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CANÇÃO ETERNA

Lá estavam os pássaros, sorrindo sob o som da lua
Era primavera, verão, outono e inverno

Tinham vários olhos nos observando do céu
Ícones indignados com o tempo

Cuja pressa era assustadora!
Imersos íamos, porém, sendo levados pela aurora
Agarrados, como se a alegria fosse deveras única!

Andavam e corriam os lábios
Pureza humana! Natural, sedenta...

Amor é a consequência exata
Reflexo de duas almas livres

Esgueiradas de uma sociedade
Cujas diretrizes

Indubitavelmente insanas!

Dias, semanas, meses e anos
A música que a nós toca

Dança sem um registro de fim
E na solidão inexistente

Cercamos os olhos alheios deiscentes
Apáticos, raivosos, deprimentes...

Sarcásticos... Seria a felicidade cobiçada?
Treinados por regras irreais

Respiram os ares que não são deles!
O lado obscuro que nos cerca, então,

Lá fica, longe e decadente
Amor como este não se entende
Respira-se, sente-se e de repente
As vidas que nos cercam sentem

Author: Thiago de Paula Oliveira
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RESUMO

Modelos genético-estatísticos para seleção genômica em Panicum maximum com
informação de dosagem alélica

Diversas espécies de interesse econômico são autotetraploides, como a forrageira
Panicum maximum, a qual proporciona alta produtividade e qualidade para pastagens trop-
icais. Os principais acessos na natureza são plantas apomíticas tetraploides, no entanto
pode-se encontrar também plantas sexuais diploides. Embora a apomixia seja vantajosa
pela facilidade em fixar o vigor híbrido, a reprodução sexual é fundamental por permitir
recombinação genética a partir de cruzamentos entre genótipos superiores. Desta forma,
o melhoramento nesta espécie consiste em cruzar plantas apomíticas com plantas sexuais
tetraploidizadas. A utilização de parentais sexuais superiores nestes cruzamentos permite
aumentar a frequência de alelos favoráveis na progênie. Portanto, programas de seleção
recorrente intrapopulacional em populações sexuais tetraploides são fundamentais para pro-
gramas de melhoramento em P. maximum. Além disto, a utilização de estratégias como
seleção genômica são promissoras para aumentar os ganhos de seleção, permitindo avançar
ciclos de seleção recorrente e lançar cultivares no mercado em menor prazo, quando com-
parados a programas convencionais. Como P. maximum é uma cultura perene, os genótipos
são avaliados em sucessivos cortes. Assim, este estudo tem como finalidade avaliar carac-
teres de produtividade, estruturais e nutricionais em uma população sexual tetraploide de
P. maximum, investigando diferentes classes de modelos lineares mistos aplicados a dados
longitudinais, além de desenvolver modelos de seleção genômica que considerem a natureza
tetraploide da população. Este trabalho foi dividido em dois capítulos. No primeiro capí-
tulo, três classes de modelos foram analisados: i) Classe A consiste em modelar a interação
genótipos por cortes com correlações homogêneas, genótipos não correlacionados entre si e os
efeitos residuais são ajustados com homocedasticidade e ausência de correlação; ii) Classe B
consiste em grupos de modelos com diferentes estruturas de variância e covariância (VCOV)
para efeitos genéticos e residuais e genótipos não correlacionados; iii) Classe C é similar à
Classe B, no entanto os genótipos são correlacionados por uma matriz de parentesco adi-
tivo calculado por pedigree. Para todos os caracteres, os modelos da Classe C tiveram
melhor ajuste. Portanto, recomenda-se testar matrizes de VCOV que permitam modelar
cortes com diferentes níveis de correlações ao longo do tempo bem como incluir informação
de parentesco aditivo e, se disponível, matriz de parentesco genômico. No segundo capí-
tulo, marcadores SNPs, obtidos via genotipagem por sequenciamento, foram aplicados em
modelos Bayesianos e GBLUP os quais foram desenvolvidos para incorporar informação de
dosagem alélica tetraploide. Uma vez que as acurácias dos modelos Bayesianos não diferiram
das acurácias do modelo GBLUP com dosagem alélica, recomenda-se o uso do segundo por
requerer menos tempo computacional. A acurácia dos modelos preditivos reforça a vantagem
em implementar seleção genômica em programas de melhoramento de P. maximum.

Palavras-chave: Melhoramento de plantas; Forrageira; Autotetraploides; Modelos lineares
mistos; Predição
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ABSTRACT

Statistical models for genomic selection in Panicum maximum considering allelic dosage

Several species of economic interest are autotetraploid, such as the forage Panicum
maximum, which is responsible for high productivity and quality of tropical pastures. The
main accessions in nature are autotetraploid apomictic plants, on the other hand, diploid
sexual plants may also be found. Although apomixis is advantageous because it fixes hy-
brid vigor, sexual reproduction is fundamental to allow genetic recombination by crossing
among superior genotypes. Thus, genetic breeding consists of crossing apomictic plants with
tetraploidized sexual plants. In these crosses, the use of superior sexual parents allows to
increase the frequency of favorable alleles in the progeny. Therefore, recurrent selection pro-
grams in tetraploid sexual populations are fundamental to P. maximum breeding programs
and strategies such as genomic selection can increase the accuracy of selection, allowing
shorter breeding cycles and release cultivars in the market in the short term when compared
to conventional programs. As P. maximum is a perennial crop, genotypes are evaluated in
sucessive harvests. Thus, the study goals are to evaluate nutritional, structural, and yield
traits in a sexual tetraploid population of P. maximum, investigating different classes of lin-
ear mixed models applied to longitudinal data, as well as to develop genomic selection models
which consider tetraploid allelic dosage. This work was split into two chapters. In the first
chapter, three classes of models were analyzed: i) Class A consists in modeling the inter-
action of genotypes and harvests with homogeneous correlations, genotypes were assumed
not correlated, and residual effects were assumed homocedastic and not correlated; ii) Class
B consists of groups of models in which genetic and residual effects were fitted with differ-
ent variance and covariance (VCOV) structures and genotypes were not correlated; and iii)
Class C is similar to Class B, however genotypes were correlated by an additive relationship
matrix based on pedigree values. For all traits, Class C models performed better based on
goodness of fit of the models. Therefore, we recommend to incorporate additive relationship
matrix besides to model harvests with different levels of correlations over time. In the second
chapter, SNP markers, obtained by genotyping-by-sequencing (GBS) technique, were used
to develop Bayesian and GBLUP models that consider tetraploid allelic dosage. Bayesian
models accuracies did not differ from the accuracy of GBLUP model and, we recommend the
latter because it requires less computational time. The accuracy of genomic selection models
reinforces the advantage of implementing this strategy in P. maximum breeding programs.

Keywords: Plant breeding; Forage; Autotetraploids; Linear mixed models; Prediction
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1 INTRODUCTION

Brazil is a leader in beef production, being the largest or second-largest producer in
the world, competing only with the United States (Jank et al., 2014). This position is due to
vast pastures and cattle herds present in the country. Its native and cultivated pasture area
is equivalent to its agricultural plus planted and natural forest areas (Jank et al., 2011). The
greatest cultivated area in the country is represented by Brachiaria (Syn. Urochloa) spp., where
Brachiaria brizantha cv. Marandu grass is the predominant forage (Jank et al., 2014). As this
cultivar is produced on a large scale, Brazilian pastures are classified as extensive monocultures.
Therefore, the use of several species and cultivars is recommended to mitigate problems caused
by monoculture, such as break of resistance to known diseases (Jank et al., 2011). Panicum
maximum (Syn. Megathyrsus maximum) Jacq. is an excellent option for diversification and
intensification of Brazilian pastures because it is very productive and has excellent nutritive
quality, providing high animal production per hectare (Jank et al., 2014).

The main reproduction strategies is apomixis (autotetraploid plants), but sexuality oc-
curs sporadically in diploid plants. Apomixis is a clonal propagation by seeds, in which offsprings
genetically identical to the female parent are produced. According to Savidan et al. (1989), the
apomixis has several advantages in breeding programs, such as hybrid vigor fixation, simplifica-
tion in obtaining hybrids, and low cost of seed production. However, the main disadvantage is
that it does not allow recombination of superior individuals, avoiding the exploration of genetic
variability. Thus, the improvement in this species was made possible from the chromosomic
duplication of sexual diploid plants and, later, crossing with apomictic plants (Savidan et al.,
1989).

Main tropical forage breeding programs in Brazil are at Embrapa Centers, which hold
the main germplasm banks in the country. The P. maximum forage breeding is mainly coordi-
nated by Embrapa Beef Cattle, with the goals of increasing leaf and seed yield, disease resistance,
and nutritive quality (Jank et al., 2011). The breeding program uses recurrent selection meth-
ods where each cycle requires three to five years of evaluation. According to Resende et al.
(2014), the process of development, testing, and recommendation of a new cultivars span over
approximately fifteen years.

Genomic selection is an effective method to explore genetic variation in breeding pro-
grams, from the prediction of breeding values based on markers distributed throughout the
genome. It can increase the accuracy of selection, reduce evaluation costs per genotype and get
shorter breeding cycles than phenotypic selection (Lipka et al., 2014; Resende et al., 2014).
Its potential to increase the efficiency of breeding programs has been shown in several crops
(Heffner et al., 2010; Crossa et al., 2013; Gouy et al., 2013; Lipka et al., 2014). Therefore,
the application of genomic selection in forage breeding is promising, since many of the main
traits have high assessment costs, as well as evaluation after flowering time in the breeding
cycle.

This work consists of a partnership between the Embrapa Beef Cattle (Campo Grande,
MS, Brazil), the Graduate Program in Genetics and Plant Breeding at ESALQ / USP (“Luiz
de Queiroz” College of Agriculture / University of São Paulo - Piracicaba, SP, Brazil), and
the Bioinformatics Research Center at NC State (North Carolina State University - Raleigh,
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NC, USA). The work was organized in two chapters. The first one has the goal of to evaluate
nutritional, structural, and yield traits in a tetraploid sexual P. maximum population using
linear mixed models and to estimate genetic parameters and canonical correlation between sets
of traits. The second one aims to develop statistical models in genomic selection considering
tetraploid allelic dosage for the same population of P. maximum.
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2 LITERATURE REVIEW

2.1 Panicum maximum Breeding

Guinea grass (Panicum maximum Jacq.) is a tropical perennial grass which stands
out among the forage species. It is adapted for light soils, from medium to high fertility, and
recommended for more intensive systems of livestock farming (Valle et al., 2009; Jank et al.,
2014). Although this species presents vegetative propagation, cultivars produced by seeds are
easier to establish, faster to be adopted and much more widespread (Jank et al., 2011).

Panicum maximum belongs to genus Panicum L., which is one of the most important
within the family Poaceae, subfamily Panicoideae, and tribe Paniceae. This genus comprises
more than 500 species, distributed in tropical and subtropical areas of several countries, mainly
in Africa. In Brazil, 114 species have been reported (Guglieri et al., 2004). Its center of origin
is in Tropical Africa. Among economically important species of this genus are P. miliaceum L.,
P. virgatum L., P. prupurascens Raddi, and P. maximum Jacq (Warmke, 1951; Jank et al.,
2008).

The chromosome number in P. maximum is 2n = 4x = 32, being characterized as an
autotetraploid species. However it can also be found, in low frequency in nature, as a diploid with
chromosome number 2n = 2x = 16. Most species of the genus Panicum have a basic number of
x = 9, but P. maximum has x = 8. The DNA content per complete chromosome complement
(n) was determined by Akiyama et al. (2008) to be approximately 500 Mbp for diploid and
1000 Mbp for tetraploid. Therefore, the DNA content per monoploid chromosome set (x) is
approximately 500 Mbp, which suggests that P. maximum possesses the smallest genome size
in any reported Panicum species.

Diploid Panicum plants have sexual reproduction whereas tetraploid plants reproduce
by apomixis via apospory. In the apospory, meiosis is replaced by mitosis, with formation of an
embryo sac and an embryo with the same mother’s genotype, that is, the embryo sac is originated
from a mitotic division of a somatic cell of the ovum (nucelus or integument) (Savidan et al.,
1989; Savidan, 2000; Resende et al., 2008; Jank et al., 2011).

There are several advantages of apomixis, such as: hybrid vigor fixation, simplification
in obtaining hybrids, and low costs of hybrid seed production (Savidan et al., 1989). Because
there are no apomictic diploid plants, apomixis is associated with polyploidy in this species
(Savidan, 2000). Thus, one way to enable genetic breeding is to select diploid plants and,
duplicate its chromosome numbers with colchicine, to cross with apomictic tetraploid plants
(Savidan et al., 1989). In these crosses, sexual plants are used as females and apomictic ones
as donors of pollen.

Apomixis has been determined by a dominant gene or group of genes with simple in-
heritance (Savidan et al., 1989). Assuming that gene A controls apomixis, Aaaa genotype is
associated with apomictic plants and aaaa genotype is associated with sexual plants. Thus,
hybrid progenies of these crosses will always segregate in the ratio 1 sexual: 1 apomictic (Savi-
dan et al., 1989). Genetic mapping of apomixis was performed for tropical grasses P. maximum
(Ebina et al., 2005), Paspalum notatum (Stein et al., 2007), and Brachiaria humidicola (Vigna
et al., 2016), being the apospory mapped in a single linkage group for all species.
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The first tropical forage grass to be extensively collected in its center of origin was
P. maximum, in the late 1960s. The second one was Brachiaria spp. in the 1980s (Euclides
et al., 2010; Jank et al., 2008). These collections were made with the main purpose of studying
the inheritance of apomixis and reproductive strategies of tropical forages. Therefore, tropical
grasses are in the early stages of domestication and breeding. Panicum maximum was collected
in 1967 and 1969 by the French Institution ORSTOM (Institut Français de Recherche Scientifique
pour le Développement en Coopération - IRD) in East Africa, specifically in Tanzania and Kenya.
In 1982, Embrapa Beef Cattle, in Campo Grande, Brazil, signed an agreement with ORSTOM,
which allowed the transference to Brazil of 426 apomictic accessions and 417 sexual plants
(Savidan et al., 1989). Few years have elapsed since the collection and availability of the
germplasm banks to initiate breeding programs.

In Brazil, the first cultivar of P. maximum introduced was Colonião, at the time of
slavery. It became very well adapted to environmental conditions. Several other cultivars were
introduced later, such as Sempre Verde, Guiné, Makueni and Tobiatã. Other cultivars were
developed in the country, as a result of selection and breeding programs, in which the most
notable were: Centenário, Centauro, Vencedor, Tanzânia, Mombaça, Aruana, Áries, Atlas and
Massai (Valle et al., 2009).

The area occupied by this species corresponds to approximately 20% of all cultivated
pasture area (around 20 million of hectares), supplying 30% of the forage seed market (Martus-
cello et al., 2007). Although the number of cultivars available has increased recently, Brazilian
pastures can still be characterized as large clonal monocultures, genetically poor and vulnerable
to pests and diseases, which makes it fundamental to invest in breeding programs (Valle et al.,
2009).

In general, the goals of forage breeding programs are similar to those of other crops, such
as increase in productivity, pests and disease resistance, good quality of seed production, efficient
use of fertilizers, and adaptation to edaphic and climatic stresses. However, breeding programs
still have the additional purpose of animal use. Thus, forage value is measured indirectly by
being converted into animal products (such as meat, milk, leather and furs) (Resende et al.,
2008; Jank et al., 2011).

Forage breeding programs are traditionally carried out by conventional breeding meth-
ods, in which genotypes are selected through several crosses, taking more than a decade. These
methods requires three to five years for each cycle of evaluation and, in total, approximately
fifteen years are necessary for development, testing and releasing of new cultivars (Resende
et al., 2014). Different methods that use genome analysis, such as genomic mapping and marker-
assisted selection, have been developed and are widely used in order to improve the eficiency
of breeding programs. One promising approach is genomic selection, which can be used to ac-
celerate breeding cycles and increase the accuracy of selection. The implementation of genomic
selection in forage breeding was initially presented by Hayes et al. (2013).

Posteriorly, Lipka et al. (2014) applied genomic selection in Panicum virgatum L.,
with the main objective to evaluate genomic selection efficiency to accelerate breeding cycles.
The authors obtained high prediction accuracy analyzing seven morphological characters and
thirteen characters related to biomass quality. Panicum virgatum is considered a reference
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genome for studies with the genus Panicum, which means that this research is very important
for the genus, as well for P. maximum. The authors hope that implementation of genomic
selection approaches for breeding programs of Panicum spp. will be more advantageous than
when compared to traditional breeding programs.

2.2 Molecular Markers

Genetic marker is any inheritable trait that allows to distinguish variations in the
genome of different individuals. They are the basis of studies for genome analysis and fundamen-
tal for identification of desirable genotypes. New genotyping technologies have been developed
and are becoming increasingly important in breeding programs. The main goal is to achieve the
required qualities and quantities of markers for a variety of applications in molecular studies.
In applications that require extensive genome coverage, the ideal technique should offer not
only thousands of molecular markers distributed throughout the genome, but also allow these
markers to be obtained preferentially in a single, reliable, and low-cost experiment (Luikart
et al., 2003).

With the development of Next Generation Sequencing (NGS), new techniques have
been able to discover, sequence, and genotype thousands of markers in any genome of interest in
a single step, even in populations where there is little or no genetic information. One promising
technique is Genotyping-by-sequencing (GBS) that uses the reduction of genome complexity
using specific combinations of restriction enzymes (Elshire et al., 2011). These enzymes pro-
duce DNA fragments with cohesive borders, cutting the DNA in non-repetitive regions. These
fragments are linked to barcode that allows the identification of sequences generated in each
sample. This approach has shown to be consistent in several species and efficient to produce
hundreds of thousands of molecular markers (Elshire et al., 2011; Poland et al., 2012a).

High density markers are fundamental in genomic selection. Thus, it is expected that
most of QTLs will be in linkage disequilibrium (LD) with at least one marker in the population.
In this way, the GBS technique shows promising results in several papers published in the
literature (Poland et al., 2012b; Crossa et al., 2013; Lipka et al., 2014; Annicchiarico
et al., 2017).

Working with a set of 254 wheat lines, Poland et al. (2012b) used GBS approach and
obtained 41,371 genotyped SNPs. The authors evaluated four different methods for imputing
missing data, compared the performance of two types of markers (GBS and DArT-arrays),
and analyzed four phenotypic traits (yield in drought and irrigated conditions, thousand kernel
weight, and days to heading). They concluded that GBS technique can be used to generate a
large number of markers at an accessible price in addition to allow the development of more
accurate genomic selection models.

GBS markers were also used for genomic prediction in maize populations by Crossa
et al. (2013). The authors analyzed two experiments, the first consisted of 504 double-haploid
lines, and the second formed by 296 inbred lines. Three relevant situations for genomic selection
were investigated: i) gain in accuracy when using nonimputed, imputed, and GBS-inferred
haplotypes methods; ii) accuracy of pedigree models; iii) comparison between parametric and
non-parametric models. Their results indicated a slight difference in the level of accuracy for
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imputed and nonimputed data, as well as for parametric and non-parametric models. The
prediction of maize lines incorporating pedigree information showed better results.

2.3 Allelic Dosage Information in Polyploids

Genetic and statistical analysis of polyploid species have been based basically on the
idea of single dose with 1:1 segregation in biparental populations, proposed initially by Wu et al.
(1992). Currently, new possibilities have arisen to enable accessibility of the complex polyploid
genomes for several crops due to advantages in genetic and statistical methods as well as the
development of NGS technologies. Thus, the evaluation of Single-Nucleotide Polymorphisms
(SNP) throughout the genome allows one to assess the relative abundance of each allele; in
other words, to estimate the allelic dosage of SNPs (Serang et al., 2012; Garcia et al., 2013;
Mollinari and Serang, 2013).

Diploid dosage is well established in the literature and constitutes three dose classes:
nulliplex (aa), simplex (Aa), and duplex (AA), being classified according to reference allele. For
tetraploid species, doses are classified into five classes: nulliplex (aaaa), simplex (Aaaa), duplex
(AAaa), triplex (AAAa), and quadriplex (AAAA). With increase of ploidy, the number of dose
classes increases up to ploidy+1. In spite of the advances in breeding programs and genotyping
techniques, genetic studies in polyploids have been limited to the use of markers with only
diploid dosage (Poland et al., 2012b; Lipka et al., 2014; Li et al., 2015; Ramstein et al.,
2016; Biazzi et al., 2017).

Initially, Rickert et al. (2002) reported the use of pyrosequencingTM in polyploids to
distinguish different heterozygous states, albeit with some sequence-specific limitations. Later,
Bérard et al. (2009) and Akhunov et al. (2009) used SNPlexTM and Illumina Golden GateTM

assays, respectively, for the genotyping of polyploid wheat. For genotype calling in tetraploid
species, Voorrips et al. (2011) developed an algorithm, implemented in the R package fitTetra,
using mixture models. However, they assumed Hardy–Weinberg equilibrium within the popu-
lation, which may not occur in all segregating polyploid progeny. Then, Serang et al. (2012)
presented an algorithm for finding the exact maximum a posteriori (MAP) genotype configu-
ration, in the software SuperMASSA, that allows the classification of the allelic dosage for any
ploidy level even when the ploidy is unknown. Furthermore, the population can assume three
presuppositions: Hardy-Weinberg model, F1 model, or Generalized Population model.

A few genetic studies in polyploids have used allelic dosage, such as genetic mapping
(with limited segregation of the markers) (Hackett et al., 2013; Massa et al., 2015; Costa
et al., 2016; Vigna et al., 2016), genome-wide association (Rosyara et al., 2016), and ge-
nomic selection (Slater et al., 2016). Recently, Slater et al. (2016) used tetraploid dosage
in genomic selection studies with potato. The authors achieved accuracies ranging from 0.2,
under conditions of low heritability and small reference populations, to 0.8 in larger reference
populations.

The dosage information allows to investigate about its importance to the gain in ac-
curacy of the statistical models in autopolyploid species when all genotypic information is used
(Garcia et al., 2013). Therefore, the inclusion of correct allelic dosage is essential for genetic
studies in polyploid species.



17

2.4 Genomic Selection

Genomic Selection (GS) is an effective method to perform predictions of genomic breed-
ing values on genotypes evaluated in breeding programs. Initially proposed by Meuwissen et al.
(2001), it uses statistical methods to predict these breeding values from markers distributed
throughout the genome, with sufficient accuracy to represent the phenotype. GS was superior
to former methods such as the traditional method of Marker-Assisted Selection (MAS), mainly
for selection of polygenic traits, which are controlled by many loci of small effects (Heffner
et al., 2009). GS is different than MAS because it analyzes all markers simultaneously, including
both minor and major marker effects, in a population with genome wide coverage of markers.
Moreover, this method calculates the genomic estimated breeding values (GEBVs) of individuals
(Meuwissen et al., 2001; Bernardo, 2014).

In summary, GS uses a training population, formed by genotyped and phenotyped indi-
viduals, to develop a statistical model that estimates GEBVs from genotipic data of a candidate
population of untested individuals (Jannink et al., 2010). In this way, the GEBVs are used
to select individuals in another population (genotyped only). In order to maximize the GEBV
accuracy, the training population must be representative of the selection candidate population
(Heffner et al., 2009).

It is common to find the training population splitted in training and validation pop-
ulations (Resende et al., 2012; Habier et al., 2011), and the candidate population defined
as selection population. Thus, according to Resende et al. (2012), the three populations are
characterized as:

• Training population: In this population, individuals are genotyped and their phenotypes
evaluated for traits of interest. It can also be called as discovery population or estimation
population. Prediction equations of genomic breeding values (GBVs) associate each marker
with its effect on the trait of interest. The accuracy of genomic prediction is expected to
increase with increasing the size of the population.

• Validation population: In this population, individuals are also phenotyped and geno-
typed. It may be called testing population. The effects of markers, estimated from training
population, are used to predict the phenotypes of this population. Thus, the predictive
capacity of genomic selection is verified by correlating the observed phenotypic values
against the predicted ones. As the validation population was not involved in the pre-
diction of marker effects, the GBVs errors and the phenotypic values are independent.
Therefore, this correlation is predominantly genetic and it is equivalent to the predictive
ability of genomic selection to estimate the phenotypes.

• Selection population: It consists of the population in which individuals will be selected
in the breeding program. Individuals will only be genotyped and evaluated through the
prediction and selection of GEBVs, using the models that allowed higher accuracy in the
prediction of these values.

The success of GS depends of the predictive accuracy to select individuals whose phe-
notypes are not evaluated. Thus, the existence of a direct relationship between the training
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population and selection population is fundamental. According to Desta and Ortiz (2014),
the main factors that affect prediction accuracy are: marker density, training population size
and relatedness, heritability and genetic architecture of traits, performance of analyzed models,
gene effects, and extent and distribution of LD between markers and QTL.

The increase in marker density guarantees the conservation of marker-QTL associations
and allows a high predictive accuracy (Desta and Ortiz, 2014). Several authors report that the
key to the success of genomic selection is to incorporate all markers in the prediction models, in
order to maximize the number of QTLs in linkage disequilibrium (LD) with at least one marker
(Heffner et al., 2009; Lorenz et al., 2011; Resende et al., 2012; Desta and Ortiz, 2014). In
this way, the number of QTLs whose effects will be captured by markers is maximized, obtaining
greater accuracy and avoiding biases in the estimation of marker effects. However, according
to Muir (2007), this increase in marker density must be accompanied with a larger training
population size in order to decrease the colinearity among markers.

When the genome coverage by molecular markers is sufficiently informative, training
population size has more influence on the increase of predictive accuracy (Lorenzana and
Bernardo, 2009). If the training population size is large enough, even low heritability traits
can be predicted more accurately.

Models performance will vary according to assumptions and considerations about marker
effects and genetic effects that control the trait to be analyzed. Nonlinear models can capture
non-additive genetic effects, i.e., dominance and epistatic effects, making them capable of im-
proving the GS accuracy (Kumar et al., 2012; Sun et al., 2012). However, if the traits are purely
additive, these models may not produce the expected result, reducing the accuracy (Zhao et al.,
2013). Thus, the construction of stable prediction models, which correctly evaluate the gene
effects and contemplate all or a large part of the estimation of marker effects, is fundamental
for implementation of GS.

2.5 Statistical Models in Genomic Selection

In genomic selection, the number of markers (p) used is generally greater than the
number of individuals (n). When this happens, estimates using ordinary least squares (OLS)
have high variance and high mean squared error. Therefore, OLS models have a low predictive
capacity, because the marker effects are treated as fixed effects, causing multicollinearity among
predictors.

Several alternative models have been proposed and the most used in genomic selection
can be divided into three main classes:

• Linear and non-linear regression: This group includes Penalized and Bayesian meth-
ods. The first group uses linear regression and the second one uses non-linear regres-
sion. Within Penalized methods are Ridge Regression Best Linear Unbiased Predictor
(RR-BLUP), Least Absolute Shrinkage and Selection Operator (LASSO), and Elastic Net
(EN). Within Bayesian methods are Bayesian Ridge Regression (BRR), BayesA, BayesB,
BayesC, Bayesian Lasso (BL), and weighted Bayesian Shrinkage Regression (wBSR).
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• Implicit regression: This group includes semi-parametric and non-parametrtic methods,
such as Reproducing Kernel Hilbert Spaces (RKHS) and Neural Networks.

• Reduced-dimension regression: In this group, the main methods are: Partial Least
Squares Regression (PLSR) and Principal Component Regression (PCR).

Penalized estimation methods differ according to penalization functions, which produce
different degrees of shrinkage. The main idea is to reduce the mean square error, reducing the
estimator variance, and to prevent the super-parameterization of the model (Resende et al.,
2012).

Bayesian methods also promote a shrinkage of the model effects, but from the a pri-
ori distribution assumed for these effects. These methods provide better predictions when the
effects of QTLs are not normally distributed because they are associated with nonlinear equa-
tions. Bayesian methods overcome penalized estimations when the distribution of QTL effects
is leptokurtic (positive kurtosis), due to the presence of large effects genes (Meuwissen et al.,
2001; Resende et al., 2012). When the distribution is normal, both methods tend to be equally
efficient (Resende et al., 2012).

Implicit regression methods are an alternative to adjust models with many epistatic
and dominance interactions. Thus non-parametric regressions are functional representations
between a large number of covariates and a dependent variable, generating a less parameterized
structure able to accommodate the interactions effects with fewer assumptions (Gianola et al.,
2006; Resende et al., 2012). On the other hand, reduced-dimension methods can be applied to
marker selection with significant effects on the trait.

The comparison among these prediction methods has been carried out in several studies,
such as Gianola et al. (2006), de los Campos et al. (2009), Heslot et al. (2012), Gouy
et al. (2013), and others. There is no consensus which is the most efficient method because it
varies with different species, population, and analyzed traits. Besides, in pratical experiments,
the difference among approaches has remained small.
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3 MIXED MODELING AND GENETIC PARAMETERS ESTIMATION FOR
FORAGE TRAITS IN PANICUM MAXIMUM

Keywords: Forage Breeding; Guinea Grass; Variance and Covariance Structures; Pedigree
Information; Genotype x Harvest Interaction

3.1 Abstract

The production of apomictic guinea grass (Panicum maximum Jacq.) hybrid cultivars
depends on the availability of improved sexual parents over time, since these hybrids are obtained
from sexual × apomictic crosses. A promising strategy to increase the frequency of favorable
alleles in sexual parents is by intrapopulation recurrent selection (IRS), which consists of im-
proving the population by successive cycles of evaluation, selection and recombination of sexual
plants. Since P. maximum is a perennial crop, repeated measures of a given trait are taken in the
same individual and linear mixed models can be used to increase selective efficiency and provide
more realistic estimates of genetic parameters. The objective of this study was to evaluate nu-
tritional, structural, and yield traits in an outcrossing P. maximum multi-parent population of
the IRS program of Embrapa Beef Cattle, comparing three different classes of models. Also, we
estimated genetic parameters and investigated the interrelationships between these traits. The
population consisted of 570 tetraploid sexual genotypes evaluated in an augmented block design,
with three checks and six blocks. Yield traits were: total green matter (TGM), total dry matter
(TDM), leaf dry matter (LDM), and stem dry matter (SDM); structural trait was: percentage
of leaf blade (PLB); and nutritive values were: acid detergent fiber (ADF), crude protein (CP),
and in vitro digestibility of organic matter (IVD). The first and second group were analyzed for
eight harvests, and the third, for four. We investigated three different classes of models: genetic
effects by compound symmetry matrix, genotypes were not correlated, and residual effects were
homocedastic and not correlated (Class A); genetic and residual effects with different variance
and covariance (VCOV) structures and genotypes not correlated (Class B); genetic and residual
effects with different VCOV structures and genotypes correlated by an additive relationship
matrix for autotetraploids based on pedigree values (Class C). Correspondence among the 20
best offsprings selected by the different models was evaluated by coincidence index. Class C
was selected for all traits, showing that the use of an additive relationship matrix in addition
to selected VCOV structures had a goodness of fit. Generalized measure of heritability ranged
from 30.65% (IVD) to 87.54% (LDM). In general, traits with higher heritability also had lower
divergence between classes and, consequentely, higher coincidence of the 20 best offsprings se-
lected. Classes B and C were, in general, more concordant. Given the best fit of the model
besides the difference in ranking between the greater 20 offsprings for the classes, Class C is
preferred for selection of superior individuals in an IRS program.

3.2 Introduction

Guinea grass (Panicum maximum Jacq.) is one of the most important tropical forage
grasses due to its high productivity and good forage quality. It has a wide adaptation on tropical
areas, mainly in those of light soils, from medium to high fertility and it is recommended for
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more intensive systems of livestock farming (Valle et al., 2009; Jank et al., 2014). This species
belongs to genus Panicum L., family Poaceae, subfamily Panicoideae, and tribe Paniceae; its
chromosome number is 2n = 4x = 32, being characterized as autotetraploid, but in the nature
it can also be found in a low frequency as diploid, with 2n = 2x = 16. Whereas diploid plants
have sexual reproduction, tetraploid plants reproduce by apomixis via apospory. According to
Savidan (2000), apomixis is associated with polyploidy, so there are no apomictic diploid plants
in nature. Apomixis allows to perpetuate superior genotypes with great precision, although not
allowing to achieve genetic recombination by crossing. Thus, to enable genetic breeding in
this species, diploid plants are selected and, using colchicine, their chromosome numbers are
duplicated to be used in crosses with apomictic tetraploid plants. In these crosses, sexual plants
are used as females and apomictic as donors of pollen, and hybrid progenies will always segregate
in the ratio 1 sexual: 1 apomictic (Savidan et al., 1989).

Currently, most forage breeding programs are traditionally carried out by conventional
breeding, in which the main adopted method is the intrapopulation recurrent selection (IRS).
IRS strategy, in apomictic reproducing species, consists of improving the sexual population by
recurrent selection cycles; sexual plants are used to obtain the next recurrent selection cycle
and/or used in crossings with superior apomictic accessions. These strategies should provide
a fast development of improved cultivars, mainly through the exploitation of apomixis in the
superior hybrids (Resende et al., 2004). Many goals of forage breeding programs are common
to those of other crops, such as increase of productivity, pest and disease resistance, good quality
of seed production, efficient use of fertilizers, and adaptation to edaphic and climatic stresses;
however, they still have the additional purpose of animal use. Thus, the improvement of forage
yield and quality have direct benefits to the farmers by improving animal performance (such as
meat, milk, leather, and calves) (Resende et al., 2008; Jank et al., 2011).

In the plant evaluation process, especially in perennial plants, it is common to take
repeated measures of a given trait in the same individual. This type of evaluation aims to infer
a genotype’s ability to repeat its performance over successive evaluations (Braz et al., 2015). In
forage experimental designs, half-sibs progenies are commonly evaluated during several harvests
and the repeatability of genotypes in successive harvests is estimated by traditional analysis of
variance models (Braz et al., 2013, 2015; Fernandes et al., 2017) or by mixed models with
variance homogeneity and absence of correlation (Resende et al., 2004; Figueiredo et al.,
2012; Simeao et al., 2016). According to Crossa et al. (2006), the main feature of mixed
linear model methodology is to allow modeling not only independent observations, but also
heterogeneous and correlated variance and covariance (VCOV) structures. Moreover, genotype
x harvest interaction has been studied in the context where the variances within harvests are
assumed to be equal and all pairwise covariances between harvests are zero because harvests are
assumed to be independent (Lédo et al., 2008; Figueiredo et al., 2012). This is an unlikely
assumption since harvests have a dependence over time and their correlations can differ due to
environmental and genetic conditions. Mixed models with VCOV structures such as power and
factor analytic can accomodate this in a more realistic way.

Mixed models approach also deals well with unbalanced data and it has been widely
used in breeding programs in other crops (Smith et al., 2005; Piepho et al., 2008; Pastina
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et al., 2012; Margarido et al., 2015). Another advantage is the possibility to include infor-
mation from relatives by exploiting genetic correlation. The most common approach consists of
the use of a numerator matrix (A-matrix) containing an estimate of the pairwise relationship
among individuals. This matrix has been widely used for diploid species and was extended
for autopolyploids recently to include the ploidy level and double reduction information (Kerr
et al., 2012).

In forage breeding research, it is important to identify genotype combinations with
favorable phenotypic performance for several traits, specially leaf dry matter and nutritive values.
According to Martuscello et al. (2009), leaf dry matter is one of the greatest interest for forage
breeders, since leaf accumulation is favorable for animal production because of the higher quality
of the leaves that are more digestible than the stems. Furthermore, if there is a relationship
between groups of yield and quality traits, multivariate analyses such as canonical correlation
analysis can provide information for indirect selection (Balkaya et al., 2011).

The objective of this study was to evaluate nutritional, structural, and yield traits
in an outcrossing P. maximum multi-parent population, comparing three different classes of
longitudinal multivariate linear mixed models. Also, we estimated the heritability and genotypic
correlation coefficients between traits, and estimated the interrelationships between sets of yield
and quality traits.

3.3 Material and Methods

3.3.1 Panicum maximum population

Embrapa Beef Cattle initiated, in 2012, an IRS program, with the objective of improv-
ing the average of a tetraploid sexual population, and make this population the basis for new
crosses with superior apomictic genotypes. Hereby, 20 tetraploid plants (JA, S7, S13, S16, A42,
B87, T103, T4610, A47, A72, B107, C48, C16, B22, Y34, C54, B74, B96, BX4, and B103) were
selected based on relevant agronomic performance in forage breeding program of EMBRAPA
during the last 30 years. An outcrossing Panicum maximum multi-parent population were de-
veloped by crossing these 20 parents to get outcrossing half-sib progenies (Figure 3.1). The
population was composed of 19 half-sibs progenies (except offsprings of parental B107) and each
progeny was formed by around 30 individuals, totalizing 570 tetraploid sexual genotypes in the
base population of first recurrent selection cycle.

3.3.2 Experimental data

The phenotypic data was obtained in 2013, 2014 and 2015 (eigth harvests). The de-
sign used was an augmented block design (ABD), with 570 sexual regular treatments and three
apomitic checks (B107, Mombaça, and Tanzânia), distributed in six blocks. Regular treatments
appeared only once in the experiment (95 regular treatments per block), and the checks were
repeated in all blocks (5 replications of each check in each block) (Appendix Figure A.6). Ex-
perimental plots were formed by transplanted seedlings, with spacing between rows and plants
of 2 and 1 meters, respectively. Borders were established around the blocks and were not being
considered in the evaluations.
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Figure 3.1. Pedigree information of parents (in bold) used to form the base population of
intrapopulational recurrent selection program of P. maximum.

The first harvest (60 days) was performed to standardize the plants to approximately
20 cm of the ground. The other harvests were carried out subsequently. In the first year, there
were three harvests during the rainy season (February, March, and November, 2013) and one
harvest during the dry season (October, 2013). In the second year, there was one harvest during
the dry season (October, 2014). In the third year, there were three harvests during the rainy
season (January, February, and March, 2015).

The experiment was conducted in the experimental field and in the Forage Sample Pro-
cessing Laboratory (LPAF) of Embrapa Beef Cattle. This center is located in Campo Grande,
Mato Grosso do Sul, Brazil (latitude 20°27’ S, longitude 54°37’ W and altitude of 530 m). The
climate is classified as rainy tropical type, characterized by the well defined occurrence of a dry
period during the colder months of the year and a rainy period during the summer months.

Response variables were: i) yield traits: total green matter (TGM - t/plant), total
dry matter (TDM, g/plant), leaf dry matter (LDM, g/plant), and stem dry matter (SDM,
g/plant); ii) structural trait: percentage of leaf blade (PLB, %); and iii) nutritive values of
leaf: acid detergent fiber (ADF), crude protein (CP), and in vitro digestibility of organic matter
(IVD). These quality traits for nutritive values were performed using near infrared reflectance
spectroscopy, according to Marten et al. (1985). Yield and structutal traits were evaluated for
eight harvests (six during the rainy season and two during the dry season), and nutritive values
for four harvests (three during the rainy season and one during the dry season).

3.3.3 Longitudinal multivariate linear mixed analysis

Three different classes of models were used to compare the efficiency in including the
relationship matrix. The first class is common in breeding programs and consider, in an explicit
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way, the genotype x harvest interaction as an effect in the model, and residual effects were as-
sumed homocedastic and not correlated (Class A). Classes B and C had the genetic and residual
effects fitted with different VCOV structures. Class B assumes genotypes as not correlated and
the Class C assumes genotypes are correlated by an additive relationship matrix specifically for
autotetraploids, based on pedigree values (Amadeu et al., 2016). All models were fitted in the
software GenStat, version 17.1 (VSN International, 2015).

Class A (underlining indicates a random variable) was:

y
ijlk

= µ+Hi +Bj + Pl +Ok +OHki + εijlk

where y
ijlk

is the phenotype of the k-th genotype, with the l-th parent, at the j-th block and
i-th harvest; µ is the overall mean; Hi is the effect of the i-th harvest (i = 1, . . . , nh, where
nh = 8 for yield and structural traits, and nh = 4 for nutritive values); Bj is the effect of the
j-th block (j = 1, . . . , 6); Pl is the effect of the l-th parent (l = 1, . . . , ns + na, the parents can
be separated into two groups, where ns is the number of sexual parents (ns = 1, . . . , 19), and na

is the number of apomictic checks (na = 1, 2, 3), i.e., ns + na = 22); Ok is the effect of the k-th
genotype (k = 1, . . . , 570); OHki is the genotype by harvest interaction; and εijlk is the residual
error. Block, genotype, genotype by harvest interaction, and residual effects were assumed to
follow a multivariate normal distribution, with zero mean and VCOV matrix Iσ2

B, Iσ2
O, Iσ2

OH

and Iσ2
R, respectively; I is an identity matrix.

Class B and Class C were fitted by a longitudinal multivariate linear mixed (LMLM)
model:

y
ijlk

= µ+Hi +Bj + Pl +Oki + εijlk

where y
ijlk

, Hi, Bj , Pl, and εijlk were described above, and Oki is the effect of the k-th genotype
(k = 1, . . . , 570), within the i-th harvest.

Block, genotype, and residual effects were assumed to follow a multivariate normal
distribution, with zero mean and VCOV matrix Iσ2

B, G, and R, respectively. The G matrix
is indexed by two factors (harvest and genotype) written as the Kronecker product of matrices:
G = Gi×i

H ⊗Gk×k
O , in which GH is relative to harvest effect and GO is relative to genotype effect.

The R matrix is indexed by three factors (plot, harvest, and block): R = In×n
pl ⊗Ri×i

H ⊗Rj×j
B ,

in which RH and RB are relative to harvest and block effects, respectively, and Ipl is an identity
matrix for plot effects (n = 95, which is the number of regular treatments per block).

Matrices GH and RH were tested considering six different structures (Table 3.1). RB

was tested for all VCOV matrices, except Po. Matrix GO was defined as ID matrix for Class B
and as additive relationship matrix for Class C. The additive relationship matrix was obtained
with the R package AGH-matrix (Amadeu et al., 2016).

Class A is equivalent to Class B, but using a CS structure as GH matrix and ID for
the others effects. For Class B and C, we selected the best model based on goodness of fit of
the model, considering the Akaike Information Criterion (AIC) (Akaike, 1974) and Bayesian
Information Criterion (BIC) (Schwarz, 1978). The selection was performed into three steps:
first we fitted the GH matrix for different structures; second we fitted the RH matrix given the
selected GH previously; and third we fitted the RB matrix given the selected GH and RH .
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Table 3.1. Description and number of parameters (nPAR) of variance and covariance structures
examined for genetic (G) and residual (R) effects.

Model nPAR Description
ID 1 Identical residual variation
DIAG p Heterogeneous residual variation
CS 2 Compound symmetry with homogeneous residual variation
CSHet p + 1 Compound symmetry with heterogeneous residual variation
Po 2 Power model with homogeneous residual variation
FA1 2p First-order factor analytic model

p is the number of harvests for GH and RH , and is the number of blocks for RB .

Heritability was calculated using the generalized measure of heritability. The model
with CS matrix for genetic effects was considered for all traits (Cullis et al., 2006):

Ĥ2
C = 1− PEV

2σ2
G

where PEV is the prediction error variance, i.e., the mean variance of a difference of two BLUP
(best linear unbiased prediction); σ2

G is the genetic variance. This was calculated using function
VHERITABILITY implemented in GenStat, version 17.1 (VSN International, 2015).

In order to evaluate the correspondence among the 20 best offsprings selected by the
different models (3.5% of selection intensity), we estimated the coincidence index (Hamblin and
Zimmermann, 1986):

CI =
A− C

M − C
× 100

where M is the total number of offspring selected in each model (i.e., 20), A is the number of
offsprings selected in two models, and C is the number of offsprings selected in both models due
to chance, using proportion of 5%, implies that C = 1.

The response to selection was calculated, for selected model, as follows:

R = H2
C × S

where S is the selection differential.
Genetic and additive correlation were estimated using Pearson correlation among traits

for selected models of Class B and C, respectively. These correlations are shown using graphs
obtained by R package qgraph (Epskamp et al., 2012). The relationship among sets of forage
production and quality traits were investigated using canonical correlation analysis (CCA),
which was performed in R package CCA (González et al., 2008). Quality variable set was
defined as X-set (ADF, CP, and IVD) with canonical variable U and forage variable set was
defined as Y -set (LDM, SDM, and PLB) with canonical variable V . F test was performed for
pairs of canonical variables as described by Balkaya et al. (2011).

Genotype x harvest interaction was studied using the first-order factor analytic (FA1)
as VCOV matrix for GH and the additive relationship matrix for GO. The graph of correlations
among harvests was obtained using the R package corrplot (Wei and Simko, 2016). The graph
of performance of five selected offsprings in different harvests was obtained using the R package
ggplot2 (Wickham, 2009) (Appendix Figure A.7).
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Table 3.2. Comparisons between Class A and the best models of Class B and C, using AIC
and BIC, for acid detergent fiber (ADF), crude protein (CP), in vitro digestibility of organic
matter (IVD), total green matter (TGM), total dry matter (TDM), leaf dry matter (LDM),
stem dry matter (SDM), and percentage of leaf blade (PLB). Classes with smaller AIC and BIC
are indicated in bold.

Traits Class Genetic effects Residual effects AIC BIC
ADF A CS ⊗ ID ID ⊗ ID ⊗ ID 10358.91 10382.19

B CSHet ⊗ ID ID ⊗ Po ⊗ ID 10347.79 10394.34
C Po ⊗ A ID ⊗ DIAG ⊗ ID 10344.34 10385.08

CP A CS ⊗ ID ID ⊗ ID ⊗ ID 8395.77 8419.05
B FA1 ⊗ ID ID ⊗ CSHet ⊗ CS 8267.62 8354.92
C FA1 ⊗ A ID ⊗ FA1 ⊗ ID 8234.65 8333.59

IVD A CS ⊗ ID ID ⊗ ID ⊗ ID 14430.05 14453.32
B FA1 ⊗ ID ID ⊗ Po ⊗ ID 14357.75 14421.77
C FA1 ⊗ A ID ⊗ ID ⊗ ID 14349.85 14408.04

TGM A CS ⊗ ID ID ⊗ ID ⊗ ID 9210.97 9237.08
B Po ⊗ ID ID ⊗ DIAG ⊗ DIAG 7489.26 7593.72
C Po ⊗ A ID ⊗ DIAG ⊗ DIAG 7409.11 7513.58

TDM A CS ⊗ ID ID ⊗ ID ⊗ ID 65405.63 65431.72
B Po ⊗ ID ID ⊗ DIAG ⊗ DIAG 62711.48 62815.86
C Po ⊗ A ID ⊗ DIAG ⊗ ID 62700.68 62772.44

LDM A CS ⊗ ID ID ⊗ ID ⊗ ID 60746.66 60772.76
B Po ⊗ ID ID ⊗ DIAG ⊗ FA1 59178.80 59322.32
C Po ⊗ A ID ⊗ DIAG ⊗ DIAG 59155.55 59259.93

SDM A CS ⊗ ID ID ⊗ ID ⊗ ID 54513.90 54540.00
B DIAG ⊗ ID ID ⊗ CS ⊗ CSHet 53175.63 53286.54
C DIAG ⊗ A ID ⊗ CSHet ⊗ DIAG 49462.57 49612.61

PLB A CS ⊗ ID ID ⊗ ID ⊗ ID 38622.21 38648.31
B DIAG ⊗ ID ID ⊗ FA1 ⊗ ID 37800.82 37963.92
C CSHet ⊗ A ID ⊗ ID ⊗ ID 37752.99 37824.75

3.4 Results

3.4.1 Model selection

The VCOV structures were selected based on AIC and BIC criteria for models of Class
B and C (an example can be seen at the Appendix Table A.5 for ADF variable). A comparison
between Class A and the best models of Class B and C was performed (Table 3.2) considering
AIC and BIC as well. Class C had lower AIC criteria for all traits; for BIC, Class A had goodness
of fit for ADF and Class C for the remaining traits. As the difference of AIC values between
the first and the second lower values were greater than the respective BIC difference, Class C
was also selected for ADF.

3.4.2 Genetic parameters

Generalized measure of heritability ranged from 30.65% to 87.54% (Table 3.3). LDM
showed the higher heritability and IVD showed the lower heritability. The response to selection
ranged from 0.90% to 70.07% for CP and LDM, respectively. On average, yield traits showed
higher heritability and greater response to selection than nutritive values.
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Table 3.3. Generalized heritability (Ĥ2
C%), response to selection of the greater 20 offsprings

(R%) for Model 3, and coincidence index (CI%, with absolute number of offsprings selected
in parenthesis) among three classes of models, for acid detergent fiber (ADF), crude protein
(CP), in vitro digestibility of organic matter (IVD), total green matter (TGM), total dry matter
(TDM), leaf dry matter (LDM), stem dry matter (SDM), and percentage of leaf blade (PLB).

Trait Ĥ2
C R CI

Class A – Class B Class A – Class C Class B – Class C
ADF 36.40 0.96 73.68 (15) 94.74 (19) 68.42 (14)
CP 36.48 0.90 10.53 (3) 47.37 (10) 10.53 (3)
IVD 30.65 1.40 68.42 (14) 57.89 (12) 73.68 (15)
TGM 83.88 56.95 78.95 (16) 78.95 (16) 100.00 (20)
TDM 86.49 58.18 78.95 (16) 78.95 (16) 100.00 (20)
LDM 87.54 70.07 89.47 (18) 89.47 (18) 94.74 (19)
SDM 45.60 7.56 52.63 (11) 15.79 (4) 42.11 (9)
PLB 34.93 3.11 63.16 (13) 52.63 (11) 73.68 (15)

The lower coincidence index was 10.53% for CP, with 36.48% of generalized heritability,
between Classes A and B, and the higher index was 100% for TGM and TDM between Classes B
and C and with generalized heritability of 83.88% and 86.49%, respectively. Traits with higher
heritability also had higher coincidence index among classes. Classes B and C were, in average,
more concordant between them.

Genetic and additive correlations can be seen in Figure 3.2A and Figure 3.2B, respec-
tively. The correlations are graded by the size, thickness and color of the traces. Short and thick
traces represent high correlations between traits and red and green colors represent negative and
positive correlations, respectively.

ADF

CP

IVD

TGM

TDM

LDM

SDM

PLB

Genetic correlation

ADF

CP

IVD

TGM

TDM

LDM

SDM

PLB

Additive correlationBA

Figure 3.2. (A) Genetic correlation estimated using Class B models. (B) Additive correlation
estimated using Class C models. As the shorter and thicker the traces are, the greater are the
correlations, being red for negative correlations and green for positive correlations.
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Table 3.4. Summary results for the canonical correlation analysis.

Pair of canonical Canonical Squared canonical F df1 df2 p-valuevariables correlation correlation
U1V1 0.3218 0.1035 10.3065 9 1373 <0.001
U2V2 0.2075 0.0431 7.1265 4 1130 <0.001
U3V3 0.0761 0.0058 3.3010 1 566 0.0698

Table 3.5. Canonical coefficients.
X - Variable set Y - Variable set

ADF CP IVD LDM SDM PLB
U1 0.3731 0.5076 0.7963 V1 -0.5174 -0.6446 -0.3876
U2 -0.6716 0.8135 -0.9189 V2 -0.8179 0.8730 0.0784
U3 -0.9284 -0.7964 0.4116 V3 -0.5083 0.0291 1.0043

The main difference between genetic and additive correlations is between CP and IVD,
in which the genetic correlation was 0.21 and additive correlation was 0.56. The ADF trait had
negative correlation between the other nutritive values, no correlation with PLB, and positive
and low correlation between yield traits. PLB has negative correlation with SDM, and positive
and low correlation with the other yield traits, which have positive and medium-high correlations
among them. TGM, TDM, and LDM showed the highest correlations (r = 0.98 between TGM
and LDM, and r = 0.99 between TGM and TDM, and LDM and TDM).

Three canonical correlation coefficients were estimated to explain the interrelationships
between the variable sets. First and second canonical coefficients were significant (32.18% and
20.75%, p-value <0.001) while the third one was not significant (7.61%, p-value 0.0698) (Table
3.4). The first optimal linear combination of dependent and independent variables (Table 3.5)
is:

U1 = 0.3731(ADF) +0.5076(CP) +0.7963(IVD)

V1 = −0.51741(LDM) −0.6446(SDM) −0.3876(PLB)

3.4.3 Genotype x harvest interaction

Genotype x harvest interaction is visualized from different correlations among pairs
of harvests (Figure 3.3) as well as different performances of individuals in successive harvests
(Appendix Figure A.7). Results indicate that the performance of the offsprings was not uniform
for the different seasons (rainy and dry seasons) as well as among harvests within the same
season.

3.5 Discussion

The goal of this study was to evaluate nutritional, structural, and yield traits in an out-
crossing P. maximum multi-parent population besides comparing three classes of linear mixed
models. Furthermore, we estimated the heritability and genotypic correlation coefficients be-
tween traits as well as canonical correlation between sets of forage production and quality traits.
Given the paucity of information about VCOV structures in P. maximum experiments, we fitted
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Figure 3.3. Correlation among harvests for acid detergent fiber (ADF), crude protein (CP), in
vitro digestibility of organic matter (IVD), total dry matter (TDM), stem dry matter (LDM),
and percentage of leaf blade (PLB) using first-order factor analytic as VCOV matrix for genetic
effects.

several linear mixed models, selected by AIC and BIC criteria, and compared the best models
of each class. First class (Class A) is classified as traditional model, where genotype x harvest
interaction was treated as an effect, genotypes were not correlated, and residual effects were
assumed homocedastic and not correlated. In the second class (Class B), genetic and residual
effects were fitted with different VCOV structures, and genotypes were not correlated. In the
third class (Class C), genetic and residual effects were fitted with different VCOV structures,
and genotypes were correlated by an additive relationship matrix.

Based on AIC and BIC criteria, Class C was selected for all analyzed traits (Table 3.2).
Therefore, the selection of VCOV structures for genetic and residual effects combined with an
additive relationship matrix for genotype effect has showed better performance in relation to
Classes A and B. In addition, Class C allows to model genotype x harvest interaction indirectly
by GH matrix. Although most studies have incorporated genotype x harvest interaction in
mixed models analysis, they usually assume harvests to be independent (Lédo et al., 2008;
Figueiredo et al., 2012). However, this is a heavy assumption since the harvests generally have
a longitudinal correlation due to environmental and genetic conditions (Figure 3.3). In this work,
we assumed different genetic correlation structures among harvests, which were selected based
on goodness of fit of the model. For most traits, Po and FA1 structures fitted better than others
and should be tested in subsequent experiments. Another advantage of Class C is allowing the
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inclusion of correlation among offsprings using an additive relationship matrix for autotetraploids
based on pedigree values. According to Crossa et al. (2006), the information among relatives
should facilitate estimating the association between environments (in this case harvests), as
well as modeling the main effects of genotype and genotype x environmental interaction (here,
genotype x harvest interaction). Therefore, we recommend to incorporate additive relationship
matrix besides modeling genotype x harvest interaction by Po or FA1 structures in longitudinal
mixed models in P. maximum. Furthermore, an additive relationship matrix estimated by
molecular markers can be used instead of pedigree information to increase the accuracy in
predicting genetic values (VanRaden, 2008).

Additionally, we estimated the generalized measure of heritability, the response to se-
lection, and the coincidence index among the models. Magnitude of heritability determines the
degree of difficulty in improving the trait and indicates the most efficient method to be used.
According to Resende et al. (2004), it is of utmost importance in the breeding program. In our
case, heritability for yield traits was higher than those cited in the literature (Table 3.3). For ex-
ample, Jank et al. (2008) evaluated accessions and hybrids of P. maximum and reported means
of heritabilities with magnitude between 40% and 68% and from 31% to 76% for TDM and
LDM, respectively. In another study, Braz et al. (2013) observed 20% and 30% for the same
traits. These results are lower than the observed in this article, 86.49% and 87.54% for TDM
and LDM, respectively. These differences can be explained based on the type of index used to
calculate the heritability. The first two works used the broad sense heritability (H2 = σ2

G/σ
2
F ,

where σ2
F is the phenotypic variance) and this work used the generalized heritability (H2

C), which
is more indicated for unbalanced designs (Cullis et al., 2006). It is worth mentioning that,
in case of balanced designs, the usual broad-sense heritability and the generalized heritability
coincide (Piepho and Möhring, 2007). In addition, the broad sense heritability was calculated
in this work for comparison. TDM obtained 41.36% and LDM obtained 49.92%, that is closer
to reports in the literature.

On average, yield traits showed higher heritability and greater response to selection
than nutritive values, since they were evaluated more extensively. In general, traits with lower
heritability also had higher divergence among models and, consequentely, lower coincidence
of the 20 best offsprings selected (Table 3.3). For CP, 10.53% of the selected offspring were
coincident between Classes A and B, and between Classes B and C. For SDM, 15.79% were
coincident between Classes A and C. Only TGM and TDM did not differ for selected offsprings
between Classes B and C, however these traits have high heritability and are very correlated
(Figure 3.2). As expected, Class B and C were more concordant between them, since both
allow different VCOV structures for genetic and residual effects. Given the best fit of the model
besides the difference in ranking between the greater 20 offsprings for the classes, Class C should
be preferred for selection of superior individuals in an IRS program.

The PLB is essential in forage breeding and being a low-heritability trait, it can be
genetically improved through strategies such as correlated response. In fact, PLB is slightly
correlated with LDM (r = 0.24, Figure 3.2), which has high-heritability and provided greater
response to selection in this and in other studies (Martuscello et al., 2007, 2009; Braz et al.,
2015). In addition, individuals with good performance in several traits are also desirable such
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as plants with high leaf yield, and high percentages of protein and digestibility. One possibility
to perform indirect selection of several traits simultaneously is through canonical correlation
analysis, which can be a good approach to define selection indices (Cerón-Rojas et al., 2016).
Magnitudes of the canonical coefficients (Table 3.5) represent their relative contributions to
the correlated variable (Balkaya et al., 2011). Accordingly, if the nutritive values (ADF, CP,
and IVD) increase, forage production (LDM, SDM, and PLB) will decrease. However, positive
and low canonical correlations were observed for the first (32.18%) and second (20.75%) pairs
of canonical variables (Table 3.4). Although it is necessary to give more attention to select,
simultaneously, yield and quality traits, it is possible to define a selection index that allows
selecting one set of traits without drastically decreasing the other set.
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4 DEVELOPMENT OF STATISTICAL MODELS INCLUDING DOSAGE
INFORMATION FOR GENOMIC SELECTION IN PANICUM MAXIMUM

Keywords: Plant Breeding; Guinea Grass; Autotetraploid Forage; Genotyping-by-sequencing
(GBS); Genomic Prediction

4.1 Abstract

Genomic selection is an effective method to predict breeding values based on large
set of marker information distributed across the whole genome. Despite advances in breeding
programs and genotyping techniques, genetic studies have been limited to the use of markers
without allelic dosage information for poliploid species. Since several species of economic interest
are autotetraploid, such as the forage Panicum maximum, the development of genomic selection
models that consider tetraploid allelic dosage is fundamental for breeding programs. Therefore,
we developed predictive models that consider tetraploid dosage (GS-TD models) in real data of
a recurrent selection population of P. maximum. Population consisted of 530 tetraploid sexual
plants. Forage production and nutritive value traits were measured by eight and four harvests,
respectively, in an augmented block design. A longitudinal multivariate linear mixed model was
fitted considering different variance and covariance matrices for residual effects. Genotyping-
by-sequencing (GBS) was conducted in NextSeq 500 platform for 96-plex PstI libraries. Raw
data was analyzed using Tassel-GBS pipeline and GBS tags were aligned against six pseudo-
genomes. Allelic dosage was estimated in SuperMASSA software for ploidy 4. Markers were
selected with minimum overall depth of 25 reads and with up to 5% of missing data. Missing
data were imputed using random sampling considering the probability of occurrence of each dose.
Linkage disequilibrium (LD) was estimated using squared Pearson correlation. Six predictive
models were generalized to tetraploid species and predictive ability was estimated by 5-folds
cross-validation, repeated 100 times for bayesian models and 1,000 times for frequentist model.
A total of 41,424 markers were selected after all filters and a high degree of LD was observed
even for extended distances between markers. Mean predictive ability ranged from 0.1691 to
0.4668 among traits. The accuracy of predictive models justifies the implementation of genomic
selection in P. maximum breeding programs. This is the first work of genomic selection in
tropical forages which uses a high throughput genotyping and considers tetraploid allelic dosage
in bayesian and frequentist models. Furthermore, the use of tetraploid allelic dosage is a more
realistic assumption of the genetic architecture on autotetraploid species. As conclusion, GBS
and allelic dosage are promising strategies for genomic analysis in autotetraploid species, in
addition, genomic selection may lead to additional gains in recurrent selection program of P.
maximum.

4.2 Introduction

Many agricultural crops of economic interest are tetraploids, such as potato (Solanum
tuberosum) (Allard, 1960), alfalfa (Medicago sativa) (McCoy and Bingham, 1988), and
guinea grass (Panicum maximum) (Warmke, 1954). For these species, marker alleles can be
represented with differents dosages, ranging from 0 (nulliplex) to 4 (quadruplex). Allele dosage



42

refers to the number of copies of the reference allele, e.g. aaaa for nulliplex and AAAA for
quadruplex, in which the A is the reference allele, for a biallelic marker.

Approaches for polyploid genetic analyses historically is based on the idea of using loci
in single dose, with 1:1 segregation in biparental crossings, initially proposed by Wu et al. (1992).
With the development of Next-Generation Sequencing (NGS) technologies and the advance of
genetic and statistical methods, new possibilities have arisen to enable studies of the complex
polyploid genomes for many crops (Garcia et al., 2013). The evaluation of Single-Nucleotide
Polymorphisms (SNP) throughout the genome allows one to assess the relative abundance of
each allele, in other words, to estimate the allelic dosage of SNPs (Serang et al., 2012; Garcia
et al., 2013; Mollinari and Serang, 2013).

According to Osborn et al. (2003), allelic dosage effects are observed in heterozygous
genotypes as intermediate gene expression levels and phenotypic effects when compared with low
or high expressing alleles in homozygous genotypes. Thus, polyploidy can increase the potential
variation in its genic expression, reflecting in phenotypic variation. Therefore, the inclusion of
allelic dosage information has become essential for genetic studies in polyploid species. It will
allow, in addition to the use of all genotypic information, an investigation about its importance
to improve the development of statistical models in autopoliploid species (Garcia et al., 2013),
such as in the forage P. maximum.

Panicum maximum stands out among the tropical forage species due to its high biomass
yield, excellent nutritive quality, and excellent acceptability and digestibility, providing high
animal performance (Jank et al., 2011). Forage breeding is a relatively new event, but it has
been stimulated due to the commercial interest in tropical pastures. Currently, forage breeding
programs are traditionally carried out by conventional breeding methods, such as recurrent
selection, in which one cycle requires three to five years for evaluation of productivity, persistence,
biomass quality, and others morphological characters. Therewith, approximately fifteen years
are necessary for development, testing, and release of new cultivars (Resende et al., 2014).

Initially proposed by Meuwissen et al. (2001), genomic selection (GS) is an approach
that uses statistical methods to predict breeding values from markers distributed throughout
the genome, with sufficient accuracy to represent the phenotype. It is a promising approach to
accelerate cycles of recurrent selection and increase the accuracy of selection. GS can be superior
when compared to former methods such as the traditional method of Marker-Assisted Selection
(MAS), specially for selection of traits with low heritability, which are controlled by many loci of
small effects. GS is different from MAS because it analyzes all markers simultaneously, including
both minor and major marker effects, in a population with wide genome coverage. Moreover, this
method calculates the genomic estimated breeding values (GEBVs) of individuals for ranking
and progeny selection (Meuwissen et al., 2001; Bernardo, 2014).

The success of GS depends of the prediction accuracy to select individuals whose phe-
notypes are not evaluated. To achieve this, it is essential that the training population has a
direct relationship with the breeding population. Several other factors can affect the prediction
accuracy of GS, like span of linkage disequilibrium (LD), trait heritability, genetic architecture,
marker density, size of the training population and performance of the analyzed models (de los
Campos et al., 2013; Desta and Ortiz, 2014).



43

Most of the available GS models were developed for diploids and still is not well estab-
lished for polyploid species. These models do not include allelic dosage information, and diploid
models are commonly used in polyploid species. Therefore, the objective of this study was to
develop statistical models in genomic selection which consider allelic dosage information for au-
totetraploid species, with applications in P. maximum. For this, SNP calling was performed to
allow the identification of different dose levels. This is the first study that includes tetraploid
dosage in frequentist and bayesian models for genomic selection in the Panicum genus.

4.3 Material and Methods

4.3.1 Panicum maximum population

We generated an outcrossing P. maximum multi-parent population using 20 selected
plants (JA, S7, S13, S16, A42, B87, T103, T4610, A47, A72, B107, C48, C16, B22, Y34,
C54, B74, B96, BX4, and B103) as donors of pollen and 19 sexual plants (all parents except
B107) as females. These parents were selected based on relevant agronomic performance in the
forage breeding program at EMBRAPA during the last 30 years. After the crossing process,
we synthesized 19 half-sibs progenies, each progeny composed by 30 individuals, totalizing 570
tetraploid sexual genotypes.

4.3.2 Phenotypic evaluation and longitudinal multivariate linear mixed analysis

The multi-parent population was evaluated in an augmented block design (ABD) at
Embrapa Beef Cattle, located at the Campo Grande city, Mato Grosso do Sul, Brazil (20°27’S,
54°37’W, 530m). We conducted the ABD, with 570 sexual regular treatments and three apomitic
checks (B107, Mombaça, and Tanzânia), distributed in six blocks. As the usual procedure in an
ABD, all regular treatments appeared only once in a block and the checks repeated in all blocks
(the ABD structure can be seen in Appendix Figure A.6).

The evaluated traits were: i) yield trait: leaf dry matter (LDM - g/plant); ii) structural
trait: percentage of leaf blade (PLB - %); and iii) nutritive values of leaf: organic matter (OM),
crude protein (CP), and in vitro digestibility of organic matter (IVD). Yield and structural traits
were evaluated for eight harvests, during the years of 2013 (four harvests), 2014 (one harvest),
and 2015 (three harvests), and nutritive values were evaluated for four harvests, being two in
2013, and two in 2015.

We fitted a longitudinal multivariate linear mixed (LMLM) model to obtain adjusted
means of the traits free of experimental residual effects, for future genomic selection analysis.
Our model, in which the underlining indicates a random effect, is:

y
ijlk

= µ+Hi +Bj + P l +Oki + εijlk

where y
ijlk

is the phenotype of the k-th offspring, with the l-th parent, at the j-th block and
i-th harvest; µ is the overall mean; Hi is the effect of the i-th harvest (i = 1, . . . , nh, where
nh = 8 for yield and structural traits, and nh = 4 for nutritive values); Bj is the effect of the
j-th block (j = 1, . . . , 6); P l is the effect of the l-th parent (l = 1, . . . , ns + na, the parents can
be separated into two groups, where ns is the number of sexual parents (ns = 1, . . . , 19), and na
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Table 4.1. Variance and covariance structures examined for residual effects (RC).

Model nPAR Description
ID 1 Identical residual variation
DIAG H Heterogeneous residual variation
CS 2 Compound symmetry with homogeneous residual variation
CSHet H + 1 Compound symmetry with heterogeneous residual variation
AR1 2 First-order autoregressive model with homogeneous residual variation
AR1Het H + 1 First-order autoregressive model with heterogeneous residual variation
Po 2 Power model with homogeneous residual variation
PoHet H + 1 Power model with heterogeneous residual variation
US H(H+1)/2 Unstructured model

nPAR is the number of parameters for the models and H is the number of harvests.

is the number of apomitic checks (na = 1, . . . , 3), i.e., ns + na = 22); Oki is the effect of the
k-th offspring within the i-th harvest (k = 1, . . . , na + no, where three apomictic checks are
repeated five times in each block, and no is the number of offsprings (no = 1, . . . , 570)); εijlk is
the residual error.

Block and parent effects follow a multivariate normal distribution with mean zero and
Iσ2

B and Iσ2
P variance, respectively, where I is an identity matrix. The residual term also

was assumed to follow a multivariate normal distribution with mean zero and a variance and
covariance (VCOV) matrix indexed by three factors (plot, block, and harvest) written as the
Kronecker product of matrices, R = In×n

pl ⊗ Ij×j
B ⊗Ri×i

H , in which Ipl, IB, and RH are relative
to plot, block, and harvest effects, respectively. The Ipl and IB is an identity matrix (n = 95,
which is the number of regular treatments per block). The RH was analyzed considering nine
different structures of VCOV matrix (Table 4.1): independent (ID), diagonal (DIAG), compound
symmetry (CS), compound symmetry heterogeneous (CSHet), first-order autoregressive (AR1),
first-order autoregressive heterogeneous(AR1Het), power (Po), power heterogeneous (PoHet),
and unstructered (US). The model selection was performed based on the Akaike Information
Criterion (AIC) (Akaike, 1974) and Bayesian Information Criterion (BIC) (Schwarz, 1978).
Adjusted means were obtained for each trait and used in the predictive genomic models.

These analyses were performed in the R package ASReml (Butler et al., 2009).The
heritability for each trait was calculated using the index proposed by Cullis et al. (2006).

Ĥ2
C = 1− PEV

2σ2
G

where, PEV is the prediction error variance, i.e., the mean variance of a difference of two BLUP
(best linear unbiased prediction), and σ2

G is the genetic variance.

4.3.3 Molecular data

Due to losses of individuals in field, we sequenced a total of 530 offsprings and used
it in genomic selection model. DNA of these 530 offsprings were extracted using the DNeasy
Plant kit (QIAGEN) and sequenced along with the multi-parents repeated twice. To provide a
higher sequence depth, genotyping-by-sequencing (GBS) was conducted in NextSeq 500 platform
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for 96-plex Pst1 libraries and following the protocol from Genomic Diversity Facility, Cornell
University. Genomic libraries were prepared following Elshire et al. (2011).

Raw data was analyzed using Tassel-GBS pipeline (Glaubitz et al., 2014) modified
to obtain the original count of the number of reads for each SNP allele. As this pipeline re-
quires a reference genome and P. maximum does not have one, we proposed the alignment of
GBS tags using six pseudo-genome: (i) Panicum hallii genome (v. 2.0; ∼554 Mb arranged in 9
chromosomes and 8,405 scaffolds; diploid forage); (ii) Panicum virgatum genome (v 1.0; ∼1,230
Mb arranged in total of 18 chromosomes, 9 chromosomes named as A and B, and 220,646 con-
tigs; tetraploid forage); (iii) Setaria italica genome (v 2.2; ∼405.7 Mb arranged in 336 scaffolds;
diploid forage); (iv) Setaria viridis genome (v 1.0; ∼394.9 Mb arranged in 9 chromosomes and
724 scaffolds; diploid forage); (v) transcriptome of P. maximum obtained by EMBRAPA research
group (43,803 sequences with width mean of 841.334); and (vi) transcriptome of P. maximum
obtained by UNICAMP research group (138,853 sequences with width mean of 695.658). The
genomes are available in Phytozome website (http://www.phytozome.net/) (Goodstein et al.,
2011). The transcriptomes were provided directly by research groups. The transcriptome ob-
tained by UNICAMP group was published by Toledo-Silva et al. (2013). The transcriptome
obtained by EMBRAPA group has not yet been published. The Bowtie2 algorithm (Langmead
and Salzberg, 2012) was used to align tags against each reference with -D and -R parameters
defined as 20 and 4, respectively, and with very-sensitive-local argument.

In Tassel-GBS pipeline, the minimum minor allele frequency (mnMAF) considered was
1%. Count information from it was used in SuperMASSA software (Serang et al., 2012) to
estimate the correct tetraploid allelic dosage of the individuals. In SuperMASSA software, the
minimum overall depth considered was 25 reads and the model used was Generalized Population
Model. Markers were fitted and filtered to ploidy 4. Triallelic SNPs were eliminated in this step.
Markers were selected manually with up to 5% of missing data. The imputation was made using
random sampling considering the probability of occurence of each dose within each marker.

As linkage disequilibrium (LD) can affect the prediction accuracy of GS, the LD was
estimated using squared Pearson correlation, r2 (Vos et al., 2017). Correlations were calculated
on tetraploid dosage (0, 1, 2, 3, and 4) among marker pairs for three reference genomes, i.e., P.
hallii, P. virgatum, and S. viridis, which have chromosome information. The average r2 between
adjacent markers were calculated and, subsequently, the pairwise correlations were pooled over
all chromosomes for each reference genome.

4.3.4 Genomic prediction models considering dosage

Here we generalized well known GS models for diploid to tetraploid species using the
information of tetraploid allelic dosage. We evaluated both bayesian and frequentist approaches:
Bayesian Ridge Regression (BRR) (Whittaker et al., 2000; Meuwissen et al., 2001); Bayes
A (Meuwissen et al., 2001); Bayes B (Meuwissen et al., 2001); Bayes C (Habier et al.,
2011); Bayesian LASSO (BL) (Park and Casella, 2008); and Genomic Best Linear Unbiased
Predictor (GBLUP) (VanRaden, 2008).

All bayesian models expanded for tetraploid allelic dosage (TD models) share the same
predictive multiple linear regression model,
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y = 1nµ+Xβ + ε

where, y (n×1) is the n adjusted entry mean response vector (from the phenotypic analysis in the
previous step); 1n is a vector of 1’s; µ is a scalar representing the population mean; X (n× p)
is the tetraploid allelic dosage incidence matrix of p marker loci coded as xij ⊂ {0, 1, 2, 3, 4}
according to the copy number of reference allele; β (p × 1) is the vector of (unknown) marker
with tetraploid dosage genetic (TDG) effects; and ε (n × 1) is the vector of residual effects,
εij ∼ N(0, σ2

ε).
Different assumptions of TDG effects were evaluated. BRR-TD model (Whittaker

et al., 2000; Meuwissen et al., 2001) assumes that all marker loci share the same normal prior
distribution, βj |σ2

β ∼ N(0, σ2
β), where the common genetic variance hyperparameter (σ2

β) follows
a scaled inverse chi-squared hyperprior distribution σ2

β|d.f.β, Sβ ∼ χ−2(d.f.β, Sβ), in which d.f.β

is the number of degrees of freedom and Sβ is the scale parameter of the distribution.
BA-TD model (Meuwissen et al., 2001) is an extension of the above model, which

assumes that each TDG prior effects follows specific normal densities, βj |σ2
βj

∼ N(0, σ2
βj
). As

before, each specific genetic variance hyperparameter (σ2
βj

) follows a scaled inverse chi-squared
distribution. Due to its property, we expect that BA-TD model tends to shrink TDG effects
with different prior strength (desirable for highly parameterized models, p >> n), as opposed
to the BRR-TD that assumes a common genetic variance hyperparameter. Genetically, these
assumptions mean that the analyzed traits are controlled by many genes of small effects and
few genes of large effects.

BB-TD model (Meuwissen et al., 2001) is an extension of BA-TD model, that takes
into account the TDG effects prior as a mixture of two normal densities, βj |δ, σ2

βj
, π ∼ πN(0, δ)+

(1−π)N(0, σ2
βj
). In this model, we can interpret the mixture proportion (π) as a known expec-

tation of a Bernoulli random variable, that is, the expectation of which mixture component best
describes the TDG effects (Dos Santos et al., 2016). This first mixture component is indexed
by the δ genetic variance hyperparameter, which BB-TD assumes as a known infinitesimal small
value. The second mixture component describes the hyperprior component of markers with
strong genetic signals, which is indexed again by specific genetic variance hyperparameters that
follow scaled inverse chi-squared hyperprior distributions.

BC-TD model (Habier et al., 2011) is a parsimonious variant of the BB-TD model,
which considers that all TDG effects follows a common mixture of two normal distributions,
βj |δ, σ2

β, π ∼ πN(0, δ) + (1− π)N(0, σ2
β). BC-TD model has the same property of the BRR-TD

model, that is, all TDG effects follow the same prior distribution, but with a mixture of two
normals like BB-TD model. All hyperparameters of this prior have the same interpretation of
the ones described above, as well as the same hyperprior assumptions.

BL-TD model (Park and Casella, 2008) assumes that all markers follows specific
normal priors, with genetic variance hyperprior given by the product σ2

εσ
2
βj

. However, the key
difference of BL-TD is the assumption that one component of genetic variance hyperparame-
ters follows exponential distributions, σ2

βj
|λβ ∼ Exp(λβ). The hyperparameter λβ measures the

knowledge (precision) about the genetic variance hyperparameter. Finally, as the usual proce-



47

dure for all the above models, we assume the residual genetic variance hyperparameter follows
σ2
ε |d.f.ε, Sε ∼ χ−2(d.f.ε, Sε).

To fit all bayesian models, we used the R package BGLR (de los Campos and Ro-
driguez, 2015), choosing the default package settings for all known hyperparameters. To obtain
the posterior distribution of the unknown parameters and hyperparameters, we used the Gibbs
sampler with 20,000 iterations; the first 2,000 cycles were discarded as burn in.

We also evaluated the frequentist model GBLUP-TD (VanRaden, 2008):

y = 1nµ+Zg + ε

where y, 1n, µ, and εij were the same; Z (n × n) is the indicence matrix, and g (n × 1) is the
vector mapping the individuals total dosage genetic effects (random effect). This model assumes
that the random variable g follows a multivariate normal distribution, g ∼ MVN(0n,Kσ2

g),
where σ2

g represents the genetic variance of the population and K is the genomic relationship

matrix (VanRaden, 2008), which for tetraploid organisms we derive as K =
WW T

tr(WW T )/n
and

wij is:

wij



4 – 4 pj for AAAA
3 – 4 pj for AAAa
2 – 4 pj for AAaa
1 – 4 pj for Aaaa
0 – 4 pj for aaaa

where pj is the reference allelic frequency at loci j.
Each ki′i on K can be interpreted as a correlation between genotypes of different

individuals (genomic relationship), end each kii as the correlation of the genotypes of a individual
with himself (inbreeding).

The GBLUP-TD model was analyzed using R package sommer (Covarrubias-Pazaran,
2016), considering the Newton-Raphson (NR) algorithm for estimating variance components.

4.3.5 Model evaluation

The best statistical model was selected for each of the phenotypic trait analyzed. Cross-
validation with 5-folds has been repeated 100 times for bayesian approaches (computationally
intensive) and 1,000 times for the frequentist approach, to obtain an asymptotic empirical dis-
tribution of the predictive ability. In each replication, the population was randomly split into 5
disjoint subsets of genotypes. Whereas one subset was used as validation population (20% or 106
individuals), the remaining four were combined as training population (80% or 424 individuals)
to predict the left-out genotypes in the first population. Subsequently, another subset was used
as validation population and the left-out genotypes of this set were predicted. These steps were
repeated until all five subsets were used as validation population once.

We calculated Pearson correlation between observed (y) and predicted (ŷ) adjusted
entry means considering, simultaneously, all five cross-validations of each replication. Predictive
ability was calculated as the mean of these correlations. In addition, we also derived the empirical
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distribution of the predicted residual error sums of squares (PRESS), given by the sum of squares
of the differences between the predicted and observed adjusted entry means.

4.4 Results

4.4.1 Phenotypic models

The selected VCOV model for the RC matrix based on AIC and BIC criteria coincided
for all nutritive values (AR1Het) and for leaf dry matter (UNST) (Table 4.2). However, differ-
ent VCOVs were selected for PLB (UNST was selected by AIC and AR1Het by BIC). As the
differences of AIC values between AR1Het and UNST were greater than the respective BIC dif-
ferences, the UNST model was selected for PLB. Despite UNST model requires estimation of a
larger number of parameters, it had the smallest AIC for PLB. Furthermore, both AR1Het and
UNST account for residual correlations and heterogeneous residual variation across harvests.
Generalized heritability ranged from 0.3162 to 0.8930. Leaf dry matter showed the higher her-
itability and in vitro digestibility of organic matter showed the lower heritability. On average,
forage production traits showed higher heritability than nutritive values.

4.4.2 SNP calling

Approximately 485,195,807 reads per lane were obtained with the genomic sequence, in
which 81.73% had good quality (mean of good, barcoded reads per lane). Initially, the number
of tags per lane on average was 15,121,979, and after merge multiple tags, the number of tags
was 6,596,939. The alignment results using P. hallii, P. virgatum, S. italica, S. viridis, and two
transcriptomes of P. maximum, obtained by EMBRAPA and UNICAMP research groups (Table
4.3) showed that the overall alignment ranged from 19.05% to 24.24% aligned tags. Although
transcriptomes obtained by UNICAMP had the highest overall alignment rate, transcriptomes
obtained by EMBRAPA had the highest unique alignment rate, followed by S. viridis and S.
italica (Appendix Table A.6). The number of haplotypes on average was 5,062,583, and the
number of unique tags retained was 6,374,151. In the end of this step, 476,904 markers were
obtained, with minimum minor allele frequency of 0.01 and minimum minor allele count of 1000.
The final number of markers in Tassel-GBS pipeline for each reference genome (Table 4.3) was
different in each case.

Due to the nature of GBS technique, the sequencing coverage of different samples
is random. It is possible that the same genomic region was not sequenced for all samples.
Furthermore, sequences that have mutation in the restriction site of the enzyme also are not
observed (Elshire et al., 2011). Therefore, large amount of missing data is expected. The
proportion of missing data for the markers (Figure 4.1) showed that the most part of selected
markers had 0% of missing data. The reference genome of S. italica, S. viridis, and transcriptome
obtained by EMBRAPA had more than 15,000 markers with 0% of missing data. P. hallii, P.
virgatum, S. italica, and S. viridis had around 5,000 markers with 87% of missing data. Markers
with high proportion of missing values were eliminated in subsequent steps.
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Table 4.2. Values of AIC and BIC criteria for the RC matrix, considering different VCOV
structures, as well as generalized heritabilities for all evaluated traits. Traits were organic matter
(OM), crude protein (CP), in vitro digestibility of organic matter (IVD), leaf dry matter (LDM),
and percentage of leaf blade (PLB).

Trait H2
C RC matrix nPAR AIC BIC

OM 0.6237 ID 1 2641.55 2658.26
DIAG 4 2573.20 2606.62

CS 2 2640.54 2662.82
CSHet 5 2573.33 2612.32
AR1 2 2636.48 2658.76

AR1Het 5 2553.31 2592.30
Po 2 2614.54 2636.82

PoHet 5 2563.48 2602.47
UNST 10 2555.51 2622.36

CP 0.3658 ID 1 3457.56 3474.27
DIAG 4 3388.20 3421.62

CS 2 3450.74 3473.02
CSHet 5 3379.22 3418.21
AR1 2 3430.66 3452.94

AR1Het 5 3352.82 3391.81
Po 2 3411.95 3434.23

PoHet 5 3374.20 3413.19
UNST 10 3358.94 3425.79

IVD 0.3162 ID 1 8199.83 8216.54
DIAG 4 8159.68 8193.10

CS 2 8198.89 8221.18
CSHet 5 8158.56 8197.55
AR1 2 8179.69 8201.97

AR1Het 5 8143.20 8182.19
Po 2 8191.85 8214.14

PoHet 5 8145.05 8184.04
UNST 10 8147.61 8214.45

LDM 0.8930 ID 1 45909.45 45928.68
DIAG 8 44985.31 45049.39

CS 2 45727.46 45753.09
CSHet 9 44203.65 44274.14
AR1 2 44776.89 44802.52

AR1Het 9 43625.89 43696.38
Po 2 44600.72 44626.35

PoHet 9 43721.82 43792.31
UNST 36 43328.46 43571.97

PLB 0.5037 ID 1 27036.63 27055.85
DIAG 8 26406.88 26470.96

CS 2 27029.13 27054.77
CSHet 9 26403.98 26474.47
AR1 2 27016.46 27042.10

AR1Het 9 26400.12 26470.61
Po 2 27025.02 27050.66

PoHet 9 26408.88 26479.37
UNST 36 26306.32 26549.84
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Table 4.3. Total of markers obtained in the different cenarios.
Reference Genome Overall alignment rate Tassel-GBS SuperMASSA Filter NA
Panicum hallii 19.05% 77,105 12,835 6,945
Panicum virgatum 22.66% 84,119 11,230 5,598
Setaria italica 22.04% 92,494 15,047 8,066
Setaria viridis 22.07% 92,591 15,271 8,118
Transcriptome (EMBRAPA) 20.11% 74,049 14,129 7,665
Transcriptome (UNICAMP) 24.24% 56,546 9,777 5,032
Total – 476,904 78,289 41,424

S. viridis         Transcript. EMBRAPA   Transcript. UNICAMP
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Figure 4.1. Proportion of missing data in GBS markers using P. hallii, P. virgatum, S. italica,
S. viridis, and two transcriptomes of P. maximum (obtained by EMBRAPA and UNICAMP
research groups) as reference genomes.

As mentioned before, the output of Tassel-GBS pipeline was used as input in the
SuperMASSA software, considering the Generalized Population Model, fiting and filtering for
ploidy 4. A total of 78,289 markers was selected with minimum overall depth of 25 reads
(Table 4.3). From this, 32,619 markers had more than 100 of minimum overall depth. For
example, marker Hallii.1_3461595 (Figure 4.2) shows the intuition of how SuperMASSA uses
the ratio of the intensity of two alleles to classify individuals according to their genotype using a
probabilistic graphical model (Serang et al., 2012). The name of the markers was formed by:
reference genome plus number of chromosome plus position of SNP in the chromosome.
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Figure 4.2. Marker Hallii.1_3461595. Red squares represent offsprings with the allele A in
homozygous, i.e. AAAA (quadriplex or dose 4). Blue circles represent offsprings AAAa (triplex).
Green triangles represent offsprings AAaa (duplex). Black crosses represent offsprings Aaaa
(simplex). And pink rhombus represent offsprings aaaa (nulliplex, or dose 0 of A).

Handling datasets with high level of missing data is complex and relies heavily on
imputation methods; in addition, the accuracy of which with high missing genotypes can be
variable (Fu, 2014). Therefore, markers were selected with up to 5% of missing data, aiming to
reduce imputation bias. The final number of markers was 41,424, which were used in GS models
(Table 4.3). Subsequently, imputation was made using random sampling and considering the
dose proportion for each marker.

The redundancy among markers was inspected (Figure 4.3) and a greater similarity
was verified between three specific groups of reference: Panicum genus, Setaria genus, and
transcriptomes. This result is expected due to phylogenetic proximity of groups. More than half
of the markers identified by the different reference genomes have non-redundant information,
and 31,046 markers were classified as unique. This may due to the great genomic variability still
persistent in each genome, since they are species with a broad genetic base, and relatively new
to breeding programs.
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Figure 4.3. Circular graph showing redundancy among markers (Gu et al., 2014). Regions
in red represent redundant markers within each reference, while regions in black, pink, blue,
green, and orange represent, respectively, redundant markers among six, five, four, three, and
two references. Gray regions represent markers with unique information for each reference.

4.4.3 Linkage disequilibrium

Average linkage disequilibrium (LD) between adjacent markers was 0.2422, 0.2176, and
0.2457 for markers identified by alignment with P. hallii (Figure 4.4A), P. virgatum (Figure
4.4B), and S. viridis (Figure 4.4C), respectively. A high degree of LD was observed even for
extended distances between markers, being more dispersed for P. virgatum and less for S. viridis.
This is expected since P. virgatum has a higher genome size and S. viridis obtained a higher
density of markers by pairs of base in relation to the others.

A B C

Figure 4.4. Linkage disequilibrium calculated as squared Pearson correlation, r2, for three
reference genomes: (A) P. hallii. (B) P. virgatum. (C) S. viridis. Red lines are r2 = 0.1.
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Table 4.4. Mean predictive ability of GS-TD models considering tetraploid allelic dosage and
applied to prediction of organic matter (OM), crude protein (CP), in vitro digestibility of organic
matter (IVD), leaf dry matter (LDM), and percentage of leaf blade (PLB). Lower and upper
limits are in parentheses.

Nutritive values Yield trait Structural trait
Model OM CP IVD LDM PLB
GBLUP-TD 0.4591 0.3332 0.3310 0.2101 0.3015

(0.4316; 0.4933) (0.3025; 0.3653) (0.2944; 0.3693) (0.1707; 0.2504) (0.2635; 0.3409)
BRR-TD 0.4601 0.3331 0.3305 0.2109 0.3315

(0.4336; 0.4939) (0.3047; 0.3609) (0.2891; 0.3672) (0.1759; 0.2531) (0.2879; 0.3653)
BA-TD 0.4629 0.3312 0.3279 0.2030 0.3316

(0.4342; 0.4950) (0.2980; 0.3581) (0.2917; 0.3717) (0.1610; 0.2377) (0.2866; 0.3644)
BB-TD 0.4668 0.3331 0.3289 0.2092 0.3311

(0.4425; 0.4988) (0.3053; 0.3608) (0.2929; 0.3741) (0.1711; 0.2482) (0.2808; 0.3636)
BC-TD 0.4609 0.3332 0.3302 0.2113 0.3309

(0.4337; 0.4934) (0.3049; 0.3597) (0.2883; 0.3682) (0.1750; 0.2506) (0.2828; 0.3627)
BL-TD 0.4585 0.3335 0.3311 0.1691 0.3293

(0.4347; 0.4932) (0.3070; 0.3583) (0.2973; 0.3734) (0.1262; 0.2104) (0.2768; 0.3646)
Average 0.4614 0.3329 0.3299 0.2021 0.3260

4.4.4 Genomic prediction

Genomic selection models were analyzed using all markers (41,424 markers) and only
non-redundant ones (31,046 markers). The predictive accuracy did not differ between these two
data sets (results not shown), since the predictive models deal well with multicollinearity. So,
only predictive models using all markers will be presented.

Mean values of predictive ability ranged from 0.1691 (BL-TD for leaf dry matter) to
0.4668 (BB-TD for organic matter) (Table 4.4). The predictive ability of structural and nutritive
values traits were higher than those of yield trait. Leaf dry matter showed the lowest accuracies
for all analyzed GS-TD models and organic matter showed the highest ones (Figure 4.5).
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Figure 4.5. Comparison among six GS-TD models which consider tetraploid allelic dosage and
applied to prediction of organic matter (OM), in vitro digestibility of organic matter (IVD),
crude protein (CP), leaf dry matter (LDM) and percentage of leaf blade (PLB). (A) Predictive
ability. (B) Standardized Predicted Residual Error Sum of Squares.

The variation results from 100 and 1,000 replications of 5-folds cross-validation for
Bayesian and GBLUP-TD models, respectively. No clear difference in predictive ability was
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observed among models for nutritive values (Figure 4.5). BL-TD was different from others for
leaf dry matter, and GBLUP-TD for percentage of leaf blade (Figure 4.5A); accordingly, these
models obtained higher estimates of standardized PRESS for the corresponding traits (Figure
4.5B). Standardized PRESS were obtained subtracting each values from the mean and dividing
by the standard deviation (mean PRESS in its natural scale for each trait and each model are
shown in Appendix Table A.7).

4.5 Discussion

The aim of this study was to develop predictive models which consider tetraploid allelic
dosage to estimate breeding values for genomic selection in P. maximum. We compared the
accuracy of predicted breeding values using six different models, and evaluated strategies for
modeling residual effects and performing SNP calling. This methodology can be applied to
other autotetraploid species and can be extended to species with other ploidy levels.

Before the development of GS models considering tetraploid allelic dosage (GS-TD
models), it is important to perform a precise phenotypic analysis and high throughput genotyping
to achieve high levels of predictive accuracy. As highlighted by Cabrera-Bosquet et al. (2012),
the sucess of GS in breeding for quantitative traits largely depends on a reliable phenotyping
process. Therefore, the precise phenotypic data is one of the key components to train GS models
for accurately predicting GEBV of the breeding population.

In order to obtain adjusted means of the traits free of experimental residual effects for
the genomic selection analysis, we performed a two stage approach for the analysis. In the first
stage, for each trait we fitted a longitudinal multivariate linear mixed (LMLM) model. Consider-
ing all nutritive values analyzed, the first-order autoregressive heterogeneous (ARHet) structure
provided a better fit than other models (Table 4.2). This structure allows to model residual cor-
relations and heterogeneity of variance, wherein the correlations between harvests decay with
time and each harvest has its own residual variance. For LDM and PLB, the selected model
has an unstructured (UNST) variance and covariance matrix (Table 4.2), which allows specific
residual variances and covariances for each harvest. In the second stage, molecular markers
were considered in the predictive models. For this, the SNP calling took into consideration the
allelic dosage, discriminating among the five possible genotypes. According to Uitdewilligen
et al. (2013), a high sequence depth is required to identify the correct genotypic class accurately,
where 60–80 coverage leads to 98.4% accuracy in genotypic calls. A test was performed using
a minimum overall depth of 25 and 100 reads, and the predictive ability of GS-TD models was
similar for both criteria (results not shown), probably because most markers had a good geno-
type quality; approximately 78.7% of markers selected with minimum overall depth of 25 reads
were also selected with overall depth of 100 reads.

The underlying assumption of genomic selection is the presence of SNPs at some loci in
linkage disequilibrium (LD) with QTL alleles that affect the traits that are subject to selection
(Calus et al., 2008). According to Vos et al. (2017), LD is the non-random association be-
tween alleles at different loci in a breeding population. It can be estimated using the correlation
between markers when the SNP alleles at those loci have numerical values. These authors calcu-
lated several estimators for LD in a simulated and real panel of tetraploid potato and concluded
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that LD1/2,90 values provides the most consistent estimates of LD decay. This estimator consists
of 90% percentile of r2 the short-range LD. Short-range LD is calculated across a defined interval
of genetic distances between marker pairs (Vos et al., 2017). Here we used the squared Pearson
correlation (r2) as an estimate of LD.

According to Riedelsheimer et al. (2012), one major reason of the minor differences
in prediction accuracies among prediction models is the high level of LD found in breeding
population. The authors obtained similar accuracies of GS models in elite maize germoplasm,
which had high level of LD. Accuracies did not differ independently whether the effect of large
QTL were precisely captured or spread over a larger region. In this work, we also obtained
a high level of LD between marker pairs (r2 = 0.22), which can explain the similarity among
GS-TD models for prediction purposes.

The prediction of the breeding values was made using estimated means considering all
harvests simultaneously. The goal was to select individuals in the present recurrent selection
cycle (already phenotypically evaluated) as well as to select non-phenotyped individuals from
the next generation recurrent cycle. Since one cycle requires three to five years of evaluations
(Resende et al., 2014), P. maximum breeding program with genomic selection will reduce
approximately four years for each recurrent cycle. Therefore, superior sexual plants can be
selected every year to cross with apomictic plants, obtaining new apomictic hybrid combinations
to test as new cultivars and to release the best one in agricultural marketing. Lipka et al.
(2014) applied genomic selection in P. virgatum L. species considering diploid dosage with the
objective of evaluating genomic selection efficiency to accelerate breeding cycles in this species.
The authors obtained high prediction accuracy for most of the traits, in which seven were
morphological traits and thirteen were traits related to biomass quality. Similar to our results,
they observed the same prediction accuracies across GS approaches. Although analyzed traits
were different from ours, the range of values were similar as well. The higher mean prediction
accuracy obtained by Lipka et al. (2014) was 0.52 for standability and the lower was -0.08 for
minerals. Our higher mean predictive ability was 0.46 for organic matter and the lower was 0.20
for leaf dry matter (Table 4.4).

A comparison of GS-TD models with GS models considering the usual diploid allelic
dosage (GS-DD models) was also performed here. To do so, the three possible heterozygotes
(Aaaa, AAaa, and AAAa) were coded as diploid heterozygote (Aa), while the two tetraploid
homozygotes (AAAA and aaaa) as diploid homozygotes (AA and aa). Usual GBLUP model
for diploid species was evaluated with R package sommer (Covarrubias-Pazaran, 2016),
considering the genomics relationship matrix as described by VanRaden (2008). The mean
predictive ability (Appendix Table A.8) showed no clear difference between GBLUP-TD and
GBLUP models. The lack of differences between these two models might be due to the genetic
structure of the breeding population. The individuals analyzed have a high level of relationship
because they constitute families of half-sibs; also the majority of genotypes were classified as
aaaa or Aaaa (84.27% and 12.57%, respectively). Hence, we recommend repeating our study
in more heterozygous populations to investigate how much predictive accuracy increases when
considering tetraploid allelic dosage. It is worth mentioning that using tetraploid allelic dosage
relies on more realistic assumptions of the genetic architecture on autotetraploid species.
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To our knowledge, this is the first study that applied genomic selection in P. maximum
including dosage in predictive models. Previously, Slater et al. (2016) developed an extension
of genomic relationship matrix proposed by Yang et al. (2010) for autotetraploids and applied
genomic selection in potato. The authors achieved accuracies ranging from 0.2, under conditions
of low heritability and small reference populations, to 0.8 in larger reference populations.

In our work, mean predictive ability ranged from 0.1691 (BL-TD for LDM) to 0.4668
(BB-TD for OM) (Table 4.4). Similar accuracy was obtained for oats (Asoro et al., 2011),
maize (González-Camacho et al., 2012), rice (Spindel et al., 2015), and potato (Slater
et al., 2016). Despite this difference among traits, the accuracy did not differ among models.
Besides that, we suggest to use BRR-TD model for PLB because it presented lower PRESS
(Appendix Table A.7) and to use GBLUP-TD model for all remaining traits (since it requires
less computational time).

This is the first work of genomic selection in P. maximum which uses a high throughput
genotyping and considers tetraploid allelic dosage in bayesian and frequentist models. GBS and
allelic dosage showed to be promising strategies for genomic analysis in autotetraploid species.
Furthermore, the accuracy of predictive models justifies the implementation of genomic selection
in P. maximum breeding programs.
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Figure A.6. Illustative scheme to demonstrate the augmented block design (ABD). Empty
circles are tetraploid sexual offsprings and solid circles are tetraploid apomitic checks. Parents
are from P1 to P19 and checks are from T1 to T3.



62

Table
A

.5.
Variance

and
covariance

(V
C

O
V

)
structures

tested
for

genetic
(G

C )
and

error
(R

C
and

R
B )

effects
to

the
m

odels
2

and
3

for
acid

detergent
fiber

(A
D

F).T
he

selection
was

perform
ed

into
three

steps:
first

we
fitted

the
G

C
m

atrix
for

differents
structures;second

we
fitted

the
R

C
m

atrix
given

the
selected

G
C

previously;and
third

we
fitted

the
R

B
m

atrix
given

the
selected

G
C

and
R

C .
T

he
n
P
A
R

and
N

C
are

the
num

ber
ofparam

eters
for

each
V

C
O

V
structure

and
the

not
convergence

ofthe
m

odel,respectively.
M

odel2:
BLU

P/R
EM

L
m

odelw
ithout

additive
relationship

m
atrix

G
C

R
C

R
B

M
atrix

n
P
A
R

A
IC

BIC
D

eviance
M

atrix
n
P
A
R

A
IC

BIC
D

eviance
M

atrix
n
P
A
R

A
IC

BIC
D

eviance
ID

1
10400.11

10417.57
5819.64

ID
1

10349.89
10390.62

5761.41
ID

1
10347.79

10394.34
5757.31

D
IA

G
4

10388.93
10423.84

5802.45
D

IA
G

4
10351.41

10409.61
5756.93

D
IA

G
N

C
–

–
–

C
S

2
10358.91

10382.19
5776.43

C
S

2
10351.60

10398.15
5761.12

C
S

2
10349.66

10402.04
5757.19

C
S
H
et

5
10349.89

10390.62
5761.41

C
S
H
et

N
C

–
–

–
C

S
H
et

N
C

–
–

–
Po

2
10358.16

10385.43
5775.68

Po
2

10347.79
10394.34

5757.31
FA

1
N

C
–

–
–

FA
1

8
10353.75

10411.95
5759.27

FA
1

N
C

–
–

–
M

odel3:
BLU

P/R
EM

L
m

odelusing
additive

relationship
m

atrix
G

C
R

C
R

B

M
atrix

n
P
A
R

A
IC

BIC
D

eviance
M

atrix
n
P
A
R

A
IC

BIC
D

eviance
M

atrix
n
P
A
R

A
IC

BIC
D

eviance
ID

1
10399.71

10417.17
5819.24

ID
1

10354.88
10378.16

5772.40
ID

1
10344.34

10385.08
5755.86

D
IA

G
4

10394.36
10429.28

5807.88
D

IA
G

4
10344.34

10385.08
5755.86

D
IA

G
6

10390.68
10360.52

5692.20
C

S
2

10355.38
10378.66

5772.91
C

S
2

10356.88
10385.97

5772.40
C

S
2

10346.32
10392.88

5755.85
C

S
H
et

5
10357.77

10388.51
5759.30

C
S
H
et

5
10346.29

10392.84
5755.81

C
S
H
et

7
10392.67

10368.32
5692.19

Po
2

10354.88
10378.16

5772.40
Po

2
10356.18

10385.28
5771.70

FA
1

N
C

–
–

–
FA

1
8

10353.44
10411.63

5758.96
FA

1
N

C
–

–
–



63

Cuts

Ac
id

 D
et

er
ge

nt
 F

ib
er

12.5

15.0

17.5

Cuts

C
ru

de
 P

ro
te

in

60

70

80

Cuts

In
 v

itr
o 

D
ig

es
tib

ilit
y 

of
 O

rg
an

ic
 M

at
te

r

Order
1

2

3

4

5

1

2

3

4

5

Cuts

To
ta

l G
re

en
 M

at
te

r

500

1000

1500

Cuts

To
ta

l D
ry

 M
at

te
r

250

500

750

Cuts

Le
af

 D
ry

 M
at

te
r Order

1

2

3

4

5

0

200

400

600

Cuts

St
em

 D
ry

 M
at

te
r

60

70

80

90

Cuts

Pe
rc

en
ta

ge
 o

f L
ea

f B
la

de

Order
1

2

3

4

5

32

34

36

38

Fe
b.

/2
01

3

O
ct

./2
01

3

Ja
n.

/2
01

5

M
ar

./2
01

5

Fe
b.

/2
01

3

O
ct

./2
01

3

Ja
n.

/2
01

5

M
ar

./2
01

5

M
ar

./2
01

3

No
v./

20
13

O
ct

./2
01

4

Fe
b.

/2
01

5

Fe
b.

/2
01

3

O
ct

./2
01

3

Ja
n.

/2
01

5

M
ar

./2
01

5

M
ar

./2
01

3

No
v./

20
13

O
ct

./2
01

4

Fe
b.

/2
01

5

Fe
b.

/2
01

3

O
ct

./2
01

3

Ja
n.

/2
01

5

M
ar

./2
01

5

M
ar

./2
01

3

No
v./

20
13

O
ct

./2
01

4

Fe
b.

/2
01

5

Fe
b.

/2
01

3

O
ct

./2
01

3

Ja
n.

/2
01

5

M
ar

./2
01

5

M
ar

./2
01

3

No
v./

20
13

O
ct

./2
01

4

Fe
b.

/2
01

5

Fe
b.

/2
01

3

O
ct

./2
01

3

Ja
n.

/2
01

5

M
ar

./2
01

5

M
ar

./2
01

3

No
v./

20
13

O
ct

./2
01

4

Fe
b.

/2
01

5

Fe
b.

/2
01

3

O
ct

./2
01

3

Ja
n.

/2
01

5

M
ar

./2
01

5

Fe
b.

/2
01

3

O
ct

./2
01

3

Ja
n.

/2
01

5

M
ar

./2
01

5
Figure A.7. Response of five selected offsprings by Model 3 in each harvest for acid detergent
fiber (ADF), crude protein (CP), in vitro digestibility of organic matter (IVD), total green
matter (TGM), total dry matter (TDM), leaf dry matter (LDM), stem dry matter (SDM), and
percentage of leaf blade (PLB).
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Table A.6. Bowtie2 alignment results of 6,596,939 GBS tags in absolute and relative (in
parentheses) values

Reference Non-aligned Aligned tags
Genome tags Overall Unique Non-unique

alignment alignment alignment
Panicum hallii genome 5,340,535 1,256,404 1,002,261 254,143

(80.95%) (19.05%) (15.19%) (3.85%)
Panicum virgatum genome 5,101,776 1,495,163 503,124 992,039

(77.34%) (22.66%) (7.63%) (15.04%)
Setaria italica genome 5,143,121 1,453,818 1,149,693 304,125

(77.96%) (22.04%) (17.43%) (4.61%)
Setaria viridis genome 5,141,196 1,455,743 1,164,462 291,281

(77.93%) (22.07%) (17.65%) (4.42%)
Transcriptome (EMBRAPA) 4,997,950 1,326,602 1,244,861 81,741

(75.76%) (20.11%) (18.87%) (1.24%)
Transcriptome (UNICAMP) 5,270,337 1,598,989 839,084 759,905

(79.89%) (24.24%) (12.72%) (11.52%)
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Table A.7. Predicted residual error sum of squares (PRESS) of GS-TD models considering
tetraploid allelic dosage and applied to prediction of organic matter (OM), crude protein (CP),
in vitro digestibility of organic matter (IVD), leaf dry matter (LDM) and percentage of leaf
blade (PLB). Upper and lower limits are in parentheses.

Nutritional values Production values
Model OM CP IVD LDM PLB
GBLUP-TD 67.0595 76.8397 758.0740 1332705 10186.02
BRR-TD 66.9673 76.9616 760.0915 1336232 8957.235
BA-TD 66.8326 77.3960 765.5939 1349922 9004.154
BB-TD 66.4725 77.0446 762.2685 1336829 8981.552
BC-TD 66.9092 76.9274 759.9575 1333633 8961.889
BL-TD 67.0827 76.8337 758.5738 1436145 9005.046
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Table A.8. Mean predictive ability of GBLUP-TD and GBLUP models for organic matter
(OM), crude protein (CP), in vitro digestibility of organic matter (IVD), leaf dry matter (LDM),
and percentage of leaf blade (PLB). Lower and upper limits are in parentheses.

Model GBLUP-TD GBLUP
OM 0.4591 0.4382

(0.4316; 0.4933) (0.4074; 0.4701)
CP 0.3332 0.3258

(0.3025; 0.3609) (0.2908; 0.3556)
IVD 0.3310 0.3395

(0.2944; 0.3693) (0.3082; 0.3771)
LDM 0.2101 0.2138

(0.1707; 0.2504) (0.1741; 0.2528)
PLB 0.3015 0.3106

(0.2635; 0.3409) (0.2707; 0.3534)




