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RESUMO

Desenvolvimento e aplicação de métodos genético-estatísticos para predição genômica em Coffea
canephora

Seleção Genômica pode ser definida como a seleção simultânea de centenas ou milhares de
marcadores moleculares, os quais cobrem o genoma de forma densa, de modo que locos de caracteres
quantitativos (QTL) estejam em desequilíbrio de ligação com uma parte desses marcadores. Assim,
marcadores associados a QTLs, independentemente da significância dos seus efeitos, são utilizados
na predição do mérito genético de um indivíduo para um determinado caráter. Simulações e es-
tudos empíricos mostram que essa abordagem apresenta acurácia suficiente para garantir o sucesso
em programas de melhoramento genético, quando comparado com os métodos tradicionais de seleção
fenotípica. Para tanto, uma das etapas requeridas é o uso de modelos genético-estatísticos que contem-
plem a predição fidedigna da performance fenotípica da população sob estudo. Apesar da relevância,
o número de estudos no gênero Coffea ainda são reduzidos, não havendo relatos sobre o desempenho
desses modelos em diferentes populações e ambientes, ou mesmo, a sua performance para diferentes
caracteres agronômicos do cafeeiro. Dessa forma, este estudo tem como finalidade investigar aspectos
relacionados a modelagem estatística, a fim de compreender quais são os fatores que tornam os mode-
los preditivos mais acurados e utiliza-los em programas aplicados de melhoramento genético. Dados
reais de duas populações de seleção recorrente de Coffea canephora, avaliados em dois ambientes
e genotipados pela tecnologia de genotipagem por sequenciamento (GBS, do inglês Genotyping-by-
Sequencing) foram considerados para o estudo da relação entre genótipo-fenótipo. Em termos de
modelagem estatística, duas classes de modelos foram considerados: i) Modelos mistos, baseados
no cálculo da matriz de parentesco realizado como medida de (co)variância genética entre indivíduos
(modelo GBLUP); e ii) Modelos de associação multilocos, no qual milhares de marcadores moleculares
são modelados simultaneamente e os efeitos estimados dos marcadores são somados, a fim de compu-
tar o mérito genético dos indivíduos. Ambas estratégias foram descritas em capítulos separados no
formato de artigo científico. O capítulo intitulado “A mixed model to multiplicative harvest-location
trial applied to genomic prediction in Coffea canephora” abordou uma expansão do modelo GBLUP
de modo a contemplar efeitos de interações entre Genótipo×Colheita e Genótipo×Local. Para tanto,
apropriadas estruturas de variância e covariância para modelagem da heterogeneidade e correlação
dos efeitos genéticos e residuais foram testadas. O modelo proposto, denominado de MET.GBLUP,
apresentou melhor qualidade de ajuste e capacidade preditiva, quando comparado com outros mé-
todos. O capítulo em sequência, intitulado de “Comparison of statistical methods and reliability of
genomic prediction in Coffea canephora population” investigou a capacidade preditiva de diferentes
modelos de associação multilocos. A suposição usual de efeitos dos marcadores amostrados de uma
distribuição normal foi relaxada, a fim de testar métodos alternativos que pudessem melhor des-
crever o fenômeno biológico e, consequentemente, resultar em maior capacidade preditiva. Embora
os modelos testados sejam conceitualmente distintos, diferenças mínimas nos valores de acurácia de
predição foram observadas nos cenários testados. Em termos de demanda computacional, modelos
Bayesianos apresentaram maior tempo de análise. Os resultados descritos em ambos os capítulos
apoiam o potencial do uso da seleção genômica em programas de melhoramento assistido de café.
Em termos práticos, comparado com métodos tradicionais de avaliação fenotípica, é esperado que a
implementação desses conceitos em programas de seleção recorrente possam acelerar o ciclo de me-
lhoramento, manter a diversidade genética e, sobretudo, aumentar o ganho genético por unidade de
tempo.

Palavras-chave: Seleção genômica, Marcadores moleculares, Modelos lineares, Café
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ABSTRACT

Development and application of statistical genetic methods to genomic prediction in Coffea
canephora

Genomic selection (GS) works by simultaneously selecting hundreds or thousands of mar-
kers covering the genome so that the majority of quantitative trait loci are in linkage disequilibrium
(LD) with such markers. Thus, markers associated with QTLs, regardless of the significance of their
effects, are used to explain the genetic variation of a trait. Simulation and empirical results have
shown that genomic prediction presents sufficient accuracy to help success in breeding programs, in
contrast to traditional phenotypic analysis. For this end, an important step addresses the use of
statistical genetic models able to predict the phenotypic performance for important traits. Although
some crops have benefited from this approach, studies in the genus Coffea are still in their infancy.
Until now, there have been no studies of how predictive models work across populations and envi-
ronments or, even, their performance for different complex traits. Therefore, the main objective of
this research is investigating important aspects related to statistical modeling in order to enable a
more comprehensive understanding of what makes a robust prediction model and, as consequence,
apply it in practical breeding programs. Real data from two experimental populations of Coffea
canephora, evaluated in two brazilian locations and SNPs identified by Genotyping-by-Sequencing
(GBS) were considered to investigate the genotype-phenotype relationship. In terms of statistical
modelling, two classes of models were considered: i) Mixed models, based on genomic relationship
matrix to define the (co)variance between relatives (called GBLUP model); and ii) Multilocus asso-
ciation models, which thousands of markers are modeled simultaneously and the marker effects are
summed, in order to compute the genetic merit of individuals. Both approaches were considered in
separated chapters. Chapter entitled “A mixed model to multiplicative harvest-location trial applied
to genomic prediction in Coffea canephora” addressed an expansion of the traditional GBLUP to
accommodate interaction effects (Genotype×Local and Genotype×Harvest). For this end, we have
tested appropriate (co)variance structures for modeling heterogeneity and correlation of genetic ef-
fects and residual effects. The proposed model, called MET.GBLUP, showed the best goodness of fit
and higher predictive ability, when compared to other methods. Chapter in the sequence was entitled
”Comparison of statistical methods and reliability of genomic prediction in Coffea canephora popu-
lation” and addressed the use of different modelling assumptions considering multilocos association
models. The usual assumption of marker effects drawn from a normal distribution was relaxed, in
order to seek for a possible dependency between predictive performance and trait, conditional on the
genetic architecture. Although the competitor models are conceptually different, a minimal difference
in predictive accuracy was observed in the comparative analysis. In terms of computational demand,
Bayesian models showed higher time of analysis. Results discussed in both chapters have supported
the potential of genomic selection to reshape traditional breeding programs. In practice, compared to
traditional phenotypic evaluation, it is expected to accelerate the breeding cycle in recurrent selection
programs, maintain genetic diversity and increase the genetic gain per unit of time.

Keywords: Genomic selection, Molecular markers, Linear models, Coffee
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1 PREFACE

Coffee is the world’s most widely traded tropical agricultural commodity (Tran et al., 2016).
It is estimated that more than 125 million people have been benefited, directly or indirectly, by the coffee
agribusiness (IOC, 2016). As result, the crop is part of the economy of more than 70 countries and it is
one of the most popular beverages in western countries (Moncada et al., 2015). In this scenario, Brazil
has a prominent position, given it is responsible for about a third of all world production making it the
world’s largest producer, a position that has held for the last 150 years (IOC, 2016). For this reason,
among the activities related to agricultural business in the country, coffee crop has been one of the most
important in economic and social aspects.

Coffee belongs to the Rubiaceae family and the genus Coffea, which comprises hundreds of
tropical species. Among them, two species present commercial production: Coffea arabica, more aromatic
with more perceptible acidity; and Coffea canephora, which beverage have a bitter, full bodied taste and
higher caffeine level (Tran et al., 2016). In the 50’s, with the raise of soluble coffee consume, C. canephora
species, known as a coffee of lower quality, began to be commercially exploited in the so-called blends
(coffee drink composed by grain mixture of both species). In addition to counteract the acidity and
add full bodied taste, blends conferred good industrial efficiency which resulted in low cost and, hence,
more competitive being therefore of more interest. This fact boosted world production of C. canephora,
particularly, in tropical countries. Popularly known as “Robusta coffee”, currently, Brazil stands out as
the second largest producer in the world. In this context, Espírito Santo (ES) State is responsible for
78% of all grains produced in the country. This total represents 20% of the C. canephora worldwide
production representing the importance of the crop in a global scenario (Ferrão et al., 2007).

Much of this success is due to the breeding program that has been conducted by the Incaper
Institution (Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural). Since the first variety
developed by the Incaper was released (1993), it is estimated that the average productivity increased in
the State in the order of 310%, with an increase of only 7.5% in the area. Nine C. canephora cultivars
were released by Incaper. Despite this evident success, traditionally, breeding schemes in coffee are still
based entirely on phenotypic evaluations collected in field trials. It is undeniable that important advances
were obtained in the last decades. However, it is also important to take into account the time required
to achieve these gains (Ferrão et al., 2007). Breeding programs supported only by phenotypic metrics
are coupled with long testing phases resulting in low gains per unit of time.

The possibility to predict accurately the genetic merit based on molecular information, a process
known as genomic selection (GS), is revolutionizing breeding schemes (Jannink et al., 2010). The
importance and interest in this methodology is driven by the desire to increase the rate of genetic gain
per unit of time. This is caused by a higher of selection, when compared with traditional selection schemes.
Additionally, genomic selection allows for selection of juvenile plants without phenotypes. Although some
crops have benefited from this contemporary approach (Grattapaglia and Resende, 2010; Poland
et al., 2012a; Crossa et al., 2013; Spindel et al., 2015), studies in the genus Coffea are still in their
infancy. Until now, there is not evidence supporting how predictive models works across populations
and environments or, even, their performance for different complex traits. In this scenario, studies in
Coffea canephora can be considered as a good starting point. Despite its economic importance there are
genetic motivations, including the ploidy (2n = 2x) and wide genetic variability (Ferrão et al., 2015).
Both features make the genotyping and statistical modelling more feasible than in C. arabica, which is
allotetraploid and has a narrow genetic base. Furthermore, the first high-quality genome sequence of
Robusta coffee was recently completed and reported, which supports the use of C. canephora species as
an important model in coffee investigations (Denoeud et al., 2014).

In order to investigate the GS performance in coffee breeding, the main objective of this research
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is to discuss aspects of statistical modelling for genomic prediction. Until now, multiple methods and
models have been proposed. As a general rule, these approaches combine concepts of quantitative genetic
(Falconer and Mackay, 1996), linear regression (Rencher and Schaalje, 2008), mixed models
(Henderson, 1949), genetic relationships (VanRaden, 2008) and Bayesian analysis (Gelman et al.,
2014). Aiming to introduce these topics, a critical overview about GS implementation was considered
in the chapter “Genomic Selection-State of the Art” , that is part of the book “Genetic Improvement of
Tropical Species”, under responsibility of the Springer editor. Due to copyright issues, this chapter was
omitted in this dissertation.

Subsequent chapters (1 and 2) focus on aspects and development of genomic prediction models
and their performance considering coffee data set. Multiple methods and models have been proposed for
implementing genomic selection (VanRaden, 2008; de Los Campos et al., 2013). In statistical terms,
prediction begins with the specification of a model involving effects and other parameters that describe
the factors that determine observed values (Garrick et al., 2014). In GS context, a statistical model
is proposed to associate phenotypic observations with variations at DNA level. The major challenge of
genomic prediction researches is to accurately model the true QTL effects. This challenge is caused by
the disparity between the large number of markers (p) and the number of records (n) that are available
to predict marker effects. This is the well documented “curse of dimensionality”or “p>n statistical
problem”(Gianola and van Kaam, 2008).

Any model to be used for genomic prediction must be able to accommodate more predictors
than observations, which prevents the use of the classical theory of linear models (e.g., ordinary least
square or maximum likelihood) (Gianola, 2013). In the literature, two different approaches have been
widely used for this end: i) Mixed models based on genomic relationship matrix; and ii) multilocus
association models (also called “polygenic modeling” or “marker effects models”) (Kärkkäinen and
Sillanpää, 2012; Zhou and Stephens, 2012; Garrick et al., 2014). Both methods were addressed in
Chapter 1 and 2, respectively.

Mixed model approach is a method that utilizes genomic relationships to estimate the genetic
merit of an individual. For this purpose, a genomic relationship matrix is estimated from DNA marker
information. The matrix defines the covariance between individuals based on observed similarity at the
genomic level, rather than on expected similarity based on pedigree. The similarity with the traditional
BLUP (Henderson, 1949) motivated the classification of this method as “Genomic BLUP” or “GBLUP”.
Chapter 1, entitled “A Mixed model to multiple harvest-location trial applied to genomic prediction in
Coffea canephora” considered this approach for genomic predictions in coffee. Some key points were
discussed, as the following: i) Evaluate the GS performance, in contrast to phenotypic methods; ii)
Handle the interaction effects (Genotype×Harvest and Genotype×Location) in GS context; iii) Given the
modest genomic resources and the absence of a standard genotyping platform, investigate the potential
of the Genotyping-by-Sequencing (GBS). In order to consider the raised points, a predictive model was
proposed addressing the coffee breeding scenario, which involves measures in a series of replicated field
trials grown across multiple years and location. Experiments of this nature are typically referred to as
multi-environment trials (MET) (Smith et al., 2005). The central point discussed in this chapter was an
expansion of the GBLUP model in order to accommodate interaction effects.

In order to address the conjugate use of genomic information and MET modeling, appropriate
(co)variance structures for modeling heterogeneity and correlation of genetic effects and residual effects
were considered. Among the advantages, the flexibility to consider correlated information for the genetic
and residual terms is an important factor, since they are not easy to handle considering traditional
analysis (e.g., ANOVA models) (Smith et al., 2005; Malosetti et al., 2014). This approach has been
used in recent years in our research group for data modeling in perennial crops, in special for sugarcane
crop. Much of these ideas were described by Pastina et al. (2012) in QTL mapping studies and by
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Balsalobre et al. (2016) in phenotypic analysis. Therefore, given our expertise in this topic, it was
a natural way to consider the mixed model theory as a starting point for genomic prediction studies in
coffee. This study was supported by FAPESP (Sao Paulo Research Foundation), grant 2014/20389-2.
The approach and the results was orally presented at Coffee Workshop during the PAG XXIV (Plant
and Animal Genome Conference), San Diego, USA; and submitted for publication in Tree Genetics &
Genomes journal.

The research covered in the Chapter 2 addressed the use of multilocus association models
to predictive analysis. Thousands of markers are modeled simultaneously and the genetic value of an
individual is obtained by the sum of these estimated effects (Garrick et al., 2014). To this end, all
markers have been included as explanatory variables under a Bayesian framework or considering Machine
Learning algorithms (Kärkkäinen and Sillanpää, 2012; Zhou et al., 2013; James et al., 2013). This
categorization in Bayesian or Machine Learning group occurred in accordance to how they tackle the
underlying statistical question about “p>n problem”, a data dimensionality dilemma where the number
of markers (p) significantly exceeds the number of phenotypic records (n). As a general rule, in this
scenario some modelling assumptions are required either by discarding the unimportant predictors or by
shrinking their effects toward zero (Kärkkäinen and Sillanpää, 2012). The procedure adopted will
differentiate the methods in terms of predictive ability, computational efficiency and genetic assumptions.

Although comparisons between methods have been carried out in different species and traits, to
our knowledge, investigations in coffee are still modest. Therefore, Chapter 2, entitled as “Comparison of
statistical methods and reliability of genomic prediction in Coffea canephora populations”, was addressed
to compare the performance of a range of genomic prediction models across C. canephora traits. Likewise,
these analysis were extended for predictions across locations and populations of coffee, in order to check
the reliability of GS studies to predict genetic merit in multiple conditions of the plant breeding. This
research was developed during the FAPESP/BEPE (Research Internship Abroad, grant 2016/05127-7)
at the University of Chicago, USA; under the supervision of Prof. Matthew Stephens. Results was orally
presented at Coffee Workshop during the PAG XXV (Plant and Animal Genome Conference), San Diego,
USA. This chapter was wrote in a manuscript format expressing our intention to submit it in the Genetics
– G3 Genes|Genomes|Genetics journal. To the best of our knowledge, this is the first research addressing
the use of predictive models in multiple traits and populations in the genus Coffea.

In the final chapter (Chapter 3), a summary of the key findings are presented and the implica-
tions of the research outcomes are discussed. In addition, the potential impacts of this research in the
coffee breeding community are discussed as possible future directions, indicating the increasing potential
of genomic selection.
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2 CONCLUSION

Simulation and empirical results have shown that genomic prediction presents sufficient accu-
racy to help success in breeding programs. Although some crops have benefited from this methodology,
studies in the genus Coffea are still modest. The main objective in this research was discuss aspects
related to statistical modeling in order to enable a more comprehensive understanding of what makes a
robust and accurate prediction model. Additionally, it was explored new possibilities introduced through
genomic selection to accelerate coffee breeding programs. Aspects of statistical modelling were discus-
sed in Chapters 1 and 2, considering two different approaches: Mixed model and multilocus association
models.

In addition to statistical modeling, Chapter 1 and 2 addressed questions that underlie a coffee
breeding program. In Chapter 1, for a given population, both locals were jointly modeled in order to
answer questions related to the importance of interaction modelling, compare phenotypic and genomic
models and investigate the potential of the Genotyping-by-Sequencing (GBS) in coffee studies. On the
other hand, Chapter 2 addressed a hypothetical situation where GS was considered to predict genetic
merits in different environments and populations.

In terms of practical implementation, the use of mixed model theory (Chapter 1) presents
software and concepts well established in the breeder routine (Mrode, 2014), which means that pre-
dictive models and derivations of them (e.g., inclusion of interaction and/or non-additive effects) can
be straightforwardly implemented. About modelling statistical, another advantage is the possibility to
consider one-stage approach. Most GS studies use a two-stage analysis, where in a first stage the phe-
notypic data are pre-adjusted with estimates of non-genetic effects and, in a second stage, these adjusted
metrics are considered in penalized regressions methods (RR-BLUP, in most cases) (Oakey et al., 2016).
Although represent lower computational demand, two-stages approach biases marker effects and induces
heterogeneous residual variances and residual correlations, that are not completely eliminated by a weigh-
ted analysis (de Los Campos et al., 2013). For this reason, when feasible, one-stage approach should be
preferred. Chapter 2 investigated whole-genome regressions, including penalized and Bayesian estimation
procedures, as well as non-parametric regressions and dimension reduction procedure. A central idea was
relaxing the usual assumption of marker effects drawn from a normal distribution, which means seek
for a possible association between model and trait, conditional to the genetic architecture. Although
based on particular genetic and statistical assumptions, minimal differences were observed in terms of
predictive ability. Therefore, models that showed less computational demand (“rrblup” and “gemma”)
can be considered for future investigations.

Considering some questions addressed to practical implementation in coffee breeding program,
in Chapter 1 the MET.GBLUP model showed the best goodness of fit and predictive ability. Traditionally,
one cycle of phenotypic recurrent selection in C. canephora consists of: i) Development of progenies from
a base population; ii) phenotypic evaluation of the progenies in multiple environments and harvests; and
iii) selection and recombination of the best selected individuals to form a new base population. Intuitively,
the objectives is to generate an improved population by increasing the frequency of favorable alleles while
maintaining sufficient genetic variation for subsequent cycles of selection (Windhausen et al., 2012). A
short term, a potential application is select individuals in both population (Intermediate and Premature)
considering genomic prediction. Hence, after on recombination cycle, progenies can be genotyped and
MET.GBLUP model would be used to predict the genetic merit of individuals unphenotyped in both
locals. Our prospect is the reducing of the breeding cycle (avoiding long testing phases) and increases
the selection intensity, through genotypic evaluation of a larger number of candidates. In contrast to
the conventional recurrent selection program, including marker-assisted in coffee breeding schemes, it
is expected a reduction of two-thirds (5-6 years) to the total time required to advance one generation.
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In Chapter 2 it was discussed a hypothetical situation which a unique training population would be
considered to calibrate a predictive model and the estimated markers effects used to predict phenotypic
performances in other conditions (locals or populations). It is noteworthy that positive accuracy values
were observed, in special, for across-locals predictions. As perspective, these results have potential to be
included in new breeding schemes.

An open question addressed in Chapter 2 is the lack of information about genetic architecture
of complex traits. Certainly, towards in this direction is a challenge in coffee research (Tran et al.,
2016). A recent approach that has been investigated in GS research is not focus only on predictions, but
also aggregate two important features: identify SNP associated with the trait and understand its genetic
architecture (Spindel et al., 2015; MacLeod et al., 2016). It seems clear that investigate which genetic
variants have common and specific effects on environments or populations can help the selection of ge-
neralist genotypes (good performance in all conditions; i.e., broad adaptation) or specialist (performance
directed for a specific condition; i.e., narrow adaptation). Broadly speaking, the problem of identifying
relevant SNPs considering multilocus association models, in such way, approximate GS methods with
contemporaneous GWAS algorithm (O’Hara and Sillanpää, 2009). The primary rationale of GWAS
investigations is the idea that, by examining SNPs in details, important insights about the underlying bi-
ologic phenomenon can be discovery (Guan and Stephens, 2011). Therefore, it is reasonable to consider
that modern GS analysis can borrow particularity from GWAS method - identify important covariates
and learn about underlying biologic process – and uses them for prediction tasks.

A further conclusion addressed the use of GBS approach. The biallelic nature of SNP markers
makes them less informative than microsatellites, molecular marker commonly used in coffee studies
(Ferrão et al., 2015; Moncada et al., 2015). However, this disadvantage is easily overcome by their
high abundance, ease and high throughput of their discovery and the robustness and automation of
SNP genotyping assays. Promising results in terms of number and density of SNPs across the genome
suggesting that GBS can be used as an efficient genotyping method in coffee research. Considering that
coffee species suffer with the absence of a standard genotyping platform, GBS approach presents the
advantage to simultaneous marker discovery and genotyping across the whole population of interest,
making it rapid, flexible and suitable for species with limited genomic resources.

As a final message, GS approach is recommended as a promising and innovative approach to
be applied in coffee breeding programs. In practice, compared to traditional phenotypic evaluation, it is
expected to accelerate the breeding cycle, maintain genetic diversity and increase the genetic gain per
unit of time. For this end, this research evidenced that consider a suitable genomic prediction model
and understand the breeding scenario that is attempting to address are two important features to be
contemplated for GS implementation.
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Jarqúin, D., K. Kocak, L. Posadas, K. Hyma, J. Jedlicka, G. Graef, and A. Lorenz, 2014
Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics
15: 740.

Júnior, G. A. F., G. J. Rosa, B. D. Valente, R. Carvalheiro, F. Baldi, D. A. Garcia, D. G.
Gordo, R. Espigolan, L. Takada, R. L. Tonussi, et al., 2016 Genomic prediction of breeding
values for carcass traits in nellore cattle. Genetics Selection Evolution 48: 7.
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plant breeding and variety testing. Euphytica 161: 209–228.

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team, 2016 nlme: Linear and
Nonlinear Mixed Effects Models. R package version 3.1-128.

Poland, J., J. Endelman, J. Dawson, J. Rutkoski, S. Wu, Y. Manes, S. Dreisigacker,
J. Crossa, H. Sánchez-Villeda, M. Sorrells, and J.-L. Jannink, 2012a Genomic Selection in
Wheat Breeding using Genotyping-by-Sequencing. The Plant Genome Journal 5: 103.

Poland, J., J. Endelman, J. Dawson, J. Rutkoski, S. Wu, Y. Manes, S. Dreisigacker,
J. Crossa, H. Sánchez-Villeda, M. Sorrells, and J.-L. Jannink, 2012b Genomic Selection in
Wheat Breeding using Genotyping-by-Sequencing. The Plant Genome Journal 5: 103.

R Core Team, 2013 R: A Language and Environment for Statistical Computing.

Rencher, A. C. and G. B. Schaalje, 2008 Linear Models in Statistics. Hoboken, New Jersey, john
wiley edition.
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