville, v. 22, n. 4, p. 1344-1357, 2010. 

 

WANG, C.; YAN, X.; CHEN, Q.; JIANG, N.; FU, W.; MA, B.; LIU, J.; LI, C.; 

BEDNAREK, S.Y.; PAN, J. Clathrin light chains regulate clathrin-mediated trafficking, auxin 

signaling, and development in Arabidopsis. The Plant Cell, Rockville, v. 25, n. 2, p. 499-516, 

2013. 

 

WEIJERS, D.; FRANKE-VAN DIJK, M.; VENCKEN, R.J.; QUINT, A.; HOOYKAAS, P.; 

OFFRINGA, R. An Arabidopsis minute-like phenotype caused by a semi-dominant mutation 

in a ribosomal protein S5 gene. Development, Cambridge, v. 128, n. 21, p. 4289-4299, 2001. 

 

WIEFFER, M.; MARITZEN, T.; HAUCKE, V. SnapShot: endocytic trafficking. Cell, 

Cambridge, v. 137, n. 2, p. 382 e1-3, 2009. 

 

WU, G.; LIU, S.; ZHAO, Y.; WANG, W.; KONG, Z.; TANG, D. Enhanced disease 

resistance4 associates with clathrin heavy chain2 and modulates plant immunity by regulating 

relocation of EDR1 in Arabidopsis. The Plant Cell, Rockville, v 27, n. 3, p 857-873, 2015. 

 

YAMAGUCHI, Y.; HUFFAKER, A. Endogenous peptide elicitors in higher plants. Current 

Opinion in Plant Biology, London, v. 14, n. 4, p. 351-357, 2011. 

 

YAMAGUCHI, Y.; HUFFAKER, A.; BRYAN, A.C.; TAX, F.E.; RYAN, C.A. PEPR2 is a 

second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in 

Arabidopsis. The Plant Cell, Rockville, v. 22, n. 2, p. 508-522, 2010. 

 



130 

 

YAMAGUCHI, Y.; PEARCE, G.; RYAN, C.A. The cell surface leucine-rich repeat receptor 

for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco 

cells Proceedings of the National Academy of Sciences of the United States of America, 

Washington, v. 103, n. 26, p. 10104-10109, 2006. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



131 

 

4 BAK1 MODULATES ENDOCYTOSIS AND SIGNALING OF THE PLANT 

ELICITOR PEPTIDE AtPep1  

Fausto Andres Ortiz-Morea
1,2,3

, Yu Luo
1,2

, Keini Dressano
3
, Daniel Scherer de Moura

3
 and 

Eugenia Russinova
1,2

 

1
Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium 

2
Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 

927, 9052 Gent, Belgium 

3
Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola 

Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo USP, Piracicaba, SP 

13418-900, Brazil. 

Abstract 

In Arabidopsis, the endogenous elicitor peptide AtPep1 is known to trigger innate 

immune responses after having been recognized by the plasma membrane receptor kinases 

(RKs) PEPR1 and PEPR2. Once the AtPep1-PEPRs complexes are formed, they are removed 

from the plasma membrane by endocytosis. Additionally, the AtPep1 receptors are predicted 

to complex with the regulatory RK BRASSINOSTEROID INSENSITIVE1–ASSOCIATED 

KINASE1 (BAK1), but the role of this interaction during AtPep1 endocytosis remains to be 

clarified. Here, we first confirmed by co-immunoprecipitation that both PEPRs and BAK1 

interact in a ligand-dependent manner in planta. Next, we tested the AtPep1-induced early and 

late responses and through life-cell imaging, we monitored the endocytosis of a bioactive 

fluorescently labeled AtPep1 in different BAK1 genotypes. In the null bak1-4 mutants, both 

the AtPep1 responses and endocytosis were not inhibited, whereas some responses were 

enhanced. The opposite was observed in the hypoactive kinase bak1-5, in which the AtPep1 

endocytosis and signaling were largely compromised, and in a transgenic BAK1-

overexpressing line, in which these responses were abolished. Altogether, our results indicate 

that BAK1 plays an essential role in AtPep1 signaling and endocytosis, but that, when absent, 

it might be replaced by homologous SOMATIC EMBRYOGENESIS RECEPTOR-LIKE 

KINASE (SERK) proteins that could have additional functions during the AtPep1 signaling. 

Furthermore, phosphorylation events after the formation of PEPR-BAK1 (or other SERK) 

complexes, seem to dictate the molecular bases of AtPep1 internalization and signaling. 

Finally, we also propose that BAK1 might be required for attenuation of the AtPep1 

responses. 
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4.1 Introduction  

Plants have evolved sophisticated communication networks to monitor environmental 

changes, including pathogenic attacks, in which plasma membrane receptors are one of the 

main components of these sensing systems that play a critical role in translation of 

extracellular signals into appropriate intracellular responses. Activation of plant innate 

immunity responses is initiated through the perception by plasma membrane-localized 

receptors, designated pattern recognition receptors (PRRs) of microbe-associated molecular 

patterns (MAMPs) from invading organisms (ZIPFEL, 2014). The receptor kinase 

FLAGELLIN SENSING2 (FLS2) and the ELONGATION FACTOR Tu (EF-Tu) receptor 

(EFR) are PRRs that have been amply studied in Arabidopsis, which after recognition of the 

respective MAMPs, a conserved peptide domain of the bacterial flagellin (flg22) and EF-Tu 

(elf18), activate PAMP-triggered immunity (PTI) (GOMEZ-GOMEZ; BOLLER, 2000; 

ZIPFEL et al., 2006). In addition to MAMPs, PTI responses are also induced after specific 

PRRs that have recognized endogenous host-derived damage-associated molecular patterns 

(DAMPs), including signaling peptides released upon biotic stress (HOU et al., 2014; 

HUFFAKER; PEARCE; RYAN, 2006; YAMAGUCHI; HUFFAKER, 2011).  

The plant elicitor peptide AtPep1 is a well-characterized signaling peptide involved 

with immunity responses. AtPep1 is a 23-amino-acid peptide isolated from Arabidopsis leaves 

by means of an elicitor-induced alkalinization activity assay (HUFFAKER; PEARCE; 

RYAN, 2006). AtPep1 belongs to a small family of eight homologous members that are 

derived from the C-terminal portion of the precursor proteins PROPEP1 to PROPEP8 

(BARTELS et al., 2013; HUFFAKER; PEARCE; RYAN, 2006). PROPEPs are believed to be 

cleaved releasing the active Peps into the apoplast under biotic stress, which in turn, binds 

with high affinity a RK PRR at the plasma membrane, PEPR (BARTELS; BOLLER, 2015). 

In Arabidopsis the existence of two PEPR has been reported, and interestingly whereas 

PEPR1 is able to detect all eight AtPeps, PEPR2 detects only AtPep1 and AtPep2 (BARTELS 

et al., 2013; YAMAGUCHI et al., 2010). Recently, the crystal structure of the leucine-rich 

repeat (LRR) domain of PEPR1 (PEPR1LRR) has revealed that AtPep1 adopts a fully 

extended conformation and binds to the inner surface of the superhelical PEPR1LRR (TANG 

et al., 2015). After AtPep1 has been recognized by its receptors, downstream early and late 

PTI responses are initiated. One of the earliest signaling events of PTI is the activation of 

mitogen-activated protein kinases (MAPKs) that is induced by AtPep1 in Arabidopsis, 
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triggering phosphorylation of MPK3 and MPK6 within the first minutes after the AtPep1 

treatment, thus providing a good read-out for immediate AtPep1 responses (RANF et al., 

2011). Additionally, AtPep1 leads to gene expression reprogramming by increasing the 

transcript levels of the plant DEFENSIN (PDF1.2) gene and the WRKY transcription factor 

genes after AtPep1 elicitation (HUFFAKER; PEARCE; RYAN, 2006; YAMAGUCHI et al., 

2010). The AtPep1-induced root growth arrest is also a mark of the activity related to late 

responses of this peptide (KROL et al., 2010; MA et al., 2014). By using bioactive 

fluorescently labeled AtPep1 we characterized the subcellular dynamics of AtPep1-PEPRs 

complexes in living cell (Chapter 3, this thesis). We reported that the AtPep1-PEPRs ligand-

receptor pairs are internalized via clathrin-mediated endocytosis (CME) and trafficked to the 

lytic vacuole, passing through early and late endosomal compartments. However, the 

interplay between AtPep1 endocytosis and AtPep1-signalings is unclear. It is of great interest 

to elucidate whether these processes can regulate each other. 

PEPRs hetero-oligomerize in a ligand-dependent manner with another RK, BAK1. 

This is based on an in vivo phospholabeling assay in Arabidopsis cell culture that showed the 

formation of a heterocomplex consisting of de novo phosphorylated BAK1 and a protein 

matching the size of PEPRs, triggered by AtPep1 treatment (SCHULZE et al., 2010). 

Recently this interaction was further supported by biochemical assays showing that AtPep1 is 

capable of inducing heterodimerization of extracellular domains of PEPRs and BAK1 (TANG 

et al., 2015). BAK1 has been implicated in regulating multiple independent signaling 

pathways including growth, cell death control and innate immunity, by forming ligand-

dependent complexes with several plasma membrane receptors (SCHULZE et al., 2010; 

SCHWESSINGER et al., 2011). BAK1 is also named SOMATIC EMBRYOGENESIS-

RELATED KINASE 3 (SERK3) and is a member of the SERK family (HECHT et al., 2001) 

that contains five members with potentially redundant functions as interaction partners (AAN 

DEN TOORN; ALBRECHT; DE VRIES, 2015). The brassinosteroid (BR)-receptor BR 

INSENSITIVE1 (BRI1) has been reported to interact with four out of five members of the 

SERK family that might play redundant roles in BR signaling (GOU et al., 2012; HE et al., 

2007; LI et al., 2002). FLS2 and EFR receptors were also found to interact with different 

SERKs including the closest BAK1 homolog SERK4/BKK1 (hereafter referred as BKK1) 

(ROUX et al., 2011) as seemingly also the case for PEPRs, because minor AtPep1 signaling 

defects when assessed intracellular Ca
2+ 

elevation, MAPK activation, root growth inhibition 

and ROS production are reported in the null bak1-4 mutant (HOU et al., 2014; RANF et al., 

2011). Besides bak1-4 other bak1 mutants have been used to study the role of this protein. 
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Interestingly a novel mutant bak1-5 that harbors a single amino acid substitution (C408Y) in 

the kinase domain that leads to reduced phosphorylation status, was described as severely 

impaired for PTI responses, but not impaired in BR responses or cell death control 

(SCHWESSINGER et al., 2011). Phosphorylation events are the earliest response after 

ligand-induced complexes formation, and they are proposed to modulate the downstream 

responses of BAK1 and its interacting partners (SCHULZE et al., 2010; SCHWESSINGER et 

al., 2011). Strongest negative effect in PTI was found in the double mutant bak1-5 bkk1-1, 

indicating that BKK1 is also required for innate immunity (SCHWESSINGER et al., 2011). 

Additionally, BAK1 can also associate with member of the BAK1-interacting receptors 

(BIR)-RKs family, predicted to be very similar in structure to BAK1 (GAO et al., 2009; 

HALTER, et al., 2014b). Interaction between BIR2 and BAK1 was recently found to occur 

constitutively in the absence of MAMP perception preventing interaction with the ligand-

binding FLS2; however perception of MAMPs leads to BIR2 release from the BAK1 complex 

and enables the recruitment of BAK1 into FLS2 complex. These findings imply that BIR2 act 

is a negative regulator of PTI by limiting BAK1-receptor complex formation in the absence of 

ligands (HALTER, et al., 2014a, 2014b).  

In this work, we used co-immunoprecipitation experiments to validate that both 

PEPR1 and PEPR2 interact with BAK1 in a ligand-dependent manner in planta. Next, we 

explored different BAK1 genotypes to gain further insights into the role of BAK1 in AtPep1-

PEPR endocytosis and signaling. We demonstrated that in absence of BAK1 endocytosis and 

signaling are not compromised due to a possibly redundancy of the SERK proteins. In 

contrast, these processes were largely affected in the bak1-5 mutant that presents reduced 

phosphorylation status, implying that phosphorylation events into the PEPRs-BAK1 complex 

can regulate AtPep1 endocytosis and signaling. Finally our findings also suggest a negative 

effect of BAK1 on AtPep1 responses, since first, BAK1 was induced after AtPep1 elicitation, 

second, some AtPep1 responses were enhanced in the null bak1-4 mutant, and third, AtPep1 

endocytosis and signaling was totally inhibited in a transgenic line overexpressing BAK1. 

4.2 Results  

4.2.1 BAK1 is an active component of the AtPep1-mediated signaling 

Recently the crystal structure of the extracellular PEPR1LRR in complex with AtPep1 

was elucidated, and in combination with biochemical assays was shown that AtPep1 is 

capable of inducing PEPR1LRRBAK1LRR heterodimerization (TANG et al., 2015).The 

capacity of AtPep1 to induce the formation of a heteromeric complexes consisting of de novo 
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phosphorylated BAK1 and a protein matching the size of PEPR1 was previously shown in 

Arabidopsis cell cultures (SCHULZE et al., 2010). To validate this interaction in planta we 

used pepr1pepr2 mutant plants complemented by the stable expression of PEPR1-GFP and 

PEPR2-GFP with the RPS5A promoter (Chapter 3, this thesis) to carry on co-

immunoprecipitation (co-IP) experiments. Following IP with GFP-trap beads and detection 

with anti-BAK1 antibodies, we observed that BAK1 was recruited in a complex with PEPR1 

only after plants were stimulated with AtPep1 (20 nM, 5 min), supporting that the PEPRs 

interact with BAK1 in a ligand-dependent manner (Figure 1A). Interestingly, the amount of 

BAK1 present in the PEPR2-GFP complex after the AtPep1 treatment seemed lower than that 

in PEPR1-GFP. Besides forming a ligand-induced complex with PEPRs, BAK1 transcript 

accumulation was found to increase when 6-day-old Arabidopsis seedlings were treated with 

AtPep1 (20 nM, 60 min) (Figure 1B). Together, these results demonstrated that BAK1 is an 

active component of the AtPep1-mediated signaling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – BAK1 is an active component of AtPep1-mediated signaling. (A) . (A) Co-immunoprecipitation (co-

IP) of BAK1 with PEPR1-GFP or PEPR2-GFP complementing pepr1pepr2 mutant, treated (+) or 

not (-) with 20 nM of AtPep1 for 5 min, respectively. Total protein extracts (input) was 

immunoprecipitated with anti-GFP immunoaffinity beads followed by immunoblot analysis with 

anti-BAK1 and anti-GFP antibodies to detect BAK1 and PEPR1-GFP and PEPR2-GFP, respectively. 

(B) BAK1 gene expression in 6-day-old Arabidopsis seedlings (Col-0) 60 min after treatment with 

AtPep1 (20 nM, for 5 min (+) or not (-) followed by a wash). Expression levels were measured by 

quantitative RT-PCR analysis, normalized to the reference gene glyceraldehyde-3-phosphate 
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dehydrogenase (GAPDH, At1g13440), and plotted relative to expression levels of untreated plants. 

Results are average of three biological replicates. Error bars indicate S.D. 

4.2.2 AtPep1 endocytosis and signaling are not largely impaired in the absence of BAK1 

Previously, by using a bioactive fluorescently labeled AtPep1, designated TAMRA-

AtPep1, we showed that AtPep1 undergoes receptor-mediated endocytosis (Chapter 3, this 

thesis). Therefore, we investigated whether BAK1 plays a regulatory role during AtPep1 

endocytosis. For this, we evaluated the uptake of TAMRA-AtPep1 in root epidermal meristem 

cells of the null bak1-4 mutant. Five-day-old seedlings were pulsed with 100 nM of the 

fluorescent probe for 10 sec, washed three times with liquid medium to remove the excess 

peptide (the time after the wash hereafter is referred as a chase), and imaged after 40-min 

chase. The intracellular accumulation of TAMRA-AtPep1 in bak1-4 was similar to that of the 

wild type (Figure 2A and 2B). In addition, we also evaluated the TAMRA-AtPep1 uptake in 

the null mutant of BKK1, that has been proposed to act redundantly to BAK1 in PTI 

responses (ROUX et al., 2011), but no defects in the peptide internalization were detected. 

(Supplemental Figures 1A and 1B). These results suggest that BAK1 and BKK1 are either not 

essential for the AtPep1 endocytosis or their function is redundant with other SERK 

homologs. BAK1 and BKK1 are members of the SERK protein family of which the members 

are often functionally redundant (ALBRECHT et al., 2008; ROUX et al., 2011), possibly the 

reason for the absence of observable defects during the TAMRA-AtPep1 internalization. To 

overcome the functional redundancy of SERKs genes, we examined the TAMRA-AtPep1 

internalization in plants lacking altogether BAK1, BKK1, and SERK1. For this assay, we 

used 10-day-old serk1-8 bak1-4 bkk1-1 triple mutant plants selected from a segregation 

population of the described triple SERK mutant serk1-8 bak1-4 bkk1-1 --/+-/-- (Supplemental 

Figure 1C) that was heterozygous for bak1 and homozygous for the two other genes because 

of the cell death phenotypes (GOU et al., 2012). The uptake of the labeled TAMRA-AtPep1 

was quantified in serk1-8 bak1-4 bkk1-1 seedlings after 40-min chase, and found to be 

slightly but significantly lower than that in the Col-0 wild type (P values (t -test), * <0.05) 

(Supplemental Figures 1A and 1B). We also tested the endocytosis of TAMRA-AtPep1 in the 

null mutant of the receptor-like cytoplasmic kinase BIK1 (Botrytis-induced kinase 1), which 

had been shown to interact with PEPR1 and to modulate AtPep1 responses (LIU et al., 2013). 

Nonetheless, no defects in the internalization were observed (Figure Supplemental 1A and 

1B). 
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To clarify the importance of BAK1 for the AtPep1 responses, we evaluated early and 

late responses triggered by this peptide in bak1-4 null mutant. First, we examined the early 

responses by assessing the gene expression of the PDF1.2 gene and of the WRKY33 

transcription factor that are induced upon AtPep1 treatment and the MAPK phosphorylation 

(HUFFAKER; PEARCE; RYAN, 2006; RANF et al., 2011; YAMAGUCHI et al., 2010). For 

all analysis 6-day-old Arabidopsis seedlings were treated with 20 nM of AtPep1 for 5 min, 

washed with ½ MS medium and maintained in the same medium until samples were 

collected. These experimental conditions were selected based on observations that AtPep1 

bound its receptors very fast (Chapter 3 of this thesis), the concentration and time of 

elicitation were sufficient to trigger full MAPK activation (Supplemental Figure 2) and to 

avoid undesirable effects of peptide overexposure. Surprisingly, the expression of the PDF1.2 

gene and WRKY33 transcription factor after AtPep1 elicitation was not impaired in bak1-4 

(Figures 2C and 2D), being even slightly higher than that in Col-0 after 60 min for both genes 

and after 180 min for PDF1.2 only. By contrast, MAPK activation was faintly reduced in 

bak1-4 in time 0 (0 min after AtPep1 elicitation [20 nM, 5 min]) (Figure 2E; Supplemental 

Figure 3), which was consistent with previous observations that reported a reduction of the 

MAPK activation in bak1-4 during the first minutes after AtPep1 treatment (RANF et al., 

2011). 

Next, we analyzed the impact of bak1-4 on the AtPep1-induced root growth arrest at 

different concentrations (Figure 2F; Supplemental Figure 4). Unexpectedly, AtPep1 had a 

stronger effect on the root growth inhibition in bak1-4 than in Col-0. These findings imply 

that BAK1 is either not essential for AtPep1 responses or its function is redundant with other 

SERK proteins, similar to its effect on AtPep1 endocytosis. Moreover, enhanced expression of 

AtPep1-responsives genes and root growth inhibition indicate a possible role for BAK1 in 

attenuating AtPep1 responses.  
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Figure 2 – Endocytosis and signaling of AtPep1 are not largely compromised in the null bak1-4 mutant. (A) 

TAMRA-AtPep1 uptake in Col-0 and bak1-4. Seedlings were treated with 100 nM of TAMRA-AtPep1 

for 10 sec and washed. Root epidermal meristem cells were imaged after a chase of 40 min. (B) 

Quantification of TAMRA-AtPep1 internalization of images in A (n = 44–51 cells). Graph presents the 

ratio between the plasma membrane signal intensity divided by the intracellular signal intensity. Gene 

expression studies of PDF1.2 (C) and WRKY33 (D) in Col-0 and bak1-4 seedlings treated with AtPep1 

(20 nM, 5 min, followed by a wash and maintained in liquid ½ medium for the indicated time). (E) 

MAPK activation monitored in 6-day-old seedlings of Col-0 (top) and bak1-4 (bottom) after 0, 15, and 

30 min of AtPep1 elicitation (20 nM, 5 min). MAPK activation level in plants not elicited is showed as 

control. MAPK phosphorylation was detected by immunoblotting with anti-phospho-p44/p42-MAPK 

antibody. The immunoblot with anti-tubulin shows protein loading. Individual MAPKs were identified 

by molecular mass and indicated by arrows. (F) Root growth inhibition of Col-0 and bak1-4 at 

different concentrations of AtPep1 (n=12 plants). Root growth is presented relative to untreated 

control. Error bars indicate S.D. (E – F) these experiments were repeated at least twice with similar 

results 
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4.2.3 Defects in BAK1 phosphorylation and BAK1 overexpression affect the AtPep1 

internalization 

We showed that the absence of BAK1 did not compromise endocytosis of TAMRA-

AtPep1, but that the uptake of this fluorescent probe was slightly reduced in the triple serk1-8 

bak1-4 bkk1-1 mutant, suggesting that other members of the SERK family or other RK are 

functionally redundant with BAK1 thus, making it difficult to study the role of BAK1 alone in 

the AtPep1 internalization. Recently, a novel semi-dominant BAK1mutant, bak1-5, has been 

identified. In bak1-5 a point mutation results in a hypoactive kinase that strongly impairs 

plant immune responses, but displays a normal developmental growth and is not impaired in 

cell death control (SCHWESSINGER et al., 2011). To gain further insights into the role of 

BAK1 during the AtPep1 internalization, we assessed the uptake of TAMRA-AtPep1 in bak1-

5 and in the double bak1-5 bkk1-1 mutant (Figures 3A and 3B). Interestingly, after treatment 

with TAMRA-AtPep1 (100 nM, 10-sec pulse, three washouts, 40 min chase) most of the 

fluorescent signal remained in the plasma membrane and intracellular vesicles occurred rarely 

in both mutants. This genotype implies that BAK1 regulates the AtPep1 internalization and as 

bak1-5 has altered phosphorylation patterns (SCHWESSINGER et al., 2011; WANG et al., 

2014) this process depends probably on phosphorylation events occurring after PEPR1-BAK1 

heterodimerization upon AtPep1 treatment. 

Next, we investigated the effect of BAK1 overexpression on the AtPep1 endocytosis. 

For that we used seedlings of the previously described transgenic BAK1-overexpressing line 

under its native promoter in the bak1-4 mutant (bak1-4/proBAK1:BAK1) (NTOUKAKIS et 

al., 2011; SCHWESSINGER et al., 2011). The BAK1 overexpression in this genotype was 

also confirmed by quantitative PCR analysis (Figure 3C). When bak1-4/proBAK1:BAK1 

seedlings were treated with TAMRA-AtPep1 (100 nM, 10-sec pulse, three washouts) and 

imaged them after a 40-min chase, surprisingly, endocytosis of TAMRA-AtPep1 was blocked 

similarly as seen in the bak1-5 and bak1-5 bkk-1 mutants (Figures 3A and 3B). Hence, we 

examined whether the negative effect observed in bak1-5 during the AtPep1 internalization 

was also caused by BAK1 overexpression. However, the basal BAK1-5 expression level was 

similar to that of Col-0 (Figure 3C). To investigate whether the TAMRA-AtPep1 endocytosis 

was blocked in a specific manner in this genotype, we evaluated the uptake of the endocytic 

tracer FM4-64 in all three backgrounds (Supplemental Figure 5). As expected, FM4-64 

endocytosis was not inhibited, confirming that the TAMRA-AtPep1 endocytosis was blocked 

specifically. 
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Figure 3 – Endocytosis of TAMRA-AtPep1 is impaired in bak1-5 and bak1-5 bkk1-1 Arabidopsis mutants, and 

in bak1-4/proBAK1:BAK1overexpression line. (A) TAMRA-AtPep1 uptake in bak1-5, bak1-5 bkk1-1, 

and bak1-4/proBAK1:BAK1. Five-day-old seedlings were treated with 100 nM of TAMRA-AtPep1 for 

10 sec and washed. Root epidermal meristem cells imaged after 40 min. Scale bar, 10 µm. (B) 

Quantification of TAMRA-AtPep1 internalization of images in (A). Graph represents the ratio between 

the plasma membrane signal intensity divided by the intracellular signal intensity. (n=45–49 cells). P 

values (t-test), *<0.001 relative to Col-0. (C) Expression level of BAK1 in 6-day-old Col-0, bak1-5, and 

bak1-4/proBAK1:BAK14 Arabidopsis seedlings. Gene expression was measured by quantitative PCR 

analysis, normalized to the reference gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 

At1g13440), and plotted relative to the Col-0 expression level. Results are average of three biological 

replicates. Error bars indicate S.D.  

 

4.2.4 The Arabidopsis bak1-5 mutant and BAK1 overexpressing plants are strongly impaired 

in AtPep1 signaling 

As bak1-5 mutant and bak1-4/proBAK1:BAK1 overexpression were able to block 

endocytosis of AtPep1, we examined whether the AtPep1 responses are also compromised in 

these backgrounds. Previously it has been shown that AtPep1-induced reactive oxygen species 

(ROS) burst and ethylene production are attenuated in bak1-5 (ROUX et al., 2011). We used 

qRT-PCR analysis to assess the expression levels of the AtPep1-responsive genes WRKY33 

and BAK1 bak1-5 mutant after AtPep1 elicitation (20 nM, 5 min, followed by a wash and 

incubation in liquid ½ MS medium for the indicated time) in (Figures 4A-4C). For the wild 
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type, it was already possible to detect induction of both gene expressions at 30 min after 

AtPep1 removal and the expression gradually increased until 180 min but after 240 min the 

BAK1 and WRKY33 mRNA levels decreased (Figure 4A). In bak1-5, a slight induction was 

observed 30 to 60 min after the AtPep1 removal, but the expression levels of BAK1 and 

WRKY33 were not induced at the subsequent time points (Figure 4B), as seen for Col-0 

(Figure 4A). For bak1-4/proBAK1:BAK1, the transcript levels of both genes did not change 

at any time point evaluated after the AtPep1 removal (Figure 4C). Similarly to the expression 

levels of the AtPep1-responsive genes, MAPK activation was clearly reduced in bak1-5 and 

almost abolished in bak1-4/proBAK1:BAK1 after AtPep1 washout (Figure 4D). Finally, we 

examined the effect of different AtPep1 concentrations on the root growth inhibition, which is 

a late response ((RANF et al., 2011). bak1-5 was less sensitive than the wild type and bak1-

4/proBAK1:BAK1 was totally insensitive to AtPep1 in this assay (Figure 4E; Supplemental 

Figure 4). These finding showed induction of AtPep1-responsive genes, MAPK 

phosphorylation and inhibition of root growth upon AtPep1 elicitation are also compromised 

in bak1-5 mutant. Furthermore, the increased levels of BAK1 expression led to completely 

AtPep1 insensitive plants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Arabidopsis bak1-5 mutant and bak1-4/proBAK1:BAK1overexpression line are strongly impaired in 

AtPep1-mediated signaling. BAK1 and WRKY33 gene expression in 6-day-old Col-0 (A), bak1-5 (B), 

and bak1-4/proBAK1:BAK1 (C) Arabidopsis seedlings after AtPep1 elicitation (20 nM, 5 min, 

followed by a wash and maintained in liquid ½ medium for the indicated time). Results are average of 

three biological replicates. (D) MAPK activation monitored in 6-day-old seedlings of Col-0 (top), 

bak1-5 (middle), and bak1-4/proBAK1:BAK1 (bottom) after 0, 15, and 30 min of AtPep1 elicitation. 

MAPK activation level in plants not elicited is shown as control. MAPK phosphorylation was 

identified by immunoblotting with anti-phospho-p44/p42-MAPK antibody. The immunoblot with 

anti-tubulin shows protein loading. Individual MAPKs were identified by molecular mass and 

indicated by arrows. (D) Root growth inhibition of Col-0, bak1-5, and bak1-4/proBAK1:BAK1at 

different concentrations of AtPep1 (n=12 plants). Root growth is presented relative to untreated 

control. Error bars indicate S.D. These experiments were repeated at least twice with similar results 
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4.2.5 BIR2, a negative regulator of BAK1, does not affect the AtPep1 endocytosis 

Recently, BIR2 has been reported to negatively control BAK1 in his plant immunity 

functions by regulating BAK1 receptor complex formation (HALTER et al., 2014a). (BAK1 

has been proposed to constitutively interact with BIR2 in the absence of ligands, but in their 

presence to be released and recruited into ligand-binding receptor complexes, like the one 

formed by PEPRs in the presence of AtPep1 (HALTER, et al., 2014b). This feature and our 

observation that the AtPep1 internalization is blocked when BAK1 is overexpressed led us to 

hypothesize that the absence of BIR2 will make more BAK1 available to interact with PEPRs, 

causing a negative effect during the AtPep1 endocytosis similarly to BAK1 overexpression. 

Therefore, we evaluated the TAMRA-AtPep1 uptake in the bir2-1 mutant, the amiRNA-BIR2 

transgenic line with reduced levels of BIR2 protein and in BIR2-overexpressing line 

(HALTER, et al., 2014a) (Figure 5A). After treatment with TAMRA-AtPep1 (100 nM, 10-sec 

pulse, 1-2 min of washout, 40 min chase) none of the mutants tested showed any defects in 

the internalization of the fluorescent probe, implying that the negative regulation of BAK1 by 

BIR2 does not affect the endocytosis of AtPep1. 

 

 

 

 

 

 

 

 

 

Figure 5 – Endocytosis of TAMRA-AtPep1 is not affected in different BIR2 genotypes. A) Uptake of TAMRA-

AtPep1 in bir2-1, amiRNA-BIR2, and 35S-BIR2-YFP. Five-day-old seedlings were treated with 100 

nM of TAMRA-AtPep1 for 10 sec and washed. Root epidermal meristem cells imaged after 40 min. 

Scale bar, 10 µm. (B) Quantification of TAMRA-AtPep1 internalization of images in (A). Graph 

represents the ratio between the plasma membrane signal intensity divided by the intracellular signal 

intensity (n=43–52 cells). Error bars indicate S.D. 
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4.3 Discussion  

4.3.1 BAK1 interacted in a ligand-dependent manner with both AtPep1 receptors  

BAK1 is a member of the SERK protein family known to form receptor complexes 

with several ligand-binding LRR RK in the plasma membrane, including BRI1, FLS2, and 

EFR that regulate growth responses, innate immunity, and cell death (CHINCHILLA et al., 

2006; LI et al., 2002; ROUX et al., 2011). The AtPep1 LRR RKs, PEPR1 and PEPR2 that 

modulate innate immunity responses also interacted with BAK1 in a ligand-dependent 

manner. Indeed, previous studies have shown that cytoplasmic and extracellular domains of 

the AtPep1 receptors and BAK1 interact (POSTEL et al., 2010; TANG et al., 2015). 

Furthermore the formation of a heteromeric complexes consisting of de novo phosphorylated 

BAK1 and a protein matching the size of PEPR1 in Arabidopsis cell cultures after AtPep1 

application was also reported (SCHULZE et al., 2010). In this study, by means of co-IP in 

Arabidopsis, we confirmed that both AtPep1 receptors associated with BAK1 after AtPep1 

elicitation in planta, similarly to the FLS2-BAK1 and EFR-BAK1 interactions triggered by 

flg22 and elf18, respectively (ROUX et al., 2011; SCHWESSINGER et al., 2011). Thus, our 

data supported the proposed role of BAK1 as a multifunctional adaptor molecule required for 

the proper functionality of numerous RKs. Although the co-IP assay is not quantitative, we 

observed an enhanced interaction between BAK1 and PEPR1 in a stimulus-dependent 

manner, suggesting that affinity for BAK1 is higher in PEPR1 than in PEPR2. If this is the 

case, we can hypothesize that PEPR2 associates with other SERK members. Further studies 

are needed to clarify the importance of different PEPR1/PPER2- SERK protein complexes for 

AtPep1-induced signaling. 

 

4.3.2 The absence of BAK1 does not affect the AtPep1 internalization and does not largely 

compromise AtPep1 responses 

As BAK1 interacted with PEPR1 and PEPR2 in a ligand-dependent manner, we asked 

whether BAK1 is required for AtPep1 internalization. However, by using the null bak1-4 

mutant, we were unable to detect any defects during the internalization of the fluorescently 

labeled AtPep1 suggesting that AtPep1 undergoes endocytosis in a BAK1-independent 

manner. Nevertheless, because BAK1 is one of the five members of the SERK protein family, 

additional SERKs might associate with PEPRs in vivo. In that context, other SERK proteins 

would replace BAK1 in the interaction with PEPRs to allow the plant to carry out the AtPep1-
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mediated responses and endocytosis in a proper manner. As support for this assumption we 

found that internalization of TAMRA-AtPep1 is slightly decreased in the triple serk1-8 bak1-

4/bkk1-1 mutant. A possible redundancy between different SERK proteins in the interaction 

with PEPRs can be responsible for the observed AtPep1 responses in bak1-4. When this 

mutant was stimulated with AtPep1, the MAPK activation was only slightly lower than that of 

Col-0, which is in agreement with previous studies in which Ca
2+ 

elevation, ROS production, 

and also MAPK activation were not largely impaired in bak1-4 (RANF et al., 2011; ROUX et 

al., 2011; SCHULZE et al., 2010). In contrast to the MAPK activation, the expression of 

AtPep1-responsive genes and root growth inhibition after AtPep1 application were enhanced 

in bak1-4 as compared with the wild type, implying that BAK1 can also be required for the 

subsequent attenuation of the AtPep1 responses. The enhancement of these AtPep1responses 

could also be due to the incomplete BR perception due to lack of BRI1 co-receptor BAK1. It 

has been proposed that BR-mediated growth directly antagonizes PTI-responses 

(ALBRECHT et al., 2012), thus might be that an impaired BR-signaling in bak1-4 renders 

this genotype hypersensitive to root growth inhibition and activation of AtPep1-responsive 

genes. 

BAK1 has been reported to differentially contribute to responses induced by different 

MAMPs. The flg22-induced early and late responses are both altered in bak1-4, whereas early 

but not late signaling, responses are compromised by elf18 (CHINCHILLA et al., 2007; 

RANF et al., 2011; SCHWESSINGER et al., 2011). These dissimilarities between signaling 

responses induced by different elicitor molecules in the bak1-4 mutant might reflect different 

interactions between the ligand-binding LRR RKs and the SERK proteins. Redundancy of 

SERK proteins has already been reported for BRI1 that, besides forming a ligand-induced 

complex with BAK1, can also complex with SERK1 and BKK1 (HE et al., 2007; KARLOVA 

et al., 2006; LI et al., 2002). Similar results have been obtained for the FLS2 and EFR 

receptors upon elicitation with flg22 and elf18, respectively, revealing that FLS2 

preferentially interacts with BAK1 and potentially with SERK2, whereas EFR strongly 

interacts with SERK1, SERK2, BAK1, and BKK1 (ROUX et al., 2011). In view of these 

reports and our findings, we propose that BAK1 is not a limiting component of AtPep1 

signaling and endocytosis and those additional SERK proteins are most likely part of the 

PEPR1 and PEPR2 complexes. 
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4.3.3 AtPep1 endocytosis and signaling depend on BAK1 activation 

Because elucidation of the role of BAK1 during AtPep1 endocytosis and signaling is 

hampered by the SERK redundancy we examined AtPep1 internalization and AtPep1 

responses in the bak1-5 mutant. The full-length mutant BAK1-5 transcripts accumulated in 

bak1-5 at levels similar to those of the wild type, which is in agreement with previous reports 

(SCHWESSINGER et al., 2011). Thus, we expected that in the bak1-5 mutant BAK1-5 

protein would not be replaced by other SERKs . Furthermore, bak1-5 is impaired exclusively 

in plant immune responses, displaying a wild type-like BR signaling capacity and normal 

developmental growth (SCHWESSINGER et al., 2011). This observation allowed us to obtain 

more accurate results than those with the triple serk1-8 bak1-4 bkk1-1 mutant, of which the 

seedling present lethality phenotypes and misshapen root meristem tip cells approximately 2 

weeks after germination (GOU et al., 2012). 

Interestingly, in contrast to bak1-4, the endocytosis of TAMRA-AtPep1 was 

undoubtedly blocked in bak1-5 seedlings. As bak1-5 is a hypoactive kinase with a 

corresponding C408Y amino acid mutation located just before the catalytic loop of the kinase 

domain (SCHWESSINGER et al., 2011), this phenotype could be attributed to defects in the 

PEPR-BAK1 complex activation by phosphorylation. Different studies have revealed that 

after the LRRRKs-BAK1 complexes formation in a ligand-dependent manner subsequent 

phosphorylation events occurred, which are important to regulate the multiple signaling 

pathways where BAK1 is involved (SCHULZE et al., 2010; SCHWESSINGER et al., 2015; 

WANG et al., 2014). Interestingly, in the animal field phosphorylation has been shown to 

regulate CME of many plasma membrane cargoes including receptors (DELOM; FESSART, 

2011; SLEPNEV et al., 1998). Therefore, it is tempting to speculate that phosphorylation 

events of PEPR-BAK1 (or other SERK) complexes provide the mechanism to recruit the 

endocytosis machinery responsible for the internalization of AtPep1-PEPRs. Further work 

would involve the investigation of the effects of different phosphorylation events on BAK1 or 

PEPRs on AtPep1-PEPRs endocytosis. 

Another possible explanation for the blocking of the AtPep1 endocytosis is the 

possibility that BAK1-5 mutation is somehow over stabilizing the complex with PEPRs in the 

plasma membrane even without AtPep1 elicitation and preventing the internalization of the 

AtPep1-PEPRs complexes. This assumption is based on a report in which BAK1-5 displayed 

interaction with FLS2 and EFR in a ligand-independent manner, and that the amount of 

BAK1-5 in complex with these receptors after flg22 or elf18 treatment was greater than in the 

case of BAK1 (SCHWESSINGER et al., 2011). However, it remains to be clarified whether 
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BAK1-5 also constitutively interacts with PEPRs. As the interaction between BRI1 and 

BAK1-5 is also enhanced both dependent and independent of brassinolide (the most bioactive 

BR) whereas the BR signaling of bak1-5 is normal (SCHWESSINGER et al., 2011), it would 

be interesting to evaluate whether the internalization of the fluorescent BR analog (IRANI et 

al., 2012) that is mediated by BRI1 is also blocked in bak1-5. 

As the endocytosis of TAMRA-AtPep1 was blocked in bak1-5, it was important to test 

whether the AtPep1 responses are also impaired. Indeed, we found that induction of the 

AtPep1-responsive genes, the MAPK activation, and root growth inhibition were strongly 

impaired in bak1-5, in agreement to what had been previously reported in the evaluation of 

ROS and ethylene production induced by AtPep1 (ROUX et al., 2011). 

Altogether, these observations indicate that the formation of an AtPep1-dependent 

active PEPR-BAK1 (or other SERK) signaling receptor complexes is required to accomplish 

AtPep1 endocytosis and signaling. Previously, we have revealed that AtPep1-PEPRs are 

internalized as complexes to the lytic vacuole (Chapter 3, this thesis). Hence, it would be 

interesting to further investigate whether BAK1 is also internalized with AtPep1-PEPR 

complexes. 

4.3.4 Overexpression of BAK1 blocks AtPep1 endocytosis and abolishes AtPep1 signaling 

Additionally, we also evaluated the impact of BAK1 overexpression on AtPep1 

endocytosis and signaling. Surprisingly, we found that the transgenic line bak1-

4/proBAK1:BAK1 with increased BAK1 transcript levels and BAK1 protein respectively 

(NTOUKAKIS et al., 2011) blocked the endocytosis of TAMRA-AtPep1 and inhibited 

AtPep1-induced early and late responses nearly completely. This effect suggests that BAK1 

can function as a negative regulator of AtPep1-mediated responses when overexpressed. 

Interestingly, during this study, we also found out that the expression of BAK1 is induced 

upon AtPep1 stimulation and that AtPep1-responsive genes and root growth inhibition are 

enhanced in the null bak1-4 mutant. Although merely speculative, these facts allow us to 

hypothesize that BAK1, in addition to its regulatory role at the early stages of AtPep1 

endocytosis and signaling, is also required later to attenuate and balance the system after 

AtPep1 elicitation. 

In an attempt to test this hypothesis, we assessed the uptake of TAMRA-AtPep1 in 

plants with different levels of BIR2 protein. BIR2 has been previously shown to interact with 

BAK1 and to act as a negative regulator of BAK1 in plant immunity (HALTER et al., 2014a). 

We hypothesized that the absence of BIR2 would increase the amounts of the available for 
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PEPRs interaction BAK1 and it will cause AtPep1 endocytosis defects as observed in BAK1 

overexpression. However, we were not able to observe defects in the internalization of 

TAMRA-AtPep1 in bir2-1 mutants, amiRNA-BIR2 transgenic line or in plans overexpressing 

BIR2. As in bir2-1 mutants and amiRNA-BIR2 lines still low BIR2 protein levels are present, 

it is possible that the effect in BAK1-free levels is not strong enough to cause a phenotype 

that can be detected in our uptake assay. Thus, further experiments that assess the effect of 

different BAK1 expression levels in AtPep1 endocytosis and signaling as well as the 

characterization of the interaction within BAK1 and AtPep1 receptors would bring extra 

information for a better understanding of this phenotype.  
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4.4 Materials and Methods  

4.4.1 Plant material and growth conditions 

All mutants and transgenic lines of Arabidopsis thaliana (L.) Heynh used in this study 

were in the Columbia (Col-0) background. The Arabidopsis seeds were sterilized, maintained 

for 2 days at 4ᵒC in the dark, and germinated on vertical ½MS medium (1% [w/v] sucrose) 

agar plates, pH 5.8 at 22ᵒC in a 16 h/8 h light/dark cycle. The mutants and transgenic plants 

have been described previously: bak1-4 (CHINCHILLA et al., 2007), bak1-5 and bak1-
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4/proBAK1:BAK1 (SCHWESSINGER et al., 2011), bkk1-1 (HE et al., 2007), serk1-8 bak1-4 

bkk1-1 (GOU et al., 2012), bik1-1 (LU et al., 2010), and bir2-1, amiRNA-BIR2, and 

p35S:BIR2-YFP (HALTER et al., 2014b). proRPS5A::PEPR1-GFP and proRPS5A::PEPR2-

GFP were previously described (Chapter 3, this thesis). 

4.4.2 Peptides and molecular probes 

Peptide AtPep1 (ATKVKAKQRGKEKVSSGRPGQHN) with HPLC purity of 95.16% 

and molecular weight of 2491.78, and peptide AtPep1 labeled with 5-

carboxytetramethylrhodamine at the N-terminus (TAMRA-AtPep1) with HPLC purity of 

97.07% and molecular weight of 2905.75 were purchased from Life Technologies. The 

peptides were dissolved in water to obtain peptides stocks of 100 µM; further dilutions were 

done with ½MS medium. FM4-64 was acquired from Molecular Probes (2mM water stock). 

4.4.2 Co-immunoprecipitation 

Seven-day-old seedlings were dipped for 5 min into 2 mL of ½MS medium 

supplemented or not with 20 nM of AtPep1. The material was collected and ground to a fine 

powder in liquid nitrogen, and per g tissue powder 1 mL extraction buffer [20 mM Tris-HCl, 

pH 7.5; 100 mM NaCl; 10% glycerol; 1 mM EDTA; 0.2% NP-40; 1% proteinase inhibitor 

(Sigma-Aldrich; 1 mM PMSF (Sigma-Aldrich)] was added. Samples were centrifuged twice 

at 12,700 rpm (4°C, 30 min). Protein extracts (1.5 mL) were immunoprecipitated by addition 

of 20 µL of GFP-Trap coupled to agarose beads (Chromotek) and incubated at 4ᵒC for 2 h. 

After centrifugation (2 min, 4ᵒC, 500 rpm), beads were washed three times with 500 µL of 

washing buffer (20 mM Tris-HCl, pH 7.5; 100 mM NaCl; 0.2% NP-40). Immunoprecipitates 

were eluted with 60 µL elution buffer (20 µL washing buffer + 20 µL 4× Laemmli Sample 

Buffer [Bio-Rad]) and heated at 70ᵒC for 10 min, followed by centrifugation (2 min, 4ᵒC, 500 

rpm). 

4.4.3 SDS-PAGE and immunoblotting 

Proteins were separated by SDS-PAGE with 10 % precast polyacrylamide gels (Bio-

Rad) and blotted onto PVDF membranes (Bio-Rad). Immunoblots were blocked with 1.5% 

skimmed milk powder (Difco BD) in 1× Tris-buffered saline Tween 0.1% (TBS-T) for 2 h. 

Subsequently, the membrane washed 3× with TBS-T. Primary antibodies were diluted in 

blocking solution to the following concentrations and incubated for 1 h: anti-BAK1 (1:500; 

Eurogentec) and anti-GFP (1:1000; Clontech). Membranes were washed 3× in TBS-T before 

a 1 h incubation with the secondary antibody anti-rabbit-HRP conjugated for anti-BAK1 



150 

 

detection (1:10,000; GE-Healthcare) or and anti-mouse-HRP conjugated for anti-GFP 

detection (1:10,000; GE-Healthcare). Signals were visualized with chemiluminescent 

substrate (lightning plus-ECL; PerkinElmer) before exposure to film (GE-Healthcare). 

4.4.4 Real-time quantitative PCR 

 Six-day-old seedlings were used for all gene expression experiments. Total RNA was 

extracted with Trizol reagent (Life Technologies) according to the manufacturer’s 

instructions, followed by DNAse I treatment (Life Technologies) to remove any residue of 

genomic DNA, and quantified with a Nanodrop spectrophotometer (Thermo Scientific). cDNa 

was synthesized from 1 µg total RNA with Improm-II Reverse Transcriptase (Promega). 

Real-Time quantitative PCR analysis was done with 10-fold-diluted cDNA, Maxima SyBR 

Green Rox/qPCR Master Mix (Thermo Scientific), and a StepOne™ Real-Time PCR System 

(Applied Biosystems). The AtPep1-induced genes BAK1, WRKY33, and PDF1.2 were 

analyzed. The GAPDH gene was used as a control. The primers used are described in 

Supplementary Table 1. A template-free reaction was used as a negative control. Three 

replicates were analyzed for each biological sample and three biological samples were 

analyzed. The threshold cycle (CT) was determined automatically by the instrument and the 

equation 2
–ΔΔCT

 (Livak and Schmittgen, 2001) was used to calculate the fold change in each 

gene. An arbitrary value of 1 was attributed to control treatments. 

4.4.5 Imaging 

Arabidopsis seedlings were imaged on a FluoView 1000 inverted confocal microscope 

(Olympus) equipped with a water-corrected 60× objective (NA1.2) at digital zoom 3. 

TAMRA-AtPep1 and FM4-64 were excited at 559 nm, and fluorescence emission was 

captured between 570–670 nm. The signal intensity was manipulated with the Olympus 

software. 

4.4.6 TAMRA-AtPep1 internalization 

Five-day-old seedlings were dipped into 200 µL of 100 nM of TAMRA-AtPep1 

dissolved in ½MS medium for 10 sec, washed with ½MS liquid medium three times, and kept 

in 500 µL ½MS medium over a piece of parafilm placed in a Petri plate. The meristems of 

epidermal root tip cells were imaged after 40-min chase. In the case of the triple mutant 

serk1-8 bak1-4 bkk1-1, 10-day-old seedlings were used. Images were quantified with imageJ. 

To this end, the first images were converted to 8-bit images; subsequently, the entire plasma 

membrane of individual cells were selected with the brush tool size 5 pixels as well as the 
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intracellular space with the polygon selection tool; then, the average intensity of the top 100 

highest pixels for both plasma membrane and intracellular space was used to obtain a ratio 

between plasma membrane and intracellular fluorescence. Six epidermal cells from eight 

plants were quantified  

4.4.7 FM4-64 uptake 

Five-day-old seedlings were dipped for 5 min into 1 mL ½MS liquid medium 

containing 4 µM of FM4-64, washed with ½ MS liquid medium three times, and kept in 1 mL 

½MS medium over a piece of parafilm placed in a Petri plate. The meristems of epidermal 

root tip cells were imaged after a 30-min chase. 

4.4.8 MAP kinase assay 

Six-day-old seedlings were dipped into 2 mL of 20 nM AtPep1 dissolved in ½MS 

medium for 5 min, washed with ½MS liquid medium three times, and kept in 2 mL ½MS 

medium for the indicated time points (0, 15, and 30 min). Seedlings were treated with water 

for 5 min instead of 20 nM AtPep1 as control. Per each time point, 50-60 seedlings were 

ground to a fine powder in liquid nitrogen and solubilized in better lacus buffer [50 mM Tris-

HCl, pH 7.5; 100 mM NaCl; 15 mM EGTA; 10 mM MgCl2; 1 mM NaF; 1 mM 

Na2MoO4.2H2O; 0.5mM NaVO3; 30mM b-glycerophosphate; 0.1% IGEPAL CA 630; 100 

nM calyculin A (CST); 0.5 mM PMSF; 1% protease inhibitor cocktail (Sigma-Aldrich)] 

(SCHWESSINGER et al., 2011). The extracts were vortexed, kept on ice for 15 min, vortexed 

for 1 min, centrifuged at 12,700 rpm (4°C, 25 min), and supplemented with 5× SDS loading 

buffer. An aliquot of the supernatant was poured in a new tube before addition of SDS 

loading buffer to quantify proteins with the Bradford assay (Bio-Rad). Twenty mg of total 

protein was separated by SDS-PAGE with 10% precast polyacrylamide gels (Bio-Rad) and 

blotted onto PVDF membranes (Bio-Rad). Immunoblots were blocked with bovine serum 

albumin (BSA) 5% (w/v) (Sigma-Aldrich) in 1× TBS-T for 2 h. Subsequently, the membrane 

was washed 3× with TBS-T and incubated overnight at 4°C with anti-p42/44 MAPK primary 

antibodies (1:2000; Cell Signaling Technology) diluted in 1× TBS-T supplemented with 5% 

BSA. Membranes were washed 3× with TBS-T before incubation for 2 h with anti-rabbit-

HRP conjugated secondary antibody (1:20,000; Sigma-Aldrich). Signals were visualized with 

chemiluminescent substrates (lightning plus-ECL; PerkinElmer) before exposure to film. 

Finally, the immunoblot was reprobed with anti-tubulin antibody (1:50,000; Sigma-Aldrich) 

to determine equal loading. 
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4.4.9 Root growth assay 

Seeds were sown on ½MS solid medium, stratified for 2 days at 4°C in the dark, and 

grown vertically in the light. Four days after germination, seedlings were transferred to square 

transparent Petri dishes with solid ½MS medium supplemented with the indicated amounts of 

AtPep1 and incubated for 4 further days; then, the plates were scanned and the root growth 

measured from the point where the root was transferred to the new medium. For 

measurements, scanned images were processed and evaluated with the Rootreader2D 

software (http://www.plantmineralnutrition.net/rr2d.php) and blotted relative to untreated 

controls. 

4.4.10. Statistical analysis 

P values were calculated with a two-tailed Student’s t-test by means of the Excel 

software. 
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Supplemental Figures  

 

 

 

 

 

 

 

 

 

Supplemental Figure 1 – Uptake of TAMRA-AtPep1 in different mutants defective in AtPep1 responses. (A) 

Uptake of TAMRA-AtPep1 in Col-0, bkk1-1, serk1-8 bak1-4 bkk1-1, and bik1. Five-

day-old seedlings were treated with 100 nM of TAMRA-AtPep1 for 10 sec and 

washed. Root epidermal meristem cells imaged after 40 min chase. For serk1-8 bak1-

4 bkk1, 10-day-old seedlings were used. Scale bar, 10 µm. (B) Quantification of 

TAMRA-AtPep1 internalization of images in (A). Graph represents the ratio between 

the plasma membrane signal intensity divided by the intracellular signal intensity (n = 

42–51 cells). Error bars indicate S.D. P values (t-test), *<0.05 relative to Col-0 (C) 

Representative image of the phenotypes in 10-day-old seedlings of the triple 

heterozygous SERK mutant serk1-8 bak1-4 bkk1 -+-/---. Scale bar 10 µm 

 

Supplemental Figure 2 – Early MAPK activation induced by AtPep1. MAPK activation was monitored in 6-day-

old seedlings of Col-0 in the presence of 0, 20, or 50 nM of AtPep1 for 1, 2.5, and 5 min. 

MAPK phosphorylation was identified by immunoblotting with anti-phospho-p44/p42-

MAPK antibody. The immunoblot with anti-tubulin shows protein loading. Individual 

MAPKs are identified by molecular mass and indicated by arrows 
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Supplemental Figure 3 – Early MAPK activation induced by AtPep1 is slightly reduced in bak1-4. Bar graphs 

shows relative MPK6 (A) and MPK3 (B) in 6-day-old seedlings of Col-0 and bak1-4 

after 0, 15, and 30 min of AtPep1 elicitation (20 nM, 5 min, followed by a wash and 

maintained in ½ liquid medium for the indicated time). MAPK phosphorylation was 

detected by immunoblotting with anti-phospho-p44/p42-MAPK antibody. 

Normalization was performed against loading (anti-tubulin) and untreated plants. 

Error bars indicate S.D. of three biological replicates. P values (t-test), *<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 4 – Phenotypes of Col-0, bak1-4, bak1-5, and bak1-4/proBAK1:BAK1 Arabidopsis 

seedling. Plants were grown on ½MS medium supplemented with 0, 1, 10, 20, 50 or 

100 nM AtPep1. 
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Supplemental Figure 5 - Uptake of the endocytic tracer dye FM4-64 after 30min in root meristem epidermal 

cells of Col-0, bak1-5, bak1-5 bkk1-1, and bak1-4/proBAK1:BAK1. Scale bar 10µm. 

 

Supplemental Table 1 – Primer used for qPCR analysis 

Gene Primer Sequence 5’ – 3’ 

GAPDH 
Forward  TTGGTGACAACAGGTCAAGCA 

Reverse AAACTTGTCGCTCAATGCAA 

BAK1 
Forward CTGGACAGCTCGTAATGCAA 

Reverse GCTCACCAATTCCGTCAGAT 

 

WRKY33 

Forward GAAACAAATGGTGGGAATGG 

Reverse TGTCGTGTGATGCTCTCTCC 

 

PDF1.2 

Forward AACCTTGAAGGAGCCAAACA 

Reverse CACACGATTTAGCACCAAAGA 
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5 CONCLUSION AND FUTURE PERSPECTIVES  

In the past years, a growing number of signaling peptides have been discovered that 

play an active role in cell-to-cell communication networks in plants and knowledge has been 

acquired about their responses and signaling components (ALBERT, 2013; GHORBANI et 

al., 2014). Nonetheless, the subcellular fate and dynamics of these molecules remain to be 

elucidated as well as their association with signaling responses. In this thesis, we 

characterized a fluorescent probe that allowed us to examine the subcellular dynamics of the 

plant endogenous elicitor peptide AtPep1 and its receptors in vivo, hence, providing new 

information to the understanding of endocytic trafficking and its interplay with signaling 

during plant immunity responses. This work also opens research avenues in the field and 

proposes novel technical approaches to carry out future investigations. 

5.1 Fluorescently labeled ligands as a tool to study ligand-receptor pairs 

Plant genomes are predicted to encode hundreds of plasma membrane-localized 

receptor kinases (RKs) that potentially could recognize ligands by their extracellular domains, 

thus triggering signaling events that lead to specific cell responses (GELDNER; 

ROBATZEK, 2008; SHIU et al., 2004). Ligands are self- or not self-produced molecules, 

they can have different biological structures, among which peptides, steroids and 

oligosaccharides are found (ALBERT, 2013; GELDNER; ROBATZEK, 2008; HOTHORN et 

al., 2011). Within the endogenous ligands, numerous genes (approximately 1000) are found in 

Arabidopsis thaliana that encode small proteins giving rise to secreted peptides that would 

bind RKs (LEASE; WALKER, 2006). Nonetheless, in spite of the large ligand-receptor 

pairings that are possible, only a few ligand-receptor combinations have been identified and 

experimentally demonstrated. Characterization of these regulatory pairs is essential for the 

advancement of our understanding of communication networks in plants, but this task is 

challenging because the genes encoding RKs and peptides are often redundant and their low 

expression is restricted to a few cells and/or particular developmental stages or stress 

conditions (BUTENKO et al., 2014).  

In this thesis, we showed that the peptide AtPep1 can be fluorescently tagged without 

loss of its biological activity and that at low concentrations the labeled AtPep1complexed with 

its receptor underwent internalization. This observation was similar to that reported 

previously for the fluorescent brassinosteroid (BR) AFCS and its receptor 

BRASSINOSTEROID INSENSITIVE1 (BRI1) (IRANI et al., 2012), thus showing that 

ligands with different natures, such peptides and steroids, can be labeled with fluorescent dyes 
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and their subcellular dynamics can be assessed in vivo. Moreover, our results, showing that 

endocytosis of the AtPep1-induced PEPRs was triggered by ligands, together with previous 

reports on ligand-induced endocytosis of RKs such as FLAGELLIN-SENSITIVE2 (FLS2) 

and BRI1 (IRANI et al., 2012; ROBATZEK; CHINCHILLA; BOLLER, 2006), confirmed 

that this process is a hallmark of RKs. Thus, we propose the use of labeled ligands combined 

with the ectopic expression of receptor genes in suitable plant cells for matching ligand-pair 

candidates by assessing endocytosis as read-out of their interaction. This strategy would avoid 

the use of radiolabeled ligands to identify receptor pairs that is technically inconvenient 

because of the manipulation of the radioactive material, high costs and short half-life of the 

probes (BUTENKO et al., 2014; YAMAGUCHI; PEARCE; RYAN, 2006). 

In addition, redundancy, specificity and low expression of the potential receptors can 

be overcome by ectopic expression of fluorescently tagged candidates in plant cell systems, 

employed as models for cell biology studies. These systems  include the transient 

Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamina 

(WYDRO; KOZUBEK; LEHMANN, 2006), and that explored in this thesis, namely 

expression of GFP-fused PEPRs in the root epidermal meristem cells in Arabidopsis, by 

means of transgenic lines of the AtPep1 receptors under the RPS5A promoter (WEIJERS et 

al., 2001). However, this approach should be consider as an initial indicator of ligand-receptor 

interaction, as molecules could be co-internalized without necessarily interacting, therefore 

the ligand-receptor interaction must be further supported through additional approaches.   

5.2 Release of AtPeps, the missing piece of the puzzle 

In this thesis, we elucidated the internalization pathway of the peptide AtPep1, which 

is probably similar to the other members of the family, because they all trigger a comparable 

set of downstream signaling responses (BARTELS et al., 2013; YAMAGUCHI et al., 2010). 

However, the internalization of AtPeps would happen after the release of active peptides from 

their precursor proteins (PROPEPs) into the extracellular space, which has not been shown 

yet. 

We found that PROPEP1-GFP was attached to the tonoplast, in agreement with 

previous reports (BARTELS et al., 2013) and additionally; we observed that probably it is 

accumulated into the vacuole. Thus, it is possible that the vacuole is an organelle where 

PROPEP1 is stored before the active AtPep1 is released. Mechanism, localization and timing 

of release of active AtPeps are largely unknown, but still of great interest in the field 

(BARTELS; BOLLER, 2015). In an attempt to clarify these issues, we analyzed the 
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subcellular localization of PROPEP1-GFP when treated with a cocktail composed by the 

MAMPs flg22 and AtPep1 that generates a biotic stress. As we did not observe any apparent 

changes, we hypothesized that the PROPEP1 would be delivered only when the cell integrity 

is compromised and, subsequently, that the protease action would cleave the active AtPep1, 

which, in turn, would bind the receptors located at the plasma membrane of neighboring cells, 

thus triggering defense responses. This assumption fits into the proposed damage model for 

activation of the AtPeps-PEPRs (BARTELS; BOLLER, 2015). However this could be not the 

case for all PROPEPs, because PROPEP3-YFP accumulated in the cytosol (BARTELS et al., 

2013). The accumulation of PROPEPs at two different subcellular compartments might hint at 

differences between release of the active AtPeps and their contributions to the cellular 

immunity. Furthermore, because our transgenic plants expressing 35S:PROPEP1-GFP did 

not up-regulate the AtPep1-responsive genes, as seen for the lines expressing 35S:PROPEP1 

(HUFFAKER; RYAN, 2007), we cannot disregard that the vacuolar localization and/or the 

non-secretion of PROPEP1-GFP upon biotic stresses are due to a disfunctionality of this 

chimeric protein. 

Therefore, based on our data and published results, we propose that future experiments 

with the aim at solving the secretion mechanism of AtPeps should consider the generation of 

transgenic plants expressing PROPEPs with a fluorescent tag located between the C-terminus 

of the active peptide-containing PROPEPs and the N-terminus with the precursor protein, thus 

allowing an eventual C-terminus cleavage given origin to possibly active GFP-AtPeps. These 

plants should be exposed to different stresses, such as MAMPs and damage treatments, and 

subsequently the subcellular localization of the chimeric proteins should be assessed in vivo. 

Damage treatment could be carry out through laser ablation associated with confocal 

microscopy. This minimally invasive approach would allow mimicking more accurately the 

injury caused by invasive organisms. 

Approaches that don not include the use of fused proteins can also be proposed, such 

as immunolocalization and cell fractionation. Immunolocalization would permit to identify 

the localization of PROPEPs or AtPeps in situ at subcellular resolution avoiding the risk of 

inducing side effects by a fusion protein, such as misexpression, mistargeting and altered 

stability; however, its use depends on specific antibodies that would recognize the protein of 

interest (PACIOREK et al., 2005). Currently, it has not been reported any antibody that would 

recognize PROPEPs or AtPeps, which limits the use of this technique to study their 

subcellular dynamics. Cell fractionation that allows the separation of organelles according to 
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their density, combined with mass spectrometry could also help to identify the subcellular 

localization of PROPEs and/or AtPeps under different physiological conditions.   

5.3 AtPep1/PEPR internalization reveals different endocytic pathways  

In plants, endocytic trafficking requires sequential steps through the trans-Golgi 

network/early endosome (TGN/EE) that is the first place where endocytosed material is 

delivered. Moreover, the TGN/EE functions as a sorting station from where the cargo is 

further sorted back to the plasma membrane or into multivesicular bodies (MVBs)/late 

endosomes that fuse with the vacuole to release their intraluminal vesicles for degradation 

(VIOTTI et al., 2010).   

Here, we found that the AtPep1-PEPR complexes are transported from the plasma 

membrane to the vacuole following a common endocytic trafficking route. However, distinct 

modes of receptor-mediated endocytosis (RME) might coexist in plant cells, because the 

spatio-temporal cellular dynamics of AtPep1-PEPRs showed unique features in comparison 

with the described subcellular dynamics of AFCS-BRI1 and partially overlapped with the 

FLS2 behavior upon flg22 treatment. These features can be listed as: (i) inactive PEPRs from 

the plasma membrane did not accumulate in large bodies in the presence of the fungal toxin  

brefeldin A (BFA) that inhibits protein secretion and vesicle recycling of endocytosed 

proteins to the plasma membrane (GELDNER et al., 2003), as seen for FLS2 and BRI1 that 

undergo constitutive endocytic recycling under steady-state conditions (BECK et al., 2012; 

GELDNER et al., 2007; IRANI et al., 2012); (ii) the temporal dynamics of the internalization 

of AtPep1-PEPR complexes differed from those of BRI1-AFCS that internalized more 

quickly (2 min after ligand application) (IRANI et al., 2012), but matched more those of the 

FLS2 receptor, in which endosomes were visualized in leaves 30 min after flg22 application 

(ROBATZEK; CHINCHILLA; BOLLER, 2006); (iii) the molecular probe of AtPep1 

(TAMRA-AtPep1) presented low colocalization with the TGN/EE marker VHA-a1, as seen 

for flg22-activated FLS2 (CHOI et al., 2013), in contrast to the AFCS-BRI1 complex that 

highly colabeled with this TGN/EE marker (IRANI et al., 2012); and finally, (iv) the 

endocytic trafficking of AtPep1-PEPR complexes was not blocked by ConcA, which inhibits 

the V-ATPase activity in the TGN/EE, leading to an increase in the pH of this organelle and 

blocking the vacuolar transport of endocytic cargos, as observed for AFCS-BRI1 (DETTMER 

et al., 2006; IRANI et al., 2012; SHEN et al., 2013). For flg22-activated FLS2, trafficking 

was not largely impaired in the presence of ConcA and colocalization with endosomal 
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compartments occurred (BECK et al., 2012), suggesting that its transport is not blocked as for 

AtPep1-PEPR complexes. 

The apparent existence of distinct RME pathways raises interesting questions about 

their regulation. As AtPep1 and the bacterial peptide flg22 are elicitor peptides that, albeit 

with a different origin, activate similar swift and transient plant immunity responses under 

biotic stresses (BARTELS; BOLLER, 2015), whereas AFCS is an analog of the ubiquitous 

plant hormone BR mainly associated to plant growth and development (IRANI et al., 2012), it 

is tempting to argue that RME is modulated by the nature of the ligand. 

This ligand modulation could be mediated by pH changes, because an early hallmark 

of AtPep1 and flg22 activities is the induction of changes in the ion fluxes, including H
+
 and 

Ca
2+

 influxes, leading to membrane depolarization and extracellular alkalinization (KROL et 

al., 2010; MITHÖFER; EBEL; FELLE, 2005; YAMAGUCHI; PEARCE; RYAN, 2006). 

Interestingly, the opposite effect is triggered by BR that induces hyperpolarization of the 

plasma membrane and slight medium acidification (ZHANG et al., 2005). Furthermore, 

regulation and pH homeostasis within intracellular compartments are well known to be 

essential for the viability of all eukaryotic cells, in which each endomembrane compartment 

presents particular luminal pH-dependent environments that assure their optimal operation 

and fulfillment of their specific functions (CASEY; GRINSTEIN; ORLOWSKI, 2010; 

SCHUMACHER, 2014; SHEN et al., 2013). In animals, the pH participation during the 

endomembrane trafficking is evidenced by its role that modulates luminal processes, such as 

proteolytic processing and receptor-ligand interaction. Moreover, pH has been shown to affect 

recruitment of the trafficking machinery components to the cytosolic membrane face and 

cargo sorting (HUANG; CHANG, 2011; MARANDA et al., 2001; MARSHANSKY; FUTAI, 

2008). 

Based on the results of this thesis and previous literature reports, we hypothesize that a 

refined model for RME exists that relies on a pH-dependent cargo sorting mechanism that 

operates at the plasma membrane, as illustrated by the subcellular dynamics of AtPep1-PEPRs 

and AFCS-BRI1 (Figure 1). Thus, we propose a scenario in which after the AtPep1 binding of 

PEPRs a rapid change is triggered in the ion fluxes, leading to membrane depolarization and 

extracellular alkalinization and dictating the cues for recruitment of the endocytic machinery. 

Moreover, the alkaline environment would maintain the interaction between AtPep1 and 

PEPRs that had been shown to depend on the pH (TANG et al., 2015). Later, between 15-

20 min after the high alkalinization activity has been found (HUFFAKER; PEARCE; RYAN, 

2006), the transport of AtPep1-PEPR complexes from the plasma membrane to the 
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intracellular compartments begins. Then, the AtPep1-PEPR complexes are transported via a 

VHA-a1-negative SYP42/SYP61/ARA7-positive TGN/EE population or subdomains that 

rapidly mature, first into ARA7/ARA6 compartments and then into ARA7/ARA6/VAMP727-

positive compartments, which fuse with the vacuole where the AtPep1-PEPR complexes are 

released for final dissociation and degradation. Moreover, the compartments through which 

the AtPep1-PEPR complexes are transported might have an alkaline pH, thus ensuring that 

peptides and receptors reach the lytic vacuoles as a complex.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Schematic overview of the endocytic pathways of PEPRs and BRI1. (A) After AtPep1 binding, 

PEPRs associates with BAK1, triggering phosphorylation of the kinase domains and extracellular 

alkalinization.  After 20 min AtPep1-PEPRs undergoes endocytosis mediated by clathrin and are 

sorted in specific SYP42/SYP61/ARA7-positive subdomains of the trans-Golgi network/early 

endosomes (TGN/EE). Here, the complex rapidly maturate into ARA7/ARA6-positive late 

endosomes (LE) and is directed to the vacuole via ARA7/ARA6/VAMP727-positive multivesicular 

bodies (MVB). (B) Independent of ligand BRI1 undergoes constitutive endocytosis. In this case 

BRI1 is targeted to TGN/EE, from where it is recycled back to the plasma membrane. Upon 

brassinosteroid (BR) binding, BRI1 form complex with BAK1, triggering phosphorylation events 

and slight extracellular acidification. Quickly, activated BIR1 undergoes endocytosis mediated by 

clathrin and is sorted to TGN/EE. Subsequently, BR-BRI1 mature to late endosomes and is targeted 

to the vacuole via MVB.  Endocytosis of BR-BRI1 requires a functional TGN/EE localized V-

ATPase VHA-a1, but not AtPep1-PEPRs. For simplicity only the PEPRs, BRI1 and BAK1 are 

shown in the schematic representation, without referring to other regulators of PEPRs and BRI1. 

CCV, clathrin coated vesicle; ILV, intraluminal vesicles 
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However, to verify our hypothetic model, we need to prove that the VHA-a1-negative 

TGN/EE population or subdomains indeed exist or appear under AtPep1 elicitation. To this 

end, it would be interesting to generate plant genotypes expressing TGN markers (VHA-a1 

and SYP42 or SYP61) in combination with PEPRs and the endosomal marker ARA7 fused to 

fluorescent proteins with different spectrums, and to evaluate their localization upon AtPep1 

stimulation over time. Another point that has to be assessed is the pH behavior in the different 

endocytic compartments during the ligand-induced internalization of PEPRs and BRI1, which 

would provide information to understand how different cargos influence the pH of subcellular 

compartments and the relationship with RME. An interesting strategy would be to fuse PEPRs 

and BRI1 to pH-fluorescent protein sensors, such as PEpHluorin and PrpHluorin, that permit 

in vivo measurements (SHEN et al., 2013) and to assess the pH of the different 

endomembrane compartments through which ligand-activated PEPRs and BRI1 are 

transported. 

5.4 The AtPep1-PEPR system, a new suitable model to study clathrin-mediated 

endocytosis in plants and its implication in immunity 

In this thesis, we provide solid proof that the endocytosis of AtPep1-PEPRs is 

mediated by clathrin proteins, supporting its role as the primary endocytic route in plants 

(BAISA; MAYERS; BEDNAREK, 2013). Previously, endocytosis of BRI1, a membrane-

localized RK structurally similar to AtPep1 receptors had also been found to depend on 

clathrin (IRANI et al., 2012) indicating that clathrin-mediated endocytosis (CME) can be a 

conserved mechanism for RK internalization. We propose that at least two different ligand-

induced endocytic pathways exist; as exemplified by the spatio-temporal dynamics of AtPep1-

PEPRs and AFCS-BRI1, part of their endocytic machinery is probably pretty well conserved, 

including clathrin proteins, but some specificity-dictating components, which remain to be 

identified, might also occur. This specificity could be determined by adaptor proteins that 

recruit clathrin to perform the coat assembly of the specific cargos, because clathrin cannot 

bind directly to the membrane (LEE; HWANG, 2014; SCHMID; MCMAHON, 2007). 

The role of adaptor proteins for cargo selection has been characterized extensively in 

animal and yeast cells (SCHMID; MCMAHON, 2007; TRAUB, 2009). Although plant CME 

is far away from having well-defined CME network as described in animals, in the past 

decade, significant progress has been made in understanding and identifying the CME 

components in plants. For instance, the role of the adaptor protein complex 2 (AP2) that 

represents the core complex during the cargo recognition/selection of the CME in animals has 
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also been reported to mediate CME in plants (DI RUBBO et al., 2013); more recently, the 

TPLATE adaptor complex (TPC) that consists of eight core subunits has been found to 

accumulate at the plasma membrane, preceding the recruitment of future components for 

formation of clathrin coat vesicles (GADEYNE et al., 2014). However, to get a deeper insight 

into the CME in plants, it is still necessary to identify the functional CME constituents as well 

as to elucidate how they participate in the endocytosis of cargos with different physiological 

roles and subcellular dynamics. A starting point could be the identification of the interactome 

of proteins that undergo CME, providing refined information about the missing CME 

components. To this end, PEPRs appear excellent candidates due to the AtPep1 inducibility, 

temporal dynamics and transient behavior of their endocytosis. Hence, it would be possible to 

sequentially assess the endocytic machinery associated with PEPRs through the different 

steps of CME. These endocytic features of PEPRs also turn these receptors into good 

candidates to study in vivo the recruitment dynamics of the clathrin assembly machinery at the 

plasma membrane by means of high-end microscopy techniques, such as total internal 

reaction fluorescence (TIRF)/variable angle epifluorescence microscope (VAEM) and 

Spinning Disc Microscopy, which allow the evaluation of the behavior of candidate proteins 

at the plasma membrane. 

During this thesis, we also detected that CME impairment compromised the AtPep1 

responses, thus providing evidence that pattern-triggered immunity (PTI) can be regulated by 

CME, a physiological role not reported so far. Although the defects in the AtPep1 responses 

could not be attributed to a specific inhibition of the endocytosis of AtPep1-PEPRs because 

the CME is affected in a general manner, these defects could also reflect impairment of the 

endosomal signaling that would not operate when endocytosis is blocked. Therefore, tools 

have to be developed that allow specific blocking of the AtPep1-PEPR endocytosis. 

Remarkably, we identified putative endocytic motifs at the cytoplasmic domain of the AtPep1 

receptors (Figure 2) that are carried by proteins interacting with the AP2 complex and clathrin 

(GADEYNE et al., 2014; TRAUB, 2009). It would be worthwhile to generate specific 

mutations into these endocytic motifs and to evaluate whether through this approach the 

AtPep1-PEPR trafficking could be blocked specifically. This tool could be used to address 

issues about endosomal signaling in plants. 
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Figure 2 – Alignment of the cytoplasmic domain of AtPep1 receptors displaying putative protein endocytic 

motifs. [DE]XXXL[LI]and YXXØ function as cargo sorting signals; L[IVLMF]X[IVLMF][DE] is a 

clathrin binding motif. Endocytosis motifs were manually searched using the ScanProsite tool from 

the bioinformatics research portal expasy (http://prosite.expasy.org/scanprosite/) 

5.5 BAK1 modulates endocytosis and signaling of the plant elicitor peptide AtPep1 

Through the use of the hypoactive kinase bak1-5, we showed that endocytosis of 

AtPep1 is modulated by BAK1, which interacts with AtPep1 receptors in a ligand-dependent 

manner. As bak1-5 presents altered phosphorylation patterns (SCHWESSINGER et al., 2011; 

WANG et al., 2014), it is possible to argue that phosphorylation events occurring after the 

PEPR1-BAK1 heterodimerization upon AtPep1 treatments dictate the bases for recruitment of 

the endocytic machinery. Moreover, we also confirmed that the AtPep1 signaling is largely 

impaired in bak1-5, thus raising the question whether there is interplay between endocytosis 

and signaling or whether they are processes regulated independently by phosphorylation. 

Examination of different phosphorylating bak1 mutants would help to clarify this issue. 

Another mutant worthwhile to assess is bak1-4/proBAK1:BAK1* that expresses a BAK1-5 

kinase inactive in the null bak1-4 mutant and does not strongly inhibit immunity responses, as 

seen for bak1-5 and bak1-4/proBAK1::BAK1-5 (SCHWESSINGER et al., 2011); therefore, if 

endocytosis and signaling would regulate each other, a lower impact in the AtPep1 

internalization is expected in this genotype. 

Interestingly, we also found that overexpression of BAK1 leads to a dominant-

negative effect in AtPep1 endocytosis and signaling, suggesting that BAK1 could be required 

to attenuate and balance the system after AtPep1 elicitation; however, this effect is not well 
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understood and further experiments are needed. It would be relevant to generate transgenic 

plants with different levels of BAK1 expression and to examine whether there is a dose-

response effect in the endocytosis and signaling, as expected if this effect indeed represents a 

biological process. 

An open question that remains to be elucidated is whether BAK1 undergoes 

internalization together with the AtPep1-PEPR complexes. To address this question is a 

challenging task because the C-Terminal fusion proteins antagonize the BAK1 activity linked 

to immunity responses (NTOUKAKIS et al., 2011); hence, various versions of biologically 

active fluorescent BAK1 tags have to be engineered. A good strategy would be to introduce 

the fluorescent protein into the juxtamembrane domain of BAK1 without compromising the 

activity of the kinase domain localized at the C-terminus. As a specific antibody of BAK1 is 

available, another approach that could be explored to solve this question is the antibody-based 

immunological detection, thus avoiding the risks of side effects by the fusion of a protein to 

BAK1. 
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