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RESuUMO

Mapeamento de QTLs e estudo da interacdo entre QTLs, ambieas e cortes em
cana-de-acucar, usando a abordagem de modelos mistos

Os programas de melhoramento da cana-de-agUcar demandatmeggamente 12 anos para
a obtencao de um novo cultivar. Assim, os marcadores malezipodem ser usados como uma
ferramenta valiosa, uma vez que possibilitam o estudo datatgra genética de caracteres quantita-
tivos, ajudando a reduzir este tempo. Embora a cana-dedagéj@a uma cultura perene, para a qual
o desempenho genotipico é avaliado através de ensaioslestdbs ao longo de diferentes locais
e cortes, a maior parte dos estudos de mapeamento de QTla megisténcia de interacdo entre
QTLs, corte e local (QTLx H x L). Neste contexto, o presente trabalho apresenta umaéggtra
que foi desenvolvida para a deteccédo de QTLs em cana-deracdm base em modelos mistos e
mapeamento por intervalo, considerando diferentes asisitle (co)variancia que permitem supor
heterogeneidade de variancias genéticas e existénciardéacdes genéticas entre cortes e locais.
A metodologia de modelos mistos foi aplicada aos dados depapalagéo segregante obtida a
partir do cruzamento entre dois cultivares pré-comerclaisana-de-acglcar, constituida por 100
individuos avaliados em dois locais (Piracicaba e Jau, &RilBe em trés cortes para producao
(toneladas de cana por hectare, TCH), producdo de acuceidqttas de Pol por hectare, TPH),
porcentagem de fibra e Pol (teor de sacarose). A andlisef@tesultou na selecdo do modelo
ndo-estruturado, que assume heterogeneidade de vasi&gnekisténcia de correlagdo genética es-
pecifica para cada combinacéo de corte e local, para todasadeares avaliados. Na analise de
mapeamento, foram detectados 50 QTLS, incluindo 14 QTLas pa@H, 15 para TSH, 10 para Pol
e 11 para Fibra. Além disso, os resultados mostram que daestis interacdes entre QTL e corte
(QTL x H), QTL e local (QTLx L) e QTL, corte e local (QTLx H x L) foram importantes para
todos os caracteres avaliados. Do total de QTLs identifga@® (66 %) apresentaram algum tipo
de interacdo e apenas 17 (34 %) mostraram mesmo efeito srdieentes combinacdes de corte
e local. Estes resultados fornecem informacdes impodaaea o entendimento da base genética
de caracteres quantitativos relacionados com producaw ddéesacarose em cana-de-agucatr.

Palavras-chave: Polipléides; Progénie de irméos conglbtapa genético integrado; Analise mul-
tiponto; Mapeamento por intervalo; QTL E
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ABSTRACT

A mixed-model QTL analysis for sugarcane multiple-harvestiocation trial data

Sugarcane breeding programs take at least twelve yearvétogenew commercial cultivars.
Thus, molecular markers can be used as a valuable tool $iegeffer the possibility to study the
genetic architecture of quantitative traits, helping tduee this time. Although the performance
of genotypes in sugarcane breeding programs has been ®dhheoss a range of locations and
harvest years, since sugarcane is a perennial crop, mahg QffL detection methods ignore QTL
by harvest by location interaction (QTk H x L). In this work, a strategy for QTL detection
in sugarcane was developed, based on mixed models andahteapping, considering different
(co)variance structures for the modeling of heterogengmungtic variances and genetic correla-
tions between harvests and locations. The mixed model appwas applied to a data set provided
by a segregating population developed from a cross betweepite-commercial Brazilian culti-
vars, consisted of 100 individuals planted in two location2003 (Piracicaba and Jau, SP, Brazil)
and evaluated in the first, second and third subsequentstgrears for cane yield (tonnes of cane
per hectare, TCH), sugar yield (tonnes of sugar per hect&@hl), fiber percent and Pol (sucrose
content). Phenotypic analysis provided the selection efuhstructured model, which allows the
assumption of heterogeneity of variance and presence @afgpgenetic correlation for each com-
bination of harvest and location. In the QTL mapping proced&0 QTLs were detected, including
14 QTLs for TCH, 15 for TSH, 10 for Pol and 11 for Fiber. In adulit, the results show that QTL
by harvest (QTLx H), QTL by location (QTLx L) and QTL by harvest by location (QTk H x
L) interaction effects were important for all evaluatedtsaFrom the total of QTLs identified, 33
(66%) had some interaction and only 17 (34%) showed stafdetsfacross the different combina-
tions of harvest and location. These results can providieiLiséormation to understand the genetic
control of complex traits related with sugarcane produrctind sucrose content.

Keywords: Polyploids; Full-sib progeny; Integrated ligkemap; Multipoint analysis; Interval map-
ping; QTL x E



12



13

1 INTRODUCTION

Sugarcane§accharunspp.) is a clonally propagated outcrossing polyploid crbgreat im-
portance in tropical agriculture, as a source of sugar amanel. Modern commercial sugarcane
cultivars are derived from interspecific crosses, followgdew cycles of intercrossing and selec-
tion, betweerSaccharum officinarurfe = 10, 2n = 8x = 80) and its wild relativeS. spontaneum
(r =8,2n =5 — 16x = 40 — 128), with chromosome number in somatic celts) ranging from
100 to 130 (D’HONT et al., 1998; IRVINE, 1999; GRIVET; ARRUDAR001).

Quantitative Trait Loci (QTL) mapping is a useful tool fordwag a better understanding of the
genetic architecture of quantitative traits, which ardiclift to handle and are of main importance
for breeding. Several reasons make QTL mapping more coatpticand challenging in sugarcane
than in other species. First, the high level of polyploidg ameuploidy results in a complex pattern
of chromosomal segregation at meiosis (HEINZ; TEW, 198 8cdhd, linkage map construction
and QTL mapping rely on segregating progenies derived fropatental crosses between highly
heterozygous outbred parents, since inbred lines are rdable. Therefore, each loci (marker
or QTL) could have a different number of alleles, resultingai mixture of different segregating
patterns in the progeny (GARCIA et al., 2006; OLIVEIRA et 2007; LIN et al., 2003). Moreover,
linkage phases between markers and QTL are also unknown.

The development of genetic linkage maps in sugarcane dtanth segregation analysis of
single dose markers (SDMs) (WU et al, 1992). They corresgonalleles present at one copy
(dose) in one of the parents or at one copy in both parentegating, at 1:1 (presence : absence)
or 3:1 (presence : absence) ratio, respectively, in thegmmpgSDMs can be used to build genetic
maps in any cross between heterozygous individuals withlémt pairing at meiosis, commonly
using thedouble pseudo-testcrosgategy (GRATTAPAGLIA; SEDEROFF, 1994; PORCEDDU et
al., 2002; SHEPHERD et al., 2003; CARLIER et al., 2004; CAV?ANTI; WILKINSON, 2007;
CHEN et al., 2008), which provides two separated maps, anegich parent. In spite of the relative
success obtained with tld®uble pseudo-testcrostrategy in sugarcane (for example, Al-Janabi et
al., 1993; Ming et al., 1998; Hoarau et al., 2001; Mcintyralet2005b), the use of integrated maps
combining 1:1 and 3:1 segregation (GARCIA et al, 2006; OLIRE et al., 2007) presents several

advantages, as they allow better saturation and charzatien of the polymorphic variation in the
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genome, which could provide a better framework for QTL magpi

For QTL mapping in outcrossing species, a limited numbetaifgical methods was described
(SONG; SOLLER; GENIZI, 1998; JOHNSON; JANSEN; ARENDONK,99 LIN et al., 2003).
For sugarcane, single marker analysis (SM), interval nrap(M) and/or composite interval map-
ping (CIM) are commonly used, considering the two maps olethiusing thedouble pseudo-
testcrossstrategy (SILLS et al., 1995; DAUGROIS et al., 1996; HOARALRE, 2002; JORDAN
et al., 2004; SILVA; BRESSIANI, 2005; McINTYRE et al., 2005REFFAY et al., 2005; AITKEN
et al., 2008; RABOIN et al., 2006; AL-JANABI et al., 2007; BERIDIS et al., 2008; PINTO et
al., 2009). In this approach, statistical analyses argethout through well stablished models for
backcrosses, using softwares developed for inbred-bagmdaiions. However, these models were
not developed for outcrossing species with integrated maps

In addition to its genetic complexity, sugarcane is a peadranop, in which individual plants
have several harvests. Thus, traits are repeatedly measarenly across different locations, but
also along successive harvests, adding a time dimensidmetphienotypic data. Varietal selec-
tion for quantitative traits in sugarcane is usually basedhéormation from a series of field trials,
considering different harvests and locations, called harki-harvest-location trials (MHLT). QTL
studies in sugarcane usually ignore QTL by harvest by lonaf@TL x H x L) interaction, con-
sidering data only from each harvest and location commnatne at a time in separated analysis
(HOARAU et al., 2002; JORDAN et al., 2004; McINTYRE et al.,(8a; REFFAY et al., 2005;
PINTO et al., 2009). The use of statistical models that allogvidentification of consistent QTL
across different environmental conditions, locations gedrs, can provide powerful and useful
results for breeding purposes, with possibility of applmain marker assisted selection (MAS).

Mixed models have been successfully employed in studieeobiype-by-environment (G
E) interaction (DENIS; PIEPHO; EEUWIJK, 1997; PIEPHO, 19€TLLIS et al., 1998; CHAP-
MAN, 2008; SMITH; CULLIS; THOMPSON, 2001; SMITH et al., 20p7as well as for QTL by
environment (QTLx E) interaction (PIEPHO, 2000, 2005; VERBYLA et al., 2003; MASETTI
et al., 2004, 2008; EEUWIJK et al., 2005; BOER et al., 2007; TMEWS et al., 2008). Since
they provide great flexibility to model the complex variaramariance structure in the data caused
by genetic correlations between harvests and locatioey, itere used in this work to develop a
strategy for QTL mapping in sugarcane using integrated miajierent models were then adjusted

to sugarcane data and the results are presented and discusse
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2 REVIEW

2.1 General Aspects of Sugarcane Breeding

SugarcaneSaccharunspp.) is one of the most important industrial crop. It is uaedource of
sucrose and ethanol, in addition to several fiber produotseftample: paper, cardboard and fiber
board). Although sugarcane-growing areas are mostly éochétween the tropics, it is cultivated
in more than 100 countries all over the world (FOOD AND AGRIOWRE ORGANIZATION -
FAQO, 2008). Brazil is the world’s largest producer. For ti@®2/2010 harvest year, it is estimated
that 629 million tonnes of sugarcane will be produced in @aaround 7.74 million hectares, rep-
resenting an increase of 10% over the previous brazilianesa{ COMPANHIA NACIONAL DE
ABASTECIMENTO - CONAB, 2009). The development of flex-fuahicles (which can use either
ethanol or gasoline), the reduction of the world petroleeserves and the climate changes caused
by the greenhouse effect, granted the expansion of the winlddethanol demand. Moreover, it is
expected that the decline of the European Union (EU) sugaoréxand the reduction of the sugar
production in India, will provide new commercial opportties for Brazil (FNP - CONSULTORIA
& COMERCIO, 2008). In this respect, plant breeding has aifigmt role to increase productivity
and allow the expansion of sugarcane production in margireds, due to its importance in the
selection of more adapted cultivars with good agronomitgperance.

The Saccharuntomplex includes th&accharungenus and several related genera. Sugarcane
is a member of Poaceae family and Andropogoneae tribe, l&eerand sorghum. Many authors
mention the occurrence of six polyploid outcrossing speaiethe genusSaccharum two wild
speciess. spontaneurhinnaeus £n = 40 — 128) andS. robustunBrandes and Jeswiet ex Grassl|
(2n = 60 — 205), and four cultivated specieS, officinaruniinnaeus ¢n = 80), S. barberiJeswiet
(2n = 81 — 124), S. sinensdRoxb. @n = 111 — 120) and S. eduleHassk. 2n = 60 — 80).
However, morphological and molecular evidences suggestthiese six species could be more
properly represented by only two: one befdgspontaneunand the othe8. officinarumincluding
the other four species and all interspecifc hybrids (IRV]JIE99).S. officinarums known as noble
cane because of its splendid appearance, bright colorad tbeaves, thick stems, high sucrose and
low fiber content.S. spontaneuns a wild and vigorous highly polyploid relative, characted by

the high capacity for adaptation to different environmeotaditions. The latter species gave many
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contributions for the development of the current comméatitiivars, due to its desirable agronomic
characteristics, such as tillering, high capacity for o®gh, resistance to pests and diseases. In
addition, other species such &srobustumS. sinensandS. edulevere widely used as varieties
in breeding programs, and nowadays, represent an impatamte of variability (MATSUOKA,;
GARCIA; ARIZONO, 1999).

Cultivated sugarcane had two geographic centers of ordgy Guinea and South East Asia.
The history of domesticated sugarcane is not well kno®nofficinarumthe tropical species, is
probably originated from the wild speci&s robustumn the New Guinea regionS. spontaneum
has the widest geographic range, extending across thrgeagdoc zones: i) The East Zone, which
includes South Pacific Islands, the Philippines, TaiwapadaChina, Vietnam, Thailand, Malaysia
and Burma,; ii) the Central Zone, which includes India, Nef@g&ngladesh, Sri Lanka, Pakistan,
Turkmenistan, Afghanistan, Iran and Middle East; and hig WWest Zone, which includes Egypt,
Sudan, Kenya, Uganda and Tanzania (CLAYTON; DANIELS, 19F8dAITKEN; McNEIL, ca.
2010). Some authors suggested tBasinensandS. barberiwere originated through interspefic
crosses betwee8. officinarumandS. spontaneupfollowed by sucessive backcrosses. However,
the current commercial cultivars are hybrids derived fraffecent species (DANIELS; ROACH,
1987 apud MATSUOKA; GARCIA; ARIZONO, 1999).

Early sugarcane breeding programs started with the obteatiinterspecific hybrids betweéh
officinarumandsS. spontaneunand then repeatedly backcrossing the hybrida. tofficinarum This
process is termed ‘nobilization’ and was performed maioletover the high sugar-producing abil-
ity of S. officinarumand to minimize the negative effects 8f spontaneuymesulting in improved
cane yields, ratooning ability and increased resistandaidiic and abiotic stresses (ALWALA;
KIMBENG, ca. 2010). However, the genetic contribution ofle@arent was not proportional, i.e.,
the maternal parent had a higher contribution to the numbelnrmmosomes in these new materi-
als, resulting in hybrids with high levels of ploidy and apkidy (presence of a distinct number
of chromosomes among the different homology groups) (HEME&WV, 1987). Thus, modern sug-
arcane is highly polyploid, in which the number of homolog@mnd homoeologous chromosomes
can vary among genotypes from the same cross. The genomeosibioip of modern sugarcane
commercial cultivars is about 70-80% officinarum10-20%S. spontaneurand 5-17% of recom-
binant chromosomes (D’HONT et al., 1996; GRIVET; ARRUDA(04). The main consequences

of this phenomenon were the reduction of genetic diversity iacreased complexity of the sug-
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arcane genome. Particularly, this high genetic complaxi#tkes plant breeding more challenging
and complicated.

In general, sugarcane breeding is based on the selectiari@ndg of superior genotypes from
a segregating population obtained by biparental or muktipi@l crosses, the latter also named poly-
crosses. Most of the agronomic important traits, such aarsage production, fiber content, stalk
diameter, stalk length, stalk weight, among several offaesof quantitative nature, i.e., controlled
by many genes whose expression is highly influenced by emwviemtal action. In this case, selec-
tions made in the early stages can not be done at high ingehsitause there are few seedlings of
each genotype, making phenotypic measures susceptitthe tenzironmental conditions and not
consistent with the real genotypic value for the individ{cdlaracters of median and low heritabil-
ity), affecting the selection of promising materials. Thte release of a new variety only occurs
when there are many experimental results from differerdtions and years of cultivation. There-
fore, a breeding program demands about 12 years to releassugarcane cultivars (MATSUOKA;
GARCIA; ARIZONO, 1999).

Sugarcane breeding programs can take much advantage bgvbpiment of methods that
allow an early and efficient selection of superior genotydée recent development of techniques
to detect and use molecular markers allowed a better uraelisg of the breeding process, since
molecular markers provide information at the DNA level. $hseveral studies have been performed
in sugarcane using molecular markers, including genetirsity (LIMA et al., 2002), construction
of genetic linkage maps (AITKEN; JACKSON; McINTYRE, 2005)@; RABOIN et al., 2006;
GARCIA et al., 2006; OLIVEIRA et al., 2007), QTL mapping byhkage analysis (MCINTYRE
et al., 2006; AL-JANABI et al., 2007; PIPERIDIS et al., 2008.TKEN et al ., 2008; PINTO et
al., 2009), and also by association mapping (WEI; JACKSONINMTYRE, 2006; RABOIN et al.,
2008). QTL mapping can be an important tool as it allow a bétt®wledge about the genetic
architecture of quantitative traits, contributing for MABEKKERS; HOSPITAL, 2002).

2.2 Genetic Mapping

2.2.1 Molecular Markers and Linkage Maps

A genetic marker provides information about allelic vaaatat a given locus. In the first studies,

genetic markers were based on the products of gene exprebesing named morphological mark-
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ers. Due to the fact that these markers can be influenced nthi®nment and/or by the action of
other genes, they were of limited use. Then, the developofddA-based molecular markers cir-
cumvented these problems, resulting in a wide use of thgss tyf genetic markers to increase the
knowledge about the genome constitution and genetic athite of many plant species including
several major crops (SCHLOTTERER, 2004). Molecular maksuch as Restriction Fragment
Length Polymorphism (RFLP), Expressed Sequence Tag RFBEF-EFLP), Random Amplified
Polymorphic DNA (RAPD), Amplified Fragment Length Polymbrgm (AFLP), Simple Sequence
Repeat (SSR) and Expressed Sequence Tag SSR (ESR-SSR)ebaweidely used in sugarcane
to build genetic linkage maps (AL-JANABI et al., 1993; SILV al., 1993, 1995; D'HONT et
al., 1994; GRIVET et al., 1996; MUDGE et al., 1996; MING et, 41998, 2002b; GUIMARAES;
SILLS; SOBRAL, 1997; GUIMARAES et al., 1999; HOARAU et al0Q1; AITKEN; JACKSON;
MCcINTYRE, 2007; RABOIN et al., 2006; GARCIA et al., 2006; OVEIRA et al., 2005, 2007)
and for QTL mapping (SILLS et al., 1995; DAUGROIS et al., 1988NG et al., 2001, 2002a,
2002c; HOARAU et al., 2002; JORDAN et al., 2004; SILVA; BRE&SI, 2005; McINTYRE et
al., 2005a, 2005b, 2006; REFFAY et al., 2005; AITKEN; JACKRSMICINTYRE, 2006; AITKEN

et al., 2008; RABOIN et al., 2006, 2008; WEI; JACKSON; McINRE, 2006; AL-JANABI et al.,
2007; PIPERIDIS et al., 2008; PINTO et al., 2009). Genetikdge maps can be useful for gene
tagging (SOBRAL; HONEYCUTT, 1993), map-based cloning (DACH et al., 1996), QTL map-
ping (DOERGE; ZENG; WEIR, 1997) and supported MAS in plamdating programs (TAKEDA,;
MATSUOKA, 2008).

Contrary to other crops, such as maize and soybean, in fugaitis not possible to gener-
ate inbred lines, mainly due to the high inbreeding depoestiiat occurs when plants are selfed.
However, as sugarcane is highly heterozygous and polyeigregation can be observed already
at the first generation of a cross. Thus, conventional mgppisugarcane generally relies on first
generation progenies derived from biparental crossekqfulprogenies). Several reasons make
genetic mapping more laborious and difficult in polyploiegsies: i) high level of polyploidy and
aneuploidy, resulting in different configurations of randpairing for homologous chromosomes
at meiosis; ii) distinct patterns of marker segregatiort, atuservable in diploid species, are ex-
pected in polyploids, suchas 7:1, 7:2,11:1, 11:3, 13:11,164:1 and 69:1, as a consequence of the
different allele dosages (EDME; GLYNN; COMSTOCK, 2006)) the genome constitution, for

some polyploid species, is still unclear (in sugarcanegi@mple, the genomes 8f officinarum
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andS. spontaneuroccur in different proportions in the genomesStbarberj S. sinensand culti-
vated sugarcane); iv) statistical models are more complicfor polyploid than for diploid species
(ALWALA; KIMBENG, ca. 2010).

Genetic mapping in sugarcane started after Wu et al. (19@#)ogsed a general strategy for
mapping in highly polyploids with bivalent pairing, based gegregation of SDM. In this method,
only markers present at one copy (dose) in each parent oratapy in both parents, segregating
into 1:1 (presence:absence) or 3:1 (presence:absenae)rrdhe progeny, respectively, are able
to be mapped. SDM opened the opportunity to start the cartiiruof genetic linkage maps not
only in sugarcane but also in several other crops, includiptpids (PORCEDDU et al., 2002;
SHEPHERD et al., 2003; CARLIER et al., 2004; CAVALCANTI; WKUINSON, 2007; CHEN
et al., 2008). This approach is also knownpsgudo-testcrossr double pseudo-testcrgsahen
involving one or both parents respectively (GRATTAPAGLISBEDEROFF, 1994), in which the
testcross mating configuration is not knowarpriori, but inferreda posteriorifrom segregation
analysis on the progeny. Two separated maps are obtainedpoeach parent. Although SDM (or
simplex markers) are present at high frequencies in thersaga genome (approximately 70%),
duplex markers (present at two copies in only one parentatsmbe used to map regions with low
levels of simplex markers, and thus increase map coveraflegK@N; JACKSON; McINTYRE,
2007).

Despite the many results obtained with theuble pseudo-testcrossrategy in sugarcane, the
construction of integrated maps can be done using the ird@oomprovided by SDM present in one
copy in both parents, segregating into 3:1 ratio (GARCIAlge2906; OLIVEIRA et al., 2007), al-
lowing better saturation and the characterization of tHgrporphic variation in the whole genome,
which could generate better results for QTL mapping. Sé\arthors presented alternatives for
the construction of integrated genetic maps in populati@nsed from crosses between non-inbred
parents (RITTER; GEBHARDT; SALAMINI, 1990; RITTER; SALAMI, 1996; MALIEPAARD;
JANSEN; OOIJEN, 1997; RIDOUT et al., 1998; RIPOL et al., 199@U et al., 2002a, 2002b;
GARCIA et al., 2006; MARGARIDO; SOUZA; GARCIA, 2007; OLIVERA et al., 2007). Wu
et al. (2002a, 2002b) have developed approaches based amumaikelihood to simultaneously
estimate recombination fraction and linkage phase betweekers. A method based on multipoint
maximum likelihood, using Hidden Markov Models (HMM), wasepented by Wu et al (2002b).

Based on thelouble pseudo-testcrostrategy, the first sugarcane genetic maps were developed
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in order to understand the organization of sugarcane geramdealso to investigate on the best
mapping population type needed to maximize the acquisti@DM (SILVA et al., 1993; D’HONT

et al., 1994; GRIVET et al., 1996) rather than to map QTLsveSdt al. (1993) and Al-Janabi et al.
(1993) published the first results for genetic mapping inascgne using, respectively, RFLP and
RAPD markers, segregating in an 1:1 ratio. Both markers wetected in progenies from the cross
between the doubled-haploid ADP85-0068 (female paremyetbthrough anther culture from the
S. spontaneurione SES208, which was also used as the male parent. Latafrdm both marker
types were joined into a single map, resulting in 64 linkagrigs with a genome coverage of 3,300
cM (SILVA et al., 1995).

Grivet et al. (1996), considering isozyme and RFLP markegsegating in an 1:1 fashion, con-
structed a genetic map for a selfed progeny derived fromuh®ar R570. This map comprised 408
linked markers placed onto 96 co-segregation groups, ddedrmto the 10 basic linkage groups.
RFLP markers derived from maize probes allowed the invastig of synteny and colinearity be-
tween homo(eo)logous co-segregation groups and speais (8. officinarunor S. spontaneujn
provinding insights about the genome organization of a uagee cultivar. Later, as R570 cultivar
is resistant to brown rusPccinia melanocepha)aits selfed progeny was evaluated for rust re-
sistance segregation (DAUGROIS et al., 1996) as also fajitggof a major gene responsible for
resistance (ASNAGHI et al., 2001). Then, R570 selfed prggeas extended to 295 individuals
and used to construct a reference genetic map based on AFtkeénnaThis map covered 5,849
cM, representing approximately 1/3rd of the sugarcane menength, and was considered as the
most saturated sugarcane map of that time (HOARAU et al1R0the variety R570 was also used
in crosses with MQ76-53, an old Australian clone derivedfi@cross between Trojan and SES528
(RABOIN et al., 2006), and with the yellow spad¥ifcovellosiella koepkgresistant sugarcane va-
riety M134/75 (AL-JANABI et al., 2007). The map obtained f#Q76-53 (R570 x MQ76-53)
was also used to identify a gene controlling the red stalbrcahd a new brown rust resistance
gene (RABOIN et al., 2006) while the M134/75 map (M134/75 x7Bpwas used to determine the
number and location of QTL for resistance to yellow spot (MBABI et al., 2007).

Interespecific crosses involvirg officinarum(La Purple) and its supposed progenitor species
S. robustun{Mol 5829) (MUDJE et al., 1996; GUIMARAES et al., 1999, officinarum(Green
German) ands. spontaneuriND 81-146), and betwee8. spontaneur(PIN84-1) andS. offici-

narum(Muntok Java) (MING et al., 2002b) allowed the constructadrsix genetic linkage maps,
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one for each parent. These maps were used on comparativengapdies among the Andro-
pogonae tribe, mainly among sugarcane, maize and sorghehhis was of great contribution to
sugarcane, where sorghum linkage maps were used to untkte@complex sugarcane genome
(MING et al., 2002a). Another interspecific cross involviting progenitor species of cultivated
sugarcaneS$. officinarum(La Striped) ands. spontaneurfSES147B), were used to construct ge-
netic linkage maps for each progenitor species using edimeplex and duplex markers through
JoinMapsoftware (OOIJEN; VOORRIPS, 2001), considering AFLP, Ssmpe Related Amplified
Polymorphism (SRAP) and Target Region Amplification Polypiasm (TRAP) (ALWALA et al.,
2008).

Another linkage map was built by Aitken, Jackson and Mclatz005) in a population derived
from the cross betweeeB. officinarumclone 1J76-514 (female parent) and variety Q165 (male
parent). The main goal was to construct a high coverage igameip of the variety Q165, based
on information provided by AFLP and SSR markers, highlightihe utility of SSRs to allocate
the linkage groups to homology groups and to compare linkagps. Thus, genetic maps from
different cultivars are useful to reveal different chromm® arrangements, having a great impact
on the use of molecular markers for sugarcane breeding. ®@tleetimportant contribution o%.
officinarumgenome to the commercial sugarcane varieties, the crogeéetlJ76-514 and Q165
was also used to construct a map for 1J76-514, integratmglex (1:1 and 3:1 segregation ratio)
and duplex (11:3 segregation ratio) markers (AITKEN; JACHE McINTYRE, 2007).

Garcia et al. (2006), considering a full-sib family deriviedm the cross between the pre-
commercial Brazilian varieties SP80-180 and SP80-4966stcacted a single (integrated) map
based on the simultaneous maximum-likelihood estimatfdimkage and linkage phases approach
developed by Wu et al. (2002a). The integrated genetic maqredal with this approach gave
rise to 357 linked markers (RFLP, SSP and AFLP) assigned Iacb3segregation groups and had
a total length of 2,602.4 cM. Later, expressed sequence&&d)(derived markers obtained from
the SUCEST database, EST-SSRs and EST-RFLPs, were addezl $80-180 and SP80-4966
previous map. This genetic linkage map containing funetissociated markers had 664 single dose
markers distributed into 192 co-segregation groups anthalemgth of 6,261.1 cM (OLIVEIRA et
al., 2007).
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2.2.2 QTL Mapping

Molecular markers can provide useful information in seMe&ys for plant breeding, especially
through QTL mapping, which allow a better knowledge of theaj& architecture of quantitative
traits. One of the most important applications of this typestody is the possibility to develop
breeding methods that incorporate marker and phenotyfoaenration. Moreover, it also allows a
better understanding about the genetic correlation ammaitg (JIANG; ZENG, 1995; MACKAY,
2001; MALOSETTI et al., 2008), the interaction between dggpes and the environment (BOER
et al., 2007; EEUWIJK et al., 2005; EEUWIJK; MALOSETTI; BOERDO7; MALOSETTI et al.,
2004), the genetic basis of heterosis (GARCIA et al., 2088)well as to permit the determination
of the genetic value of individuals in MAS (MOHAN et al., 199MIORGANTE; SALAMINI,
2003; CHARCOSSET; MOREAU, 2004; TAKEDA; MATSUOKA, 2008).

Since the beginning of the twentieth century, a large nundbeesearchers have found sig-
nificant associations between mendelian markers (qua#)aand quantitative traits for different
crop species (SAX, 1923; LINDSTROM, 1924, 1931; SMITH, 19BASMUSSON, 1927; WEX-
ELESEN, 1933; GREEN, 1931, 1933). Such studies show that €aFLbe mapped with some
precision, since a population with genetic variability dnghly linkage disequilibrium (LD), and
suficient number of markers are available. Initially, a denmap is built to serve as a basis to
locate QTL. One of the major limitations of QTL mapping in outssing species, like sugarcane,
is the construction of a saturated linkage map (LYNCH; WAL.3B198).

QTL mapping means finding genomic regions that are associdgte phenotypic expression,
estimate their effects, gene action, incorporate humbdo@fand interaction among them and
with environment (ZENG; KAO; BASTEN, 1999). It is based oretbstablishment of relations
between the phenotype (expression of quantitative trarnd)the genotype (evaluated with molec-
ular markers). For doing this, sophisticated statisticathndologies are commonly used, relied
on a strong computational support due to the complexity efahalysis. Such models include
single marker (SM) analysis (SOLLER; BRODY; GENEZI, 1976 EVALER, 1986; EDWARDS;
STUBER; WENDEL, 1987; STUBER; EDWARDS; WENDEL, 1987), intal mapping (IM -
LANDER; BOTSTEIN, 1989), composite interval mapping (CIMENG, 1993, 1994; JANSEN;
STAM, 1994), Bayesian inference (SATAGOPAN et al., 1996 AHiEH, 1997; SILLANPAA; AR-
JAS, 1998; YI; XU, 2001; Yl et al., 2005, 2007a, 2007b), npl#iinterval mapping (MIM - KAO;
ZENG, 1997; KAO; ZENG; TEASDALE, 1999) and the mixed modeppeach (MALOSETTI
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et al., 2004, 2008; EEUWIJK et al. 2005; EEUWIJK; MALOSETBIQER, 2007; BOER et al.,
2007). In the case of sugarcane, as will be presented, diepolyploid nature and high genomic
complexity, SM analysis is widely used, as well as, IM or Cldased on genetic maps of each
parent louble pseudo-testcrostrategy).

The majority of the experimental crosses used for the coatstm of genetic maps and QTL
mapping in plants are based on populations derived fronsesobetween inbreed lines, such as
RILs, backcross and;. For these populations, statistical methods are well éstedal and imple-
mented in several softwares, such as MAPMAKER/EXP (LANDERIleg 1987) for genetic map
construction and QTL-Cartographer (BASTEN; WEIR; ZENGQ2pPand WinQTL-Cartographer
(WANG; BASTEN; ZENG, 2007) for QTL mapping. Thus, consideyithese methodologies, QTL
mapping were performed for several plant species, such g {BARDINAL et al., 2001; SIBOV
et al., 2003; MANGOLIN et al., 2004; ZHAO et al., 2006; SABADkt al., 2008; WASSOM et
al., 2008a,b), wheat (ABATE; LIU; McCKENDRY, 2008; MACCAFHR et al., 2008), rice (CHO
etal., 2007), (SEMAGN et al., 2007) and soybean (LI; PFEIRFEORNELIUS, 2008).

However, for sugarcane, as already discussed in sectioh, 2 2 impractical or even impos-
sible to obtain inbreed lines. In this case, none of the stjghited models could be directly used,
making difficult the obtention of good mapping results. A eoanly used type of population in
sugarcane is obtained from the crosses between non-inlaredtp. Thus, a single locus could
present several segregating alleles having differenepetof segregations for the markers (WU et
al. 2002a) and QTLs (LIN et al. 2003). Moreover, the linkapages between markers and QTLs
are unknown. Specifically for sugarcane, the high level dypoidy brings additional problems,
due to the complex pattern of chromosomal segregation aisisefHEINZ; TEW, 1987). There-
fore, an approach that has being used is based on the mappiugmtitative trait allele (QTA),
in which significant associations between the phenotypi@tran observed for the trait of interest
and the different alleles that can be segregating for a Bpémtus are investigated. The effects of
these QTAs in polyploid species might be smaller than thdsekwved for diploid species, mainly
due to the high number of segregating alleles per locus totdtyget trait (AITKEN et al., 2008).

2.2.2.1 Statistical Models

SM analysis, widely used for QTL mapping in sugarcane, i€tas the comparison between

trait means of different marker genotype classes. This eaedsily implemented througktests,
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analysis of variance, simple and multiple linear regressmaximum likelihood analysis, among
others. Such analyses test the null hypothdgid that the observed phenotypic values are indepen-
dent of the genotype at a particular marker (if the markenlsed to the putative QTL). If the null
hypothesis is rejected, it is assumed that there is a pat@iL associated with the marker for the
quantitative trait (DOERGE; ZENG; WEIR, 1997; LIU, 1998; NCH; WALSH, 1997; DOERGE,
2002). The main advantages of this method are: simplicitifast speed of execution; it can be
carried out through widely used statistical softwareshsag SAS (SAS INSTITUTE, 1989) and
R (R DEVELOPMENT CORE TEAM, 2009). In addition, it can be éasxtended to multiple
loci models and does not need a genetic linkage map establfsin the population, enabling the
inclusion of unlinked markers (which is common in the sugaeclinkage maps). However, the sta-
tistical tests are biased, because there is a bias due tedbmbination fraction between the QTL
effect and its distance from the marker, resulting in a lowg@oto detect QTL when the markers do
not completely cover the genome and/or when a small sang#assconsidered (DOERGE, 2002).
Furthermore, it is not possible to infer about the locatibthe QTL.

In order to avoid some of these limitations, Lander and Batgt1989) proposed the IM method,
which uses information from a pair of adjacent molecularkaes to make inferences about the ex-
istence of a putative QTL at each position within the intebetween these markers. This approach
combines SM analysis with statistical methods based onmaxi likelihood. As the genotype
of the QTL is not observable directly, appropriate mixturedels are used, based on conditional
probabilities, allowing to estimate separately the patanseinvolved in the analysis (effect and
QTL position), increasing the power of the tests (LANDER; BETEIN, 1989; LYNCH; WALSH,
1998). IM requires an estimated genetic map as a framewotkédocalization of QTL. Although
the IM allows estimating the effects and positions of pua@TLs, it also has some limitations,
since this method uses information only from two markers &, not considering the interfer-
ence of other QTLs located outside the mapping intervalclvban result in the detection of false
positives (DOERGE, 2002).

Zeng (1993, 1994) and Jansen and Stam (1994) extended Ilg asiapproach named CIM,
which is a model that also includes markers outside the mggpterval as cofactors. This makes
possible to control the effects of other QTL(S) outside trepping interval, combining IM with
a multiple regression model. The inclusion of markers wishigmificant effect in the quantitative

trait decrease the residue of the model, increasing thiststat power. In comparison with SM
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analysis, IM and CIM have several advantages, such as tkeofaconfounding between effect
and position of the putative QTL, and higher statistical ppdDOERGE; ZENG; WEIR, 1997).

However, IM and CIM also have limitations, overcome by othethods, such as MIM (KAO;

ZENG, 1997; KAO; ZENG; TEASDALE, 1999), which in addition thore accuracy to estimate
genetic parameters, allows to map simultaneously all QTitrodling the quantitative trait and the
identification of interactions between QTLs (epistasi®).olir knowledge, MIM have not yet been
used in sugarcane.

Considering that for sugarcane in general a genetic mapdadn @arent is estimated based
on markers segregating in an 1:1 ratio, QTL mapping is ugudhe through statistical methods
developed for backcross, such as SM analysis and IM or CIMhQunalyses are implemented
in softwares developed for experimental populations, ItMAPMAKER/QTL (PATERSON et
al., 1988), QTLCartographer (BASTEN; WEIR; ZENG, 2005),N@ITL-Cartographer (WANG,;
BASTEN; ZENG, 2007), R/gtl (BROMAN et al., 2003), QTL Expee§SEATON et al., 2002),
PLABQTL (UTZ; MELCHINGER, 2003), QTX (MANLY; CUDMORE; MEER 2001) among
others. Some authors were able to map QTLs using these apeéor different traits, such as
sugarcane brown rust resistance (DAUGROIS et al., 1996 NWI¥RE et al., 2005b; RABOIN et
al., 2006), flourish, plant height (MING et al., 2002a), sugduction, weight and stalk number,
fiber content (MING et al. 2001, 2002c; HOARAU et al. 2002; JO¥N et al. 2004; da SILVA,
BRESSIANI, 2005; AITKEN; JACKSON; McINTYRE, 2006). Howexat is important to men-
tion that thedouble pseudo-testcrosrategy, has some disadvantages including: i) reducfitreo
genome coverage, because normally only markers segrggatam 1:1 ratio are used to build the
map (other segregation types such as 3:1 are sometimedaaklbut not making usage of modern
multipoint features for map construction); ii) as a consewe, low-density genetic linkage maps
are obtained; iii) reduced statistical power; iv) diffiguto interprete the results, since the map-
ping should refer to the mapping population, rather thareémh parent; v) use of non-appropriate
statistical models for QTL mapping.

In terms of statistical analysis, a limited number of methade available for QTL mapping
in full-sib progenies, obtained from a cross between twelwzlygous parents (SONG; SOLLER,;
GENIZI, 1999; JOHNSON; JANSEN; ARENDONK, 1999; LIN et al.0@3). Based on the IM
approach, Lin et al. (2003) presented a statistical methat dllows QTL mapping, consider-

ing information from molecular markers with different segation types and an integrated genetic
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linkage map. However, this method has some timitationsha)donditional probabilities for the
genotypes of the QTL are not based on multipoint estimaiespmputational difficulties to esti-
mate the linkage phase between QTL and markers using the gdithim based on the mixture
model. Moreover, this model and other similar ones are nlat mbprovide useful QTL mapping
results, since they do not allow the study of QTL by environt{@®TL x E) interaction which is

of core importance for breeding purposes.

2.2.2.2 QTL Mapping in Sugarcane

A comprehensive review of QTL mapping in sugarcane is pitesdoy Pastina et al. (ca. 2010).
Some of their results will be discussed here.

QTL mapping in sugarcane is usually done considering a gating) population obtained from
biparental crosses, such as those populations used fotigarapping, for example: interspecific
crosses betweed. officinarumandS. robustumsS. officinarumandS. spontaneunself-fertilization
and biparental crosses between commercial materials. Tdst studied traits are: brown rust
(Puccinia melanocepha)aesistance; smutfstilago scitaminepresistance; yellow spoMycovel-
losiella koepkeyresistance; flowering time; sugar yield; stalk lengthlksteeight; stalk diameter;
stalk number; and fiber content. Early studies, in geneaaisiclered only markers segregating in
an 1:1 ratio. More recently, there was the inclusion of merleegregating in a 3:1 ratio or even
multiplexes (markers present in more than one copy in oneitr flarents). However, the mapping
strategy remains basically the same for the majority of thdiss:double pseudo-testcrofs the
construction of genetic maps, taking into account onlyrimfation from markers segregating in an
1:1 ratio, and SM analysis to detect QTLs associated wiflerdint traits of agronomic importance
in sugarcane.

The first results of QTL mapping in sugarcane were present&ills et al. (1995), considering
RAPD markers and a progeny obtained from the cross bet@eefficinarumLA Purple) andS.
robustum(Mol 5829). SM analysis resulted in the identification of 2gnéficant associations for
stalk number, stalk diameter, tasseled stalks, Pol (searostent), fiber content and smut resis-
tance. One significant epistatic interactions was ideditifiog stalk diameter, considering multiple
regression analysis. Later, for the same progeny, Mudgé €1896) and Guimaraes, Sills and
Sobral (1997) cited the association of molecular marketk eyespot disease and flowering time,

respectively.
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Daugrois et al. (1996), through the study of the self progeithe cultivar R570 (resistant
to rust) and using SM analysis, identified an RFLP markerelthkt 10 cM with a possible dom-
inant resistance gene to rust, showing a 3 (resistant): scégputible) segregation ratio. Hoarau et
al. (2002), using the same progeny raised to 295 individwéls AFLP markers in single dose
(segregating in 1:1 and 3:1 ratio) and multiple dose, dete@B putative QTAS, consistent across
both years of evaluation. SM analysis was carried out fohegear separately. In addition, 41
epistatic interactions were identified for the differenaiggeand traits (stalk number, stalk diameter,
stalk length and brix).

Two different full-sib progenies derived from heterozygqarents, one obtained from a cross
betweenS. officinarum(Green German) an8. spontaneuriND 81-146), and another from the
cross betweers. spontaneunPIN 84-1) andS.officinarunm(Muntok Java), were evaluated by
Ming et al. (2001), resulting in the identification of 36 asistions for sugar content, of which
14 were detected for the first progeny and 22 for the seconder,Lisling et al. (2002b), using
the same full-sib progenies, identified 102 significant esdmns for sugar yield, Pol (sucrose
content), stalk weight, stalk number, fiber content and asitent. Of these 102 marker-QTL
associations, 61 were identified for markers placed on ttk@¢je map and 41 for unlinked markers.
Still using the same full-sib progenies, Ming et al. (2008e}ected 65 significant associations
for plant height and flowering time, of which 30 were identifior markers placed on linkage
groups and 35 for unlinked ones. For the three studies regd®M (for unlinked markers) and IM
(for markers placed on individual maps obtained for eaclemaiconsidering thdouble pseudo-
testcrossstrategy) approaches were implemented, using RFLP markers

A population obtained from a cross between two Australiaie elones, Q117 (female) and
74C42 (male), evaluated in two different sites and years @amnsidered for QTL mapping by
Jordan et al. (2004). This analysis resulted in the ideatifio of seven and six RFLP markers
associated with stalk number and sucker number, respictiMeese associations were consistents
across sites and years, and three of these markers werdietetd be related to the two traits
simultaneously. The tests were carried out based on SM sisalf{Comparative mapping with
sorghum suggested that there are two unlinked regions @fgheme associated with stalk number
and sucker number, suggesting the possibility to seleatlsmmeously for high stalk number and
low sucker types.

Based on the same progeny and combining information fromereiit marker types (AFLP,
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RFLP and SSR), Mcintyre et al. (2005b) identified in addittoran unlinked marker segregat-
ing in a 3:1 ratio, two genomic regions, one in each paremsp@ated with Pachymetra root rot
(Pachymetra chaunorhizaesistance. For brown rust resistance, significant asgoos were de-
tected in two genomic regions, one in each parent. More@agsgciation analysis carried out for
154 elite clones found that some of these markers remairsetiased with these diseases (WEI,
JACKSON; McINTYRE, 2006). Such results suggest that theagkars can be used for MAS in
breeding programs looking for resistance to both diseakater, Mcintyre et al. (2005a) used
similar sequences of genes for brown rust resistance toifd&ilLs associated with RFLP, AFLP
and SSR markers in the same progeny. Through the comparaéipping with sorghum, it was
found that markers obtained from one of these genes wereias=mh with a chromosomal region
of sorghum, in which a major QTL had already been identifiedofown rust resistance. In these
studies, QTL analyses were performed based on SM approach.

Considering a progeny derived from the cross betweenSaccharunmspp. pre-commercial
Brazilian cultivars, SP80-180 (female) and SP80-4966 ém&ilva and Bressiani (2005) identified
an EST-RFLP marker inversely associated with sucrose ob(f®l) through SM analysis. Thus,
plants without this marker would have a higher Pol value tilants with the marker. However, this
marker was present in the parent SP80-4966 (high sugan yettiabsent in the parent SP80-180
(low sugar yield), indicating a transgressive segregatifosuch marker in the progeny. Moreover,
this suggests that parent SP80-4966 has other allelesahtailite to Pol increase, compensating
the negative effect of the EST-RFLP marker.

Reffay et al. (2005), to study the genetic contribution efkhandalay §. spontaneuptlone for
Australian elite varieties and parents, performed QTL nragpghrough SM analysis in a progeny
derived from the cross between the clones Q117 and MQ77t3d(gtter being a direct descendant
of Mandalay 6. officinarumKorpi clone x Mandalay). From a total of 101 linkage groups, 65
had markers originated from the parent Mandalay and/or iKokparkers from both parents of
MQ77-340 (Mandalay and Korpi) were identified to be assedatith different traits (Pol, brix,
Commercial Cane Sugar, fiber content, stalk number, tonhesne per hectare - TCH and tonnes
of sugar per hectare - TSH), expressing both positive andtivegphenotypic effects. Recently,
Piperidis et al. (2008), through the comparative mappirngvéen individual maps obtained for
each parent of the same progeny (QXL®Q77-340) and maps of cultivars R570 (French origin)

and Q165A (Australian origin), identified significant markgTL associations for brix, in linkage
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groups consistent across two or three maps of each paremtaridlyses were performed using SM
approach, for unlinked markers, and IM approach, for markéced on individual maps for each
parent.

Aitken, Jackson and Mcintyre (2006) identified 37 markertQaBsociations for brix and Pol
in a progeny derived from the cross between the clSnefficinarumlJ76-514 and the cultivar
Q165A. In addition, 97 epistatic interactions were ideetifiof which nine were consistent across
two years (eight affecting more than one trait simultangQusQTL detection were performed
for each harvest year separately, based on SM approachdeong data from AFLP and SSR
markers. Mclintyre et al. (2006), considering the same prpgad SNP (polymorphisms in the
sucrose phosphate synthase - SPS - gene family Ill) maillersjfied by SM analysis that there is
no significant difference in the SNP frequency among indigid with low and high sucrose content
in the progeny. However, using an ecotilling approach, tivthe SPS gene family Ill haplotypes
were mapped to two different linkage groups from homologyugrl in Q165A. Both haplotypes
mapped near QTLSs for increased sucrose content, but nohemfwere associated with any sugar
related traits. Recently, Aitken et al. (2008), using AFltll &SR markers, identified, for the same
progeny, 27 genomic regions significantly associated withast one of the traits including: cane
yield (TCH), stalk weight, stalk number, stalk length, k@dilameter. About 46% of the marker-QTL
associations were consistent across different years ofaian. The QTL analyses were performed
for each year and the results were compared. In additiong&NPs, two alleles of the TEOSINTE
BRANCHED 1 gene (TB1, a major gene controlling branching eize) showed some association
with stalk number in two years of evaluation, but with a snediiéct in sugarcane. Moreover, 195
epistatic interactions were identified considering allttlags and years under study.

The progeny obtained from the cross between the modern&uR570 and the clone MQ76-53
was used for QTL mapping by Raboin et al. (2006), allowingitleatification of an AFLP marker
linked at 6.5 cM to a gene controlling the red stalk color (eggting in an 1:1 ratio) and another
AFLP marker linked at 23 cM to a new brown rust resistance geegregating in an 1:1 ratio), both
genes placed on the MQ76-53 genetic linkage map.

Although the yellow spot disease, caused by the imperfegjdaMycovellosiella koepkeys
not of great importance for many sugarcane producing camstit can be severe and can cause
low juice purity, high reducing sugar/sucrose ratio, sgertosses at early harvest and it can also

affect cane yield at late harvest, when grown under highiveldaumidity. Al-Janabi et al. (2007)
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based on a progeny derived from a biparental cross betwe@&4 /A (resistant cultivar) and R570
(susceptible cultivar), performed QTL mapping through INIa&CIM approach (for markers seg-
regating in an 1:1 ratio and placed on the individual mapsacheparent) and SM analysis (for
unlinked markers). A major QTL was found to be associatel witesistance gene (segregating in
a 3 resistant :1 susceptible ratio in the progeny).

Through the several results reported for QTL mapping in swagee, it is possible to conclude
that most of the analyses were performed based on SM and Ikbagipes, considering two maps,
one for each parent, obtained unsingdoeble pseudo-testcrosgategy and data from SDM segre-
gatinginan 1:1 and 3:1 ratio. Moreover, some authors dasthie identification of consistent QTLs
across harvests. However, the statistical models implegden these analyses were not appropriate
for this conclusion, since it is based on the informationvited by analysis performed separately
for each harvest year and location. Thus, it highlights #edfor the development of more power-
ful statistical methods that combine information from riplé harvests and locations, allowing the
obtention of more reliable estimates about the QTL effectess environments, producing better

results for possible applications in MAS.

2.3 Mixed Models

Mixed models correspond to linear models that incorporath fixed effects, which are param-
eters associated with an entire population or with certpetsic repeatable levels of experimental
factors, and random effects, which are associated witlvidhaial experimental units drawn at ran-
dom from a population, varying from experiment to experim(@NHEIRO; BATES, 2000). This
definitions do not consider the mean (intercept) and errongewhich are respectively fixed and
random effects in all standard linear models. The traddidixed linear models are, in general,
too restrictive to perform satisfactory data analysis fa typical data structure of most breeding
programs because of the independence assumption. Actealy structure in breeding experi-
ments is much more complex than that considered in stanohearimodels for conventional data
analysis (BALZARINI, 2001). In contrast, linear mixed mdglean take into account covariances
among observations, dealing with correlated data by irmatpng random effects and estimating
their associated variance components (SMITH; CULLIS; THEBON, 2005).

The choice of fixed and random terms is not always determineth® structure of the ex-
periment, since it may depend on the information requirdgASLE, 1971; SMITH; CULLIS;
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THOMPSON, 2005). For example, in plant breeding, variggidrare often carried out over differ-
ent locations and several years, through the multi-enviemt trials (MET). If a general assessment
of varieties over time is required, then the years presetitartrial are considered as a random se-
lection of years, and year would be defined as a random terneimbdel. On the other hand, if the
effect of the specific years present in the trial was to besaesk year would be defined as a fixed
term (PAYNE et al., 2009).

A general form of a linear mixed model is (BALZARINI, 2001):

y=XB+Zu+e

wherey is the response vector (datg, and Z are known design matrices, is a vector of fixed
parametersy ande are unobservable random vectors of random effects andseéeoms, respec-
tively. For these random terms, it is generally assumed abdistribution, withE(w) and E(e)
equal to zero, and variance-covariance matr@Gesnd R. Different models for the VCOV matrix
of the data,V = ZGZ' + R, can be considered in the mixed models approach, specifiiimg
structure ofZ, G and R. Note that whenZ = 0 and R = ¢2I, mixed models reduces to the
standard linear model.

For plant breeding experiments, genetic correlations meaynbluded into the mixed model
through theGG matrix, and experimental correlations among observatioag be fitted by the off-
diagonal elements aR. Thus, several models for the (co)variance structur&and R can be
considered (Table 1) and will be discussed in details in the section.

Mixed model solutions can be obtained by (HENDERSON, 1990):

B=(X'VIX)'+XVly

In this case, ifG, R, Z and, therefore} are known,3 is the Best Linear Unbiased Estimator
(BLUE) for 3, andw is the solution for the prediction of random effects, i.be Best Linear Un-
biased Predictor (BLUP). Theoretically, BLUPs have thellssamean squared error of prediction
among all linear unbiased predictors, since the paramefdre model are known (BALZARINI,

2001). HoweverV is usually unknown in practical situations. Thus, the bggtraach is to use
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likelihood-based methods for the estimation of covarigmaeameters prior to the estimation @f
andu. Assuming thatw ande are normally distributed, restricted maximum likelihod®EML)
method (PATTERSON; THOMPSON, 1971), a variant of the maxmiikelihood (ML) method,
is usually preferred for estimating variance componentaixed models. Given estimates of the
variance components, in the REML approach, the fixed efi@etg be estimated using Empirical
Best Linear Unbiased Estimation (E-BLUE) and the randoract$f predicted using Empirical Best
Linear Unbiased Prediction (E-BLUP). To indicate titaand R have been estimated prior to get-
ting the BLUPSs, the term E-BLUP is frequently used to refetttBALZARINI, 2001; PAYNE et
al., 2009).

Consider a simple model with one radom effects vectQrrépresenting genotypic effects and
a response vectowj containing the phenotypic data for= 1, ..., genotypes. Thus, under a
mixed model assumption, the equation= [ + w(y; — p) provides the prediction for the mean
performance of genotypewherey is the population mean andis a weighting or shrinkage factor.
If G = 021 andR = o1, the simplest structures, whefés the identityl x I matrix, the elements
of GZ'V !, which defines the weights, are function ob2 /(02 + ¢2). In this aspect, this weights
may represent the broad sense heritability of the trait uedduation. BLUP estimates for random
effects are smaller than if the effects had been estimatérea with more shrinkage taking place
for smaller value ratios of the estimated variance comptngnw. For this reason, the BLUP
random effects estimates are often called ‘shrunken’ paranestimates (BALZARINI, 2001).

REML was developed in order to avoid the biased variance commt estimates that are pro-
duced by the ordinary maximum ML method, because it takesantount the degrees of freedom
used to estimate treatment effects. Thus, ML methods hawevawlards bias which increases with
the number of fixed effects in the model, leading to underesttes of standard errors for fixed
effects, resulting in incorrect inferences being made ftbendata (PAYNE et al., 2009).

For model selection, there are several strategies, suchagdigal methods and diagnostics
(CHRISTENSEN; PEARSON; JOHNSON, 1992) and likelihooddsbmethods (DIGGLE, 1988;
OMAN, 1991; WOLFINGER, 1993). The likelihood ratid.R) test can be used to verify nested

mixed models. Thus, the test is:

LR = -2 x log (%)
F

whereL, is the residual likelihood of the reduced model dndis the residual likelihood of the full
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model. The null hypothesis testel() is that the reduced model is not different from the full miode
The LR test has a¢ distribution, with degrees of freedom equal to the diff@ein the number of
parameters between the two models. Since the fixed part sathe for all models, only the number
of parameters in the variance-covariance structure nedmsdonsidered. An alternative likelihood-
based mixed model selection strategy was proposed by Welf{i®96) who suggested to use the
Akaike Information Criterion (AIC - AKAIKE, 1974) and the Basian Information Criterion (BIC

- SCHWARZ, 1978) to compare the non-nested mixed modelsl&sing:

AIC = —2log(L) + 2 X npag

BIC = —2log(L) +log(N) X npag

wherelog(L) is the residual loglikelihood)V is the total number of observations ang,x is the
number of parameters in the VCOV matrix (PIEPHO, 2000). Bi@G iBayesian model selection
based on Bayes factors, and involves a penalty for the nuoflgarameters, which tends to favor
parsimonious models. AIC is an estimator of expected redaullback-Leibler (K-L) information
(frequently conceptualized as a ‘distance’ between fallitgand a model) based on the maximized
log-likelihood function, corrected for asymptotic biasURNHAM; ANDERSON, 2004). The
smaller the value of the criterion, the more preferable ésrttodel (WOLFINGER, 1993). For the
fixed terms in mixed models, Wald tests is commonly used (VERB; MOLENBERGHS, 2000).

2.3.1 Mixed Models for Multi-Environment Trials

The main goal in many advanced plant breeding programs\avible evaluation of a set of
genotypes in designed experiments performed at a rangezimbemental conditions. To this pur-
poses, MET are considered, in which the genotypes are @gdlaaross several locations and years.
Typically, cultivars are tested for global performanceoasra series of geographically and tempo-
rally varying conditions, or for local performance undemjmrally varying conditions at specific
sites. In addition, cultivars are also often evaluated éapaability and stability in relation to chang-
ing environmental conditions, taking into account the dgpe by environment (G E) interaction
(EEUWIJK et al., 2005).

MET analysis has been made through the Additive Main Effants Multiplicative Interaction
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(AMMI) models, well described by Gauch (1988, 1992) andilatted to Fisher and Mackenzie
(1923) and Gollob (1968), in addition to biplots for visuapresentation (GABRIEL, 1971) and
traditional methods, such as joint analysis of variance QW) and linear regression. However,
these techniques have some limitations: i) consider a firedel framework for genotype and G
x E; ii) not consider spatial variation within trials; and)inot consider heterogeneity of variance
between trials. In this aspect, mixed model approach canuseful tool for dealing with MET,
since different models fo€& and R can be used for genotype mean predictions and & in-
teraction studies, taking into account also the spatiabaae observed among trials. Moreover,
the likelihood-based methodologies involved in mixed medstimation provide a more flexible
analytical approach for MET data, since balanced data areeqaired (BALZARINI, 2001).

MET data may be summarized in two-way tables, indexed by types and environments.
Thus, a typical model is (RESENDE; THOMPSON, 2004):

Yij =1+ €5+ git geij + &ij 1)

wherey;; is the phenotypic response for genotypa environmeny; 4 is the general mear; is
genetic effect of genotypee; is the environment effectje;; is the Gx E interaction; and;; is the
error term. The: ande; effects can be regarded as fixed and the others as randone tombext

of mixed models, the following model can be considered:

Yij =+ €+ gij + &ij (2)

whereg;; is the random effect for genotypén environment;. Thus, different classes of structures
can be considered for the VCOV matrix gf (G matrix, Table 1). In this matrix, the diagonal
elements are the genetic variances for individual enviremisrand the off-diagonal elements are
the genetic covariances between pairs of environments.

The simplest model for th@ matrix is one that considers independence and homogenagus v
ation, i.e., there are no genetic correlations betweernr@mvients and the genetic variances are
homogeneous across the environments. These assumptrarely realistic, and this model is
named independent model (ID). Following the same idea afpeddence, the heterogeneous ge-
netic variation (DIAG) model allows for heterogeneous dgeneariances, reflecting the magnitude

of variation between genotypes in individual environmebtg assumes that there are no genetic
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Table 1 —-Example of different models for the (co)variance structfré& matrix that can be considered for MET data

Model Description G matrix
r 03 + Uge 0 . 0
0 03 +0ge 0
ID Identical variation .
L 0 0 03 + 036
M2 2
Tg1 T Tge 0 0
0 052 + C’—5162 0
DIAG Heterogeneous variation . .
2 o, 2
L 0 0 997 + 0961
-2 2 2 2
% +2096 2 %9 2 Ug
9y gt 0ge 9y
CS Compound symmetry with homogeneous variation .
L g 0'3 0'3 + 0'36
[ 51+ T5e, %5 og
%% T2 + Tie, %
CSyet Compound symmetry with heterogeneous variation . . .
L %5 g+ They
) 2 2 2 d(1,J)
Ug + Jge ngg (o} pg@ J)
. . . -, o3Pg g+ 0ge irg
AR1 First-order autoregressive model with homogeneoustian . .
d(J,1 d(J,2 '
| o205 ) a2 ) o+ 05
r 2 2 2 2 d(1,J)
Tg1 T Ogey TgPg e ngg(Q ”
. . . - 03Pg  Ogy+ ey - Ogpg
AR1ly.; First-order autoregressive model with heterogeneoustiami )
2 fi(J,l) 2 d.(JA,2) 2 2
L 9gPg OgPg e gy +095J
B )\% + Uy A2 Ay
A2 )\%4—\1/2 A2\
FA1l First-order factor analytic model . .
L s\ AjAg >‘L2]+\IIJ
ro2 2 2 2
991 -"2_0961 2 051122 o 0%1.7
921 99, + 0962 e 9925
Unst Unstructured model .
2 2 2 2
L %91 %952 o Ogy T 0ge,

o
ag andoge: variance components for genotype main effect and & interaction, respectivelyzz(]’] ) genetic correlation between environments,
whered(3, j') correspond to the distance in time between the@}; andogej: environment-specific genetic variance for genotype mééceand
GXxE interaction;ogjj,: genetic covariance between environmehtmd;’; W;: environment-specific residual variance; and ;. : loadings of

the factor in environment and;’.

correlations between environments.

Compound symmetry (CS) and compound symmetry heterogen&@y.;) assume the exis-
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tence of genetic correlations, reflecting the agreemeng¢otype rankings between environments,
but homogeneous and heterogeneous genetic variances;tiesly. The First-order autoregressive
models also take into account the assumption of genetieledion between environments, con-
sidering homogeneous (AR1) or heterogeneous (ARlvariances. These models are especially
important for perennial crops, such as sugarcane, wheeenday relate to multiple harvests (re-
peated measures over time). Note that, for such crop spéiceegenetic correlation decrease with
the distance in time between harvests (environments)e shrcgenes expressed in the first harvest
year could may not have the same expression in the subsepast

The unstructure model for the (co)variance matrix considiee general case, in which all ele-
ments of the matrix are allowed to be different. Howeverpme cases, estimation of such structure
may be inefficient or unstable for even moderately valueg @iumber of environmentes), since
the number of parameters is equalko/ + 1)/2. First-order factor analytic (FA1) model, consid-
eringk = 1 factor, can be regarded as an approximation to the completstructured VCOV and
can provide parsimonious models. The factor analysis igokencan be considered as an exten-
sion of the principal component analysis (GAUCH, 1988; I®RESENDE; THOMPSON, 2004).
In a general case, a factor analytic model of ordedenoted as FA is postulated in terms of
unobservable genotype effects in different environmeRESENDE; THOMPSON, 2004):

k
9ij = Z Njr fir + 04
r=1

k
whereg;; is the effect of genotypein environment;, Z)\jrfir is the sum of multiplicative terms

r=1
used to explain G< E interaction, in which);, is the loading (slope regression) for factor (la-
tent variable)r in environmentj, f;. is the score for genotypein factor r, andd,; is the error

representing the lack of fit of the model. This model leads YC®V structure forG in which:
k
02 +02, =Y A, +7;isthe genotype variance in environmgnhered; is the specific residual
r=1

k
variance for;;; ando—j_, = Z)\jr)\jfr is the covariance between environmehtnd;’.
77
r=1
A model analogous to the Eberhart and Russel (1966) regressodel can be obtained in this

mixed model framework by using one multiplicative term:

9ij = Ajfi + 04
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where); is the loading (slope regression) for the factor in envirenty, f; is the score for genotype
i (factor). Thusp] +o7. = A7+, is the genotype variance in environmg’nandagjj, = A\ is
the covariance between environmepend;’ that compound the VCOV structure of thiematrix.
This is the FA1 model, as presented in Table 1.

Several authors described the use of mixed models to anslligZedata in different plant species
(DENIS; PIEPHO; EEUWIJK, 1997; PIEPHO, 1997; CULLIS et 4998; RESENDE; THOMP-
SON, 2004; CHAPMAN, 2008; SMITH; CULLIS; THOMPSON, 2001,@% SMITH et al., 2007,
EEUWIJK et al., 2007). Smith et al. (2007) presented an raditere method to model the VCOV
structure of the matrix for MET data obtained from perennial crops. Sugaedaran important
example of perennial species, where MET data may relate topteLharvests (repeated measures
along time), in addition to multiple trials (locations). &lauthors proposed an approach for the
analysis of yield data combined not only across trials bam &larvests. The method is an extension
of Smith et al. (2001) and allow to regard a VCOV matrix forvest G, ) and other one for
locations G'%, ), instead to consider an individual VCOV matri&) for the factorial combination
of harvests and locations (in this case, each harvestitmcabmbination is considered as a single

environment). In this context, the finé@l matrix is:

G= G§><J ® G%xK

wherej = 1,...,J is the number of locationg, = 1, ..., K is the number of harvests, amdde-
notes the Kronecker product. The different VCOV structymessented in Table 1 can be regarded
for each individual matrix, depending of the data and thedtjes of the analysis. This may pro-
vide models with a reduced number of parameters when comhpatie the conventional approach,
allowing, in some situations, the selection of parsimosimodels for the VCOV structure.

For the analysis of MET data using mixed models, taking ggreeffects as random or fixed
depends on the aim of the analysis and considerations abeuyiroperties of the two types of
estimation procedures, the E-BLUP for random effects, aed&-BLUE for fixed effects. In this
context, if the objective of the analysis is to identify thesb genotypes for selection purposes,
the ranking of the estimated genotype effects should beoge @s possible to the rankings of the
true genotype effects. This implies the use of BLUP (rand@nogype effects). However, the
optimality properties of BLUP are based on the assumptian tthe variance parameters in the

model are known, but in practice, this is not the case anddhanpeters are estimated from the data
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(E-BLUP). It is not possible to state that the estimates efwariance parameters are sufficiently
precise to ensure that the optimality of BLUP is maintaindéth\&-BLUP. If the aim of the analysis
is to determine the difference between specific pairs of tyges, then the use of BLUP as an
estimation method is inappropriate, since the BLUP of aifipatifference is biased. In this case,
genotype effects should be regarded as fixed (SMITH; CULTKQMPSON, 2005).

2.3.2 Mixed Models and QTL Mapping

QTL mapping studies frequently use phenotypic data obdifireen multiple environments. The
detection of QTL main effects and QTk E interaction in such studies requires the use of appropri-
ate statistical tests. However, most part of the methodesoayailable to study QTk E interaction
does not account for the fact that the same genotypes arengnosach environment, which intro-
duces genetic correlation among phenotypic observatinrth® same genotype (PIEPHO, 2005).
Mixed models are a natural framework for the analysis of fuchplex data sets, allowing to model
the genetic (co)variances between environments in cormbmwith the heterogeneous residuals,
achieving more realistic and reliable conclusions about E interaction.

Based on regression methods (HALEY; KNOTT, 1992; MARTINEZJRNOW, 1992), QTL
mapping can integrate molecular marker information intaedi models to test not only for the
effect of DNA polymorphisms on phenotypic traits, but alsadentify regions (QTLS) with effects
on multiple environments and, as consequence, the ocog@&@QTL x E interaction, which is
caused by changes in QTL expression across environmerggn@m advantage of the regression-
based QTL mapping methods is its computational simplieityen compared with mixture models.

A first step in a mixed-model QTL mapping analysis is to se&eghenotypic model for the
MET data, with the aim of identifying a variance-covariamoedel, considering the possibility
of heterogeneity of genetic variances across individugirenments and heterogeneity of genetic
correlations between pairs of environments. Then, the stextis to include marker information in

this mixed model. In this context, model (2) can be expanded:

Yij = B+ €5 + gij + Tia; + & 3)

whereg;; is the random effect for genotypen environmentj; e; is the environment effecty,
contains genetic information on QTL genotypes at a padicgenome position, also named as

genetic predictory; is the additive effect of the QTL in environmejitande;; is the error term.



39

In an F; population, if the QTL is positioned over markers,assumes the values -1, 0 and 1 for
individual’'s marker having the genotypes, Aa and AA (interpreted as the QTL genotypes,
Qq, andQQ respectively). QTL genotypes between markers are nottflirebservable, but can
be calculated based on conditional probabilities obtafr@d flanking marker genotypes (JIANG;
ZENG, 1997). Thus, the value of for positions between markers needs to be adjusted and tkte mo
used approach is based on conditional expectations of Qhbtgpes, given marker phenotypes
(HALEY; KNOTT, 1992; MARTINEZ; CURNOW, 1992). Through thimodel, QTL environment-
specific effects can be easily considered. A test for QTL ma#acts along the genome can also be
performed.

Mixed models have been widely used to investigate the caf€es< E interaction, through the
identification of QTLs with consistent expression undefadént environmental conditions (years
and locations), as well as to investigate the genetic basercélated traits (pleiotropy and/or linked
QTLs). Several authors reported the use of mixed modelseapid QTL mapping in different crop
species, such as maize (CROSSA et al., 1999; VARGAS et d@6;BOER et al., 2007; EEUWIJK
et al., 2010), barley (PIEPHO, 2000; VERBYLA et al., 2003; MBSETTI et al., 2004), rice
(EMRICH; PRICE; PIEPHO, 2008) and wheat (MATHEWS et al., 800To our knowledgement,
none of the current QTL mapping results published for suayagavere provided by mixed models

analysis.
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3 MATERIAL AND METHODS

3.1 Material

3.1.1 Plant Material

Phenotypic and molecular data were obtained for a populésed on 100 individuals derived
from a cross between two pre-commercial Brazilian culsy&P80-180 (B3337 x polycross) and
SP80-4966 (SP71-1406 x polycross). SP80-180 was the fepaedat and has lower sucrose con-
tent and high stalk production, whereas SP80-4966 (maknpdnas higher sucrose and lower stalk
production. Both parents and population were developedaeaEkperimental Station of the Centro

de Tecnologia Canavieira (CTC) in Camamu-BA, Brazil.

3.1.2 Molecular Data

Restriction Fragment Length Polymorphism (RFLP), MicteBde or Simple Sequence Repeat
(SSR), EST (Expressed Sequence Tag) RFLP and SSR derivé@rmarere used to genotype
parents and progeny. All these markers had already beemnaged@and coded, as described in detall
by Garcia et al. (2006) and Oliveira et al. (2007). For madaaring, each segregating allele was
scored based on the presence (1) or absence (0) in the pralgerafore behaving as a dominant
marker. Only single-dose markers were considered. Madgregation patterns were tested for the
expected ratios using chi-square tegt)( considering single dose markers in only one parent (1:1
fashion) and in both parents (3:1 fashion). All loci withostg deviation from expected proportions

were discarded after controlling type | error for multipésts using Bonferroni’s procedure.

3.1.3 Phenotypic Data

The mapping population was planted in two locations in 2@@i8gicaba and Jau, both in the
State of Sdo Paulo, Brazil) and evaluated in the first, seeoddhird harvest years for cane yield
(tonnes of cane per hectare, TCH), sugar yield (tonnes @rquey hectare, TSH), Fiber percent and
Pol (sucrose content). In each location the experimentagjdeonsisted of a randomized complete
block design with two replicates. However, the 100 clonesawmt fully randomized. The clones

were randomly split in three groups of 36, 38, and 26 clonespectively. The clones were only
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randomized within those groups, while the groups were matoenized. In the experiments, each of
the groups of clones (genotypes) was augmented by four si{eoknmercial cultivars SP80-1842,
SP81-3250, SP80-1816 e RB72454). Both parents were alkal@ttin the first group, but not

considered in the statistical analysis. A layout of the festderiments is presented in Figure 1.

Piracicaba Jau

Group 1 Group 1

Block 1

Block 2

Block 1

Block 2

Grou

Block 1

Block 2

Grou

Block 1

- Clones
- Checks
- Parents

Figure 1 —Location 1: Piracicaba, SP, Brazil; and Location 2: Jat Bs&il

3.2 Methods

3.2.1 Linkage Map

Based on a multipoint approach (WU et al., 2002a; WU et al02B), map construction was



43

carried out using the packaggneMap(MARGARIDO; SOUZA; GARCIA, 2007). For this pur-
pose, 741 molecular markers were used, including 459 Ispiaying an 1:1 segregation ratio (100
RFLP, 27 EST-RFLP, 332 EST-SSR) and 282 loci segregating3driaatio (88 RFLP, 10 EST-
RFLP, 184 EST-SSR). Following the notation presented by Y. €2002a), markers segregating
for the parent SP80-18@() were denoted ab), considering the configurationé x oo’, in which
thea allele is dominant to the (null) allele. Informative loci for the parent SP80-4968,) were
denoted a9),, with the configurationdo x ao’, and markers segregating for both parents were
denoted ag’, with configuration 4o x ao’. For the determination of the linkage groups, two point
analysis was performed considering a minimum LOD Scorestiolel of 6 and 0.5 for the recombi-
nation fraction. Linkage groups with a maximum of five locire@rdered through the comparison
of all possible orders, in a procedure analogous to the cdmanpar e implemented in the MAP-
MAKER/EXP software (LANDER et al., 1987). For linkage granvith more than 5 markers, the
or der algorithm took five adjacent markers, which were orderedugh the comparison of all
possible orders, and then the other markers were sequgpleted on the linkage group based on
the initial order, in a similar way to that performed by themandt r y in the MAPMAKER/EXP
software and validated by Mollinari et al. (2009). Afterethi ppl e comand was applied to verify
if local inversions had occured. Map distances were exptesscentiMorgans based on Kosambi’s
function (KOSAMBI, 1944).

3.2.2 Genetic Predictors

For notation purposes, in a similar way to that proposed yetial. (2003), consider a full-sib
progeny obtained from the cross between two outbred diglar@ntal individuals, denoted &3
and( (Figure 2). They could be seen as a general case when compitinetie loci configuration
observed for sugarcane, where only SDM were consideredar-mterval flanked by two markers,
m andm+ 1, each one with allelesand2, the genotypes for these loci can be represente’dibfl},
QL P2 andQI?), in which {1, 2} indicates the allelic possibilities for each locus. Sumgpos
that there is a QTL between these two markers, with allBfeand P? for parentP, Q' andQ? for
parent(). Thus, QTL segregation in the progeny will fit into four geyyit classes®'Q*, P'Q?,
P2Q! and P2(Q%), in a 1:1:1:1 ratio. Therefore, it is possible to define ¢hoethogonal contrasts

involving these four genotypic classes:
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+ PlQl + PIQQ _ PQQl _ PQQQ
+ PlQl _ PIQQ + PQQl _ PQQQ
+ PlQl _ P1Q2 _ P2Q1 + P2Q2

The first and second contrasts relate to QTL additive effecpgrentP and(), denoted asy,
anday,, respectively, while the third one refers to QTL dominanffea (intra-locus interaction)
between the additive effects on each parent, denotey), assenetic predictors were constructed
for a grid of evaluation pointsy, along the genomeu(= 1, ..., W). These genetic predictors were
introduced as explanatory variables in the mixed models.irtevidual : and evaluation poini,

the genetic predictors are:

Tp = PPTQYIM;) + p(P'Q*My) — p(P?QM;) — p(P*Q? M)
To = P(PTQ'M;) —p(P'Q*M;) + p(P?Q' M) — p(P*Q*|M;)
Tpgiw = PPTQYIM;) —p(P'Q*M;) — p(P*Q'|M;) + p(P?Q% M)

wherez,, ,z,, andz,, -arethe expected values of the explanatory variables fadbiive QTL
effects in parent$ and(, and dominance effect, respectively, at positigrgiven all the marker
informationM, in a particular linkage group for individua(HALEY; KNOTT, 1992; MARTINEZ;
CURNOW, 1992; LYNCH;WALSH, 1998).The conditional multiipb probabilitiesp( P1Q*|M;),
p(P'Q*M,), p(P*Q'|M;) and p(P%*Q?*|M;) were calculated by a hidden Markov chain model
implemented in a new version of tlkiheMappackage (MARGARIDO; SOUZA; GARCIA, 2007),
at all marker positions and at an additional grid of pointdwai step size of 1 cM along the genome.
Due to the lack of information provided by SDMs, since onl§ &nd 3:1 segregation patterns
could be obtained, in some genomic positions the matrix nége predictors could be singular, i.e.
some genetic predictors could be linear combinations dadrsthSince collinearity could cause seri-
ous problems with the estimation and interpretation of gtr@ameters, its presence was investigated
by examining the singular values and by calculating the tmmdnumber of the genetic predictors
matrix in all genomic positions. Only informative contrasétvithout collinearity), were then con-
sidered. For example, linkage groups with only markers péty, have enough information solely
for the estimation of one contrast for the additive effegpamentP, z,, . The same principle was

applied for all linkage groups and genomic positions.
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P Q
Py, P, Qn Qx,
Pl PZ % Ql Q2
Pr}ﬁ-l Pr?m-i—l ern-i-l gn-i-l

Figure 2 —Graphical representation of a bi-parental cross betwetsrediparents® andQ. P;,{II’Q}, Q,{nl’Q}, leljfl}

andQ;{nlfl} are the marker alleles for loek andm + 1; P!, P2, Q' andQ? are the QTL alleles

3.2.3 Multi-Harvest-Location Phenotypic Analysis

Prior to QTL detection, the identification of an appropriaiéed model for phenotypic data was
done by comparing different variance-covariance (VCOW)aures for the genetic effect within
location and harvest (Table 2). For mathematical desonpdf the model, a notation similar to that
presented by Eckermann et al. (2001), Verbyla et al. (2008)Boer et al. (2007) was used. The
statistical model, in which the underline indicates a rand@ariable, is:
=p+Lj+ Hy+ LHj, + Qijk + Eigjkr (4)

gisjkr

Yiginr is the phenotype of the” replicate of the” genotype in group, location;j and harvesk;
1 is the general mear;; is the location effectfd;, is the harvest effectL 1 is the location by

harvest interaction effectz, ., is the genetic effect of genotypeat location; and harvest; and

ijk
gisjkr 1S @ NONgenetic effect. The genotypes can be separatediotgroups, = n, + n., where

ng is the number of genotypes (clones) in the progeény (, ..., n,), andn. is the number of check
entries { = ny + 1,...,n, + n.). The model foiG

ik IS given by:

Qijk = ik P LT (5)
Cijk t=mng+1,...,n5 +n

WheregiﬂC is a random variable for the genetic effect of genotypelocation; and harvest, and

cijr represents a fixed effect for checln locationj and harvest. Although check entries are

not relevant to the detection of QTL, they are important iomiting information on the nongenetic

variation that may be present (VERBYLA et al., 2003; BOERIgt2007). It was assumed that

vectorg = (9111, ---» 9171 ) have a multivariate normal distribution with zero mean ar@dO¥X
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matrix G (Table 2),g ~ N (0, G). For the nongenetic terna( ;..), the model was:

Eisjkr = s T Lsji + bsjkr + 1 (6)

= Lisjkr
wheret, is the group effectt,; is the effect of grou, appropriate for location and harvest;
bs;kr 1S the effect of block: within groups, locationj and harvest; Dygire ™ N(0,0?%) represents
a residual error term. All two-way and three-way interactidoetween fixed effects were also in-
cluded, but for clarity purposes, not showed here. Sevdardiit models for the VCOV matrix

were analysed and compared based on AIC and BIC.

Table 2 —Different models for the genetic (co)variance mati&)(@nalysed

G matrix Model npar® Description
G=GL A a) ID 1 Identical genetic variation
b) DIAG M Heterogeneous genetic variation
¢) CSyet M+1 Compound symmetry with heterogeneous
genetic variation
d) FA1 2M First-order factor analytic model
e) Unst W Unstructured model

G=GL ,2GHE . fUnst® ARly,, LHUE2HED 3 ynstructured and first-order autoregressive
models for the genetic variance within lo-
cation and within harvest, respectively

JTHRRRED 1 ynstructured models for the genetic vari-

ance within location and harvest

g) Unst® Unst

Models (a-e) use the factorial combination of locations harests as different environments. Models (f-g) use thectproduct of (co)variance
matrices for locations and harvests.The number of parameters for the models (f-g) follows from $am of the parameters for the component

matrices minus the number of identification constraidté = J x K, whereJ is the number of locations anid is the number of harvests.

3.2.4 QTL Analysis

Based on the interval mapping approach (LANDER; BOTSTE®89), the presence of a puta-
tive QTL was tested along the genome. In this context, theahweds expanded to include marker

information:

Ql-sj,w =p+Lj+ Hp+ LHj, + Tpiw Wjrw T Lain Vajnw T Tpgin (SPijw + Qijk + Eisjker (7)
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wherea,,, ., aq,,., ando,,,  are the harvest-location-specific effects of the additeesgic predic-
tor for parentP and(), and dominance genetic predictor, respectively, at etialu@ointw. The
VCOV matrix used foiG, ;.
the putative QTL has no effect across locations and hantéstsull hypothesis tested using a Wald
test (VERBEKE; MOLENBERGHS, 2000) was:

was that selected in the previous phenotypic analyses.isguthat

apllw = ap12w = = apJKw = 0
Hy : Qg1 = Cgra = = Qqpy = 0
) 0 = .. = 0 0

Pq11w P12 PaiKw

A test for QTL main effects were also performed along the gemausing:

Yigjlr — M + Lj + Hy + LHji + @p,, 0p,, + Tq,,, %, + Tpa,u Opg T Giji + Eisjnr (8)

Genome positions witl-values< 0.01 in the QTL profile produced by models (7) and (8) were
selected to build a multi-QTL model.

Models (7) and (8) were also applied for the analysis of dinked markers (424), considering
that for them the genetic predictor could only have the &lué (allele o) and1 (allelea). The
Wald test was also used to identify putative QTL effects eisged with individual markers.

Genomic positions with evidence of putative QTLs were ideld in a multi-QTL model. To
determine which QTL were significant in this model, the Waddistic was calculated after dropping
each individual QTL separately from the full model. Nonssfgcant QTL with P-value greater than
0.05 were then excluded. Finally, each of the remaining QTL wested to determine significance
of QTL x Location (QTLx L), QTL x Harvest (QTLx H) and QTL x Harvestx Location (QTL
x H x L), also using Wald test. Only significant QTL effects wergtan the model and their
effects were estimated. All the statistical analysis iairad mixed models were performed through
the Genstat software (PAYNE et al., 2009).
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4 RESULTS

4.1 Linkage Map

From a total of 741 molecular markers, 317 (42.8%) were mapp®6 linkage groups (LGs)
with a total map length of 2468.14 cM and average distanocedert markers (marker density) of
7.5 cM. Most of the LGs (42, or 43.7%) were consisted of onlg twwked markers; 27 had three
markers; 9 had four; 9 had five; 6 had six markers. The largelsdade groups had 10, 11 and
14 markers. The marker loci were substantially clusteredgthe LGs, while a minority were
sparsely distributed with gaps larger than 20 cM, being oleskon 11.8% of the intervals between
two adjacent marker loci (Figure 3).

4.2 Multi-Harvest-Location Phenotypic Analysis

For each trait, different VCOV structures for the modeliriggenetic correlations between lo-
cations and harvests were evaluated (Table 3). Models ¢areider each harvest-location com-
bination as a single environment, while models (f-g) usedaliproducts of (co)variance matrices
for locations and harvests (SMITH et al., 2007; MALOSETThé&t 2008). Model (a) considers
homogeneous variation (ID), i.e. there are no genetic t@iroas between environments, and ge-
netic variances are homogeneous across environments.| ihy@d#ows for heterogeneous genetic
variances but assumes there are no genetic correlationsdreenvironments. Model (c) considers
heterogeneous genetic variance and common genetic covatietween environments. Model (d)
uses a multiplicative model called factor analytic modebafer 1, to approximate a fully unstruc-
tured (co)variance matrix (OMAN, 1991; GOGEL; CULLIS; VERBA, 1995). Model (e) allows
the VCOV matrixG to contain unique genetic variances and covariances. Te otodels com-
bine in two different ways structures that make sense foctineent data: autoregressive of order 1,
in which the correlation between harvests decay with degan time, with heterogeneous genetic
variances (AR}%.;) and unstructured (UN) models, as proposed by Smith et@07R

AIC and BIC provided different results in certain cases,g@xample, model (e) and (g) must be
selected using AIC and BIC for TCH, respectively. Howevie first and second best models for

Fiber, for example, presented a difference smaller thanth&BIC values. Thus, for this reason we
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decided to use AIC for the model selection in the phenotypatyses. Although model (e) requires
the estimation of a higher number of parameters, it showedgittallest AIC for all evaluated traits

(Table 3). Based on these results model (e) was selecteduseokin the QTL mapping procedure.

Table 3 —AIC (Akaike Information Criterion) and BIC (Bayesian Infaation Criterion) for the mixed models, con-
sidering different VCQV structure for the genetic effecthvim location and harvesf{ = J x K, whereJ
is the number of locations anfd is the number of harvests; TCH: tonnes of cane per hectatd; T&nes

of sugar per hectare; Pol: sucrose content; and Fiber pgrcen

Trait G matrix Model NPAR AIC BIC
G=Gi A, a)ID 1 78314 78340
b) DIAG 6 7801.6 7817.2
¢) CSyex 7 7083.0 7101.2
TCH d) FA1 12 7039.4 70707
e) Unst 21 6909.3 6964.0
G=GL @GH . fHUnst® ARly., (3+4)—1=6 6970.9 6986.5
g) Unst® Unst (3+6)—1=8 6934.0 6954.8
G=Gi A, a)ID 3331.8 33344
b) DIAG 3282.2 3297.8
¢) CSyex 7 2693.8 27120
TSH d) FA1 12 2646.1 2677.2
e) Unst 21 2560.8 2615.3
G=GL @GHE , fHUnst®ARly. (3+4)—1=6 26315 2647.1
g) Unst® Unst (3+6)—1=8 2601.6 2622.4
G=Gi A, a)ID 14288 14314
b) DIAG 1391.5 1407.1
¢) CSye: 7 1026.9 1045.1
Pol d) FA1 12 9740  1005.1
e) Unst 21 944.7 999.2
G=GL ;9GH . fUnst® ARlgy., (3+4)—1=6 1091.1 1106.7
g) Unst® Unst (3+6)—1=8 10764 1097.2
G=Gi A, a)ID 1072.4  1075.0
b) DIAG 6 1075.8  1091.4
¢) CSex 7 2549 2731
Fiber d) FA1 12 2413 2724
e) Unst 21 2188 273.3
G=GL ;®@GH . fUnst® ARly., (3+4)—1=6 2713  286.9
g) Unst® Unst (3+6)—1=8 2735 2943

G: genetic (co)variance matrix; ID: independent; DIAG: diagl; CSy..: compound symmetry (heterogeneous); FAL: factor anapftmrder 1;

AR1y .. autoregressive of order 1 (heterogeneous); and Unstuatisted; bold values: the smallest AIC or BIC value, inditgithe best model.
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4.3 QTL Analysis

The results of the QTL mapping through the interval mappihd @pproach are summarised in
Figure 4. These provided the identification of 28 putative B for TCH, 8 for TSH, 4 for Pol and
7 for Fiber. Single marker (SM) analysis resulted in the ci&de of 22 marker-QTL associations:
5 for TCH, 8 for TSH, 8 for Pol and 5 for Fiber (Figure 5).

Significant positions or markers identified associated wifhutative QTL by the IM and SM
approaches were included in the multi-QTL model for theneation of QTL main effects and
QTL harvest-location-specific effects. Several QTLs (66¥9)wed a significant QT H (24%),
QTL x L (14%) and QTLx H x L (28%) interaction, and 17 QTLs (34%) had the same effect
across harvests and locations. The final multi-QTL modellfoH had 14 QTLs identified by the
previous analyses and that remained significant in the fQiIti analysis (Table 4). For this trait,
the QTLs positioned on LG9 and LG19 had only significant pasiadditive main effects, which
means that there are no Q™.H, QTL x L or QTL x H x L interaction effects. However, QTk
H interaction was detected for QTLs placed on LG25, LG32,2G 192 and for markers EST3EC
and ESTC81ma3C, indicating that these QTLs showed the saimavioe along the two locations,
but not along harvests. For QTLs identified in LG66 and asdedi with marker ESTB64m3C,
QTL x L interaction was detected, i.e. the effects of these QTesmnificantly different between
locations, but keep the same effect along harvests. MorgihneQTLs identified associated in LG8
and LG28, and with markers SG61BD1 and ESTC03m2D2, pres&iié. x H x L interactions,
wich means that the effects of these QTLs are significanffgrdint along the combinations of
harvest and location.

For TSH, 15 QTLs remained significant in the multi-QTL mod&hlfle 5). QTLs placed on
LG19 and LG21, and associated with markers SG105AD1, SGT4a@ ESTIBD2, presented
significant additive main effects. The QTLs detected in L@@ associated with markers EST3EC
and ESTC03m2D2 had interaction with harvest and locatidrickvmeans that each QTL had a
different expression across the combinations of locatiahtzarvest. The other QTLs detected for
this trait had QTLx L interaction (LG9 and associated with marker SG61BD1) orTd. & H
interaction (LG25, LG32, LG72, LG92 and associated withkmaESTC02m1D2).

From a total of 12 QTLs identified by IM and SM analyses, 10 QTémained significant in
the multi-QTL model for Pol (Table 5). QTLs detected in LG& 85 and associated with markers
SGO06AD1, ESTAGAD1, ESTC15m2D2 and ESTA03m4C showed siamfiadditive main effects
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Table 4 —QTL effects estimated with the multi-QTL mixed model andittaverage standard error of difference
(avsed) or standard error (TCH: tonnes of cane per heatgrey, andd,, are the additive main effects
on parents” and@ and dominance interaction, respectively;, , oy, anc?épq].k are the harvest-location-
specific effects)

Trait LG (effect) Markers Position Location-Harvest (adBe
(cM) 1-1 1-2 1-3 2-1 2-2 2-3

8 (agjy) EST2DD2/SG04AD1 0.0 143 060 066 -221 -042 044 (1.27)
9 (ap) ESTB27m2D1/ESTC123m4D1 42.0 379 379 379 379 379 3.72.27F¢
19 () ESTB157m4D2/ESTB157m1D2 13.0 412 412 412 412 412 24.11.27p¢
25 (agqy,) EST1CC/ESTC47m3D1 2.0 -1.68 -415 -599 -1.68 -4.15 -5.94.17)
28 (ap;y,) SG11FC/ESTA15m3C 13.0 234 -063 205 019 052 -101 3j2.0
32 (agqy,) ESTA63m3D2/ESTA48m2D2 22.0 -220 -3.07 -191 -220 -3.071.91 (0.68)

TCH 66 (p,) ESTA68m1C/ESTC129m5C 12.7 -7.08 -7.08 -7.08 -129 -1.29.29 (1.66)
72 (apy,) ESTA54m3D1/ESTB94m6D1 3.0 157 425 404 157 425 4.04.73)0
92 (ag,) ESTB65m1D2/ESTC44m1D2 4.0 184 165 014 184 165 0.14.68)0
NL (ap ;) SG61BD1 5,03 357 277 228 353 347 (1.25)
NL (cvp,,) EST3EC 181 072 -093 181 072 -093 (0.85)
NL (ap;) ESTB64m3C 6.97 697 697 128 128 128 (1.64)
NL (cvp,,) ESTC81m3C 18 506 578 185 506 578 (0.83)
NL (vg;4,) ESTC03m2D2 057 191 208 265 089 -040 (1.16)

@ Standard error; NL: not-linked.

across all combinations of location and harvest. QJLH x L interactions were detected for
QTLs associated with markers ESTB122m8D2 and ESTA03m5D&.QTLs placed on LG81 and
associated with marker ESTC49m3D1 presented QTL interaction and QTLx H interaction,
respectively.

The multi-QTL model resulted in the identification of 11 QTies Fiber (Table 5). One had
significant dominance effect in LG3. QTLs placed on LG35 as&baiated with markers SG25BC
and ESTC110m2C presented significant main effects acrb#seatombinations of locations and
harvests. QTLx L interaction was detected on LG44 and associated with m&&99DC, which
means that these putative QTLs had a different expressros®tocations, but not across harvests.
The other QTLSs, positioned in LG37, LG55 and LG83, and asgediwith markers SG105AD1
and ESTB153m1D2, showed QTk H x L interaction, changing the behavior not only across
locations, but also along harvests.
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Table 5 —QTL effects estimated with the multi-QTL mixed model anditreverage standard error of difference
(avsed) or standard error (TSH: tonnes of sugar per he®atesucrose content; Fiber percemj; o, and
dpq are the additive main effects on parefitsand @ and dominance interaction, respectively, , , o,
andé,,,, are the harvest-location-specific effects)

Trait  Linkage Group Markers Position Location-Harvest se)
(type of effect) (cM) 1-1 1-2 1-3 2-1 2-2 2-3
6 (op,,.) ESTBO7m1C/ESTA68mM2C 15.1 -0.18 -0.79 -0.90 -0.20 -0.16.830 (0.35)
9 (ap;) ESTC123m4D1/ESTC48m5D1 56.8 -0.29 -0.29 -0.29 0.17 0.17.170 (0.13)
19 (oq) ESTB157m4D2/ESTB157m1D2 16.3 0.43 0.43 0.43 0.43 0.43 3 0.40.14y
21 (op) SG26DD1/SG23BD1 0.0 -051 -051 -0.51 -051 -0.51 -0.51.14p
25 (o) EST1CC/ESTC47m3D1 3.0 -0.46 -1.10 -1.47 -046 -1.10 -1.4{0.21)
32 (ogy,) ESTA63m3D2/ESTA48m2D2 24.0 -0.35 -0.62 -046 -0.35 -0.620.46 (0.13)
72 (oepy,) ESTA54m3D1/ESTB94m6D1 6.0 0.13 068 078 013 0.68 0.78.13}0
TSH 92 @) ESTB65m1D2/ESTC44m1D2 4.0 031 038 015 031 038 0.15.12)0
NL (ap;) SG61BD1 0.80 080 080 040 040 040 (0.15)
NL (ap) SG105AD1 0.40 0.40 0.40 0.40 0.40 0.40 (0114)
NL (ap) SG140CC 039 039 039 039 039 039 (046)
NL (o) EST9BD2 -052 -052 -052 -052 -052 -0.52 (044)
NL (ap,y.) EST3EC -0.19 -0.09 -049 025 -0.06 -0.24 (0.24)
NL (ag,) ESTC02m1D2 022 067 082 022 067 082 (0.13)
NL (o) ESTCO3m2D2 026 072 085 053 023 000 (0.21)
6 (ap) ESTA63m1C/ESTB111m2C 69.0 037 037 037 037 037 0.37.13f0
35 (awp) ESTB69M2D1/ESTB65m3D1 25.2 -0.16 -0.16 -0.16 -0.16 -0.18.16 (0.07%
81 (ag;) ESTC113mD2/ESTC24m1D2 7.1 -0.12 -0.12 -0.12 -0.25 -0.29.25 (0.05)
NL (ap) SGO06AD1 0.27 0.27 0.27 0.27 0.27 0.27 (097)
Pol NL (ap) ESTA6AD1 -0.32 -0.32 -0.32 -032 -0.32 -0.32 (0.98)
NL (o) ESTC15m2D2 -0.21 -021 -0.21 -021 -0.21 -0.21 (0*07)
NL (o) ESTB122m8D2 -0.16 001 -002 020 -0.13 0.11 (0.11)
NL (ap,y.) ESTA03m5D1 0.27 010 011 013 035 0.65 (0.10)
NL (ap,,) ESTC49m3D1 -0.37 -0.15 -0.09 -0.37 -0.15 -0.09 (0.06)
NL (ap) ESTAO03m4C -020 -0.20 -0.20 -0.20 -0.20 -0.20 (0%8)
3 (6pq) ESTA10m2D1/SG08A 69.0 -0.47 -0.47 -047 -047 -0.47 -0.470.22p
35 (awp) ESTB69M2D1/ESTB65m3D1 20.0 026 026 026 026 026 0.26.11p
37 (ag;y,) ESTA61m3D2/ESTB75m1D2 7.0 -0.09 -0.18 -0.23 -0.21 -0.030.1r (0.07)
44 (op;) ESTC123m3D1/ESTA06mM4D1 20.0 -0.02 -0.02 -0.02 -0.16 60.1-0.16 (0.04)
55 (ap].k) SG41FC/SG94EC 0.0 -0.34 -0.67 -0.54 -0.64 -0.46 -0.46 3j0.1
Fiber 83 (J‘ij) ESTC129m1D1/ESTC119m1D1 6.3 0.19 0.28 0.10 0.23 0.08 0.18.07)
NL (ap].k) SG105AD1 -0.15 -0.03 -0.12 -0.03 -0.07 0.10 (0.07)
NL (ap) SG25BC -029 -029 -029 -0.29 -0.29 -0.29 (0411)
NL (apj) SG99DC 0.25 0.25 0.25 0.03 0.03 0.03 (0.05)
NL (cp) ESTC110m2C 041 -041 -041 -041 -041 -041 (0U15)
NL (o) ESTB153m1D2 0.10 011 0.06 -0.03 018 0.10 (0.07)

@ Standard error; NL: not-linked.
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LG1 LG2 LG3 LG4

0—F— ESTA0SM1D2 0—f—ESTAS4m4D2 0 —F— ESTB69m1D2 0—f— ESTA44m1D1
11— ESTC12m1C 11— ESTA17méD1
16— [ ESTC8IM4D2 17 ——— ESTAO7m2C
31\ | ESTA09m6ED2 28— SG48BD2 33 ESTC120m2D2
327 ESTAOSM3D2 35~ | ~ESTC133m1D2 34 ~y=/~ ESTC39m4D1
34 ESTC47m1D2 36~ [ ESTC130m2D2 36| [NESTB65m2D2 ESTB56m4D1 38 ——— EST2BD1
H
46~ ESTA14m2D2 :; N Egﬁgmggfsmes)mzm
50 ~|_|- ESTB118m1D2
51~ [ ESTAS3m2C 54 ——— ESTB63m5D1
56~ [ ESTAS3m1D2
65— ESTB39m5D2
73— — ESTC109m4D1
77— ESTC131m2D2 77 —5— SGOBAC
U corpsomany 8711 ESTB118m301
% ESTB39M4DZ o) L1 EsTA66m3C
97 —— ESTA15m4D2
102 —— ESTB39m11D2
114 —— ESTB39m10D2
120 —— ESTB39m3D2 119 —o— ESTC134m2D2
LG5 LG6 LG7 LG8 LG9
0—f—ESTAISm6D1  0—f—ESTBO7mIC  0—}—ESTAO3mID2  —— EST2DD2 0—F— ESTC80m6D1
15— ESTA68m2C
21—~ ESTC22msD2 23— EsTcsomsD1
26— SGO4AD2
29— ESTA16m2D1
36— ESTC129m4C —— ESTB27m2D1
39— ESTA15m5D1 39— SG39ED2 39— ESTA47m2D2
45 —— ESTC109m2D2
49 —— ESTC123m4D1
52— ESTBI34m4Dl 52— ESTA63MIC 53| | ESTCSO0M2D2
— ESTC48mS5D1
63 —— SG04BD2 — ESTB133m5D1
- 68 —— ESTA61m7D2
72——EsTBl40mzp1 70 T ESTBLLIMC
LG10 LG11 LG12 LG13 LG14
0—f— SG08BD1 0—f—ESTAS5m3D2 0 —f— ESTA58m6D1 — SGS0EC 0—f— SG48AD2
- SG018D2
I~ ESTC114mD2
11— s612pe 13— ESTB63m2D2 13— ESTAS8m7D1
18 —— ESTC30m3D1 17—~ ESTC13m1D2 o5 | | EsTcs57m3p2
24— ESTA34m11D1 22T~ ESTA53m7D2
29— SGI6IC ESTC8IM1D2
33— ESTCll0m3p1 36 [ ESTALMIDZ 37 ———ESTBIOOMSDL 50| | roregimips
42— ESTB100m7D1
50 —0— ESTB122mID2 50 —5— SGILIC
55 —— ESTA08m2D1
61 —O—ESTC77m4Dl 61 —— ESTA17m2D2
LG15 LG1l6 LG17 LG18 LG19
0 EST2CD1 0 ESTBI3Im2C ¢ EST8BD1 0 ESTBl46m2D1 0 ESTB157m4D2
7 ESTC25m2D1
12 EST38D1 12 ESTC57m8C
15 ESTA53m8C 16 ESTB157m1D2
19 ESTCOIm3C 19 ESTC57m1D2
23 ESTBO3m4D1 23 ESTCBIM2C 24 ESTB56m3D1 24 ESTC50m1D2
27 ESTC65m1D2
32 ESTB20m2D1 30 SG39CC
ESTC22m4D2
43 ESTB149m8D1 42 EST9AD2 0
48 ESTAS5m6D1 47 ESTA49m4C

Figure 3 —Integrated genetic map of a sugarcane commercial crosQ($8Bx SP80-4966) based on 100 indi-
viduals. Map distances are given in centi-Morgans (KosamhiG: linkage group
(Continues)



55

LG20 LG21 LG22 LG23 LG24
0 ESTAS3m4D2 0 SG26DD1 0 SG91ADL 0 ESTC8OM2D2 0 SG105DC
8 ESTA14m3D2
11 SG96AD1 12 ESTC25m3D1
17 ESTC132m1D2 » 623801 19 estegomz02 17 ESTB45m4D1
23 ESTCOImSDL 23 ESTB116m2D2
28 ESTC131m1D2
34 ESTC19m3D2 34 ESTB146m1C
40 ESTA49m2D2 40 ESTB150m3D1 39 ESTB110m3D1
LG25 LG26 LG27 LG28 LG29
0 EST1CC 0 SG26BD2 0 ESTCIIm2D2 0 SG11FC 0 5G94DD1
9 SG41EDL
1 SG23CD2 ESTB122m6D2
15 ESTC47m3D1 12 13 ESTALSM3C 14 SG93DD1
ESTB149m6D1
30 ESTAISM2C 30 ESTA17m3D2 29 ESTA70m5D2 29 EsTB39meC 27
LG30 LG31 LG32 LG33 LG34
0 SG91GD2 0 ESTC60M7D1 0 ESTB23m3D2 0 ESTB110mIC 0 SG93CC
10 ESTB23m1C 10 SG41DC
14 ESTA03m6D1
18 SG96GD2 17 EsTBISM2C 15 ESTA70m1C
21 ESTA63m3D2
27 ESTAO7MID2 27 ESTC45m6D1 26 ESTA48M2D2 26 ESTB122m3D2 25 SGoacc
LG35 LG36 LG37 LG38 LG39
0 ESTB69M2D1 0 SG38AD2 0 SG39AC 0 ESTC58m2D1 0 EST2AD2
21 ESTA47m3D2
25 ESTB65M3D1 25 SG50AD2 25 ESTB75m1D2 25 ESTAIOM3D1 24 ESTC109m1D2
LG40 LG41 LG42 LG43
0 SGIIF 0 ESTCO5m7D2 ESTC45m2C 0 ESTAIOM25D1 0 EST1CD1
10 ESTC48m3D2 11 ESTA66mM5D1
2 SG96F 21 ESTB20m1D2 21 ESTB4OMSD1 21 ESTA08M3D1
LG44 LG45 LG46 LG47 LG48
0 ESTC123m3D1 0 ESTC21m2D1 ESTB03m3D1 0 SG16DD2 0 SG56BD1
3 ESTB43m6D1
7 ESTBO7m3D1
13 ESTC22m7D1
2 ESTA06M4D1 ESTC21m3C 19 ESTA06M6DL 19 ESTB108m3D1 19 SGleID2 18 SG155AD1
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5 DiscussioN

The number of LGs achieved here (96) is simila2to= 100 — 130 chromosomes, expected for
modern sugarcane cultivars (GRIVET; ARRUDA, 2001; HOARAl4k, 2001), although many LG
could not be integrated (onl, or D, markers). However, the high number of unlinked markers
(424) allied to the small length of most LGs and the reduceahber of markers (loci) per LG
indicates that the map is still not saturated. Probably trobthe small LGs represent unconnected
parts of other groups. Usually, only single-dose polym@mpis have been selected for mapping
(MING et al., 1998), thus gaps in sugarcane maps are comnaexplgcted, due the exclusion of
markers in multiples doses, i.e., duplex of monoparentglmrtriplex or higher multiplex markers.
As a consequence, the advantages of interval mapping cotildenfully used for QTL mapping
and therefore lower statistical power could be expecteaceSmultipoint estimates were used with
the new version oOneMap the map used here had higher likelihoods than the previobkshed
ones, obtained for the same population (GARCIA et al., 200BIVEIRA et al., 2007). The
use of integrated maps, when compared with dbeble pseudo-testcrossrategy, provides the
obtention of linkage maps with increased marker saturatiahhigher representation of the genetic
polymorphism generated by the cross, since markers witlar3d11:1 segregation patterns may be
used together, resulting in better maps and higher statigiower to detect QTL. Moreover, this
approach allows the estimation of additive effects in ealemt ¢, anda,), which is presented for
the first time for sugarcane in this article.

Mixed models were used here because of their flexibility #edpossibility of modeling com-
plex (co)variance structures resulting from repeatedlpsuees across locations and harvests. Al-
though varietal selection for quantitative traits in sugae is usually based on information from
series of field trials, with data for multiple harvests, therfg of different VCOV structures for the
genetic effect within location and harvest is rarely dondi(BH et al., 2007). For this mixed model
analysis, genotypes were assumed to be random, since thanteiest is in the genetic variation
within the progeny rather than the genotypes themselves.tditms location (L) and harvest (H)
were taken as fixed. Due to the reduced number of parameterasiexpected that the group of
models that exploits the direct product of (co)variancerioas for location and harvest (models

f-g) had the smallest values of AIC for the evaluated trditswever, the unstructured model con-
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sidering the factorial combination of location and haresbdel e) was the best one for all traits,
despite the large number of parameters. This could be a goesee of using AIC to compare
models, since it tends to select model with more parametéosvever, the differences with BIC
values are, in general, small for this data set. Throughrtiadel it was possible to calculate the
genetic variance intrinsic to each combination of loca@ol harvest, showing the occurance of
correlation and heterogeneity of variances among therdiiteharvest-location combinations.

For QTL mapping, the model selected in the previous step wesessfully applied, including
fixed QTL main effects and harvest-location-specific QTleef§. In this case, QTL effects were
tested taking into account the genetic correlation strecto the data. Piepho (2005), through a
simulation study, showed that ignoring genetic corretagion multi-environment data leads to a
substantial increase of the type | error rate when testin@ftL effects. Thus, it is expected that
the current multiple-harvest-location mixed model apploaill reduce the risk of over-optimistic
conclusions, since an unstructured genetic (co)variaratexiwas considered. Moreover, another
important feature of the current approach is that all infation was produced within the same
model framework, avoiding to combine results from diffdranalyses, what is commonly done
in two-stage analyses, one for the BLUPs obtention and therdor QTL detection. Thus, the
results show that QTIx H, QTL x L and QTL x H x L interaction effects were important for all
evaluated traits, providing valuable information to ursdi@nd the genetic control of complex traits
related with sugarcane production and sucrose content.

From the total of QTLs identified, 17 (34%) showed stablea#f@cross the diferent combina-
tions of harvest and location, and 33 (66%) had some inieractor the evaluated traits, TCH,
TSH, Pol and Fiber, 12 (85.7%), 10 (66.7%), 4 (40%) and 7 @3.6f the QTLs identified, re-
spectively, had some interaction with the environment. tvast of the interactions detected was
QTL x Harvest. Probably, it can be explained by the fact that, loe\aluated traits, genotype
by harvest (Gx H) interaction compounded great part of the<xGE interaction. QTLs with the
same effect across harvests and locations (for examples@#é&lected in LG9 and LG19, for TCH,;
LG19 and LG21, for TSH; LG6 and LG35, and associated with @S G06AD1, ESTA6ADL,
ESTC15m2D2 and ESTA03mA4C, for Pol; LG3 and LG35, and aswtiaith markers SG25BC
and ESTC110m2C, for Fiber) are important for studies logkor major genes controlling agro-
nomic traits. However, if only stable QTLs across harveststhe goal of the research, the ones
identified in LG66 and associated with marker ESTB64m3CTfoH; LG9 and marker SG61BD1,
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for TSH; LG81 for Pol; LG44 and marker SG99DC, are of maintiese. In addition, for marker
assisted seletion, it is important to consider the signiaiseoQTL efffects. For TCH, QTLs located
in LG8 and LG28 showed effects changing in signal for the shareest along the different loca-
tions, where QTL in LG28 had changes in signal from one hameeanother in the same location
(harvest 1 and harvest 2, location 1). Moreover, the QTLtifled in LG25 showed a negative
effect increasing intensity with harvest time, which istmadarly interesting in sugarcane, since
yield decrease with harvest time.

In some cases, QTLs were identified in common linkage groumssociated with common
markers for different traits. For example, TCH and TSH hadT.associated with the same
linkage groups and with markers in common, including 6 QTLk®9, LG19, LG25, LG32, LG72
and LG92, and 3 QTLs related with markers SG61BD1, EST3ECESIOC03m2D2. As all the
common QTLs were close, it is possible to infer that they carQb Ls with pleiotropic effect on
the two traits, TCH and TSH, i.e. a single QTL controlling tdifferent traits. Common QTLs
were also detected for Pol and Fiber in LG35, possibly witlhegofropic effect, i.e. the same QTL
controlling simultaneously the two different traits, agythwere positioned in the same interval
between markers. A special attention should be given to@iik in breeding programs when
multi-trait selection is involved, since it had oppositéeets controlling Pol and Fiber.

It is difficult to compare the results presented here witteot@TL studies in sugarcane, since
this is the first to perform a study of & H x L using mixed models. Hoarau et al. (2002), Jordan
et al. (2004), Mcintyre et al. (2005a, 2005b), Reffay et aDQ5), Aitken et al. (2008), Al-Janabi
et al. (2007) and Piperidis et al. (2008) carried out SM asialgeparately for each harvest or
harvest-location combination (when available), considemaps obtained for each parent through
the double pseudo-testcrossrategy, and verified which QTLs were present or absent eanmyp
the results for the different environments, concludingulstable QTLs across environments and
QTL by environment interaction based on separate analyses.

QTL mapping in sugarcane still has several difficulties hsas the use of only SDM, low sat-
urated linkage maps, reduced sample si¥§ the occurrence of collinearity between the additive
genetic predictors estimated for each parent (as a consegé the lack of information provided
by the markers). However, the present study provides mantgribations, allowing the identifi-
cation of a considerable number of QTLs for the evaluateitstravith information about effects,
position, stable QTLs, QTlx H, QTL x L and QTL x H x L interaction. In addition, the statis-
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cal models used to perform the analyses presented here aselen future studies about QTL

mapping involving different marker doses.
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6 CONCLUSION

i.) The mixed models approach was succesfuly applied torthlysis of sugarcane multi-harvest-
location trials (MHLT) data. It was possible to model comy{eo)variance structures, taking
into account heterogeneous genetic variance and the ecésté genetic correlation between
harvest-location combinations. The unstructured VCOV ehstowed the smallest values of

AIC for all evaluated traits and was selected for the QTL wsial

ii.) QTL x H, QTL x L and QTL x H x L interaction effects were important for all evaluated
traits. From the total of QTLs identified, 33 (66%) had sonternaction and only 17 (34%)
showed stable effects across the different combinatiotsnfest and location. Most of the

interactions were due to QTk H.

lii.) After the final model was adjusted, several QTLs for #naluated traits were identified,
providing information about genetic effects, positionabte QTLs and QTLx E interactions
(QTL x H, QTL x L and QTL x H x L). These results could provide useful information in
order to have a better understanding of the genetic contimmplex traits, such as biomass

production and sucrose content.



66



67

REFERENCES

ABATE, Z.A.; LIU, S.; MCKENDRY, A.L. Quantitative trait locassociated with deoxynivalenol
content and kernel quality in the soft red winter wheat ‘EtnCrop Science Madison, v. 48, p.
1408-1418, 2008.

AITKEN, K.S.; HERMANN, S.; KARNO, K.; BONNETT, G.D.; McINTYRE, C.L.; JACKSON,
P.A. Genetic control of yield related stalk traits in sugare. Theoretical and Applied Genetics
New York, v. 117, p. 1191-1203, 2008.

AITKEN, K.S.; JACKSON, P.A.; MCINTYRE, C.L. A combinationfAFLP and SSR markers
provides extensive map coverage and identification of henjtgous linkage groups in a

sugarcane cultivalheoretical and Applied Genetics New York, v. 110, p. 789-801, 2005.

AITKEN, K.S.; JACKSON, P.A.; McINTYRE, C.L. Constructiorfa genetic linkage map for
Saccharum officinarunmcorporating both simplex and duplex markers to increas®me
coverageGenome Ottawa, v. 50, p. 742-756, 2007.

AITKEN, K.S.; JACKSON, P.A.; MCINTYRE, C.L. Quantitativedit loci identified for sugar
related traits in a sugarcan®gccharunspp.) cultivar xSaccharum officinarumpopulation.
Theoretical and Applied Genetics New York, v. 112, p. 1306-1317, 2006.

AITKEN, K.S.; McNEIL, M. Diversity analysis. In: HENRY, R.EHd.) Genetics, Genomics and

Breeding of Sugarcane New Hampshire: Science Publishers. ca. 2010. 1v.

AKAIKE, H. A new look at the statistical model identificatiofhe Institute of Electrical and
Electronics Engineers Transaction and Automatic Contro)] Notre Dame, v. 19, p. 716-723,
1974.

AL-JANABI, S.M.; HONEYCUTT, R.J.; McCLELLAND, M.; SOBRALB.W.S. A genetic
linkage map ofSaccharum spontaneuin.) ‘SES 208’. Genetics Bethesda, v. 134, p. 1249-1260,
1993.



68

AL-JANABI, S.M.; PARMESSUR, Y.; KROSS, H.; DHAYAN, S.; SAUNALLY, S.;
RAMDOYAL, K.; AUTREY, L.J.C.; DOOKUN-SAUMTALLY, A. Identification of a major
guantitative trait locus (QTL) for yellow spoiycovellosiella koepkgdisease resistance in

sugarcaneMolecular Breeding, Berlin, v. 19, p. 1-14, 2007.

ALWALA, S.; KIMBENG, C.A. Molecular genetic linkage mappinn Saccharumstrategies,
resources and achievements. In: HENRY, R. (Ezkpetics, genomics and breeding of

sugarcane New Hampshire: Science Publishers., ca. 2010. 1v.

ALWALA, S.; KIMBENG, C.A.; VEREMIS, J.C.; GRAVOIS, K.A. Lirkage mapping and genome
analysis in é&accharumnterespecific cross using AFLP, SRAP and TRAP markeugphytica,
Wageningen, v. 164, p. 37-51, 2008.

ASNAGHI, C.; D'HONT, A.; GLASZMANN, J.C.; ROTT, P. Resistar of sugarcane cultivar R
570 toPuccinia melanocephaligolates from different geographic locatiofdant Disease Sant
Paul, v. 85, p. 282-286, 2001.

BALZARINI, M. Applications of mixed models in plant breedinin: KANG, M.S. (Ed.)
Quantitative genetics, genomics and plant breddingNew York: CABI Publishing. 2001. p.
353-363.

BASTEN, C.J.; WEIR, B.S.; ZENG, Z.B. QTL-Cartographer: gerence manual and tutorial for
QTL mapping. Haley, 2005. Disponivel em: <http://statgesu.edu/qtlcart>. Acesso em: 20 jan.
2010.

BOER, M.P.; WRIGHT, D.; FENG, L.; PODLICH, D.W.; LUO; L.; CORER, M.; EEUWIJK,

F.A. van. A mixed-model quantitative trait loci (QTL) analg for multiple-environment trial data
using environmental covariables for QTL-by-environmenéractions, with an example in maize.
Genetics Bethesda, v. 177, p. 1801-1813, 2007.



69

BROMAN, K.W.; WU, H.; SEN, S.; CHURCHILL, G.A. R/qtl: QTL mgpng in experimental
crossesBioinformatics, Oxford, v. 19, p. 889-890, 2003.

BURNHAM, K.P.; ANDERSON, D.R. Multimodel inference: undg¢anding AIC and BIC in
model selectionSociological Methods & ResearchLondon, v. 33, n. 2, p. 261-304, 2004.

CARDINAL, A.J.; LEE, M.; SHAROPOVA, N. WOODMAN-CLIKEMAN, WL.; LONG, M.L.
Genetic mapping and analysis of quantitative Trait Lociresistance to stalk tunneling by the

european corn borer in maiz€rop Science Madison, v. 41, p. 835-845, 2001.

CARLIER, J.D.; REIS, A.; DUVAL, M.F.; DEECKENBRUGGE, G.CLEITAO, M. Genetic
maps of RAPD, AFLP and ISSR markersAnanas bracteatuandA. comosusising the
pseudotestcross stratedgtant Breeding, Berlin, v. 123, p. 186-192, 2004.

CAVALCANTI, J.J.V.; WILKINSON, M.J. The first genetic map$ oashew Anacardium
occidentalel.). Euphytica, Wageningen, v. 157, p. 131-143, 2007.

CHAPMAN, S.C. Use of crop models to understand genotype kiy@mment interactions for
drought in realworld and simulated plant breeding triglsphytica, Wageningen, v. 161, p.
195-208, 2008.

CHARCOSSET, A.; MOREAU, L. Use of molecular markers for tlevelopment of new cultivars
and the evaluation of genetic diversiBuphytica, Wageningen, v. 137, p. 81-94, 2004.

CHEN, C.; KIM D. BOWMAN, K.D.; CHOI, Y.A.; DANG, P.M.; RAO, MN.; HUANG, S.,
SONEJI, J.R.; McCOLLUM, T.G.; GMITTER, F.G.Jr. EST-SSR g#a maps folCitrus sinensis

andPoncirus trifoliata Tree Genetics & GenomesBerlin, v. 4, p. 1-10, 2008.

CHO, Y.G.; KANG, H.J.; LEE, J.S.; LEE, Y.T.; LIM, S.J.; GAUCHH.; EUN, M.Y.; McCouch,
S.R. Identification of quantitative trait loci in rice forefd, yield components, and agronomic traits

across years and locatiorGtop Science Madison, v. 47 p. 2403-2417, 2007.



70

CHRISTENSEN, R.; JOHNSON, W.; PEARSON, L.M. Predictionghastics for spatial linear
models.Biometrika, Cambridge, v. 79, n. 3, p. 583-591, 1992.

CONAB - Companhia Nacional de Abastecimentdle¥antamento de cana-de-agucar - Dezembro

de 2009. Disponivel em: <http://www.conab.gov.br/conabw Acesso em: 20 jan. 2010.

CULLIS, B.; GOGEL, B.; VERBYLA, A.; THOMPSON, R. Spatial alysis of multi-environment

early generation variety trial®iometrics, Washington, v. 54, n. 1, p. 1-18, 1998.

CROSSA, J.; VARGAS, M.; van EEUWIJK, F.A.; JIANG, C.; EDMEATS, G.O.;

HOISINGTON, D. Interpreting genotype environment interaction in tropical maize using linked
molecular markers and environmental covariabldgeoretical and Applied Genetics New York,

v. 99, p. 611-625, 1999.

DAUGROIS, J.H.; GRIVET, L.; ROQUES, D.; HOARAU, J.Y.; LOMBRDI, H.; GLASZMANN,
J.C.; D’HONT, A. A putative major gene for rust resistenceéd with a RFLP marker in
sugarcane cultivar ‘R570Theoretical and Applied Genetics New York, v. 92, p. 1059-1064,
1996.

DEKKERS, J.C.M.; HOSPITAL, F. The use of molecular geneiiicthe improvement of
agricultural populationdNature Reviews GeneticsNew York, v.3, p.22-32, 2002.

DENIS, J.B.; PIEPHO, H.P.; van EEUWIJK, F.A. Modelling expegion and variance for
genotype by environment datderedity, London, v. 79, p. 162-171, 1997.

D'HONT, A.; GRIVET, L.; FELDMANN, P.; Rao, P.; BERDING, N.; GASZMANN, J.C.
Characterisation of the double genome structure of modegarsane cultivarsSaccharunspp.)

by molecular cytogeneticddolecular Genetics and GenomicsBerlin, v. 250, p. 405-413, 1996.



71

D’HONT, A.; ISON, D.; ALIX, K.; GLASZMANN, J.C. Determinatyn of basic chromosome
numbers in the genuSaccharunby physical mapping of ribosomal RNA gené€senome
Ottawa, v. 41, p. 221-225, 1998.

D’HONT, A.; LU, Y.H.; GONZALES de LEON, D.; GRIVET, L.; FLEDM\NN, P.; LANAUD,
C.; GLASZMANN, J.C. A molecular approach to unravelling tienetics of sugarcane, a complex
polyploid of the andropogonea&enome Ottawa, v. 37, p. 222-230, 1994.

DIETRICH, W.F.; MILLER, J.; STEEN, R.; MERCHANT, M.A.; DAMRN-BOLES, D.;
HUSAIN, Z.; DREDGE, R.; DALY, M.J.; INGALLS, K.A.; OCONNORT.J.; EVANS, C.A;
DeANGELIS, M.M.; LEVINSON, D.M.; KRUGLYAK, L.; GOODMAN, N, COPELAND, N.G.;
JENKINS, N.A.; HAWKINS, T.L.; STEIN, L.; PAGE, D.C.; LANDERE.S. A comprehensive
genetic map of the mouse genonNature, London, v. 380, p. 149-152, 1996.

DIGGLE, P.J. An Approach to the Analysis of Repeated Measerégs.Biometrics, Washington,
V. 44,n. 4, p. 959-971, 1988.

DOERGE, R.W. Mapping and analysis of quantitative trait Ine@xperimental populations.
Nature Reviews GeneticsNew York, v. 3, p. 43-52, 2002.

DOERGE, R.W.; ZENG, Z.B.; WEIR, B.S. Statistical issuestia search for genes affecting
guantitative traits in experimental populatio®tatistical Science Hayward, v. 12, p. 195-219,
1997.

EBERHART, S.A.; RUSSELL, W.A. Stability parameters for coaning varietiesCrop Science
Madison, v. 6, p. 36-40, 1966.

ECKERMANN, P.J.; VERBYLA, A.P.; CULLIS, B.R.; THOMPSON, Rhe abalysis of
quantitative traits in wheat mapping populatioAsstralian Journal of Agricultural Research,
Melbourne, v. 52, p. 1195-1206, 2001.



72

EEUWIIK, F.A. van; BOER, M.; TOTIR, L.R.; BINK, M.; WRIGHT, D WINKLER, C.R.;
PODLICH, D.; BOLDMAN, K.; BAUMGARTEN, A.; SMALLEY, M.; ARBELBIDE, M.; ter
BRAAK, C.J.F.; COOPER, M. Mixed model approaches for thentdieation of QTLs within a
maize hybrid breeding prograriheoretical and Applied Genetics New York, v. 120, 429-440,
2010.

EEUWIJK, F.A. van; MALOSETTI, M.; BOER, M.P. Modelling theegetic basis of response
curves underlying genotype environment interaction. In: SPIERTZ, J.H.J.; STRUIK, P¥an
LAAR, H.H. (Ed.) Scale and complexity in plant systems researctgene-plant-crop relations.
Dordrech: Springer, 2007, p. 115-126.

EEUWIJK, F.A. van; MALOSETTI, M.; YIN, X.; STRUIK, P.C.; STM, P. Statistical models for
genotype by environment data: from conventional ANOVA nisde eco-physiological QTL

models.Australian Journal of Agricultural Research, Melbourne, v. 56, p. 883-894, 2005

EDME, S.J.; GLYNN, N.G.; COMSTOCK, J.C. Genetic segregatdmicrosatellite markers in
Saccharum officinarurandS. spontaneunHeredity, London, v. 97, p. 366-375, 2006.

EDWARDS, M.D.; STUBER, C.W.; WENDEL, J.F. Molecular-marKacilitated investigations of
guantitative trait loci in maize. I. Numbers, genomic disition and types of gene action.
Genetics New York, v. 116, p. 113-125, 1987.

EMRICH, K.; PRICE, A.; PIEPHO, H.P. Assessing the impor&n€genotypex environment
interaction for root traits in rice using a mapping popwatilll: QTL analysis by mixed models.
Euphytica, Wageningen, v. 161, n. 1-2, p. 229-240, 2008.

FAO. FAOSTAT - Agriculture . Disponivel em: <http://faostat.fao.org/site/339/ddfaspx>.
Acesso em: 20 jan. 2010.



73

FISHER, R. A.; MACKENZIE, W. A. Studies in crop variation.. The manurial response of
different potato varietiesThe Journal of Agriculture Science, Cambridge, v. 13, p. 311-20,
1923.

FNP - CONSULTORIA & COMERCIOAGRIANUAL 2009: Anuério da Agricultura Brasileira,
Séo Paulo, 2008. 497 p.

GABRIEL, K.R. Biplot display of multivariate matrices witpplication to principal components
analysis.Biometrika, Cambridge, v. 58, p. 453-467, 1971.

GARCIA, A.AF,; KIDO, E.A.; MEZA, A.N.; SOUZA, H.M.B.; PINTO, L.R.; PASTINA, M.M.;
LEITE, C.S.; SILVA, J.A.G. DA; ULIAN, E.C.; FIGUEIRA, A.; SQZA, A.P. Development of an
integrated genetic map of a sugarcaBadcharunspp.) commercial cross, based on a
maximum-likelihood approach for estimation of linkage #n#age phasesTheoretical and
Applied Genetics New York, v. 112, p. 298-314, 2006.

GARCIA, A.A.F.; WANG, S.; MELCHINGER, A.E.; ZENG, Z.B. Quditative trait loci mapping
and the genetic basis of heterosis in maize and Ganetics Bethesda, v. 180, p. 1707-1724,
2008.

GAUCH, H.G. Model selection and validation for yield triaigth interaction.Biometrics,
Washington, v. 44, p. 705-15, 1988.

GAUCH, H.G. Statistical analysis of regional yield trials: AMMI analysis of factorial designs,
Amsterdam: Elsevier, 1992. 172 p.

GOGEL, B.J.; CULLIS, B.R.; VERBYLA, A.P. REML estimation aofultiplicative effects in
multi-environment variety trialsBiometrics, Washington, v. 51, n. 2, p. 744-749, 1995.

GOLLOB, H.F. A statistical model which combines feature$aattor analytic and analysis of

variance techniqué?sychometrika Baltimore, v. 33, n. 1, p. 73-115, 1968.



74

GRATTAPAGLIA, D.; SEDEROFF, R. Genetic linkage mapsticalyptus grandiand
Eucalyptus urophyllausing a pseudo-testcross: mapping strategyand RAPD nsafkenetics
Bethesda, v. 137, p. 1121-1137, 1994.

GREEN, C.V. Further evidence of linkage in size inheritasfamerican Naturalist, Chicago, v.
67, p. 377-380, 1933.

GREEN, C.V. Linkage in size inheritancAmerican Naturalist, Chicago, v. 65, p. 502-511,
1931.

GRIVET, L.; ARRUDA, P. Sugarcane genomics: depicting thenptex genome of an important
tropical crop.Current Opinion in Plant Biology , London, v. 5, p. 122-127, 2001.

GRIVET, L.; D’'HONT, A.; ROQUES, D.; FELDMANN, P.; LANAUD, CE.; GLASZMANN,
J.C. RFLP mapping in cultivated sugarcaBag¢charunspp.): genome organization in a highly

polyploid and aneuploid interespecific hybri@enetics Bethesda, v. 142, p. 987-1000, 1996.

GUIMARAES, C.T.,; HONEYCUTT, R.J.; SILLS, G.R.; SOBRAL, BLS. Genetic maps of
Saccharum officinarurh. andSaccharum robusturandes and Jew. Ex. Gras@enetics and
Molecular Biology, Ribeirdo Preto, v. 22, p. 125-132, 1999.

GUIMARAES, C.T.; SILLS, G.R.; SOBRAL, B.W.S. Comparativeapping of Andropogoneae:
Saccharuni. (sugarcane) and its relation to sorghum and mdzeceedings of the National
Academy of SciencesWashington, v. 94, p. 14261-14266, 1997.

HALEY, C.S.; KNOTT, S.A.; ELSEN J.M. Mapping quantitativett loci in crosses between
outbred lines using least squar&enetics Bethesda, v.136, p. 195-207, 1994.

HEALTH, S.C. Markov chain Monte Carlo segregation and lgéganalysis for oligogenic

models.American Journal of Human Genetics Baltimore, v. 61, p. 748-760, 1997.



75

HEINZ, D.J.; TEW, T.L. Hybridization procedures. In: HEINR.J. (Ed.)Sugarcane
improvement through breeding. Amsterdam: Elsevier. 1987. p. 313-342.

HENDERSON, C.R. Statistical methods in animal improvemkRistorical overview. In:
GIANOLA, D.; HAMMOND, K. (Ed.) Advances in Statistical Methods for Genetic
Improvement of Livestock. New York: Springer-Verlag, 1990, p. 1-14.

HOARAU, J.Y.; GRIVET, L.; OFFMAN, B.; RABOIN, L.M.; DIORFLAR, J.P.; PAYET, J.;
HELLMAN, M.; D’HONT, A.; GLASZMANN, J.C. Genetic dissectio of a modern sugarcane
cultivar (Saccharunspp.). Il. Detection of QTL's for yield componentBheoretical and Applied
Genetics New York, v. 105, p. 1027-1037, 2002.

HOARAU, J.Y.; OFFMAN, B.; D’'HONT, A.; RISTERUCCIO, A.M.; RQUES, D.;
GLASZMANN, J.C.; GRIVET, L. Genetic dissection of a modergarcane cultivar§accharum
spp.). I. Genome mapping with AFLP market$eoretical and Applied Genetics New York, v.
103, p. 84-97, 2001.

IRVINE, J.E.Saccharunspecies as horticultural class@$eoretical and Applied Genetics New
York, v. 98, p. 186-194, 1999.

JANSEN, R.C.; STAM, P. Resolution of quantitative traitsoimultiple loci via interval mapping.
Genetics Bethesda, v. 136, p. 1447-1455, 1994.

JIANG, C.; ZENG, Z.B. Multiple trait analysis of genetic nyapg for quantitative trait loci.
Genetics Bethesda, v. 140, p. 1111-1127, 1995.

JOHNSON, D.L.; JANSEN, R.C.; van ARENDONK, J.A.M. Mappingantitative trait loci in a
selectively genotyped outbred population using a mixtuoelehapproachGenetical Research
London, v. 73, p. 75-83, 1999.



76

JORDAN, D.R.; CASU, R.E.; BESSE, P.; CARROLL, B.C.; BERDIN&.; MCINTYRE, C.L.
Markers associated with stalk number and suckering in sagarcolocate with tillering and

rhizomatousness QTLs in sorghuenome Ottawa, v. 47, p. 988-993, 2004.

KAO, C.H.; ZENG, Z.B. General formulae for obtaining the MéBnd the asymptotic
variance-covariance matrix in mapping quantitative tict when using the EM algorithm.
Biometrics, Washington, v. 53, p. 653-665, 1997.

KAO, C.H., ZENG, Z.B.; TEASDALE, R D. Multiple interval mapg for quantitative trait loci.
Genetics Bethesda, v. 152, p. 1203-1216, 1999.

KOSAMBI, D.D. The estimation of map distances from reconaition valuesAnnual of
Eugene London, v. 12, p. 172-175, 1944.

LANDER, E.S.; GREEN, P.; ABRAHANSON, J.; BARLOW, A.; DALY, M.; LINCON S.E.;
NEWBURG, L. MAPMAKER: An interactive computing package fwonstructing primary
genetic linkages of experimental and natural populati@eiomics Orlando, v. 1, p. 174-181,
1987.

LANDER; E.; BOTSTEIN, D. Mapping Mendelian factors undenly quantitative traits using
RFLP linkage mapsGenetics Bethesda, v. 121, p. 185-199, 1989.

LI, D.; PFEIFFER, T.W.; CORNELIUS, P.L. Soybean QTL for ydednd yield components
associated with Glycine soja allelgSrop Science Madison, v. 48, p. 571-581, 2008.

LIMA, M.L.A.; GARCIA, AA.F.; OLIVEIRA, K.M.; MATSUOKA, S. ; ARIZONO, H.; SOUZA
JR., C.L.; SOUZA, A.P. Analysis of genetic similarity detied by AFLP and coefficient of
parentage among genotypes of sugar c&aecharunspp.). Theoretical and Applied Genetics
New York, v. 104, p. 30-38, 2002.



77

LIN, M.; LOU, X.Y.; CHANG, M.; WU, R. A general statistical fmework for mapping
quantitative trait loci in nonmodel systems: issue for eleterizing linkage phase&enetics
Bethesda, v. 165, p. 901-913, 2003.

LINDSTROM, E.W. A genetic linkage between size and colotdexin the tomatoScience
Washington, v. 60, p. 182-183, 1924.

LINDSTROM, E.W. Genetic tests for linkage between row andaie qualitative genes in maize.
Research Bulletin Ames, v. 142, p. 250-288, 1931.

LIU, B.H. Statistical genomics:linkage, mapping, and QTL analysis. Boca Raton: CRC Press,
1998. 611p.

LYNCH, M.; WALSH, B. Genetics and analysis of quantitative traits Sunderland: Sinauer
Associates, 1998. 980p.

MACCAFERRI, M.; SANGUINETI, M.C.; CORNETI, S.; ORTEGA, J.A.; SALEM, M.B.;
BORT, J.; DeAMBROGIO, E.; MORAL, L.F.G. del; DEMONTIS, A.;LEAHMED, A.;

MAALOUF, F.; MACHLAB, H.; MARTOS, V.; MORAGUES, M.; MOTAWAJ J.; NACHIT, M.;
NSERALLAH, N.; OUABBOU, H.; ROYO, C.; SLAMA, A.; TUBEROSA, RQuantitative trait
loci for grain yield and adaptation of Durum Wheati{icum durumDesf.) across a wide range of
water availability.Genetics Bethesda, v. 178, p. 489-511, 2008.

MACKAY, T.F.C. Quantitative trait loci in DrosophildNature Reviews GeneticsNew York, v. 2,
p. 11-20, 2001.

MALIEPAARD, C.; JANSEN, J.; van OOIJEN, J.W. Linkage anasym a full-sib family of an
outbreeding plant species: overview and consequencegjitications.Genetical Research
Cambridge, v. 70, p. 237-250, 1997.



78

MALOSETTI, M.; RIBAUT, J.M.; VARGAS, M.; CROSSA, J.; van EEWIJK, F.A. A multi-trait
multi-environment QTL mixed model with an application tadght and nitrogen stress trials in

maize Zea mayd..). Euphytica, Wageningen, v. 161, p. 241-257, 2008.

MALOSETTI, M.; VOLTAS, J.; ROMAGOSA, |.; ULLRICH, S.E.; vakEEUWIJK, F.A. Mixed
models including environmental covariables for studying @y environment interaction.
Euphytica, Wageningen, v. 137, p. 139-145, 2004.

MANGOLIN, C.A.; SOUZA JR., C.L. de; GARCIA, A.A.F.; GARCIAA.F,; SIBOV, S.T,;
SOUZA, A.P. de. Mapping QTLs for kernel oil content in a trogdimaize populationEuphytica,
Wageningen, v. 137, p. 251-259, 2004.

MANLY, K.F.; CUDMORE JR, R.H.; MEER, J.M. Map Manager QTX,ags-platform software
for genetic mappingMammalian Genome New York, v. 12, p. 930-932, 2001.

MARGARIDO, G.R.A.; SOUZA, A.P.; GARCIA, A.A.F. OneMap: sovare for genetic mapping
in outcrossing speciesiereditas, Lund, v. 144, p. 78-79, 2007.

MARTINEZ, O.; CURNOW, R.N. Estimating the locations and 8izes of the effects of
guantitative trait loci using flanking markersheoretical and Applied Genetics New York, v.
85, p. 480-488, 1992.

MATHEWS, K.L.; MALOSETTI, M.; CHAPMAN, S.; McINTYRE, L.; REYNOLDS, M.;
SHORTER, R.; van EEUWIJK, F. MultienvironmentQTL mixed netsifor drought stress
adaptation in wheatlheoretical and Applied Genetics New York, v. 117, p. 1077-1091, 2008.

MATSUOKA, S.; GARCIA, A.A.F.; ARIZONO, H. Melhoramento daana-de-acucar. In:
BOREM, A (Ed.)Melhoramento de espécies cultivadasd/icosa: UFV, 1999. p. 205-252.



79

McINTYRE, C.L.; CASU, R.E.; DRENTH, J.; KNIGHT, D.; WHAM, \A.; CROFT, B.J.;
JORDAN, D.R.; MANNERS. Resistance gene analogues in sagarand sorghum and their
association with quantitative trait loci for rust resistanGenome Ottawa, v. 48, p. 391-400,
2005a.

McINTYRE, C.L.; JACKSON, P.A.; CORDEIRO, G.M.; AMOUYAL, QHERMANN, S.;
AITKEN, K.S.; ELIOTT, F.; HENRY, R.J.; CASU, R.E.; BONNETT.D. The identification and
characterisation of alleles of sucrose phosphate syngesefamily Il in sugarcaneéMolecular
Breeding, Berlin, v. 18, p. 39-50, 2006.

McINTYRE, C.L.; WHAN, V.A.; CROFT, B.; MAGAREY, R.; SMITH, GR. Identification and
validation of molecular markers associated with PachyanRtot Rot and brown rust resitance in
sugarcane using map- and association-based apprddotexular Breeding, Berlin, v. 16, p.
151-161, 2005b.

MING, R.; DEL MONTE, T.A.; HERNANDEZ, E.; MOORE, P.H.; IRVIK, J.E.; PATERSON,
A.H. Comparative analysis of QTLs affecting plant heighd #ilowering among closely-related

diploid and polyploid genome&enome Ottawa, v. 45, p. 794-803, 2002a.

MING, R.; LIU, S.C.; BOWERS, J.E.; IRVINE, J.E.; PATERSON,I Construction of a
Saccharuntonsensus genetic map from two interspecific crogSesp Science Madison, v. 42,
p. 570-583, 2002b.

MING, R.; LIU, S.C.; LIN, Y.R.; da SILVA, J.; WILSON, W.; BRA®, D.; van DEYNZE, A
WENSLAFF, T.F.; WU, K.K.; MOORE, P.H.; BURNQUIST, W.; SORRES, M.E.; IRVINE,
J.E.; PATERSON, A.H. Detailed alignment 8&ccharunandSorghunchromosomes:
Comparative organization of closely related diploid antyplmid genomesGenetics Bethesda,
v. 150, p. 1663-1682, 1998.



80

MING, R.; LIU, S.C.; MOORE, P.H.; IRVINE, J.E.; PATERSON, A. QTL Analysisin a
complex autopolyploid: genetic control of sugar contergugarcaneGenome Research
London, v. 11, p. 2075-2084, 2001.

MING, R.; WANG, Y.W.; DRAYE, X.; MOORE, P.H.; IRVINE, J.E.;ATERSON, A.H.

Molecular dissection of complex traits in autopolyploidsapping QTL's affecting sugar yield and
related traits in sugarcan&heoretical and Applied Genetics New York, v. 105, p. 332-345,
2002c.

MOHAN, M.; NAIR, S.; BHAGWAT, A.; KRISHNA, T.G.; YANO, M.; BHATIA, C.R.; SASAKI,
T. Genome mapping, molecular markers and markers-assistection in crop plantsviolecular
Breeding, Berlin, v. 3, p. 87-103, 1997.

MOLLINARI, M.; MARGARIDO, G.R.A.; VENCOVSKY, R.; GARCIA, A A.F. Evaluation of
algorithms used to order markers on genetic méajesedity, London, v. 103, p. 494-502, 2009.

MORGANTE, M.; SALAMINI, F. From plant genomics to breedingggatice.Current Opinion
in Plant Biotechnology, London, v. 14, p. 214-219, 2003.

MUDGE, J.; ANDERSEN, W.R.; KEHRER, R.; FAIRBANKS, D.J. A RAPgenetic map of
Saccharum officinarunCrop Science Madison, v. 36, p. 1362-1366, 1996.

OLIVEIRA, K.M.; PINTO, L.R.; MARCONI, T.G.; MARGARIDO, G.RA.; PASTINA, M.M.;
TEIXEIRA, L.H.M.; FIGUEIRA, A.M.; ULIAN, E.C.; GARCIA, A.A.F.; SOUZA, A.P.
Functional genetic linkage map on EST-markers for a sugar&accharunspp.) commercial
cross.Molecular Breeding, Berlin, v. 20, p. 189-208, 2007.

OMAN, S.D. Multiplicative Effects in Mixed Model Analysisfd/ariance.Biometrika,
Cambridge, v. 78, n. 4, p. 729-739, 1991.



81

OOIJEN, J.W. van; VOORRIPS, R.HoinMap 3.0, Software for the Calculation of Genetic
Linkage Maps. Plant Research International. Kyazma BV, Wageningen,Nétaerlands, 2001.

PASTINA, M.M.; PINTO, L.R.; OLIVEIRA, K.M.; SOUZA, A.P.; GRCIA, A.A.F. Molecular
mapping of complex traits. In: HENRY, R. (Ed3enetics, Genomics and Breeding of

Sugarcane New Hampshire: Science Publishers., ca. 2010. 1V.

PATERSON, A.; LANDER, E.; LINCOLN, S.; HEWITT, J.; PETERSORN.; TANKSLEY, S.
Resolution of quantitative traits into mendelian factasgg a complete RFLP linkage map.
Nature, London, v. 225, p. 721-726, 1988.

PATTERSON, H. D.; THOMPSON, R. Recovery of inter-block infaation when block sizes are
unequal Biometrika, London, v. 58, p. 545-54, 1971.

PAYNE, R.W.; MURRAY, D.A.; HARDING, S.A.; BAIRD, D.B.; SOUAR, D.M. GenStat for
Windows (12th Edition) IntroductioWSN International, Hemel Hempstead, 2009.

PIEPHO, H.P. A mixed-model approach to mapping quantiati&it loci in barley on the basis of
multiple environment datasenetics Bethesda, v. 156, p. 2043-2050, 2000.

PIEPHO, H.P. Analyzing Genotype-Environment Data by milkstiels with Multiplicative
Terms.Biometrics, Washington, v. 53, n. 2, p. 761-766, 1997.

PIPEHO, H.P. Statistical tests for QTL and QTL-byenviromteffects in segregating populations
derived from line crossed.heoretical and Applied Genetics New York, v. 110, p. 561-566,
2005.

PINHEIRO, J.C.; BATES, D.MMixed-effects models in S and S-PlusNew York:
Springer-Verlag. 2000. 528 p.



82

PINTO, L.R.; GARCIA, A A.F.; PASTINA, M.M.; TEIXEIRA, L.HM.; BRESSIANI, J.A.;
ULIAN, E.C.; BIDOIA, M.A.P.; SOUZA, A.P. Analysis of genorniand functional RFLP derived
markers associated with sucrose content, fiber and yieldsQTh sugarcane&s@ccharunspp.)
commercial crossEuphytica, Wageningen, 2009. Disponivel em:

<http://www.springerlink.com>.

PIPERIDIS, N.; JACKSON, P.A.; D'HONT, A.; BESSE, P.; HOARAU.Y.; COURTOIS, B.;
AITKEN, K.S.; McINTYRE, C.L. Comparative genetics in sugane enables structured map
enhancement and validation of marker-trait associatiblmdecular Breeding, Berlin, v. 21, p.
233-247, 2008.

PORCEDDU, A.; ALBERTINI, E.; BARCACCIA, G.; FALISTOCCO, EFALCINELLI, M.
Linkage mapping in apomictic and sexual Kentucky bluegfBea pratensid..) genotypes using
a two way pseudo-testcross strategy based on AFLP and SAMfPkens.Theoretical and
Applied Genetics New York, v. 104, p. 273-280, 2002.

RABOIN, L.M.; OLIVEIRA, K.M.; LECUNFF, L.; TELISMART, H.; ROQUES, D.;
BUTTERFIELD, M.; HOARAU, J.Y.; D’HONT, A. Genetic mappingnisugarcane, a high
polyploid, using bi-parental progeny: identification ofeng controlling stalk colour and a new

rust resistance gen&heoretical and Applied Genetics New York, v. 112, p. 1382-1391, 2006.

RABOIN, L.M.; PAUQUET, J.; BUTTERFIELD, M.; D’HONT, A.; GLASZMANN, J.C.
Analysis of genome-wide linkage disequilibrium in the Higpolyploid sugarcaneTheoretical
and Applied Genetics New York, v. 116, p. 701-714, 2008.

RASMUSSON, J. Genetically changed linkage values in Piddeneditas, Lund, v. 10, p. 1-152,
1927.

R Development Core Team. R: A language and environmentdtisstal computing. R
Foundation for Statistical Computing, Vienna, 2009. Dispel em: <http://www.R-project.org>.

Acesso em: 20 jan. 2010.



83

REFFAY, N.; JACKSON, P.A.; AITKEN, K.S.; HOARAU, J.Y.; D'HQT, A.; BESSE, P,;
MCINTYRE, C.L. Characterisation of genome regions incogbed from an important wild

relative into Australian sugarcanilolecular Breeding, Berlin, v. 15, p. 367-381, 2005.

RESENDE, M.D.V; THOMPSON, R. Factor analytic multiplicaimixed models in the analysis
of multiple experimentsBrazilian Journal of Mathematics and Statistics Sao Paulo, v. 22, n.
2, p. 31-52, 2004.

RIDOUT, M.S., TONG, S.; VOWDEN, C.J.; TOBUTT, R.K. Threeipblinkage analysis in

crosses of allogamous plant speci@gnetical ResearchLondon, v. 72, p. 111-121, 1998.

RIPOL, M.1.; CHURCHILL, G.A.; da SILVA, J.A.G; SORRELLS, Mstatistical aspects of
genetic mapping in autopolyploid&ene Amsterdam, v. 235, p. 31-41, 1999.

RITTER, E.; GEBHARDT, C.; SALAMINI, F. Estimation of reconnmtion frequencies and
construction RFLP linkage maps in plants from crosses batvireterozygous parentsenetics
Bethesda, v. 125, p. 645-654, 1990.

RITTER, E.; SALAMINI, F. The calculation of recombinatiorefjuencies in crosses of
allogamous plant species with applications to linkage rnmapsenetical ResearchLondon,
v.67, p.55-65, 1996.

SABADIN, P.K.; SOUZA JR., C.L.; SOUZA, A.P.; GARCIA, A.A.RTL mapping for yield
components in a tropical maize population using microbeg@harkers.Hereditas, Lund, v. 145,
p. 194-203, 2008.

SAS Institute, SAS/STAT User’s Guide. Cary, 1989. Dispeham:
<http://www.d.umn.edu/math/docs/saspdf/stat/pdfitim=h Acesso em: 20 jan. 2010.



84

SATAGOPAN, J.M.; YANDELL, B.S.; NEWTON, M.A.; OSBORN, T.(A Bayesian approach to
detect quantitative trait loci using Markov Chain Monte I8aGenetics Bethesda, v. 144, p.
805-816, 1996.

SAX, K. The association of size differences with seed-cadtigon and pigmentation in Phaseolus
vulgaris.Genetics Bethesda, v. 8, p. 552-560, 1923.

SCHLOTTERER, C. The evolution of molecular markers - justattar of fashion?Nature
Reviews GeneticsNew York, v. 5, p. 63-69, 2004.

SCHWARZ, G. Estimating the dimension of a mod&hnals of Statistics Philadelphia, v. 6, p.
461-464, 1978.

SEARLE, S. RLinear models. New York: J. Wiley & Sons, 1971. 532 p.

SEATON, G.; HALEY, C.S.; KNOTT, S.A.; KEARSEY, M.; VISSCHER.M. QTL Express:
mapping quantitative trait loci in simple and complex pedas.Bioinformatics, Oxford, v. 18, p.
339-340, 2002.

SEMAGN, K.; SKINNES, H.; BIGORNSTAD, A.; MARGOY, A.G.; TAREGNE, Y.
Quantitative trait loci controlling fusarium head bliglktsistance and low deoxynivalenol content
in hexaploid wheat population from ‘Arina’ and NK936034rop Science Madison, v. 47, p.
294-303, 2007.

SHEPHERD, M.; CROSS, M.; DIETERS, M.J.; HENRY, R. Genetiggaiéor Pinus elliottiivar
hondurensis using AFLP and microsatellite mark@iseoretical and Applied Genetics New
York, v. 106, p. 1409-1419, 2003.



85

SIBOV, S.T.; SOUZA JR, C.L.; GARCIA, A.A.F,; SILVA, A.R.; GRCIA, A.F.; MANGOLIN,
C.A.; BENCHIMOL, L.L.; SOUZA, A.P. Molecular mapping in tpical maize (Zea mays L.)
using microsatellite markers. 2. Quantitative trait |d@iT(L) for grain yield, plant heigth, ear
height and grain moisturéiereditas, Lund, v. 139, p. 107-115, 2003.

SILLANPAA, M.J.; ARJAS, E. Bayesian mapping of multiple qugative trait loci from
incomplete inbred line cross dataenetics Bethesda, v. 148, p. 1373-1388, 1998.

SILLS, G.R.; BRIDGES, W.; AL-JANABI, S.M.; SOBRAL, B.W.S. &etic analysis of
agronomic traits in a cross between sugarc&ae¢harum officinarurh.) and its presumed
progenitor §. robustunBrandes & Jesw. ex GrassNlolecular Breeding, Berlin, v. 1, p.
355-363, 1995.

SILVA, J.A.G. da; BRESSIANI, J.A. Sucrose synthasemolacuarker associated with sugar
content in elite sugarcane proge@enetics and Molecular Biology Ribeirdo Preto, v. 28, n. 2,
p. 294-298, 2005.

SILVA, J.A.G. da; HONEYCUTT, R.J.; BURNQUIST, W.; AL-JANABS.M.; SORRELLS,
M.E.; TANKSLEY, S.D.; SOBRAL, W.SSaccharum spontaneum’SES 208’ genetic linkage
map combining RFLP and PCR based markbtslecular Breeding, Berlin, v. 1, p. 165-179,
1995.

SILVA, J.A.G. da; SORRELLS, M.E.; BURNQUIST, W.; TANKSLE.D. RFLP linkage map of
Saccharum spontaneui@enome Ottawa, v. 36, p. 782-791, 1993.

SMITH, A.; CULLIS, B.; THOMPSON, R. Analyzing Variety by Eimonment Data Using
Multiplicative Mixed Models and Adjustments for Spatiakk Trend.Biometrics, Washington,
v. 57, n. 4, p. 1138-1147, 2001.



86

SMITH, A.B.; CULLIS, B.R.; THOMPSON, R. The analysis of cropltivar breeding and
evaluation trials: an overview of current mixed model ajgtees.The Journal of Agricultural
Science Cambridge, v. 143, p. 449-462, 2005.

SMITH, A.B.; STRINGER, J.K.; WEI, X.; CULLIS, B.R. Varietaelection for perennial crops
where data relate to multiple harvests from a series of fredtst Euphytica, Wageningen, v. 157,
p. 253-266, 2007.

SMITH, H.H. The relation between genes affecting size ardrdn certain species of Nicotiana.
Genetics Bethesda, v. 22, p. 361-375, 1937.

SOBRAL, B.W.S.; HONEYCUTT, R.J. High output genetic magpin polyploids using
PCR-generated markerBheoretical and Applied Genetics New York, v. 86, p. 105-112, 1993.

SOLLER, M.; BRODY, T.; GENIZI, A. On the power of experimehtiesign for the detection of
linkage between marker loci and quantitative loci in credsetween inbred line3heoretical
and Applied Genetics New York, v. 47, p. 35-39, 1976.

SONG, J.Z.; SOLLER, M.; GENIZI, A. The full-sib intercross¢ (FSIL): a QTL mapping design

for outcrossing specie§&enetical ResearchLondon, v. 73, p. 61-73, 1998.

STUBER, C.W.; EDWARDS, M.D.; WENDEL, J.F. Molecular-mark@cilitated investigations of
guantitative trait loci in maize. Il. Factors influencinggid and its component trait€rop
Science Madison, v. 27, p. 639-648, 1987.

TAKEDA, S.; MATSUOKA, M. Genetic approaches to crop impravent: responding to
environmental and population changbsture Reviews GeneticsNew York, v. 9, p. 444-457,
2008.



87

UTZ, H.F.; MELCHINGER, A.E. PLABQTL: a Program for Compaosiinterval Mapping of
QTL. Stuttgart, 2003. Disponivel em: <http://www.uni-testheim.de/ zipspwww/soft.html>.
Acesso em: 20 jan. 2010.

VARGAS, M.; van EEUWIJK, F.A.; CROSSA, J.; RIBAUT, J.M. Majpyg QTLs and QTLx
environment interaction for CIMMYT maize drought stresegmam using factorial regression and
partial least squares method$eoretical and Applied Genetics New York, v. 112, p.

1009-1023, 2006.

VERBEKE, G.; MOLENBERGHS, GLinear mixed models for longitudinal data. New York:
Spinger-Verlag, 2000, 568 p.

VERBYLA, A.; ECKERMAN, P.J.; THOMPSON, R.; CULLIS, B. The alysis of quantitative
trait loci in multi-environment trials using a multiplidgaé mixed model Australian Journal of
Agricultural Research, Melbourne, v. 54, p. 1395-1408, 2003.

WANG, S.; BASTEN, C.J.; ZENG, Z.B. Windows QTL-Cartograpl2e5. Raleigh, 2007.
Disponivel em: <http://statgen.ncsu.edu/qgtlcart/WQatttm>. Acesso em: 20 jan. 2010.

WASSOM, J.J.; MIKKELINENI, V.; BOHN, M.O.; ROCHEFORD, T.RQTL for Fatty Acid
Composition of Maize Kernel Oil in lllinois High Oik B73 Backcross-Derived Line€rop
Science Madison, v. 48, p, 69-78, 2008a

WASSOM, J.J.; JeFFREY, C.W.; MARTINEZ, E.; KING, J.J.; DeBNE, J. QTL Associated with
Maize Kernel Oil, Protein, and Starch Concentrations; IéeNass; and Grain Yield in Illinois
High Oil x B73 Backcross-Derived Line§rop Science Madison, v. 48, p. 243-252, 2008b.

WELI, X.; JACKSON, P.A.; McINTYRE, C.L. Associations betwe®NA markers and resistance
to diseases in sugarcane and effects of population substeu€heoretical and Applied
Genetics New York, v. 114, p. 155-164, 2006.



88

WELLER, J.I. Maximum likelihood techiques for the mappinmglaanalyses of quantitative trait

loci with the aid of genetic marker8iometrics, Washington, v. 42, p. 627-640, 1986.

WEXELSEN, H. Quantitative inheritance and linkage in barldereditas, Lund, v. 18, p.
307-348, 1933.

WOLFINGER, R.D. Covariance structure selection in generiakd linear models.
Communications in Statistics A, Theory and Methods Zug, v. 22, p. 1079-1106, 1993.

WU, R.; MA, C.X.; PAINTER, I.; ZENG, Z.B. Simultaneous maxim likelihood estimation of
linkage and linkage-phases in outcrossing spedigeoretical Population Biology, New York, v.
61, p. 349-363, 2002a.

WU, R.; MA, C.X.; WU, S.S.; ZENG, Z.B. Linkage mapping of segecific differences.
Genetical ResearchLondon, v. 79, p. 85-96, 2002b.

WU, K.K.; BURNQUIST, W.; SORRELLS, M.E.; TEW, T.L.; MOORE,R.; TANKSLEY, S.D.
The detection and estimation of linkage in polyploids usimgle-dose restriction fragments.
Theoretical and Applied Genetics New York, v. 83, p. 294-300, 1992.

YI, N.; XU, S. Bayesian mapping of quantitative trait locider complicated mating designs.
Genetics Bethesda, v. 157, p. 1759-1771, 2001.

Y1, N.; YANDELL, B.S.; CHURCHILL, G.A.; ALLISON, D.B.; EISEN, E.J.; POMP, D. Bayesian
model selection for genome-wide epistatic QTL analy&isnetics Bethesda, v. 170, p.
1333-1344, 2005.

YIl, N.; BANERJEE, S.; POMP, D.; YANDELL, B.S. Bayesian mapgiof genome-wide
interacting quantitative trait loci for ordinal trait&enetics Bethesda, v. 176, p. 1855-1864,
2007a.



89

YIl, N.; SHRINER, D.; BANERJEE, S.; MEHTA, T.; POMP, D.; YANDOH,, B.S. An efficient
Bayesian model selection approach for interacting quativid trait loci models with many effects.
Genetics Bethesda, v. 176, p. 1865-1877, 2007b.

ZENG, Z.B. Theoretical basis of precision mapping of quatitie trait loci.Proceedings of the
National Academy of Sciences of the United States of Americ&Vashington, v. 90, p.
10972-10976, 1993.

ZENG, Z.B. Precision mapping of quantitative trait loGenetics Bethesda, v. 136, p.
1457-1468, 1994.

ZENG, Z.B., KAO, C.H.; BASTEN, C.J. Estimating the genetictatecture of quantitative traits.
Genetical ResearchLondon, v. 74, p. 279-289, 1999.

ZHAO, M.; ZHANG, Z.; ZHANG, S.; LI, W.; JEFFERS, D.P.; RONG,;TPAN, G. Quantitative
trait loci for resistance to banded leaf and sheath blighmaize.Crop Science Madison, v. 46, p.
1039-1045, 2006.





