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RESUMO

Desenvolvimento e aplicação de métodos genético-estatísticos para predição genômica em Coffea
canephora

Seleção Genômica pode ser definida como a seleção simultânea de centenas ou milhares de
marcadores moleculares, os quais cobrem o genoma de forma densa, de modo que locos de caracteres
quantitativos (QTL) estejam em desequilíbrio de ligação com uma parte desses marcadores. Assim,
marcadores associados a QTLs, independentemente da significância dos seus efeitos, são utilizados
na predição do mérito genético de um indivíduo para um determinado caráter. Simulações e es-
tudos empíricos mostram que essa abordagem apresenta acurácia suficiente para garantir o sucesso
em programas de melhoramento genético, quando comparado com os métodos tradicionais de seleção
fenotípica. Para tanto, uma das etapas requeridas é o uso de modelos genético-estatísticos que contem-
plem a predição fidedigna da performance fenotípica da população sob estudo. Apesar da relevância,
o número de estudos no gênero Coffea ainda são reduzidos, não havendo relatos sobre o desempenho
desses modelos em diferentes populações e ambientes, ou mesmo, a sua performance para diferentes
caracteres agronômicos do cafeeiro. Dessa forma, este estudo tem como finalidade investigar aspectos
relacionados a modelagem estatística, a fim de compreender quais são os fatores que tornam os mode-
los preditivos mais acurados e utiliza-los em programas aplicados de melhoramento genético. Dados
reais de duas populações de seleção recorrente de Coffea canephora, avaliados em dois ambientes
e genotipados pela tecnologia de genotipagem por sequenciamento (GBS, do inglês Genotyping-by-
Sequencing) foram considerados para o estudo da relação entre genótipo-fenótipo. Em termos de
modelagem estatística, duas classes de modelos foram considerados: i) Modelos mistos, baseados
no cálculo da matriz de parentesco realizado como medida de (co)variância genética entre indivíduos
(modelo GBLUP); e ii) Modelos de associação multilocos, no qual milhares de marcadores moleculares
são modelados simultaneamente e os efeitos estimados dos marcadores são somados, a fim de compu-
tar o mérito genético dos indivíduos. Ambas estratégias foram descritas em capítulos separados no
formato de artigo científico. O capítulo intitulado “A mixed model to multiplicative harvest-location
trial applied to genomic prediction in Coffea canephora” abordou uma expansão do modelo GBLUP
de modo a contemplar efeitos de interações entre Genótipo×Colheita e Genótipo×Local. Para tanto,
apropriadas estruturas de variância e covariância para modelagem da heterogeneidade e correlação
dos efeitos genéticos e residuais foram testadas. O modelo proposto, denominado de MET.GBLUP,
apresentou melhor qualidade de ajuste e capacidade preditiva, quando comparado com outros mé-
todos. O capítulo em sequência, intitulado de “Comparison of statistical methods and reliability of
genomic prediction in Coffea canephora population” investigou a capacidade preditiva de diferentes
modelos de associação multilocos. A suposição usual de efeitos dos marcadores amostrados de uma
distribuição normal foi relaxada, a fim de testar métodos alternativos que pudessem melhor des-
crever o fenômeno biológico e, consequentemente, resultar em maior capacidade preditiva. Embora
os modelos testados sejam conceitualmente distintos, diferenças mínimas nos valores de acurácia de
predição foram observadas nos cenários testados. Em termos de demanda computacional, modelos
Bayesianos apresentaram maior tempo de análise. Os resultados descritos em ambos os capítulos
apoiam o potencial do uso da seleção genômica em programas de melhoramento assistido de café.
Em termos práticos, comparado com métodos tradicionais de avaliação fenotípica, é esperado que a
implementação desses conceitos em programas de seleção recorrente possam acelerar o ciclo de me-
lhoramento, manter a diversidade genética e, sobretudo, aumentar o ganho genético por unidade de
tempo.

Palavras-chave: Seleção genômica, Marcadores moleculares, Modelos lineares, Café
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ABSTRACT

Development and application of statistical genetic methods to genomic prediction in Coffea
canephora

Genomic selection (GS) works by simultaneously selecting hundreds or thousands of mar-
kers covering the genome so that the majority of quantitative trait loci are in linkage disequilibrium
(LD) with such markers. Thus, markers associated with QTLs, regardless of the significance of their
effects, are used to explain the genetic variation of a trait. Simulation and empirical results have
shown that genomic prediction presents sufficient accuracy to help success in breeding programs, in
contrast to traditional phenotypic analysis. For this end, an important step addresses the use of
statistical genetic models able to predict the phenotypic performance for important traits. Although
some crops have benefited from this approach, studies in the genus Coffea are still in their infancy.
Until now, there have been no studies of how predictive models work across populations and envi-
ronments or, even, their performance for different complex traits. Therefore, the main objective of
this research is investigating important aspects related to statistical modeling in order to enable a
more comprehensive understanding of what makes a robust prediction model and, as consequence,
apply it in practical breeding programs. Real data from two experimental populations of Coffea
canephora, evaluated in two brazilian locations and SNPs identified by Genotyping-by-Sequencing
(GBS) were considered to investigate the genotype-phenotype relationship. In terms of statistical
modelling, two classes of models were considered: i) Mixed models, based on genomic relationship
matrix to define the (co)variance between relatives (called GBLUP model); and ii) Multilocus asso-
ciation models, which thousands of markers are modeled simultaneously and the marker effects are
summed, in order to compute the genetic merit of individuals. Both approaches were considered in
separated chapters. Chapter entitled “A mixed model to multiplicative harvest-location trial applied
to genomic prediction in Coffea canephora” addressed an expansion of the traditional GBLUP to
accommodate interaction effects (Genotype×Local and Genotype×Harvest). For this end, we have
tested appropriate (co)variance structures for modeling heterogeneity and correlation of genetic ef-
fects and residual effects. The proposed model, called MET.GBLUP, showed the best goodness of fit
and higher predictive ability, when compared to other methods. Chapter in the sequence was entitled
”Comparison of statistical methods and reliability of genomic prediction in Coffea canephora popu-
lation” and addressed the use of different modelling assumptions considering multilocos association
models. The usual assumption of marker effects drawn from a normal distribution was relaxed, in
order to seek for a possible dependency between predictive performance and trait, conditional on the
genetic architecture. Although the competitor models are conceptually different, a minimal difference
in predictive accuracy was observed in the comparative analysis. In terms of computational demand,
Bayesian models showed higher time of analysis. Results discussed in both chapters have supported
the potential of genomic selection to reshape traditional breeding programs. In practice, compared to
traditional phenotypic evaluation, it is expected to accelerate the breeding cycle in recurrent selection
programs, maintain genetic diversity and increase the genetic gain per unit of time.

Keywords: Genomic selection, Molecular markers, Linear models, Coffee
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1 PREFACE

Coffee is the world’s most widely traded tropical agricultural commodity (Tran et al., 2016).
It is estimated that more than 125 million people have been benefited, directly or indirectly, by the coffee
agribusiness (IOC, 2016). As result, the crop is part of the economy of more than 70 countries and it is
one of the most popular beverages in western countries (Moncada et al., 2015). In this scenario, Brazil
has a prominent position, given it is responsible for about a third of all world production making it the
world’s largest producer, a position that has held for the last 150 years (IOC, 2016). For this reason,
among the activities related to agricultural business in the country, coffee crop has been one of the most
important in economic and social aspects.

Coffee belongs to the Rubiaceae family and the genus Coffea, which comprises hundreds of
tropical species. Among them, two species present commercial production: Coffea arabica, more aromatic
with more perceptible acidity; and Coffea canephora, which beverage have a bitter, full bodied taste and
higher caffeine level (Tran et al., 2016). In the 50’s, with the raise of soluble coffee consume, C. canephora
species, known as a coffee of lower quality, began to be commercially exploited in the so-called blends
(coffee drink composed by grain mixture of both species). In addition to counteract the acidity and
add full bodied taste, blends conferred good industrial efficiency which resulted in low cost and, hence,
more competitive being therefore of more interest. This fact boosted world production of C. canephora,
particularly, in tropical countries. Popularly known as “Robusta coffee”, currently, Brazil stands out as
the second largest producer in the world. In this context, Espírito Santo (ES) State is responsible for
78% of all grains produced in the country. This total represents 20% of the C. canephora worldwide
production representing the importance of the crop in a global scenario (Ferrão et al., 2007).

Much of this success is due to the breeding program that has been conducted by the Incaper
Institution (Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural). Since the first variety
developed by the Incaper was released (1993), it is estimated that the average productivity increased in
the State in the order of 310%, with an increase of only 7.5% in the area. Nine C. canephora cultivars
were released by Incaper. Despite this evident success, traditionally, breeding schemes in coffee are still
based entirely on phenotypic evaluations collected in field trials. It is undeniable that important advances
were obtained in the last decades. However, it is also important to take into account the time required
to achieve these gains (Ferrão et al., 2007). Breeding programs supported only by phenotypic metrics
are coupled with long testing phases resulting in low gains per unit of time.

The possibility to predict accurately the genetic merit based on molecular information, a process
known as genomic selection (GS), is revolutionizing breeding schemes (Jannink et al., 2010). The
importance and interest in this methodology is driven by the desire to increase the rate of genetic gain
per unit of time. This is caused by a higher of selection, when compared with traditional selection schemes.
Additionally, genomic selection allows for selection of juvenile plants without phenotypes. Although some
crops have benefited from this contemporary approach (Grattapaglia and Resende, 2010; Poland
et al., 2012a; Crossa et al., 2013; Spindel et al., 2015), studies in the genus Coffea are still in their
infancy. Until now, there is not evidence supporting how predictive models works across populations
and environments or, even, their performance for different complex traits. In this scenario, studies in
Coffea canephora can be considered as a good starting point. Despite its economic importance there are
genetic motivations, including the ploidy (2n = 2x) and wide genetic variability (Ferrão et al., 2015).
Both features make the genotyping and statistical modelling more feasible than in C. arabica, which is
allotetraploid and has a narrow genetic base. Furthermore, the first high-quality genome sequence of
Robusta coffee was recently completed and reported, which supports the use of C. canephora species as
an important model in coffee investigations (Denoeud et al., 2014).

In order to investigate the GS performance in coffee breeding, the main objective of this research
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is to discuss aspects of statistical modelling for genomic prediction. Until now, multiple methods and
models have been proposed. As a general rule, these approaches combine concepts of quantitative genetic
(Falconer and Mackay, 1996), linear regression (Rencher and Schaalje, 2008), mixed models
(Henderson, 1949), genetic relationships (VanRaden, 2008) and Bayesian analysis (Gelman et al.,
2014). Aiming to introduce these topics, a critical overview about GS implementation was considered
in the chapter “Genomic Selection-State of the Art” , that is part of the book “Genetic Improvement of
Tropical Species”, under responsibility of the Springer editor. Due to copyright issues, this chapter was
omitted in this dissertation.

Subsequent chapters (1 and 2) focus on aspects and development of genomic prediction models
and their performance considering coffee data set. Multiple methods and models have been proposed for
implementing genomic selection (VanRaden, 2008; de Los Campos et al., 2013). In statistical terms,
prediction begins with the specification of a model involving effects and other parameters that describe
the factors that determine observed values (Garrick et al., 2014). In GS context, a statistical model
is proposed to associate phenotypic observations with variations at DNA level. The major challenge of
genomic prediction researches is to accurately model the true QTL effects. This challenge is caused by
the disparity between the large number of markers (p) and the number of records (n) that are available
to predict marker effects. This is the well documented “curse of dimensionality”or “p>n statistical
problem”(Gianola and van Kaam, 2008).

Any model to be used for genomic prediction must be able to accommodate more predictors
than observations, which prevents the use of the classical theory of linear models (e.g., ordinary least
square or maximum likelihood) (Gianola, 2013). In the literature, two different approaches have been
widely used for this end: i) Mixed models based on genomic relationship matrix; and ii) multilocus
association models (also called “polygenic modeling” or “marker effects models”) (Kärkkäinen and
Sillanpää, 2012; Zhou and Stephens, 2012; Garrick et al., 2014). Both methods were addressed in
Chapter 1 and 2, respectively.

Mixed model approach is a method that utilizes genomic relationships to estimate the genetic
merit of an individual. For this purpose, a genomic relationship matrix is estimated from DNA marker
information. The matrix defines the covariance between individuals based on observed similarity at the
genomic level, rather than on expected similarity based on pedigree. The similarity with the traditional
BLUP (Henderson, 1949) motivated the classification of this method as “Genomic BLUP” or “GBLUP”.
Chapter 1, entitled “A Mixed model to multiple harvest-location trial applied to genomic prediction in
Coffea canephora” considered this approach for genomic predictions in coffee. Some key points were
discussed, as the following: i) Evaluate the GS performance, in contrast to phenotypic methods; ii)
Handle the interaction effects (Genotype×Harvest and Genotype×Location) in GS context; iii) Given the
modest genomic resources and the absence of a standard genotyping platform, investigate the potential
of the Genotyping-by-Sequencing (GBS). In order to consider the raised points, a predictive model was
proposed addressing the coffee breeding scenario, which involves measures in a series of replicated field
trials grown across multiple years and location. Experiments of this nature are typically referred to as
multi-environment trials (MET) (Smith et al., 2005). The central point discussed in this chapter was an
expansion of the GBLUP model in order to accommodate interaction effects.

In order to address the conjugate use of genomic information and MET modeling, appropriate
(co)variance structures for modeling heterogeneity and correlation of genetic effects and residual effects
were considered. Among the advantages, the flexibility to consider correlated information for the genetic
and residual terms is an important factor, since they are not easy to handle considering traditional
analysis (e.g., ANOVA models) (Smith et al., 2005; Malosetti et al., 2014). This approach has been
used in recent years in our research group for data modeling in perennial crops, in special for sugarcane
crop. Much of these ideas were described by Pastina et al. (2012) in QTL mapping studies and by
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Balsalobre et al. (2016) in phenotypic analysis. Therefore, given our expertise in this topic, it was
a natural way to consider the mixed model theory as a starting point for genomic prediction studies in
coffee. This study was supported by FAPESP (Sao Paulo Research Foundation), grant 2014/20389-2.
The approach and the results was orally presented at Coffee Workshop during the PAG XXIV (Plant
and Animal Genome Conference), San Diego, USA; and submitted for publication in Tree Genetics &
Genomes journal.

The research covered in the Chapter 2 addressed the use of multilocus association models
to predictive analysis. Thousands of markers are modeled simultaneously and the genetic value of an
individual is obtained by the sum of these estimated effects (Garrick et al., 2014). To this end, all
markers have been included as explanatory variables under a Bayesian framework or considering Machine
Learning algorithms (Kärkkäinen and Sillanpää, 2012; Zhou et al., 2013; James et al., 2013). This
categorization in Bayesian or Machine Learning group occurred in accordance to how they tackle the
underlying statistical question about “p>n problem”, a data dimensionality dilemma where the number
of markers (p) significantly exceeds the number of phenotypic records (n). As a general rule, in this
scenario some modelling assumptions are required either by discarding the unimportant predictors or by
shrinking their effects toward zero (Kärkkäinen and Sillanpää, 2012). The procedure adopted will
differentiate the methods in terms of predictive ability, computational efficiency and genetic assumptions.

Although comparisons between methods have been carried out in different species and traits, to
our knowledge, investigations in coffee are still modest. Therefore, Chapter 2, entitled as “Comparison of
statistical methods and reliability of genomic prediction in Coffea canephora populations”, was addressed
to compare the performance of a range of genomic prediction models across C. canephora traits. Likewise,
these analysis were extended for predictions across locations and populations of coffee, in order to check
the reliability of GS studies to predict genetic merit in multiple conditions of the plant breeding. This
research was developed during the FAPESP/BEPE (Research Internship Abroad, grant 2016/05127-7)
at the University of Chicago, USA; under the supervision of Prof. Matthew Stephens. Results was orally
presented at Coffee Workshop during the PAG XXV (Plant and Animal Genome Conference), San Diego,
USA. This chapter was wrote in a manuscript format expressing our intention to submit it in the Genetics
– G3 Genes|Genomes|Genetics journal. To the best of our knowledge, this is the first research addressing
the use of predictive models in multiple traits and populations in the genus Coffea.

In the final chapter (Chapter 3), a summary of the key findings are presented and the implica-
tions of the research outcomes are discussed. In addition, the potential impacts of this research in the
coffee breeding community are discussed as possible future directions, indicating the increasing potential
of genomic selection.
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2 A MIXED MODEL TO MULTIPLE HARVEST-LOCATION TRIAL APPLIED TO
GENOMIC PREDICTION IN COFFEA CANEPHORA

Keywords: Genomic Selection; Genotyping-by-Sequencing(GBS); GBLUP; Multi-Environments
Trials (MET); Perennial crops.

2.1 Abstract

Genomic selection (GS) has been studied in several crops to increase the rates of genetic gain
and reduce the length of breeding cycles. Despite its relevance, there are only a modest number of reports
applied to the genus Coffea. Effective implementation depends on the ability to consider genomic models,
which correctly represent breeding scenario in which the species are inserted. Coffee experimentation,
in general, is represented by evaluations in multiples locations and harvests (MET) to understand the
interaction and predict the performance of untested genotypes. Therefore, the main objective of this study
was to investigate GS models suitable for use in Coffea canephora. An expansion of traditional GBLUP
was proposed and genomic analysis was performed using a genotyping-by-sequencing (GBS) approach,
which showed good potential to be used in coffee breeding programs. Interactions were modeled using
the multiplicative mixed model theory, that is commonly used in MET analysis in perennial crops. The
effectiveness of the proposed method was compared with other genetic models in terms of goodness of fit
and predictive accuracy. Different scenarios that mimic coffee breeding were used in the cross-validation
process. The proposed approach had the lowest AIC and BIC values and, consequently, the best fit. In
terms of predictive capacity, the incorporation of the MET modeling showed higher accuracy (on average
10-17% higher) and lower prediction errors than traditional GBLUP. The results may be used as basis
for additional studies into the genus Coffea and can be expanded for similar perennial crops.

2.2 Introduction

Coffee is one of the most important global crops in terms of economic and social implications.
Brazil is responsible for about a third of the world’s production making it the world’s largest producer.
It has held this position for the last 150 years (IOC, 2016). The Coffea genus comprises hundreds of
tropical species and the beverage popularly known as coffee is produced from grains of two species: Coffea
arabica, which contributes to the aroma and sweet flavor; and Coffea canephora, with higher amounts
of caffeine and soluble solids (Tran et al., 2016). Global efforts have been made to increase production
and quality of the final product. Thus, breeding programs have a key role in improving agronomic traits
associated with grain production (Ferrão et al., 2015)

C. canephora is a good starting point for studies on the Coffea genus for economic and genetic
reasons including the ploidy (2n = 2x) and wide genetic variability (Tran et al., 2016). Both features
make the process of genotyping and statistical modeling more feasible than in C. arabica, which is
allotetraploid and has a narrow genetic base. The economic motivation is based on grain production and
crop cultivation. C. canephora is responsible for 40% of the world coffee production, and its grain is the
main source of raw materials for soluble coffee. Further, the species has better adaptability to various
stresses, which makes cultivation easier and cheaper (Ferrão et al., 2007).

Traditionally, evaluation of genetic progress has been performed via phenotype data collected
in field trials coupled with a long testing phase, which results in low gains per unit of time. The advent of
molecular markers opened a new perspective for their use in marker assisted selection (MAS). Meuwissen
et al. (2001) suggested the use of all available molecular markers as covariates in linear regression models
to predict genetic value in quantitative traits. The potential to increase the rates of genetic gain and
reduce the breeding cycle is a widely accepted concept in animal and plant breeding. Popularly called
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genomic selection (GS), the methodology has potential to redirect resources and activities in breeding
programs (de los Campos et al., 2009).

Although GS is a promising method to help breeders, studies in coffee are still emerging in
contrast to other crops. Implementing GS poses several statistical challenges such as the ability to
consider genomic models that represent the breeding scenario in which the species is inserted. Typically,
coffee trials consist of evaluations in multiple locations and harvests to understand interactions and
predict the performance of untested genotypes. Experiments of this nature are collectively referred to as
Multi-Environments Trials (MET) and are not restricted to coffee but are also used in perennial crops
(Kelly et al., 2009).

A large number of statistical models have been developed to address interactions in MET
studies. In a modern framework, the genotypic performance across environments has been modeled as a
correlated trait. Thus, structured and unstructured covariance functions have been utilized in a mixed
model context (Smith et al., 2005; Kelly et al., 2009; Pastina et al., 2012; Malosetti et al., 2014). A
natural advantage is the flexible way in which these functions can be tested to describe the interactions
and the residual term (Smith et al., 2001). Furthermore, when genetic effects are assumed to be random,
the pedigree information can be incorporated and more accurate breeding values may be computed using
the best linear unbiased prediction (BLUP) (Kelly et al., 2009).

BLUP methodology relies on pedigree information to define the covariance between known re-
latives. However, this covariance can also be defined at the genomic level using DNA information rather
than an expected value based in pedigree record. This matrix is named the genomic relationship matrix,
and its combination with the BLUP theory resulted in the so-called Genomic Best Linear Unbiased Pre-
diction (GBLUP) (VanRaden, 2008). This is the current gold standard GS method used in animal and
plant breeding (de Los Campos et al., 2013). One of the first ideas to accommodate the interaction in
GS models was described by Burgueño et al. (2012). For this purpose, traditional GBLUP was extended
to accommodate the covariance functions in a multiple environment context. Among the theoretical and
practical advantages, this approach used a consolidated theory about mixed models as well as straight-
forward implementation using existing software. More recent studies have been advanced to incorporate
modern information about environmental covariates (Jarqúin et al., 2014; Heslot et al., 2014).Other
studies have reported the explicit modeling between markers and environment (Schulz-Streeck et al.,
2013; Lopez-Cruz et al., 2015). Recently, an in-depth description about issues in relation to interacti-
ons on GS studies was presented by Malosetti et al. (2016). All of these authors showed that models
including the interaction resulted in substantial gains in prediction accuracy.

Although promising, all these methods do not address an important aspect of perennial crops:
having data from multiple harvests and a short sequence of repeated measurements. Longitudinal data
of this nature are common not only in coffee, but also in other crops such as sugarcane as sugarcane
(Pastina et al., 2012; Margarido et al., 2015), forage grass (Smith and Casler, 2004) and cereal
(Kelly et al., 2009).

In addition to statistical challenges, the modest number of reports considering high-throughput
genotyping also hampers genomic studies in coffee. Genotyping-by-sequencing (GBS) is a representative
approach of this new class of molecular markers, which combines the reduction in genomic complexity with
next generation sequencing (NGS) (Elshire et al., 2011). A single sequencing run on an NGS platform
can generate data on the gigabase-pair levels. This usually contains hundreds of thousands of SNPs.
Therefore, in the one-step approach, GBS can discover new markers and genotype entire populations. It
is rapid, flexible and perfectly suited for GS versus traditional molecular markers. Investigations using
GBS are common in many crops (Poland et al., 2012b; Crossa et al., 2013), but there is a still an
important gap in the coffee literature.

The central purpose of this research was to consider a genomic selection model suitable for use
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in C. canephora and other perennial crops. The breeding scenario in which the species is inserted was
considered and the importance of the interaction investigated. To the best of our knowledge, studies ap-
plying high-throughput genotyping to genomic predictions are still relatively novel in Coffea. We present
aspects related to the applicability of Genotyping-by-Sequencing (GBS) as well as future perspectives.

2.3 Material and Methods

2.3.1 Phenotypic data

The experimental population was developed and evaluated by the Instituto Capixaba de Pes-
quisa, Assistência Tecnica e Extensão Rural Incaper; ES State, Brazil. Phenotypic data consisted of a
recurrent selection population formed from the recombination of 16 superior clones of C. canephora. Of
the thousands of genotypes maintained in Incaper, these clones were selected as progenitor due the high
production and the same grain maturity date. The latter is an important trait for new coffee varieties
because it allows for harvest standardization.

After one cycle of recombination and evaluation, the top 103 progenies and the 16 progenitors
were cloned and evaluated in randomized complete blocks with three repetitions and five plants per plot.
The population was installed in two representative environments (locations) for the Brazilian production
of C. canephora: Marilândia Experimental Farm (FEM) - latitude 19024′ south, longitude 40031′ west, 70
m altitude; and Sooretama Experimental Farm (FES) - latitude 15047′ south, longitude 43018′ west, 40
m altitude. he complete experiment used 3570 coffee trees, and the average of each plot was evaluated for
grain production (kilograms of mature coffee fruit in the cherries stages) over four consecutive harvest-
production years (2008, 2009, 2010 and 2011).

2.3.2 Genotypic Data

The GBS protocol followed that from the Genomic Diversity Facility, Cornell University (http://
www.biotech.cornell.edu/brc/genomics-facility). Leaves of each treatment were collected and lyophilized.
DNA extraction used Qiagen DNeasy Plant and the genomic libraries were prepared following Elshire
et al. (2011). The DNA samples were digested using the ApeKI restriction enzyme, and 96 samples were
multiplexed per Illumina flow cell for sequencing.

The GBS analysis pipeline is implemented in the TASSEL-GBS (v.4.3.7) (Glaubitz et al.,
2014). Sequenced tags were aligned against the C. canephora genome (Denoeud et al., 2014). The
raw VCF file was filtered manually considering the following cutoff: i) Triallelic SNPs were removed;
ii) Minimum minor allele frequency (0.01 mAF); iii) SNPs that are present in less than < 50% of the
samples were eliminated; iv) Minimal depth coverage of 10x (the mean number of sequence reads per
locus averaged across all individuals) was considered.

All filtering and SNP manipulation was carried out using VCFtools package (Danecek et al.,
2011) and customized scripts in R (R Core Team, 2013) and bash (GNU, 2007). The graphical analyzes
were performed using the OmicCircos (Hu et al., 2014).

2.3.3 Phenotypic Models

The following model uses a notation presented by Pastina et al. (2012). The statistical model
in which the underlined terms indicate a random variable is:

y
ijkr

= µ+ Lj +B|Lrj +Hk + LHjk +Gijk + eijkr (2.1)

Here, y
ijkr

is the phenotype of the rth block (r=1,2,3) of the ith individual (i = 1,2...,n), of the
jth location (j=1,2) and kth harvest (k = 1,2,3,4). Term µ is the overall mean; Lj is the effect of location;
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Table 2.1: Variance and covariance structures examined for the random effects in model 2.1

Model Num.Para Description
ID 1 Identical variation
DIAG M Heterogeneous variations
CS 2 Compound symmetry with homogeneous variance
CS Het M+1 Compound symmetry with heterogeneous variance
FA1 2M First order factor analytic model
AR1 M+1 First order autoregressive model
UNS M(M+1)/2 Unstructured model

a The number of parameters for the models follows from the sum of the parameters for the component
matrices minus the number of identification constraints. M = J or K, where J is the number of
locations and K is the number of harvests.

B|Lrj is the block effect nested within location; Hk is the harvest effect; LHjk is the location by harvest
interaction; Gijk is a random genetic effect of individual i, at harvests k and location j; and ϵijkr is the
random non-genetic residual error term.

For the genetic effects, we assumed a multivariate normal distribution with a zero mean vector
and a VCOV matrix indexed by three factors (harvest, location and genotype) written as the Kronecker
product (⊗) of matrices as follows: G = Gk×k

H ⊗Gj×j
L ⊗Σn×n

g in which GH and GL are VCOV and relate
to harvest and location. The diagonal element of these matrices represents the genetic variance within
the kth harvester and the genetic variance within the jth location, respectively. The VCOV structures
for these matrices are represented in Table 3.1. For GL, the reduced number of locations (two) restricted
the search in three VCOV structures (ID, DIAG and UNS), while for GH all the VCOV structures cited
were tested. Two important points: i) Each structure has different assumptions about the heterogeneity
of variance and may be used to quantify the interactions; and ii) the number of estimated parameters
represents the variation in the degree of complexity.

The term Σg is used here as a generic form to highlight the different assumptions that can be
assumed for the genetic term. The off-diagonal elements are the genetic covariance (Σg). An identity
matrix (Ig) is used when it is reasonable to assume that the genotypes are not related to each other (same
variance and lake of covariance between individuals). The identity assumption ensures that breeding
values of each genotype will be predicted only by the value of the empirical responses of the genotype
itself. This is an assumption often used in family studies in the absence of pedigree information. However,
information about the genetic relationship may be incorporated in the presence of pedigree record or
molecular information. Variations in these genetic assumptions and the interaction accommodation were
the central point of this study. This will be presented in the next section.

The residual term was factored in similarly via to genetic effects. It assumed a multivariate
normal distribution implying a zero mean and VCOV matrix indexed by four factor (harvest, location,
block and genotype) written using the Kronecker product as follows: R = Rk×k

H ⊗Rj×j
L ⊗Rr×r

B ⊗ In×n
g ,

in which RH , RL and RB are VCOV tested to harvest, location and block, respectively. The Ig is an
identity residual (co)variance matrix to genotypes. In principle, all the structures mentioned in Table
3.1 were tested for the residual term. In addition, spatial adjustments were tested, in order to correct
possible trends in the field trial data. An autoregressive (AR1) structure that allows correlations between
the residual values in neighboring plots (both within rows and within columns) was considered.

2.3.4 GBLUP version to multiples harvest-location trial (MET-GBLUP)

The aforementioned Model 2.1 was used to test the importance of the interaction modeling
(Genotype × Location- G×L and Genotype × Harvest- G×H) as well as the inclusion of the molecular
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Table 2.2: Summary of the tested models and the assumption on the variance and covariance structure
related to the random effects specified in the Model 2.1 description. MET prefix on the methods indicates
models where the interaction is explicitly modeled, testing covariance structures for location and harvest.

Method Ga Ra

Id1 In×n
G In×n

G

BLUP1 An×n
p In×n

G

GBLUP1 An×n
m In×n

G

MET2 Gj×j
L ⊗Gk×k

H ⊗ In×n
G Rj×j

L ⊗Rk×k
H ⊗Rr×r

B ⊗ In×n
G

MET.BLUP2 Gj×j
L ⊗Gk×k

H ⊗An×n
p Rj×j

L ⊗Rk×k
H ⊗Rr×r

B ⊗ In×n
G

MET.GBLUP2 Gj×j
L ⊗Gk×k

H ⊗An×n
m Rj×j

L ⊗Rk×k
H ⊗Rr×r

B ⊗ In×n
G

a Variance and covariance structures tested for the random effects specified in the Model 2.1. The IG,
Ap and Am represent a Identify matrix, additive relationship matrix and realized kinship, respectively.
1 First class of methods, that ignored the multiple-environment (MET) modeling; 2 Second class of
methods, that considered the multiple-environment (MET) modeling.

information in predictive models. Thus, different assumptions about the random effects distribution were
tested. Two classes of models were defined in accordance with interaction inclusion (MET modeling)
(Table 2.2).

The first class ignored the MET modeling; simple structures for genetic and residual effects
were assumed. Initially, the absence of genetic relationship across individuals was assumed (Id method).
The BLUP method considered the additive relationship matrix (Ap) as genetic covariance between
individuals, while the GBLUP method considered the realized kinship (Am). The Ap matrix was based
on the numerator relationship matrix, which was computed from the coefficient of co-ancestry (termed as
θxy) between genotypes x and y as Ap = {2θxy}. This assumed that relatives are not inbred (Falconer
and Mackay, 1996). The Am matrix was computed using molecular marker information considering
Am = MM ′, where M is the matrix containing the SNPs information centered on the average and
standardized by the variance (VanRaden, 2008)

The second class of models considered the MET modeling. Here, the genetic and residual
matrices were modeled considering the structures cited in Table 3.1 as well as variations on the genetic
covariances (Σg matrix). The MET method regarded the interactions, but had no correlation imposed
by the pedigree. The MET.BLUP refers to an expansion of the BLUP model but accommodates MET
modeling. MET.GBLUP is simultaneous MET modeling with the use of molecular markers to estimate
the relationship matrix (Am). The last approach was termed as “GBLUP version to multiples harvest-
location trial” and refers to the idea of accommodating the G ×L and G ×H interactions using MET
theory and a genomic selection model (GBLUP).

2.3.5 Comparison of Models

Two criteria were used to compare the models (Table 2.2): i) Goodness of fit, via AIC (Akaike,
1974) and BIC (Schwarz, 1978) ; and ii) Predictive capacity measured by cross-validation. The cross-
validation considered three hypothetical scenarios in coffee breeding. Scenario 1 (CV1) represents the
full genotypic prediction, i.e, simulation of genotypes that were not evaluated in any block, location and
harvest. Scenario 2 (CV2) represents genotypic predictions for one specific location and scenario 3 (CV3)
for one specific harvest. The simulated scenarios ranged in complexity, the largest number of predictions
was made in CV1 followed by CV2 and CV3.

The predictive abilities were assessed using a Replicated Training-Testing evaluation. In each
replication, 90% of the individuals were assigned randomly for training data set (TRN), while the remai-
ning 10% were assigned for testing data set (TST). This division was replicated 10 times with independent
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Table 2.3: Goodness of fit for the genetic matrix, factored by location (GL) and harvest (GH) considering
the AIC and BIC criteria. A Identify matrix was considered for the residual random effect.

GL

ID DIAG UNS
GH AIC BIC AIC BIC AIC BIC
ID 20027.5 20039.37 20014.6 20032.42 19962.09 19985.84
DIAG 20010.39 20040.08 19997.04 20032.66 19948.37 19989.93
AR1 19974.45 19992.26 19966.07 19989.83 19922.81 19952.5
FA1 19885.61 19939.05 19878.38 19937.75 19844.49 19909.81
CS 19939.21 19957.02 19932.66 19956.41 19892.13 19921.82
CS het 19920.23 19955.85 19913.37 19954.93 19876.05 19923.55
UNS 19854.45 19919.77 19848.4 19919.66 19811.65 19888.84

ID:Identical variation; DIAG: Heterogeneous variations; CS: compound symmetry with homogeneous
variance; CS het: compound symmetry with heterogeneous variance; FA1: first order factor analytic;
AR1: first order autoregressive; UNS: unstructured model.
Bold numbers represent the smallest AIC and BIC values, indicating the best fitted phenotypic model.

random assignments into TRN and TST. A similar scheme was used by Crossa et al. (2013). The pre-
dictive capacity was measured using the accuracy mean and the mean squared prediction error (MSPE)
across the 10 repetitions. The predictive accuracy was computed via the Pearson correlation between pre-
dicted (ŷi) and observed values (yi). The MSPE was computed by the formula: MSPE =

∑n
i=1(yi−ŷi)

2

n ,
where n is the number of individuals that predicted in the TST. All analysis were performed using the
Genstat software (VSN International, 2011).

2.4 Results

2.4.1 Phenotypic Data

The lowest AIC and BIC values were observed for the combination of UNS form for location
(GL) and harvest (GH) (Table 2.3). The values of ID combinations highlight the poor quality of the
goodness of fit data when traditional ANOVA assumptions are considered — even when homogeneous
variances across locations and harvesters are applied.

All the structures mentioned in Table 3.1 were also tested for the residual. Convergence pro-
blems and negative variance components were observed when more complex models were tested (results
not shown). Therefore, the DIAG form was assumed for each factor in the residual matrix. The option
of a simple structure was based on reducing the complexity and number of estimated parameters. This
is because our main focus was the genetic part. Although this structure may not be the most suitable
for representing residuals, we highlight that this model is more realistic than the assumptions assumed
in the traditional ANOVA that consider an ID structure for each factor, and consequently, homogeneity
between locations, harvests and blocks (Smith et al., 2001). In addition, spacial adjustment was tested
to corrects possible trends in the field trial data. No improvements on the AIC and BIC criterion were
observed when the correlation between immediately neighboring plots was specified (results not shown).

Figure 2.1 presents the phenotypic dispersion across the harvests and the variance component
magnitude. The dispersion of the phenotypic observations showed that the FES location was more
productive (on average) than FEM. There was more variation in the FES. Evidence of G×L was first
observed via this differential behavior and confirmed via heterogeneity of variance across locations. There
was an important pattern observed across the harvests: a lack of annual production stability. The boxplot
highlights cyclical production including highly productive years (2008 and 2010) and low production years
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Figure 2.1: Boxplot of grain production (kilograms of mature coffee fruit in the cherries stages) across
the locations (FEM and FES) and harvests (2008,2009,2010 and 2011), and a heatmap representing the
unstructured form estimated for locations (GL) and harvests (GH)

Table 2.4: SNP density summary in the Coffea canephora GBS libraries for each chromosome (Chr),
considering the sequential filtering: Trial: removing all triallelic SNPs; mAF: removing SNPs with mAF
< 0.01, plus Trial filtering; MD: removing SNPs that are present in less than < 50% of the samples, plus
Trial and mAF filtering; Depth Coverage: removing SNPs with mean number of sequence reads per locus
averaged across all individuals less than 1x, 5x, 10x and 15x, plus Trial, mAF and MD filtering.

Chr Rawa Trial mAF MD 1x 5x 10x 15x
Chr 1 46897 43692 16810 8679 8296 3359 1987 1400
Chr 2 77635 72150 26621 13805 13133 5470 3094 2164
Chr 3 31799 29728 12127 67901 6460 2771 1572 1131
Chr 4 34713 32368 11153 5870 5576 2252 1329 953
Chr 5 34140 31842 13263 6700 6361 2674 1509 1047
Chr 6 48775 45417 15822 8157 7686 2984 1722 1263
Chr 7 44370 41160 15197 8011 7594 2981 1728 1235
Chr 8 34554 32229 11678 5864 5612 2411 1373 965
Chr 9 24497 22859 8174 4332 4153 1752 1017 726
Chr 10 34158 31847 11786 6305 6014 2567 1563 1075
Chr 11 37929 35397 14990 7917 7553 2944 1692 1158
Total 449467 418689 158621 82431 78438 32165 18586 13117
(%)b 100 93.15 35.3 18.34 17.45 7.15 4.13 2.91

a Raw SNPs: original number of SNPs in a unfiltered VCF format.
b The percentage of SNPs remaining after filtering.

(2009 and 2011). Lack of stability and, consequently, evidence of G×H interactions were quantified via
the UNS form fitted for GH . This is represented by low genetic correlations between subsequent years.
These results are clear indications of the importance of MET modeling for subsequent GS models.

2.4.2 Genotypic Data

5,198,498 unique 64-bp sequence tags were identified in the C. canephora libraries; 32.1% were
uniquely aligned to the reference genome, 7% were aligned to multiple positions, and 60.9% could not be
aligned. Of this total, 449,467 raw SNPs were identified in the unfiltered VCF file.

We noted a predominance of SNPs with low percentages of missing data (0-10%). SNPs in
chromosomes with more than 80% missing data were unusual. The number of SNPs per chromosome
ranged from 24497 to 77635 (Table 2.4). An abrupt decrease was observed for the mAF cutoff and
when the depth coverage increases. The SNP density before and after filtration was 449,467 and 13,117
SNPs, respectively. This represented 2.91% of the SNP total, but 15x is an extremely conservative value
for cutoff in depth coverage. Therefore, for subsequent genomic studies, a security coverage of 10x was
assumed (18,586 SNPs selected).

A summary of GBS results is presented in layers (Figure 2.2). The first (from outer to inner
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Figure 2.2: Circular visualization about GBS information across the Coffea canephora chromosomes.
From from outer to inner layers, the graphic is separated by seven layers: i) Chromosomes; ii) number
of raw SNPs; iii) depth coverage; iv) percentage of SNPs eliminated considering the Minor Allele Fre-
quency (mAF) lower than 5%; v) percentage of SNPs eliminated considering the mAF lower than 1%;
vi) percentage of missing data; vii) number of filtered SNPs (blues bars) in contrast with the number of
raw SNPs (gray background). All these metrics were computed considering the average in a window size
of 400,000 base pairs (bp). The scale, in the bottom left, aids in the perception on the magnitude of the
values.

layers) represents each chromosome with a specific color. The scale is proportional to the reference genome
size. For better representation, all parameters in the subsequent layers were computed considering the
average in a window of 400,000 base pairs (bp). The second layer is the number of raw SNPs per window.
Unique tag counts were higher int the chromosome ends versus to pericentromic regions. The third layer
is the depth coverage per window and ranged from 1 to 38 reads. The fourth and fifth layer is the
percentage of SNPs per window with Minor Allele Frequency (mAF) lower than or equal to 5 and 1%,
respectively. The sixth layer indicates the percentage of missing data. This ranged from 3 to 63% of
missing data across the chromosome. The last layer is the SNP density after filtering and is composed
of two colors, the gray background is the number of unfiltered SNPs, and the blue bars are the density
after filtering.

2.4.3 MET and GS models

Models that ignored the MET modeling (Id, BLUP and GBLUP) showed higher AIC and
BIC values and hence poor fit (Table 2.5). The inclusion of molecular pedigree consistently improved
the results based on the criteria of minimum AIC and BIC. The MET.GBLUP proposed here had the
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Table 2.5: AIC and BIC values for models with different variance and covariance structures for the
genetic and residual random effects. MET prefix on the methods indicates models where the interaction
is explicitly modeled, testing covariance structures for location and harvest.

Method Genetic matrixa Residual matrix AIC BIC
Id IG IG 20753.25 20765.12
BLUP Ap IG 20758.13 20770.01
GBLUP Am IG 20741.60 20753.50
MET GL ⊗GH ⊗ IG RL ⊗RH ⊗RB ⊗ IG 19723.10 19835.92
MET.BLUP GL ⊗GH ⊗Ap RL ⊗RH ⊗RB ⊗ IG 19705.38 19818.20
MET.GBLUP GL ⊗GH ⊗Am RL ⊗RH ⊗RB ⊗ IG 19689.75 19802.56

Bold numbers represent the smallest AIC and BIC values, indicating the best fitted method.
a Variance and covariance structures tested for the random effects specified in the Model 2.1. The IG,
Ap and Am represent a Identify matrix, additive relationship matrix and realized kinship, respectively.

Table 2.6: Predictive capacity measured by the accuracy (r) and mean squared prediction error (MSPE)
considering six modeling methods and three breeding scenarios: Scenario 1 (CV1) represents the full
genotypes prediction, i.e, genotypes that were not evaluated in any block, location and year (harvesting);
Scenario 2 (CV2) represents the prediction of missing genotypes in one of the environments; Scenario 3,
represents the genotypic prediction for one specific harvest.

CV1 CV2 CV3
Method r MSPE r MSPE r MSPE

Id 0.676 288.878 0.498 182.741 0.854 135.787
BLUP 0.676 266.75 0.498 180.098 0.854 140.949
GBLUP 0.676 241.277 0.498 171.566 0.854 140.919
MET 0.760 290.686 0.677 107.771 0.865 103.843
MET.BLUP 0.767 264.801 0.677 97.814 0.866 108.722
MET.GBLUP 0.774 244.864 0.670 93.537 0.864 111.227

Bold numbers represent the greatest r values and the smallest MSPE.

lowest AIC and BIC values and was the best model.
The second class of models had better predictive ability (Table 2.6). In the most complex

scenario (CV1) the difference in predictive accuracy between the MET.GBLUP method and traditional
GBLUP was on the order of 10%. In CV2, this difference was higher (17%) and showed how problematic
it can be to ignore the interaction to realize predictions. For CV3, a lower number of predictions was
required, and the lowest differences were observed across the models (1%). In all scenarios, methods that
ignored the MET modeling had very close accuracy implying that inclusion of kinship could not improve
the predictive ability.

Another comparative criterion used during the cross-validation was the MSPE, which was
held in the perception of the distance among true and predicted values. Phenotypic metrics evalua-
ted in field were considered the observed values, while predicted values were the adjusted means. The
MET.GBLUP showed good results across the scenarios. Models that ignore the MET modeling gene-
rally, showed the highest MSPE values; the exception was the GBLUP in the CV1. The lower values of
MSPE for the CV3 suggest that this scenario is less complex in terms of prediction.

2.5 Discussion

Effective implementation of GS methods depends on the ability of the model to predict real
conditions in breeding programs. Statistical challenges create more complex scenarios. In coffee breeding
programs, genotype performances are typically measured in a series of replicated field trials grown across
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multiple years and locations. Experiments of this nature are typically referred to as multi-environment
trials (MET), and they measure the performance of genotypes across a range of environmental conditions
that cultivars might be exposed to. The challenge in this case is to properly consider the genetic and the
environment effects, because it involves a multidimensional space with a variation that is defined by the
effects of locations, years and their interactions with genotypes.

Here, we proposed an expansion of the traditional GBLUP to address the conjugate use of
genomic information and MET modeling. A similar approach was described by Burgueño et al. (2012),
although certain differences have been considered here, including the explicit G×H interaction modeling
and a higher number of VCOV structures tested. It is noteworthy that our model could be considered
for other perennial species with similar experimental design.

Multiplicative mixed models have been commonly used for MET analysis (Smith et al., 2001,
2005). The G matrix in MET models is a genotypic covariance matrix that is defined for the genetic
random effect that was decomposed into harvest,locations and genotypics, i.e, G = Gk×k

H ⊗Gj×j
L ⊗Σn×n

g .
The term Σn×n

g can be used to include different assumptions for the genetic term. These assumptions
reflected independence among genotypes (Ig) or similarities in terms of pedigree records (Ap) or DNA
information (Am). The Gk×k

H assumed correlation between harvests and Gj×j
L among locations. All

these components jointly determined similarities among genetic effects across locations and harvests.
Strictly speaking, the genotype and environmental interactions were modeled by considering that different
genotypes do not necessarily react similarly to equal conditions. Information could be borrowed via a
multidimensional genotypic space that is defined as the genotype-location-harvester combination. This
offers predictions for the untested genotypes (Malosetti et al., 2016).

It is important to test for an appropriate VCOV structure in terms of harvest and location.
These structures will reflect the nature of the interactions. Kelly et al. (2009) reported that the most
general form is the fully unstructured (UNS) matrix, although it often leads to troubles during estimation.
A common solution is the factor analytic (FA) form — an intermediate structure in terms of parsimony
and flexibility (Crossa et al., 2013). In this study, the reduced number of locations and harvests
motivated a test of different VCOV structures to find the best description of biology. Pastina et al.
(2012) and Margarido et al. (2015) reported a similar approach. This search was not fixed solely on
the FA form. For the residual effect, we assumed a block diagonal structure (heteroscedasticity) where
each location, harvest and block has its own component of residual variance. Although spatial analysis is
an important alternative in data analysis of field experiments in plant, no improvement in the goodness
of fit was observed when spatial correlation was fitted (results not shown). This might be because of the
experimental design, which was not a typical square block.

Analyses based on mixed models showed important aspects about the phenotypic variation.
Evidences of G×L interaction were observed both on the boxplot dispersion (given the differential behavior
across the locations) and the heterogeneous variances (the fully unstructured matrix showed the best fit).
Previous results about G×L interaction were reported using ordinary least squares analysis of variance
(Ferrão et al., 2007). In accordance with these studies a change in the genotypic ranking was observed
(results not shown). This has evidence of the necessity to perform selection in each specific location.
The G×H interaction in our results shows a lack of annual yield stability. Although this phenomenon
has been commonly reported in C. arabica, some studies have shown a similar behavior in C. canephora
(Cilas et al., 2011). Our results support this. Planned pruning can reduce the annual instability and
is commonly used in Brazilian breeding programs. It is a series of agronomic recommendations that
minimize the variations across the harvests and stabilizes the production.

The phenotypic analysis clearly showed the importance of including interaction terms in the
model and their importance to a breeding program. In naive models, all environmental-specific effects
(i.e, location and harvest) are assumed to come from the same distribution with the same genetic variance
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component. However, if genetic effects are conditional on the environment, then the genetic components
should be allowed to vary across environments (Malosetti et al., 2016). From a quantitative genetics
perspective, it is reasonable to expect that genotypic effects may differ across years and locations because
the final state of a trait will be the cumulative result of the number of causal interactions between the
genetic make-up of the genotype and the condition in which the plant developed (Malosetti et al.,
2014). This agrees with MET modeling. Our study showed that it is important to consider interactions
for further GS modeling.

In terms of statistical modeling, the models were compared using different criteria. Cross-
validation is the standard method to compare GS models, although it might not be always a sensitive
instrument for model comparison (Wang and Gelman, 2014). Here, we reinforce the relevance of
using more than one criterion to draw conclusions. The goodness of fit, commonly used in QTL studies
(Pastina et al., 2012), was considered for this proposal. Hence, when the inclusion of the MET modeling
or the pedigree record has been studied, we are essentially quantifying the plausibility of a model that
considers this source over others. Although rarely discussed in GS studies, the AIC and BIC criterion
were used here. More plausibility (lower AIC and BIC) was observed for methods that considered the
MET modeling. This highlights its importance on model formulation.

An improvement in the goodness of fit was observed when the genetic relationship was con-
sidered. This result is expected in a general context. It is more plausible to consider the existence of
correlation between genotypes rather than homogeneous variances and null genetic correlations (two as-
sumptions when a Identify matrix is assumed). While empirical results reinforce the pedigree importance
(Kelly et al., 2009), a significant number of MET studies still assume independence between genotypes
(Smith et al., 2001). This number is inflated in coffee because few pedigree mixed models have been re-
ported. As pointed by Piepho et al. (2008), the assumption of independence between the genetic effects
results in limited gain if additional information is not considered in the estimation process of breeding
values.

The difference in performance between models that considers molecular information (Am) and
pedigree (Ap) is linked with some practical and theoretical aspects. The practical aspect refers to the way
in which the pedigree was recorded. Genealogy control is typically hampered in open-pollinated crops. In
this study, only seeds that were harvested in the same plant, i.e., half-sib individuals, were considered. In
a theoretical context, the Am and Ap matrices keep different levels of information. While the Ap regards
information from alleles to be identical by descent (IBD), the Am regards information from alleles to be
identical by state (IBS). The empirical results in full siblings, for example, could show a variation from
0.4 to 0.6 in the genomic relationship matrix. A fixed value of 0.5 is calculated using only the pedigree
record. The exploitation of this level variation usually results in better goodness of fit for GBLUP versus
traditional BLUP. Both aspects support the observed superiority of the genomic models and concur with
our results.

In the GS context, we reinforce the importance to draw conclusions supported in more that
one criterion. Both goodness of fit and predictive ability are important comparison parameters. Cross-
validation was performed in this sense and the results generally agree with the fit analyses. Models
that considered the MET modeling consistently had the highest accuracy values (on the order of 10-
17% versus models that ignored the MET modeling). MET.GBLUP was generally the best or second
best performing method. The main argument in favor of this method is the possibility to recovery the
information via the covariance matrix (Malosetti et al., 2016). It also offers the use of molecular data
to describe the genetic similarity and to test different VCOV structures to describe the correlation across
locations and harvest. This is reflected in more plausibility and better predictive capacity. Therefore, a
more realistic description of this phenomenon could be obtained and combined with good predictions.

Methods that do not consider MET modeling all had poor results. Account the interaction has
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been showing as an important source of variation in many phenotypic studies (Burgueño et al., 2011)
as well as in GS studies (Burgueño et al., 2012; Malosetti et al., 2016). To evaluate its consequence
in the breeding program, these results were examined for selection decisions. The top 10% of genotypes
were selected by the MET.GBLUP and were compared with the top genotypes selected via competing
methods. Changes in the genotype ranking were observed and support the results of Kelly et al. (2009).
The main goal of a breeding program is identify the best genotypic performance for commercial release
and to use this genotype as a parent in future crosses. In essence, the changes in the genotypic ranking
means erroneous selection and thus a loss of gain selection in subsequent generations.

Finally, the low number of studies using high throughput genotyping in coffee motivates a
brief discussion of this subject. The good performance of the GS method highlights the importance of
this tool in the Coffea genus. To the best of our knowledge, molecular studies have been reported in
coffee; however, most of them are still based in traditional molecular approaches. Large-scale genotyping
expands their utility. The GBS approach identified 449,467 SNPs in the unfiltered file. After filtering,
the SNP density decreased to 18,586. While this only represents 4% of the raw SNPs, this number is still
larger than recent coffee reports. In addition to the GS application, molecular information may assist
in the selection of potential individuals. Self-incompatibility is a genetic mechanisms which prevent self-
fertilization and thus encourage outcrossing and allogamy. In C. canephora species, this phenomenon
hinders parental selection since progenitors should not to be highly related. In this sense, the use of
molecular tools to understand the genetic relationship between individuals is an additional benefit that
can support the selection decision.

2.6 Conclusion

We highlighted the GS approach as an important approach in marker assisted selection. For
coffee, the reduction of repeated cycles of selection, breeding and testing are the main motivation. Develo-
ping new cultivars can take decades, but this can be accelerated with GS implementation. Good prospects
have been reported in maize (Crossa et al., 2013), wheat (Poland et al., 2012b), rice (Spindel et al.,
2016) and forest (Grattapaglia and Resende, 2010).

In our context, prediction based on GS models will be considered in the selection of progenies
for the program of recurrent selection in C. canpehora. We believe that some factors are essentials for
the GS implementation: i) Good phenotypic evaluations, considering a proper experimental design and
reliable phenotypic measures; ii) a selection of a suitable MET model to describe the phenotypic variation;
iii) reliable molecular informations; and iv) a GS model considering all important sources of variation,
including the interactions. Imputation methods and improved on the bioinformatic steps, specially in the
SNP and genotype calling, are important future trends in coffee studies. In terms of statistical modeling,
studies focusing on the importance of non-additives and epistatic effects are necessary. Finally, the use of
alternative approaches, such as hierarchical Bayesian regressions, are an important perspective for future
studies (Ferrão et al., 2016).
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3 COMPARISON OF STATISTICAL METHODS AND RELIABILITY OF GENOMIC
PREDICTION IN COFFEA CANEPHORA POPULATIONS

Keywords: Bayesian model; Genomic Selection; G×E interaction; Genotyping by Sequencing
(GBS); Perennial crops;

3.1 Abstract

Genomic selection is defined as the prediction of genetic merit of individuals based on dense
genotypic marker information. Simulation and empirical results have been shown that predictions ba-
sed on molecular data present sufficient accuracy to help success in breeding programs. Although some
crops have benefited from this contemporary approach, studies in the genus Coffea are still in their
infancy. Until now, there have been no studies of how predictive models work across populations and
environments or, even, their performance for different complex traits in coffee. Considering that pre-
dictive models are based on biological and statistical assumptions, it is expected that their performance
varies depending on the true underlying genetic architecture of the phenotype. We used real data from
two experimental populations of Coffea canephora, evaluated in two locations, and SNPs identified by
Genotyping-by-Sequencing (GBS) to investigate the genotype-phenotype relationship. For this end, we
considered thirteen prediction models commonly used in genomic selection analysis, including penalized
and Bayesian estimation procedures, as well as nonparametric regressions and dimension reduction pro-
cedure. Analysis were extended for predictions within-environment and predictions across locations and
populations, in order to check the reliability of GS results to predict the genetic merit in multiple scenarios
of the plant breeding. Considering the three traits under analysis (grain production, leaf rust incidence
and yield of green grains), we observed minimal differences in terms of predictive accuracy among the
competitor models. Bayesian methods showed a slight superiority, although more computation was re-
quired. Predictive accuracies for within-environment analysis, on average, were higher than predictions
across locations and populations. Results discussed in this research have supported the potential of GS to
reshape traditional coffee breeding schemes. In practice, compared to traditional phenotypic evaluation,
GS is expected to accelerate the breeding cycle, maintain genetic diversity and increase the genetic gain
per unit of time.

3.2 Introduction

Plant and animal breeders have effectively used quantitative genetics to increase the mean
performance in selected populations. Traditionally, genetic progress have been achieved combining phe-
notypic evaluations and pedigree record, which involves visual evaluation and trait screening over several
successive generations (Goddard and Hayes, 2007). It is undeniable that such approach has brought
significant advances in recent decades. However, it is important to take into account the time required
to achieve these gains. For majority of perennial crops, this approach is costly and time consuming,
especially for traits expressed late in the plant life cycle.

The advent of molecular markers opened an important perspective to achieve fast and longstan-
ding genetic gains (Lande and Thompson, 1990). For this purpose, Meuwissen et al. (2001) suggested
use all available molecular markers to predict quantitative traits in animal and plant breeding. Known
as Genomic Selection (GS), the methodology became widely accepted by its potential to maximize the
genetic gain and reduce the breeding cycle. Theoretical bases of this process is that whenever marker
density is high enough, most QTL will be in linkage disequilibrium (LD) with some markers and, hence,
estimates of marker effects will lead to accurate predictions of genetic merit for a trait (Goddard and
Hayes, 2007).
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The major challenge of genomic prediction is to accurately model the true QTL effects, since all
markers are included as potential explanatory variables considering sparse regression models (Kärkkäinen
and Sillanpää, 2012; Zhou et al., 2013; Garrick et al., 2014). This is caused by disparity between
the large number of SNP markers (p) and the number of records (n) that are available to estimate the
SNP effects. As a result, parameters of interest (e.g., marker effects) cannot be estimated accurately con-
sidering classical theory of linear models (i.e, ordinary least square or maximum likelihood) (Gianola,
2013). This leads to a situation where some kind of selection of the predictors is required, either by
discarding the unimportant predictors or by shrinking their effects toward zero (Kärkkäinen and Sil-
lanpää, 2012). Several analytical approaches have been proposed for genome-based prediction of genetic
values, including penalized and Bayesian estimation procedures, as well as nonparametric regressions and
dimension reduction procedure (Gianola et al., 2009; de Los Campos et al., 2013).

Comparisons between predictive models have been carried out in different scenarios for different
species and traits (Riedelsheimer et al., 2012; Resende et al., 2012; Daetwyler et al., 2013; Heslot
et al., 2014; Crossa et al., 2016; Thavamanikumar et al., 2015; Wang et al., 2015). However, empirical
and simulations studies have shown the absence of a benchmark algorithm, since biological and technical
factors can affect the predictive accuracy, such as, the population size, genetic architecture and relation
among the training and validation data set (de Los Campos et al., 2013; Daetwyler et al., 2013).
All these factors have supported the search for a convenient predictive model to be considered in the
implementation of genomic selection. Although some crops have benefited from this investigation, studies
in the genus Coffea are still in their infancy.

Another important aspect related to practice implementation is define the breeding scenario in
which genomic prediction will be applied (Windhausen et al., 2012). So far, GS prediction accuracy
has mostly been evaluated within single environments (Windhausen et al., 2012; Beaulieu et al.,
2014; Gamal El-Dien et al., 2015). In coffee, breeding schemes are commonly delineated in multiple
environments, in order to measure the performance of genotypes across a range of conditions. However, it
is unknown whether marker effects estimated in a set of environments are useful to predict the genotype
performance in a different set of environments. If feasible, this means that predictive models could be
calibrated in a specific condition and used to predict phenotypic performance in other environments,
resulting in time and cost economy.

Until now, there is no evidence in coffee research supporting how predictive models work across
populations and environments or, even, their performance for different complex traits. In this sense, using
C. canephora species as a starting point in studies applied to the genus Coffea is considered a promising
approach. Economic and genetic reasons can be argued in favor of this idea. The genetic motivation
is based on the species ploidy (2n = 2x) and the wide genetic variability; both make the process of
genotyping and statistical modeling more feasible than in C. arabica - allotetraploid and with a narrow
genetic base (Ferrão et al., 2015; Tran et al., 2016). Economic motivations are based on the grain
production and crop cultivation. It is estimated that C. canephora is responsible for 40% of the world
coffee production and its grain is the main source of raw material for soluble coffee (Tran et al., 2016).
Further, the species has lower costs of production, mainly due to less stringency for control of biotic and
abiotic factor, crop management and primary processing (van der Vossen et al., 2015).

Given the potential of GS to reshape breeding programs and achieve fast selection gains, this
research addressed the comparison of performance of a range of genomic prediction models across C.
canephora traits. This includes machine learning algorithms and the Bayesian framework. These analyses
were extended for predictions across-locations and across-populations, in order to check the reliability
of GS studies to predict genetic merit in multiple conditions of the plant breeding. To the best of our
knowledge, this is the first studies that discuss the use of predictive models in a broad scope for multiple
traits and populations in the genus Coffea.
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3.3 Material and Methods

3.3.1 Experimental data

Experimental population was designed by the Instituto Capixaba de Pesquisa, Assistência Tec-
nica e Extensão Rural Incaper; ES State, Brazil. Phenotypic data consisted of two recurrent selection
populations formed from the recombination of superior clones of C. canephora. To summarize in brief, of
the thousands of genotypes maintained in Incaper these clones were selected as progenitor (or founders)
due the high production and same grain maturity group. The latter is an important requirement for new
coffee varieties because it allows for harvest standardization. Based on the maturity group, coffee po-
pulations were designated as Intermediate and Premature. Intermediate population, on average, started
the grain maturity on March/April, which harvests in June. Premature genotypes show an anticipation
of grain maturity and the harvest, on average, one month before.

Intermediate and Premature population were designed from the recombination of 16 and 9
progenitors, respectively. After one cycle of recombination and evaluation, the founder and 103 progenies
in the Intermediate population and 87 progenies in the Premature population were cloned and evaluated
in randomized complete blocks with three replications and five plants per plot. These populations were
installed in two representative environments (locations) for the Brazilian production of C. canephora:
Marilândia Experimental Farm (FEM) - latitude 19024′ south, longitude 40031′ west, 70 m altitude; and
Sooretama Experimental Farm (FES) - latitude 15047′ south, longitude 43018′ west, 40 m altitude.

The complete experiment used 3570 coffee trees in the Intermediate population and 2880 coffee
trees in the Premature population. Over four consecutive harvest-production years (2008, 2009, 2010
and 2011), both populations were evaluated for grain production (kilograms of mature coffee fruit in the
cherries stage); natural infection of coffee leaf rust, caused by the Hemileia vastatrix fungus (scale of
scores ranging from 1 to 9, according to visual sporulation intensity evaluated in field); and the yield of
green grains (post-harvest trait, grams of mature grains after processed by dry methods for removing the
entire dried husk in samples of 2 kilograms of coffee fruit in the cherries stage).

3.3.2 Experimental design

In this research the GS potential was investigated under two aspects in coffee breeding: i)
Comparing models in terms of predictive ability across different traits and conditions; and ii) checking
the GS performance for within and across-environments predictions. For this end, specific scenarios
were designed, as follow. Scenarios A, B, C and D represent GS implementation for within-environment
prediction (Figure 3.1). Here, by environment we mean a specific combination between location and
population. In these scenarios, predictive abilities were assessed using a Replicated Training-Testing
evaluation (Crossa et al., 2016). In each replication, 80% of the individuals were assigned randomly for
training data set (TRN), while the remaining 20% were assigned for testing data set (TST). This division
was replicated 30 times with independent random assignments into TRN and TST. Models were fitted
to the TRN data set and prediction accuracy was evaluated in the TST data set.

Scenarios 1, 2, 3 and 4 represented GS performance across-locations (Figure 3.1). For this
purpose, the training (TRN) and testing (TST) data set ranged in accordance to the scenario under
analysis. For example, in Scenario 1 the predictive ability was conditioned for the same population,
but considering different locations. A predictive model was calibrated in the Intermediate population
and FEM location (TRN dataset) and, then, the estimated marker effects were used to predict the
genetic merit of individuals in the FES location (TST dataset). Following the same reasoning, scenario 5,
6, 7 and 8 represented the predictive ability conditioned for the same location, but considering different
populations (called across-populations predictions). Finally, scenarios 9, 10, 11 and 12 represented across-
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environments predictions.

[1]     [2] [3]     [4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

FEM

FES

INTERMEDIATE                                                      PREMATURE

[A]

[B]

[C]

[D]

[A] [B] [C] [D] = within-environment          [5] [6] [7] [8] = across-populations 
[1] [2] [3] [4] = across-sites                      [9] [10] [11] [12] = across-environments    

Scenarios:

Figure 3.1: Scenarios were genomic selection was investigated. Here, by environment we mean a specific
combination between location (FEM or FES) and population (Intermediate or Premature). Scenarios
A, B, C and D represented GS performance for within-environment and where genomic selection models
were compared. Scenarios 1, 2, 3 and 4 represented GS performance across-locations. Scenarios 5, 6,
7 and 8 represented GS performance across-populations. Scenarios 9, 10, 11 and 12 represented across-
environments predictions. Direction of the arrows represented changes on training and testing data sets.

3.3.3 Phenotypic Models

A phenotypic model was adjusted for each combination of environment and trait. Coffee expe-
rimental design are represented, in the majority, for longitudinal data across multiple harvests (years).
Different VCOV structures were tested, in order to better explain this temporal variation.

Using a similar notation to presented by Pastina et al. (2012), the following statistical model
was used (underlined terms indicate a random variable):

y
ijk

= µ+Bj +Hk +Gik + ϵijk (3.1)

where y
ijk

is the phenotype of the jth block (j=1,2,3) of the ith individual (i = 1,2...,n) and kth harvest
(k = 1,2,3,4); µ is the overall mean; Hk is the harvest effect; Bj is the block effect; Gik is a random
genetic effect of individual i at harvests k; ϵijk and is a random non-genetic residual error term.

For the genetic effects, we assumed a multivariate normal distribution with a zero mean vector
and a VCOV matrix indexed by two factors (harvest and genotype) written as the Kronecker product
(⊗) of matrices, as follow: G =

∑k×k
H ⊗In×n

g ; in which
∑k×k

H is VCOV relate to harvest. The diagonal
element represents the genetic variance within the kth harvest. Several VCOV structures for this matrix
were investigated (Table 1). Two important points were considered in MET analysis: i) Each structure has
different assumptions about the heterogeneity of variance and may be used to quantify the interactions;
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Table 3.1: Variance and covariance (VCOV) structures examined for the random effects in Model 3.1
for Coffea canephora phenotypic analysis.

Model Num.Para Description
Ident 1 Identical variation
Diag K Heterogeneous variations
CompSym K+1 Compound symmetry with heterogeneous variance
Uns K(K+1)/2 Unstructured model

a The number of parameters for the models follows from the sum of the parameters for the component
matrices minus the number of identification constraints. K is the number of harvests.

and ii) the number of estimated parameters represents the variation in the degree of complexity. The
term Ig is an Identity matrix.

The residual term was factored in a similar way. It assumed a multivariate normal distribution
implying a zero mean and VCOV matrix indexed by three factors: R = Rk×k

H ⊗ Ir×r
B ⊗ In×n

g . The terms
Ig and IB are an Identity residual matrix to genotypes and blocks, respectively. For the term Rk×k

H ,
structures “Ident” and “Diag” were tested (Table 3.1).

In order to choose an appropriate phenotypic model, VCOV structures were examined and
compared via AIC (Akaike Information Criterion) (Akaike, 1974) and BIC (Bayesian Information Cri-
terion) (Schwarz, 1978) criteria. The calculation of the heritability in complex linear mixed models is
not straightforward (Cullis et al., 2006; Oakey et al., 2016). Here, broad-sense heritability (h2) was
computed from the simplest phenotypic model (Identity structure for the genetic and residual matrix) as:

h2 =
σ2
g

σ2
g + σ2

e/bh
; where σ2

g is the genotype variance component, σ2
e is the residual variance component, b

and h are the number of blocks and harvests, respectively. All analysis were performed using the “nlme”
R-package (Pinheiro et al., 2016), an open-source statistical software.

3.3.4 Genotypic Data

Both Intermediate and Premature populations were genotyped using the GBS approach Elshire
et al. (2011). The GBS protocol followed that from the Genomic Diversity Facility, Cornell University
(http:// www.biotech.cornell.edu/brc/genomics-facility). Leaves of each treatment were collected and
lyophilized. DNA extraction used Qiagen DNeasy Plant and the genomic libraries were prepared fol-
lowing Elshire et al. (2011). The DNA samples were digested using the ApeKI restriction enzyme, and
96 samples were multiplexed per Illumina flow cell for sequencing.

The GBS analysis pipeline is implemented in the TASSEL-GBS (v.4.3.7) (Glaubitz et al.,
2014). Sequenced tags were aligned against the C. canephora genome (Denoeud et al., 2014). SNPs
were extracted from the raw VCF file and filtered manually considering the following cutoff: i) Triallelic
SNPs were removed; ii) Minimum minor allele frequency (0.01 mAF) and iii) SNPs that are present in
less than < 70% of the samples were eliminated.

To ensure that genotype were defined in a consistent manner, we considered a probabilistic
model to perform the genotype calling in SNPs with low coverage (≤ 5 reads sequenced at genotyped
loci). For this end, a Bayesian framework was proposed in order to consider the genetic background
during the inferential process. A similar model is described by Chan et al. (2016). Here, a two-step
approach was proposed, which first the parental genotypes are computed using the likelihoods defined by
Chan et al. (2016) and assuming a uniform genotype prior; and, given their genotypes, these probabilities
are considered as prior information in the inference of the genotype progenies. Two important requisites
should be considered: i) The proposed model is valid for populations whose progenitors are known; ii)
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It is essential that parental information is accurate, in order that a priori distribution is well defined
to call the progenies genotypes. In our experiments, accurate information were achieved increasing the
sequencing coverage depth (progenitors were sequenced 3x more than progenies).

All SNP manipulation and genotype calling were carried out using VCFtools package (Danecek
et al., 2011), customized scripts in R (R Core Team, 2013) and bash (GNU, 2007). The graphical
analyzes were performed using the “symbreed” R package (Wimmer et al., 2012).

3.3.5 Genomic predictions

The following genetic model was fitted to estimate the genetic marker effects:

yyy = 1nµ+XβXβXβ + εεε

εεε ∼ MVNn(0, IIInτ
−1)

Here y is an n-vector of genetic values measured on n individuals, adjusted for the environmental
effects as described on the “Phenotypic Models” section; X is a n×p matrix of genotypes measured on
the same individuals at p genetic markers; βββ is a p-vector of (unknown) SNP effects; 1n is an n-vector
of 1’s; µ is a scalar representing the mean, and εεε is an n-vector of error terms that have variance τ−1.
MVNn denotes the n-dimensional multivariate normal distribution.

Model choice may be important insofar as it must align with the genetic architecture of the
trait (Beaulieu et al., 2014). In order to compare different models applied to genomic predictions,
we defined three class of methods commonly used to GS purposes: fixed multiple regression, machine
learning algorithm and Bayesian framework.

3.3.5.1 Fixed Multiple Regression

This class of method mimic traditional GWAS algorithms (“single-SNP” analysis), which test
each SNP, one at a time, for association analysis with the phenotype. Fixed regression using a subset
of markers derived from “single-SNP” analysis served as our non-GS marker-based prediction control,
as applied by Spindel et al. (2015). For each replication in the cross-validation scheme (Replicated
Training-Testing evaluation), single marker regression was run for all markers and p-values determined
for each marker by F-test. Linear models were then tested using the first 100 most significant markers.

3.3.5.2 Machine Learning algorithm

Machine learning algorithm refers to a vast set of tools dedicated to building and studying
methods that are capable of learning from data, endeavoring to find an optimal solution to minimizes
a given loss (Xavier et al., 2016). Supervised machine learning methods involves, in general, statistic
models addressed to predict an output based on one or more inputs (James et al., 2013). Three classes
of supervised machine learning methods have been considered to predict genetic values: regularized
regression, dimension reduction methods and random forest.

Regularized regression fit a model containing all p predictor, regularizing the coefficients es-
timates, or equivalently, shrinking the SNP estimates toward to zero. Estimates are derivate as the
solution to an optimization problem that balances goodness of fit and model complexity, represented by:
β̂ =

∑n
i=1(yi − µ −

∑p
j=1 βjxij)

2 + λJ(β); where λ ≥ 0 is a regularization parameter that controls the
trade-off between lack of fit and model complexity. Several regularized approaches have been proposed
and and they differ on the choice of penalty function (James et al., 2013). Ridge-regression (RR) and
LASSO are the two most popular ones. The RR estimator solves the regression problem using the L2
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norm, while LASSO estimator consider the L1 norm (Hoerl and Kennard, 1970; Tibshirani, 1996;
de Los Campos et al., 2013). As practical result, RR shrink all of coefficients toward zero, but it not
set any of them exactly to zero. On the other hand, the L1 norm has the effect of forcing some of the
coefficients estimates to null values performing the variable selection (James et al., 2013). RR-BLUP
uses the same estimator as RR, but estimates the penalty parameter by REML as λ =

σ2
e

σ2
β

, where σ2
e is

the residual variance and σ2
β is the variance of the regression coefficients. Penalty function in the LASSO

analysis was estimated by cross-validation considering fixed values of varying between 0.1 and 199.1 (0.1,
1.1, ..., 199.1), as described by Silva et al. (2011). RR-BLUP and LASSO models were implemented
using, respectively, the “rrBLUP” (Endelman, 2011) and “glmnet” (Friedman et al., 2010) R-packages.

Partial Least Squares Regression (PLSR) is a dimension reduction procedure that transform
the predictor and then fit a least square model using the transformed variables. PLSR method will try to
find the multidimensional direction in the predictor space that explains the maximum multidimensional
variance in the phenotypic space. For this end, orthogonal components are built from the original
predictor matrix X and reduces the p+1 coefficients to the simpler problem of estimation m+1 coefficients,
where m < p. Let Z1, Z2, ..., Zm represent M < p linear combinations of our original p SNP effects, for
some constants ϕ1m, ϕ2m, ..., ϕpm, where m = 1, ...,M . The following linear regression model can be fit
considering the transformed predictors: y = Φ0 + ZΦ + ε. PLSR is similar to the well-known principal
component regression (PCR), since both methods construct a matrix of latent components as a linear
transformation (James et al., 2013). PLSR approach was implemented using the “pls” (Mevik et al.,
2007) R-package.

Tree-based methods for involves segmentation the predictor space into a number of simple
regions (James et al., 2013). Random Forest (RF) is a collection of classification or regression trees
grown on bootstrap samples of observations using a random subset of predictors to define the best split
at each node. Different variables are used at each split in different trees. The RF prediction for an
observation is computed by averaging the predictions over trees for which the given observation was
not used to build the tree. This model was implemented using the “RandomForest” R package (Liaw
and Wiener, 2002). We used the default setting of the function, where p/3 predictors are considerer
when building a random forest of regression trees. RF approach is a non-parametric model and make no
assumptions about the distribution or any other properties of the data, which is an advantage.

3.3.5.3 Bayesian Framework

Bayesian models are specified as hierarchical linear regression and, as general rule, differ in
the priors adopted for the regression coefficients, while sharing the same sampling model: a Gaussian
distribution with mean vector represented by a regression on p markers (SNP) and a residual variance
(Gianola, 2013).

For mathematical description, a notation similar to presented by de Los Campos et al. (2013)
was used:

p(µ, β, σ2|y, ω) ∝ p(y|µ, β, σ2)p(µ, β, σ2|ω)

p(µ, β, σ2|y, ω) ∝ p(y|µ, β, σ2)p(µ)p(β|ω)p(σ2)

where p(µ, β, σ2|y, ω) is the posteriori density of model to unknowns µ, β, σ2 given the data (y) and hyper-
parameters (ω); p(y|µ, β, σ2) is the likelihood of the data given the unknowns, which for continuous traits
are commonly independent normal densities, with mean Xβ and variance σ2; and p(µ, β, σ2|ω), is the
joint prior density of model unknowns, including the intercept µ, which is commonly assigned a flat
prior; markers effects β, which are commonly assigned IID informative priors; and the residual variance
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Table 3.2: Summary of effect size distributions proposed to GS studies, adapted from Zhou et al. (2013).

Name p(β|ω)∗∗ keyword Software
t βj ∼ t(0, υ, σ2

a) bayesA1 BGLR7

point-t βj ∼ πt(0, υ, σ2
a) + (1− π)δ0 bayesB1 BGLR7

point-normal βj ∼ πN(0, σ2
a) + (1− π)δ0 bayesC2, bayesVS3 BGLR7, varbvs3

point-normal-mixture
βj ∼ π1N(0, σ2

a) +
π2N(0, 0.1σ2

a)+π3N(0, 0.01σ2
a)+

(1− π1 − π2 − π3)δ0

bayesR4 BayesR4

normal βj ∼ N(0, σ2
a) bayesRR5 BGLR7

normal -mixture βj ∼ πN(0, σ2
a + σ2

b ) + (1− π)N(0, σ2
b ) gemma6 GEMMA6

double exponential βj ∼ DE(0, ω) bayesLASSO8 BGLR7

References: 1 Meuwissen et al. (2001); 2Habier et al. (2011); 3 Carbonetto and Stephens (2012); 4 Erbe et al. (2012);5
Whittaker et al. (2000) ; 6 Zhou et al. (2013); 7Pérez and de los Campos (2013); 8Park and Casella (2008).
∗∗Notation presented by Zhou et al. (2013). Abbreviations: DE denotes double exponential distribution, NEG denotes normal
exponential gamma distribution. In the scaled t-distribution υ and σ2

a are the degree of freedom parameter and scale parameter,
respectively. In the DE distribution, θ is the scale parameter. In the NEG distribution, κ and θ are the shape and scale
parameters, respectively. Notes: 1. Some applications of these methods combine a particular effect size distribution with a
random effects term, with covariance matrix K, to capture sample structure or relatedness. If K ∝ XXT then this is equivalent
to adding a normal distribution to the effect size distribution. The listed effect size distributions in this table do not include this
additional normal component. Note 2: In some papers, keywords listed here have been used to refer to fitting techniques rather
than effect size distributions

σ2,which is commonly assigned a scaled-inverse chi-square prior with degree of freedom d.f and scale
parameter S. Table 3.2 summarizes the Bayesian models considered in this research

For all models the same condition for Markov chain Monte Carlo (MCMC) convergence was
considered during the computational implementation (30000 iterations and a burn-in period of 2000).
“bayesVS” model is the only Bayesian approach that is not based on MCMC, but builds on an approximate
Bayesian inference with variational inference (Carbonetto and Stephens, 2012). Hyper-parameters
were defined following the default definitions implemented in each software. All comparison of statistical
methods was performed in R language (R Core Team, 2013).

3.3.6 Fitting and comparing models

The SNP effects were estimated on the basis of thirteen different statistical methods and,then,
they were used to compute the predicted genetic merits of an individual considering the formula: ĝi =∑n

j Xij β̂j , where Xij is the specific allele of the jth marker on the ith individual; and n is the total
number of markers. Predictive ability was measured using the predictive accuracy and the mean squared
prediction error (MSPE) following the scenarios specified in the Figure 3.1.

Predictive accuracy (rgp) was computed via Pearson correlation between predicted (ŷi) and
observed genetic values (yi). The mean squared prediction error (MSPE) was computed by the formula:
MSPE =

∑n
i=1(yi−ŷi)

2

n , where n is the number of individuals that predicted in the TST. The MSPE was
also used as a measure of the predictive ability, once combines quality assessment in terms of variance
and bias of predictions. The linear regression coefficient of the observed on predicted genetic value was
considered to express the magnitude of inflation/deflation of the predictions relative to the response
variable. To ensure impartial statistical comparisons the same independent random assignments into
TRN and TST were used for each model in all the within-environment analysis (Figure 3.1). The average
computational time was also considered to compare the methods. Computations were performed on a
single core of an Intel Core i7-3770 3.40 GHz CPU and 8 GB of RAM memory.

Since the degree of relationships between training and validation datasets influences prediction
ability, the relationship between Intermediate and Premature populations were investigated using PCA
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analysis and the Fst metric. Likewise, the effect of SNP density on the predictive accuracy was also
investigated. For this end, random and guided SNPs subset were sampled. Guided SNPs subsets were
sampled across windows in each C. canephora chromosome. The windows size in the genome ranged from
50,000 to 900,000 bp (by a increment of 100,000 bp) and ten selections of SNPs were made inside of
each genomic window, considering the markers with highest MAF and call rate, as described by Spindel
et al. (2015). In contrast, random subset of SNPs were sampled across the genome. Same number of
SNPs was considered in both subset. Hence, for the Intermediate population the resulting SNP densities
were: 35427, 20450, 13690, 10189, 7989, 6577, 5559, 4780 and 4240. For the Premature population the
resulting SNP densities were: 40767, 21433, 13969, 8019, 6587, 5560, 4780 and 4240. Differences in SNP
density across the populations is due the difference in the final number of SNPs that were mapped in the
populations.

3.4 Results

3.4.1 Phenotypic Models

Figure 3.2 summarizes the phenotypic variation in both populations and locations. The phe-
notypic dispersion evidence that both populations have similar performances. On average, FES location
was more productive than FEM and showed higher incidence of rust. Considering grain production, an
important pattern was observed across the harvests in both populations: a lack of annual production
stability. Evidences of differential pattern across the years, observed in the boxplot results, was confir-
med by the mixed model analysis with better goodness of fit (lower AIC and BIC) when heterogeneity of
residual and genetic variance were accounted (Supplementary material Table 3.4). Boxplot highlighted
this cyclical production, intercalating years of high (2008 and 2010) and low production (2009 and 2011).
This behavior was more evident for the production than the post-harvest trait. Lack of stability is an
evidence of Genotype-by-Harvest (G×H) interaction.
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Figure 3.2: Boxplot of production (kilograms of mature coffee fruit in the cherries stage) and yield of
green grains (grams of mature grains after processed by dry methods for removing the entire dried husk
in samples of 2 kilograms of coffee fruit in the cherries stage) across locations (FEM and FES), harvests
(2008, 2009, 2010 and 2011) and coffee populations (Intermediate and Premature); scale of scores of coffee
leaf rust (Hemileia vastatix) ranging from 1 to 9, according to sporulation observation.

The heritability across traits and environments ranged from 0.56 to 0.92 (Table 3.3). Incidence
of rust and yield of green grains showed the highest values of heritability (0.89 and 0.92, respectively).
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Table 3.3: Broad-sense heritability of production (kilograms of mature coffee fruit in the cherries stage),
incidence coffee leaf rust (scaling score) and yield of green grains (grams in samples of 2 kilograms of
coffee fruit in the cherries stage) across locations (FEM and FES) and coffee populations (Intermediate
and Premature).

Trait Intermediate Premature
FEM FES FEM FES

Production 0.70 0.81 0.74 0.85
Rust 0.61 0.86 0.56 0.89
Green 0.52 0.86 0.72 0.92

On average, traits evaluated in FES location and in Premature population showed higher heritability
than FEM location and Intermediate population.

3.4.2 Genotypic Data

It is our interest evaluate how genomic prediction works across locations and populations.
Both genetic distance and number of SNPs shared between populations are important results. Among
the factors that are under control of the breeder, the strength of genetic relationships between training
and validation populations is an important component affecting prediction accuracy (de Los Campos
et al., 2013; Daetwyler et al., 2013). Figure 3.3a shows the first two principal components from PCA
analysis on the full genotypic data set. A high degree of genetic relationships between both populations
was observed and there is not a clear distinction between clusters. Low value of Fst (0.0158) is supporting
this evidence of similarity between both populations.

After the SNP filtering process, a total of 45,748 and 59,332 SNPs were maintained in the
Intermediate and Premature populations, respectively. Of this total, 38,106 SNPs were identified in both
population(Figure 3.3b). The SNP density across the 11 C. canephora chromosomes showed that GBS
was effective to sample markers across the C. canephora genome (Figure 3.3c).

3.4.3 Genomic Prediction

For within-environment analysis, thirteen well-established genomic prediction methods were
compared for three coffee traits. Although the methods differ in assumptions of the marker effects,
minimal differences were observed across the competitor models (Figure 3.4). One exception is the
“fixedMLR” approach that, consistently, showed poor results.

Ignoring the “fixedMLR” results, mean values of predictive accuracy ranged from 0.17 for pro-
duction trait to 0.51 for rust incidence (Supplementary material, Table 3.5). Overall, Bayesian methods
presented a slight superiority compared to machine learning algorithms (0.42 versus 0.41, predictive ac-
curacy). Predictive accuracy ranged across traits, locations and populations. Conditionalizing the results
for traits and considering all the predictive models, on average, the marginal values for incidence of leaf
rust and yield of green grains were higher (0.52 and 0.49, respectively) than production (0.38). These
results are in accordance with the trait hereditability (Table 3.3). Likewise, but conditionalizing the pre-
dictive accuracies for locations, slight superiority was observed for the FEM in contrast to FES location
(0.44 versus 0.39). For populations, on average, superior performance was observed for the Premature in
contrast to the Intermediate population (0.44 versus 0.40).

Although higher predictive accuracy and lower MSPE were observed in the Bayesian approach,
more computational demand was required (Figure 3.5). Among the competitor methods,“rrblup” and
“gemma” showed a good balance in terms of predictive accuracy and computational demand. Considering
the computation time among methods, some differences may reflect implementation issues, including
language environment rather than fundamental differences between algorithms.
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Figure 3.3: a) Principal component analysis (PCA) of two Coffea canephora breeding populations (Inter-
mediate and Premature), where the filled points represent the parental (founders) genotypes and empty
points the progenies; b) Venn diagram is showing common and differential SNPs between both population
(K = 103 SNPs); c) SNP density across the 11 C. canephora chromosomes in 400,000 sliding windows
for the Premature, Intermediate and considering common SNP across both population.

Similar results across the competitor models were also observed for the slope and MSPE metrics
(Supplementary material, table 3.6). The coefficient of regression (slope) of genetic values on predicted
values was calculated as a measurement of the bias of each method (Moser et al., 2009). Ideally, a
value of slope equal to one indicates no bias in the prediction. For all traits, similar slope values were
observed across the models (Supplementary material, table 3.7); exceptions were the “fixedMLR” and
“BayesVS” approaches. The MSPE was also used as a measure of prediction ability, which combines
quality assessment in terms of variance and bias of predictions - inferior values are desire and indicate
lower error of predictions. Once again, similar results were observed across the competitor models; “pls”
“rrblup” and “fixedMLR” showed, on average, the highest error of predictions.

Given the satisfactory performance in terms of mean computation time and predictive ability,
the “rrblup” approach was considered for all subsequent analysis. In order to check the impact of the
SNP density on the predictive ability, SNPs were sampled: i) Randomly and ii) guided by the mAF and
call rate. Regardless the approach considered to sampling the markers, it was observed a stable predictive
ability across different SNP densities (Figure 3.6). A slight superior performance was observed for SNPs
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Figure 3.4: Comparison of the predictive ability of thirteen statistical methods applied to prediction of
production (kilograms of mature coffee fruit in the cherries stage), incidence of coffee leaf rust (scaling
score) and yield of green grains (grams in samples of 2 kilograms of coffee fruit in the cherries stage) in
two Coffea canephora populations (Intermediate and Premature) evaluated in two locations (FEM and
FES).

randomly sampled.

In addition to comparing statistical models, an important step in coffee breeding is to check GS
performance to guide the selection over environments. As a general rule, positive values were observed
for all three traits for the different scenarios (Figure 3.7). Conditionalizing the results for the same
population, for all the traits, positive values of predictive accuracy were observed. Consistently, the
incidence of rust and yield of green grains showed better predictive ability than production trait. These
results are evidencing that GS approach has good perspectives of success for across-locations predictions.
Indirectly, these positive predictions shed light on the magnitude of the genotype-by-location (G×L)
interaction.

Across-populations analysis showed positive, but a lower predictive ability than across-locations.
For the production trait, negative values were observed in the scenarios 5 and 7, respectively. Rust
incidence and the yield of green grains traits showed promising results. Positive predictive ability is
supported by the high genetic similarity between both populations, evidenced in the PCA analysis and
Fst value. An important difference was observed between models calibrated in the Intermediate and
Premature populations. As a general rule, models trained at the Premature population (scenarios 6, 8,
10 and 12) showed lower predictive performance when compared to models calibrated at the Intermediate
population. This difference is due to the population size, given that Intermediate population is larger
than Premature. In general, accuracy of estimates of marker effects increases with sample size (de Los
Campos et al., 2013).

The last scenario considered across locations and populations predictions, simultaneously.
Lowest predictions were observed in this condition, evidencing that across-environments analysis is a
complex scenario. Interaction effects between populations and locations are important confounding sour-
ces that affect predictive performance. Negative predictions were observed for production trait.
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Legend:              Bayesian                Machine Learning              Fixed Regression

Figure 3.5: Computation time, in minutes, of different methods applied to prediction of production
(kilograms of mature coffee fruit in the cherries stage), incidence of coffee leaf rust (scaling score) and
yield of green grains (grams in samples of 2 kilograms of coffee fruit in the cherries stage) in two Coffea
canephora populations (Intermediate and Premature) evaluated in two locations (FEM and FES).

3.5 Discussion

The GS potential compared with traditional phenotypic evaluations are well documented, and
increasingly widely appreciated (de Los Campos et al., 2013). But we believe this potential nonetheless
remains under-exploited in coffee research. Some reasons can be pointed out: i) the modest number of
genomic resources available; ii) difficulty in maintaining field experimentation; iii) target traits expressed
later and iv) long life cycle. This breeding scenario is not restricted to coffee but represents the majority
of perennial crops. Our aim here is to provide a broad discussion related to GS implementation. In
particular, we designed this research aiming to check the GS impact in conventional coffee breeding
schemes. At its core, it is important to consider that any GS investigation begins with the obtaining
of good phenotypic metrics, followed by high throughput genotyping and use of a statistical model to
combine these information to perform predictions.

Coffee experimental design are represented, in their majority, for longitudinal data evalua-
ted in multiple environments and harvests. Experiments of this nature are collectively referred to as
Multi-Environments Trials (MET) (Smith et al., 2005). A large number of statistical models have been
developed to address MET analysis. The use of conventional fixed models (ANOVA models) suggests
the violation of basic assumptions, e.g., homogeneity and independence of variances (Smith et al., 2005).
Ignore these source of variation can introduce bias on the estimation of genetic values and, eventually,
affects predictive performance. Given its importance, in the mixed model, we have included appropriate
(co)variance structures for modeling heterogeneity and correlation of genetic effects and non-genetic re-
sidual effects(Smith et al., 2005; Pastina et al., 2012; Balsalobre et al., 2016). This approach has
several advantages that are not easy to handle in traditional analysis (Malosetti et al., 2014). The
flexibility to fit residual and genetic variances conditional to harvest showed a better goodness of fit than
traditional ANOVA.

High-throughput genotyping was boosted by the rapid progress of next-generation DNA se-
quencing (NGS). Genotyping-by-Sequencing (GBS) is a product of this advance (Elshire et al., 2011).
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Figure 3.6: Mean predictive ability of cross-validation for prediction of production (kilograms of mature
coffee fruit in the cherries stage), incidence of coffee leaf rust (scaling score) and yield of green grains
(grams in samples of 2 kilograms of coffee fruit in the cherries stage) in two Coffea canephora populations
(Intermediate and Premature) evaluated in two locations (FEM and FES), using 10 selections of SNP
subsets either distributed evenly throughout the genome (right column) or chosen at random (left column).
From Bin1 to Bin9, in the Intermediate population, the SNP density are: 35427, 20450, 13690, 10189,
7989, 6577, 5559, 4780 and 4240. For the Premature population, the SNP density are: 40767, 21433,
13969, 8019, 6587, 5560, 4780 and 4240

A total of 45748 and 59332 filtered SNPs were identified in the Intermediate and Premature coffee po-
pulations, respectively. This SNP density is superior than a previous studies reported in Coffea arabica
using similar approach (DaRT methodology) (Moncada et al., 2015). Difference in polymorphism levels
between both species are consistent with the evolutionary history, since C. canephora possesses a high ge-
netic diversity due its origin, reproduction method and dissemination (Ferrão et al., 2015). In a further
investigation, we considered GBS results to investigate the genetic differentiation of both populations.
An important point to the success of GS implementation is the genetic closeness between the reference
population (TRN) and the breeding population. It is expects a reduction in predictive ability when the
degree of relationship decreases (De Roos et al., 2009; de Los Campos et al., 2013; Daetwyler et al.,
2013). PCA analysis and Fst metric showed a little genetic differentiation between both populations. An
Fst value of 0.0158 was observed. As rule of thumb, some authors have been considering that Fst < 0.05

indicates little genetic differentiation (Hartl et al., 1997). For our populations, lower genetic variation
is expected since the population’s founders were genotypes selected during the breeding program (acces-
sions within a coffee germplasm collection), which share common agronomic features. This similarity was
supported by the PCA analysis.

For predictive analysis, we compared thirteen predictive models on within-environment predic-
tions. It seems to be consensual that predictive performance is dependent on biological and technical
factors, including population size, genetic architecture and relation among the training and validation data
set (de Los Campos et al., 2009; Daetwyler et al., 2013). Considering that models were evaluated in
all environments under the same technical conditions, we were expecting a possible dependence between
predictive performance and trait, conditional on the genetic architecture. For example, “bayesRR” appro-
ach considers the marker effects as sampled from a normal distribution with fixed variance (Meuwissen
et al., 2001); hence, as a practical consequence, effects are shrinking to the same degree assuming our
believes that the trait is controlled by many loci with small effects, in reference to the infinitesimal model
(Fisher, 1919). In contrast, “bayesB” makes assumptions that most loci have no effect on the trait and
therefore more markers are left out of the prediction model; so, the underlying biological phenomenon in



41

[1]     [2] [3]     [4]

[6]

[5]

[8]

[7]

[9]

[10]

[11]

[12]

FEM

FES

INTERMEDIATE                                                       PREMATURE

[A]

[B]

[C]

[D]

Production Rust Green

0.0

0.2

0.4

0.6

0.8

scenario_1
scenario_2

scenario_3
scenario_4

scenario_5
scenario_6

scenario_7
scenario_8

scenario_9
scenario_10

scenario_11
scenario_12

Figure 3.7: Across-environments predictions. Here, by environment we mean a specific combination
between location (FEM and FES) and population (Intermediate and Premature). Scenarios 1, 2, 3 and
4 represented GS performance across-locations. Scenarios 5, 6, 7 and 8 represented GS performance
across-populations. Scenarios 9, 10, 11 and 12 represented across-environments predictions. Direction of
the arrows represented changes on training and testing data sets. Predictive ability were measured across
production (kilograms of mature coffee fruit in the cherries stage), incidence of coffee leaf rust (scaling
score) and yield of green grains (grams in samples of 2 kilograms of coffee fruit in the cherries stage).

this case is a trait controlled by relatively few loci, whose effects that vary in size (Meuwissen et al.,
2001). Although conceptually different, we observed a minimal difference in terms of predictive accuracy
across the models, evidencing an apparent divergence of our empirical results with simulation studies
(Meuwissen et al., 2001; Coster et al., 2010).

In recent years, a number of empirical evaluations methods have been published comparing
predictive models (Moser et al., 2009; Heffner et al., 2011; Riedelsheimer et al., 2012; Resende
et al., 2012; Daetwyler et al., 2013; Wang et al., 2015; Júnior et al., 2016). As a general rule, these
studies have supported our finds, indicating similar predictive performance across competitor models.
At this point, biological and statistical hypotheses have been proposed. The high discrepancy between
number of observation and parameters can restrict the process of statistical learning resulting in similar
predictive performances among methods (Gianola, 2013; de Los Campos et al., 2013). Considering
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the observed similarity between Bayesian models, Tempelman (2015) pointed out other general issues
concerning on the hyperparameters specification, number and diagnostic of MCMC chains and, also,
problems related to data dimensionality. Following a biological perspective, similarity across methods
can be associated with the complex nature of the traits. For real data, the distribution of QTLs effects
for most traits is perhaps less extremes than suggested (de Los Campos et al., 2013; Daetwyler
et al., 2013). In maize, Riedelsheimer et al. (2012) associated minor differences among the models due
to the high level of linkage disequilibrium (LD). In this scenario, predictive accuracies are quite similar
irrespective whether the effect of large QTL are precisely captured (as in the case of “lasso” and “bayesB”
algorithms, for example) or spread over a larger region (as in the case of “rrblup” method).

The only exception in terms of predictive accuracy was observed for the fixed regression method
(“fixedMLR” algorithm), an approach commonly used for genome-wide association analyses (GWAS).
Fixed regression has been useful to detect associations, but explaining only a small fraction of the genetic
variance of quantitative traits (Manolio et al., 2009). In contrast, methods that simultaneously fit all
markers as random effects are able to account for most of the genetic variance and, for this reason, they
are more appropriate to predictive purposes (Meuwissen et al., 2001; Moser et al., 2009).

Although we observed a slight difference in terms of predictive ability, computational demand
significantly differ across the methods. Machine learning algorithms showed less computational time
than Bayesian analysis, in agreement with previous studies comparing predictive models (Moser et al.,
2009; Heslot et al., 2012; Neves et al., 2012). Computing time is important, particularly for imple-
mentation in practice which requires frequent re-estimation of genetic merits (Moser et al., 2009). At
this point, it seems useful to highlight the “rrblup” and “gemma” approaches. Judged by their overall
performance across traits and computational requirements, both seem to be particularly appealing for
practice application in plant breeding.

The “rr-blup” approach was one of the first methods proposed for genomic selection and is
equivalent to best linear unbiased prediction (BLUP), in the context of mixed models (Whittaker
et al., 2000; Endelman, 2011). Among the additive models, RR-BLUP method has been widely used in
animal and plant breeding due its straightforward implementation using existing mixed models software,
relative simplicity, good performance and limited computing time (de Los Campos et al., 2013). On the
other hand, the “gemma” approach is a method that belong to the Bayesian class. Originally proposed by
Zhou et al. (2013), it is a hybrid between assumptions assumed by linear mixed models (all variants have
at least a small effect) and sparce linear regression methods (some portion of variants have an additional
effect). This almost diametrically opposed assumptions are addressed assuming that effects come from a
mixture of two normal distributions. Commonly used in GWAS analysis, we are reinforcing their potential
to be applied in predictive analysis. Implemented in GEMMA software, the methodology addresses other
two important practical issues: i) emphasizes the benefits of estimating the hyperparameters from the
data, rather than setting the pre-specified values; and ii) provide a computational algorithm faster than
traditional Bayesian methods (Zhou and Stephens, 2012; Zhou et al., 2013; Zhou and Stephens,
2014).

Regarding that resources need to be allocated to genotyping, a further inspection considered
the number of markers necessary to performing GS. In our scenario, for all three traits and both vali-
dation schemes (Random and Subset), thousand of markers were sufficient to maintain the predictive
performance. This information is important for future practical implementations. Empirical studies have
evaluated the effects of marker density on prediction accuracy and reported similar results (Vazquez
et al., 2010; Spindel et al., 2015). As a general rule, prediction accuracy reaches a plateau and does
not increase beyond certain marker density. According to de Los Campos et al. (2013) the level at
which this plateau takes place depends, mainly, of the span of LD in the genome and sample size. In both
populations, we expected large LD blocks since they were originated from only one cycle of recombination.
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Experiments in perennial crops consider evaluations in multiple environmental conditions. The
central purpose is measure the performance of breeding stocks across a range of conditions that cultivars
might be exposed and provide information about the adaptability of genotypes to specific environments
or to sets of environments (Malosetti et al., 2014, 2016). In GS context, the possibility to predict
phenotypic performance across environments is certainly a relevant question. Further, the similarity
between both coffee populations - supported by the PCA analysis- shed light about the possibility to
perform predictions across-populations (Intermediate and Premature).

Combining genotypes from different breeding populations into one training set tends to be
advantageous, since markers effects could be estimated from a larger number of observations. Methods
and models have been discussed in this direction by De Roos et al. (2009), Schulz-Streeck et al. (2012)
and Hayes et al. (2009). However, consider such models in plant breeding implies multiple populations
or environments delineated in field, phenotyped for different traits and genotyped. In practical terms,
this means increases in costs and time. A simpler scenario addressed in this research considers whether
a unique training population could be used to calibrate a predictive model and, as consequence, the
estimated markers effects used to predict phenotypic performances in other conditions (locations or
populations). However, for this purpose, molecular markers just can be used if their estimated effects
remain accurate over the environments. In order to check the reliability of genomic prediction in this
scenario, we have tested their potential across different combinations of location and population.

In contrast to within-environments predictions, analysis across locations, populations and en-
vironments resulted, on average, in lower predictive accuracies in coffee. For across-locations analysis,
this results are expected due the Genotype-by-location (G×L) interaction, even when both sites are lo-
cated within one breeding zone. The G×L occurs because the capture and conversion abilities of a plant
are determined by its particular ensemble of genes, which are express conditionally to the amount and
quality of inputs received in each environmental condition (Malosetti et al., 2014). This differential
expression is captured by the marker effects computed in each location and, as consequence, influences
in the across-location predictions. Decaying in accuracy for across-locations predictions are supported
by studies in forest (Beaulieu et al., 2014; Gamal El-Dien et al., 2015), cassava (Ly et al., 2013) and
maize (Windhausen et al., 2012). In terms of across-populations predictions, lower accuracy values are
based in quantitative genetic theory, which supports that allele substitution effects may vary between
populations due to, for example, differences in allele frequency. In this scenario, it is reasonable expect
that marker effects vary between populations due to differences in marker–QTL linkage disequilibrium
(LD) patterns (Asoro et al., 2011; Windhausen et al., 2012; Lehermeier et al., 2015). Similar results
are discussed by Neves et al. (2012), in mice populations.

The magnitude of correlations between the predicted and observed performance in validation
across locations and populations open an important perspective to implement marker-assisted selection in
conventional schemes of recurrent selection. Traditionally, one cycle of phenotypic recurrent selection in
C. canephora consists of: i) Development of progenies from a base population; ii) phenotypic evaluation
of the progenies in multiple environments and harvests; and iii) selection and recombination of the
best individuals to form a new base population. Given the long juvenile period, on average, 5-6 years
are necessary for each cycle in coffee. Additionally, evaluate and maintain multiple trials on field is
expensive and laborious. The expected increase in genetic gain is assumed to come from the acceleration
of the breeding cycles (more cycles per unit time), and from higher selection intensity, through genotypic
evaluation of a larger number of candidates (Grenier et al., 2015). To this end, GS would be implemented
in the second and third stage of a conventional recurrent selection program, considering prediction and
selection during the seedling phase inside of greenhouses. Rapid-cycle of recurrent selection has potential
to accelerate the increase of the frequency of favorable alleles in the population and substantially reducing
both monetary and time costs associated with phenotyping (Windhausen et al., 2012). In a modern
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breeding scheme, phenotypic trials in multiple environments could be considered in advanced phases (e.g.,
third recurrent cycle), in order to re-estimate the marker effects or recommend promising materials to
compose a new clonal variety of coffee.

Finally, one of the main difficulties in coffee studies is the lack of information about genetic
architecture of complex traits (Tran et al., 2016). It seems clear that understanding the underlying
genetic basis of a phenotypic trait and its variational properties can aid the selection in plant breeding.
Intuitively, the seek for genetic variants that present common and specific effects across environments
and/or populations can guide the GS implementation. The effort to identify relevant genetic factors
and, as consequence, regard this information for predictive purposes, in such way, approximate GS and
genome-wide association studies (GWAS). Recent studies have shown that GS model combined with
GWAS analysis can increase predictive results (Spindel et al., 2015, 2016). As pointed out by Spindel
et al. (2015), “genetic architecture must also be taken into account when considering the implementation
of genomic selection”.

3.6 Conclusion

Genomic selection depends on the breeding scenario that the breeder is attempting to address.
In this research we investigated a hypothetical situation where GS was considered to predict genetic
merits in different locations and populations for different traits in coffee. In addition, we relaxed the usual
assumption of marker effects drawn from a normal distribution seeking for a possible association between
model and trait, conditional to the genetic architecture. Although each model is based on particular
genetic and statistical assumptions, our main finding diverges of previous simulation studies reported
in the literature. Minimal differences in terms of predictive ability were observed across the competitor
models for different traits. However, we observed significant differences in terms of computational demand,
supporting our intention to consider simpler and fast algorithms for future studies with similar purposes.
Finally, positive predictive accuracies across locations and populations open an important perspective to
implement marker-assisted selection in conventional schemes of recurrent selection in coffee. In practice,
compared to traditional phenotypic evaluation, it is expected to accelerate the breeding cycle, maintain
genetic diversity and increase the genetic gain per unit of time. As a future perspective, we reinforce the
relevance to advance in studies about genetic architecture of complex traits in coffee.
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Table 3.4: Goodness of fit for the genetic and residual matrix, factored by harvest. Bold numbers
represent the smallest AIC and BIC values, indicating the best fitted phenotypic model.

Intermediate Population

Site Gh Rh
Production Rust Green

AIC BIC AIC BIC AIC BIC

FEM

Ident Ident 9709.4 9751.4 9709.4 9751.4 10816.0 10849.7
Diag Ident 9679.8 9737.5 9679.8 9737.5 10746.8 10795.0

CompSym Ident 9695.6 9742.7 9695.6 9742.7 10805.6 10844.1
Uns Ident 9639.7 9728.8 9639.7 9728.8 10750.6 10827.7

Ident Diag 9648.9 9706.6 9648.9 9706.6 10511.5 10559.7
Diag Diag 9627.0 9700.4 9627.0 9700.4 10516.1 10578.7

CompSym Diag 9632.6 9695.5 9632.6 9695.5 10484.3 10537.2
Uns Diag 9587.0 9691.9 9587.0 9691.9 10492.8 10584.2

FES

Ident Ident 10296.6 10338.5 5218.2 5260.2 9661.9 9695.7
Diag Ident 10281.3 10339.0 5220.7 5278.5 9646.1 9694.4

CompSym Ident 10224.0 10271.2 5094.0 5141.3 9570.2 9608.8
Uns Ident 10141.2 10230.4 5077.4 5166.6 9536.6 9613.8

Ident Diag 10275.7 10333.5 5190.8 5248.5 9595.7 9643.9
Diag Diag 10256.3 10329.7 5192.3 5265.8 9595.9 9658.6

CompSym Diag 10203.6 10266.5 5064.0 5127.1 9498.2 9551.3
Uns Diag 10114.3 10219.3 5048.4 5153.4 9483.9 9575.6

Premature Population

FEM

Ident Ident 8279.9 8320.7 3318.7 3359.6 9470.3 9503.1
Diag Ident 8284.3 8340.5 3195.2 3251.5 9413.4 9460.2

CompSym Ident 8257.3 8303.3 3319.2 3365.2 9447.9 9485.4
Uns Ident 8259.6 8346.5 3185.6 3272.6 9389.3 9464.3

Ident Diag 8239.4 8295.6 3236.0 3292.3 9312.6 9359.5
Diag Diag 8243.8 8315.3 3134.5 3206.1 9309.2 9370.2

CompSym Diag 8215.5 8276.8 3236.2 3297.6 9267.4 9318.9
Uns Diag 8219.0 8321.2 3124.0 3226.3 9268.1 9357.1

FES

Ident Ident 8661.8 8702.5 4509.7 4550.3 8338.5 8371.0
Diag Ident 8641.0 8696.9 4484.0 4539.9 8297.5 8344.0

CompSym Ident 8586.9 8632.6 4360.4 4406.1 8186.1 8223.2
Uns Ident 8525.2 8611.5 4305.1 4391.4 8110.6 8185.0

Ident Diag 8644.8 8700.7 4437.3 4493.1 8324.4 8370.9
Diag Diag 8629.0 8700.1 4414.8 4485.9 8291.3 8351.7

CompSym Diag 8569.6 8630.5 4286.3 4347.3 8154.3 8205.4
Uns Diag 8513.2 8614.8 4233.4 4334.9 8103.0 8191.4

Ident:Identical variation; Diag: Heterogeneous variations; CompSym: compound symmetry with
heterogeneous variance; Uns: unstructured model.
Bold numbers represent the smallest AIC and BIC values, indicating the best fitted phenotypic model.
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Table 3.5: Mean predictive accuracy of thirteen methods applied to prediction of production (kilograms
of mature coffee fruit in the cherries stage), incidence of coffee leaf rust (scaling score) and yield of green
grains (grams in samples of 2 kilograms of coffee fruit in the cherries stage) in two Coffea canephora
populations (Intermediate and Premature) evaluated in two sites (FEM and FES). Predictive abilities
were assessed using a Replicated Training-Testing evaluation. In each replication, 80% of the individuals
were assigned randomly for training data set, while the remaining 20% were assigned for testing data set
(TST).

Intermediate Population
FEM FES

Model Production Rust Green Production Rust Green
bayesA 0.3591 0.4241 0.4634 0.2686 0.3938 0.5252
bayesB 0.3539 0.4299 0.4656 0.2687 0.3936 0.5250
bayesC 0.3531 0.4332 0.4685 0.2673 0.3936 0.5290

bayesLASSO 0.3509 0.4350 0.4663 0.2623 0.3903 0.5280
bayesRR 0.3568 0.4325 0.4674 0.2655 0.3962 0.5283
bayesR 0.3465 0.4244 0.4119 0.2493 0.3856 0.5356

bayesVS 0.3470 0.4029 0.4493 0.2165 0.3499 0.4151
gemma 0.3533 0.3565 0.3601 0.3712 0.3814 0.3754
rrblup 0.3442 0.4280 0.4653 0.2562 0.3911 0.5222
lasso 0.3013 0.4308 0.4160 0.2937 0.2445 0.4454
pls 0.3701 0.4047 0.4522 0.2891 0.3926 0.5151

RForest 0.3844 0.3970 0.4073 0.1763 0.3399 0.5104
fixedMLR 0.1219 0.0298 -0.0193 0.0056 -0.0175 -0.0188

Premature Population
bayesA 0.5253 0.5637 0.5792 0.3796 0.6348 0.5980
bayesB 0.5248 0.5661 0.5807 0.3787 0.6341 0.5980
bayesC 0.5245 0.5663 0.5802 0.3793 0.6357 0.6003

bayesLASSO 0.5229 0.5706 0.5779 0.3723 0.6383 0.6012
bayesRR 0.5252 0.5687 0.5804 0.3792 0.6352 0.5993
bayesR 0.5371 0.5777 0.5895 0.4050 0.5980 0.5863

bayesVS 0.5067 0.5625 0.5754 0.3973 0.6371 0.5264
gemma 0.5290 0.5562 0.5563 0.4317 0.6556 0.5568
rrblup 0.5181 0.5649 0.5872 0.3822 0.6313 0.5923
lasso 0.4693 0.4953 0.4679 0.3679 0.5831 0.5717
pls 0.5184 0.5496 0.5870 0.3867 0.6305 0.5908

RForest 0.5537 0.5770 0.5646 0.4309 0.6907 0.5849
fixedMLR 0.0050 0.0025 0.0428 0.0321 0.0861 0.0193
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Table 3.6: Mean value of the mean squared prediction error (MSPE) of thirteen statistical methods
applied to prediction of production (kilograms of mature coffee fruit in the cherries stage), incidence of
coffee leaf rust (scaling score) and yield of green grains (grams in samples of 2 kilograms of coffee fruit
in the cherries stage) in two Coffea canephora populations (Intermediate and Premature) evaluated in
two sites (FEM and FES). MSPE were assessed using a Replicated Training-Testing evaluation. In each
replication, 80% of the individuals were assigned randomly for training data set, while the remaining 20%
were assigned for testing data set (TST).

Intermediate Population
FEM FES

Model Production Rust Green Production Rust Green
bayesA 0.870 0.900 0.755 0.877 0.821 0.713
bayesB 0.871 0.894 0.755 0.873 0.827 0.715
bayesC 0.874 0.894 0.753 0.872 0.833 0.712

bayesLASSO 0.876 0.897 0.757 0.867 0.839 0.723
bayesRR 0.869 0.894 0.754 0.868 0.832 0.712
bayesR 0.890 0.920 0.819 0.888 0.833 0.734

bayesVS 0.928 0.964 0.848 0.925 0.925 0.868
gemma 0.878 0.886 0.891 0.857 0.850 0.879
rrblup 1.045 1.045 1.045 0.910 0.910 0.910
lasso 0.951 0.884 0.835 0.847 0.997 0.769
pls 3.088 3.758 2.881 1.014 1.280 1.051

RForest 0.851 0.933 0.819 0.913 0.874 0.777
fixedMLR 762.467 108.657 50.575 104 104 103

Premature Population
bayesA 0.745 0.666 0.656 0.875 0.593 0.653
bayesB 0.746 0.665 0.657 0.877 0.593 0.654
bayesC 0.748 0.664 0.658 0.877 0.592 0.654

bayesLASSO 0.761 0.665 0.672 0.886 0.594 0.669
bayesRR 0.748 0.661 0.661 0.877 0.592 0.656
bayesR 0.765 0.684 0.703 0.878 0.695 0.695

bayesVS 0.824 0.711 0.741 0.933 0.633 0.787
gemma 0.738 0.677 0.681 0.846 0.568 0.698
rrblup 0.767 1.585 0.932 1.496 1.952 1.516
lasso 0.800 0.752 0.760 0.928 0.679 0.826
pls 0.765 1.676 0.933 1.640 1.976 1.563

RForest 0.739 0.669 0.706 0.852 0.536 0.679
fixedMLR 104 104 104 104 4.733 104
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Table 3.7: Mean value of the linear regression coefficient of the observed on predicted genetic value (slope)
of thirteen statistical methods applied to prediction of production (kilograms of mature coffee fruit in the
cherries stage), incidence of coffee leaf rust (scaling score) and yield of green grains (grams in samples of
2 kilograms of coffee fruit in the cherries stage) in two Coffea canephora populations (Intermediate and
Premature) evaluated in two sites (FEM and FES). Slopes were assessed using a Replicated Training-
Testing evaluation. In each replication, 80% of the individuals were assigned randomly for training data
set, while the remaining 20% were assigned for testing data set (TST).

Intermediate Population
FEM FES

Model Production Rust Green Production Rust Green
bayesA 1.003 1.002 1.001 0.740 1.056 1.183
bayesB 1.044 1.054 1.070 0.809 1.121 1.214
bayesC 1.114 1.102 1.114 0.865 1.171 1.248

bayesLASSO 1.197 1.240 1.230 0.903 1.275 1.396
bayesRR 1.118 1.118 1.127 0.857 1.220 1.253
bayesR 1.658 1.497 1.425 1.409 1.426 1.542

bayesVS 3.514 2.132 2.918 3.302 2.697 1.869
gemma 1.109 1.093 1.176 1.184 1.164 1.184
rrblup 1.370 1.370 1.370 1.239 1.239 1.239
lasso 0.758 1.091 1.021 0.724 0.667 1.029
pls 0.779 0.780 0.801 0.613 0.835 0.963

RForest 1.334 1.397 1.525 0.719 1.264 1.859
fixedMLR 0.070 0.027 -0.002 0.002 0.006 -0.017

Premature Population
bayesA 1.170 0.987 0.851 1.093 1.033 1.168
bayesB 1.189 1.014 0.911 1.119 1.048 1.183
bayesC 1.210 1.039 0.938 1.154 1.071 1.215

bayesLASSO 1.366 1.143 1.202 1.316 1.168 1.364
bayesRR 1.217 1.044 0.954 1.173 1.070 1.221
bayesR 1.584 1.456 1.881 1.813 1.315 1.423

bayesVS 2.027 1.495 2.375 2.510 1.454 1.580
gemma 1.110 0.983 0.893 1.105 1.042 1.002
rrblup 1.042 1.007 0.847 1.093 0.993 1.079
lasso 1.095 0.979 0.455 0.916 1.038 1.135
pls 1.026 0.865 0.694 0.941 0.930 1.022

RForest 1.493 1.211 1.186 1.376 1.264 1.306
fixedMLR -0.002 -0.002 0.000 0.000 0.014 0.001
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4 CONCLUSION

Simulation and empirical results have shown that genomic prediction presents sufficient accu-
racy to help success in breeding programs. Although some crops have benefited from this methodology,
studies in the genus Coffea are still modest. The main objective in this research was discuss aspects
related to statistical modeling in order to enable a more comprehensive understanding of what makes a
robust and accurate prediction model. Additionally, it was explored new possibilities introduced through
genomic selection to accelerate coffee breeding programs. Aspects of statistical modelling were discus-
sed in Chapters 1 and 2, considering two different approaches: Mixed model and multilocus association
models.

In addition to statistical modeling, Chapter 1 and 2 addressed questions that underlie a coffee
breeding program. In Chapter 1, for a given population, both locals were jointly modeled in order to
answer questions related to the importance of interaction modelling, compare phenotypic and genomic
models and investigate the potential of the Genotyping-by-Sequencing (GBS) in coffee studies. On the
other hand, Chapter 2 addressed a hypothetical situation where GS was considered to predict genetic
merits in different environments and populations.

In terms of practical implementation, the use of mixed model theory (Chapter 1) presents
software and concepts well established in the breeder routine (Mrode, 2014), which means that pre-
dictive models and derivations of them (e.g., inclusion of interaction and/or non-additive effects) can
be straightforwardly implemented. About modelling statistical, another advantage is the possibility to
consider one-stage approach. Most GS studies use a two-stage analysis, where in a first stage the phe-
notypic data are pre-adjusted with estimates of non-genetic effects and, in a second stage, these adjusted
metrics are considered in penalized regressions methods (RR-BLUP, in most cases) (Oakey et al., 2016).
Although represent lower computational demand, two-stages approach biases marker effects and induces
heterogeneous residual variances and residual correlations, that are not completely eliminated by a weigh-
ted analysis (de Los Campos et al., 2013). For this reason, when feasible, one-stage approach should be
preferred. Chapter 2 investigated whole-genome regressions, including penalized and Bayesian estimation
procedures, as well as non-parametric regressions and dimension reduction procedure. A central idea was
relaxing the usual assumption of marker effects drawn from a normal distribution, which means seek
for a possible association between model and trait, conditional to the genetic architecture. Although
based on particular genetic and statistical assumptions, minimal differences were observed in terms of
predictive ability. Therefore, models that showed less computational demand (“rrblup” and “gemma”)
can be considered for future investigations.

Considering some questions addressed to practical implementation in coffee breeding program,
in Chapter 1 the MET.GBLUP model showed the best goodness of fit and predictive ability. Traditionally,
one cycle of phenotypic recurrent selection in C. canephora consists of: i) Development of progenies from
a base population; ii) phenotypic evaluation of the progenies in multiple environments and harvests; and
iii) selection and recombination of the best selected individuals to form a new base population. Intuitively,
the objectives is to generate an improved population by increasing the frequency of favorable alleles while
maintaining sufficient genetic variation for subsequent cycles of selection (Windhausen et al., 2012). A
short term, a potential application is select individuals in both population (Intermediate and Premature)
considering genomic prediction. Hence, after on recombination cycle, progenies can be genotyped and
MET.GBLUP model would be used to predict the genetic merit of individuals unphenotyped in both
locals. Our prospect is the reducing of the breeding cycle (avoiding long testing phases) and increases
the selection intensity, through genotypic evaluation of a larger number of candidates. In contrast to
the conventional recurrent selection program, including marker-assisted in coffee breeding schemes, it
is expected a reduction of two-thirds (5-6 years) to the total time required to advance one generation.
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In Chapter 2 it was discussed a hypothetical situation which a unique training population would be
considered to calibrate a predictive model and the estimated markers effects used to predict phenotypic
performances in other conditions (locals or populations). It is noteworthy that positive accuracy values
were observed, in special, for across-locals predictions. As perspective, these results have potential to be
included in new breeding schemes.

An open question addressed in Chapter 2 is the lack of information about genetic architecture
of complex traits. Certainly, towards in this direction is a challenge in coffee research (Tran et al.,
2016). A recent approach that has been investigated in GS research is not focus only on predictions, but
also aggregate two important features: identify SNP associated with the trait and understand its genetic
architecture (Spindel et al., 2015; MacLeod et al., 2016). It seems clear that investigate which genetic
variants have common and specific effects on environments or populations can help the selection of ge-
neralist genotypes (good performance in all conditions; i.e., broad adaptation) or specialist (performance
directed for a specific condition; i.e., narrow adaptation). Broadly speaking, the problem of identifying
relevant SNPs considering multilocus association models, in such way, approximate GS methods with
contemporaneous GWAS algorithm (O’Hara and Sillanpää, 2009). The primary rationale of GWAS
investigations is the idea that, by examining SNPs in details, important insights about the underlying bi-
ologic phenomenon can be discovery (Guan and Stephens, 2011). Therefore, it is reasonable to consider
that modern GS analysis can borrow particularity from GWAS method - identify important covariates
and learn about underlying biologic process – and uses them for prediction tasks.

A further conclusion addressed the use of GBS approach. The biallelic nature of SNP markers
makes them less informative than microsatellites, molecular marker commonly used in coffee studies
(Ferrão et al., 2015; Moncada et al., 2015). However, this disadvantage is easily overcome by their
high abundance, ease and high throughput of their discovery and the robustness and automation of
SNP genotyping assays. Promising results in terms of number and density of SNPs across the genome
suggesting that GBS can be used as an efficient genotyping method in coffee research. Considering that
coffee species suffer with the absence of a standard genotyping platform, GBS approach presents the
advantage to simultaneous marker discovery and genotyping across the whole population of interest,
making it rapid, flexible and suitable for species with limited genomic resources.

As a final message, GS approach is recommended as a promising and innovative approach to
be applied in coffee breeding programs. In practice, compared to traditional phenotypic evaluation, it is
expected to accelerate the breeding cycle, maintain genetic diversity and increase the genetic gain per
unit of time. For this end, this research evidenced that consider a suitable genomic prediction model
and understand the breeding scenario that is attempting to address are two important features to be
contemplated for GS implementation.
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