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RESUMO

Predição de híbridos simples de milho não avaliados com informações da matriz de
parentesco realizada e interação genótipos por ambientes

A fenotipagem em ensaios de múltiplos ambientes (MET) tem papel importante
para acessar a resposta diferencial de híbridos de milho em diferentes regiões alvo de melhora-
mento, o que se deve a interação genótipos por ambientes (GxE). Neste contexto, um modelo
efetivo de seleção genômica (GS) para predição do desempenho de híbridos não avaliados em
MET é essencial para maximizar os ganhos genéticos e alocar eficientemente o orçamento
dos programas de melhoramento. Desta forma, os objetivos deste estudo foram (i) avaliar
as acurácias preditivas de modelos GBLUP (do inglês, Genomic Best Linear Unbiased Pre-
diction) na predição da produtividade de grãos de híbridos simples de milho tropical não
avaliados, usando modelos genético-estatísticos que levam em consideração a interação GxE
através de uma estrutura de variância-covariância (VCOV) do tipo fator analítico (FA) e
(ii) investigar a utilidade da matriz de parentesco realizada em combinação com diferentes
estruturas de VCOV para efeitos genéticos e de resíduos em diferentes níveis de ambientes
em desbalanceamento. As predições foram realizadas em duas situações: (CV1) híbridos não
avaliados em nenhum ambiente e (CV2) híbridos avaliados em alguns ambientes e em outros
não. Foram fenotipados 156 híbridos simples de milho em 12 ambientes para a característica
produtividade de grãos. O genótipo dos híbridos foi inferido com base nas informações de
marcadores SNP (do inglês, single nucleotide polymorphism) das linhagens parentais, obti-
dos via GBS (do inglês, genotyping-by-sequencing). Modelos que contemplaram informações
de ambientes relacionados apresentaram acurácia preditiva superior em relação aos modelos
que ignoraram tal informação. Modelos com matriz de parentesco realizada e interação GxE
mantiveram acurácias preditivas acima de 0,400 com até 66% dos ambientes em desbalancea-
mento (oito ambientes selecionados ao acaso), sendo superior em relação a modelos FA que
não contemplaram informação da matriz de parentesco realizada. A modelagem dos efeitos
genéticos apresentou melhores resultados que a modelagem dos efeitos residuais. Estes re-
sultados destacam a importância de incluir a matriz de parentesco realizada e de estruturas
de VCOV que permitam que os modelos levem em consideração informações de híbridos
aparentados, assim como de ambientes correlacionados na predição de híbridos simples de
milho tropical não avaliados. Os procedimentos e modelos utilizados neste estudo podem ser
facilmente estendidos a outras culturas em que MET desempenha um papel importante no
processo de melhoramento.

Palavras-chave: Seleção Genômica; GBLUP; Ensaios para Múltiplos Ambientes; Variância-
Covariância
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ABSTRACT

Predicting the performance of untested maize single cross hybrids based on information
from genomic relationship matrix and genotype by environment interaction

Phenotyping in multi-environment trials (MET) plays an important role to access
the differential response of maize hybrids across target breeding regions due to genotype
by environment (GxE) interaction. In this context, an effective model of genomic selection
(GS) to predict the performance of untested hybrids in MET is essential to maximize genetic
gains and to efficiently allocated the breeding programs’ budget. Therefore, the goals of this
study were (i) to evaluate the predictive accuracies of GBLUP (Genomic Best Linear Un-
biased Prediction) models to predict grain yield performance of unobserved tropical maize
single-cross hybrids, using models that consider GxE interaction by fitting a factor analytic
(FA) variance-covariance (VCOV) structure, and (ii) to investigate the usefulness of genomic
relationship information in combination with different VCOV for genetics and residuals ef-
fects, under different levels of unbalanced environments. Predictions were performed for two
situations: (CV1) untested hybrids, and (CV2) hybrids evaluated in some environments but
missing in others. Phenotypic data of grain yield was measured in 156 maize single-cross
hybrids at 12 environments. Hybrids genotypes were inferred based on their parents (inbred
lines) via SNP (single nucleotide polymorphism) markers obtained from GBS (genotyping-
by-sequencing). Models that borrowed information from correlated environments presented
higher predictive accuracy over those that ignored it. Models with genomic relationship
information and GxE interaction were able to keep predictive accuracies up 0.400 with less
than 66% of missing environments (eight environments randomly selected), being superior
than FA models that not accounted genomic information. Modeling genetic effects was more
important than residuals effects. These results highlight the importance of including genomic
relationship information and VCOV structures that allow models to borrow information from
relatives, as well as from correlated environments for predictions of unobserved tropical maize
single-cross hybrids. The procedures and models applied in this study can be easily extended
to other crops in which MET plays an important role in the breeding process.

Keywords: Genomic Selection; GBLUP; Multi-Environment Trials; Variance-Covariance
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1 INTRODUCTION

Maize (Zea mays L.) plays an important role in global food security, being a key crop
for 460 million inhabitants in sub-Saharan Africa, Asia, and Latin America (Prasanna, 2016,
p.62). Worldwide, in terms of animal supply chain, 60-70% of harvested maize is used as livestock
feed (Gwirtz and Garcia-Casal, 2014). It is also has been important for biofuel production
(Shiferaw et al., 2011). By 2050 the expected population on Earth is 9.8 billion people (UN
DESA, 2017), and whereas maize yields remain low in many developing countries, Brazil can
be an important player to feed the world. Brazil already is a big maize producer ranking in the
third position globally (USDA, 2017), and to properly face the task, the challenge to release
fast superior cultivars to the market has intensified.

Genomic Selection (GS) has been recently incorporated into plant breeding programs
(Jonas and de Koning, 2016) and is a promising tool to predict unobserved maize single-
cross hybrids (Burgueño et al., 2012; Crossa et al., 2017). Proposed by Meuwissen et al.
(2001), it consists in predicting the genetic merit of a genotype based on molecular markers
information covering the whole genome. The availability of large-scale genomic information
for most crops, due to cost-effective high-throughput sequencing technologies, is an important
contributor for the success of GS (Crossa et al., 2017). Molecular markers information can
be used to estimate the identity-by-state relationship between pair of individuals (VanRaden,
2008; Powell et al., 2010) and this information can be accounted by linear mixed models based
on the genomic realized relationship matrix A.

One of the most resource-demanding phase in a breeding program consists of hybrids
phenotyping in multi-environment trials (MET) (Fritsche-Neto et al., 2010). MET are crucial
to access hybrids performance, allowing breeders to quantify the differential response of hybrids
across target breeding regions or environments, phenomena known as genotype-by-environment
(GxE) interaction. High levels of predictive accuracies have been found for GS models that
incorporate both genomic information and GxE interaction (Jarqúin et al., 2014; Acosta-
Pech et al., 2017). Data from MET are usually unbalanced due to the natural process of
selection; hybrids with poor performance are discarded and new entries are added every year
(Piepho et al., 2008; Dawson et al., 2013). Therefore, GS models that properly deal with
unbalanced data in MET leads to better predictive accuracies across environments.

The implementation of GS into breeding programs reshaped the breeder’s equation;
rather than genetic gains per cycle of selection (generation interval), gains per unit time/annual
rate have been taken into account and more efficiently allocated budget in the breeding pro-
gram (Heffner et al., 2010; Hickey et al., 2012). Thus, this dissertation have the goal of
evaluating the flexibility of linear mixed models to account complex variance-covariance struc-
tures, considering genomic and MET information, under different levels of missing data across
environments.
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Fritsche-Neto, R., M. C. Gonçalves, R. Vencovsky, and C. L. D. Souza Junior, 2010
Prediction of genotypic values of maize hybrids in unbalanced experiments. Crop Breeding
and Applied Biotechnology 10: 32–39.

Gwirtz, J. A. and M. N. Garcia-Casal, 2014 Processing maize flour and corn meal food
products. Annals of the New York Academy of Sciences 1312: 66–75.

Heffner, E. L., A. J. Lorenz, J. L. Jannink, and M. E. Sorrells, 2010 Plant breeding
with Genomic selection: Gain per unit time and cost. Crop Science 50: 1681–1690.

Hickey, J. M., J. Crossa, R. Babu, and G. de los Campos, 2012 Factors affecting the
accuracy of genotype imputation in populations from several maize breeding programs. Crop
Science 52: 654–663.
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2 LITERATURE REVIEW

2.1 Maize Breeding and Production in Brazil

The remarkable researchers Shull (Shull, 1908, 1909, 1911) and East (East, 1908), in
the early twentieth century, discovered the superiority of the single-cross hybrid in their work
with endogamy and hybridization, which is due to heterosis. In the 1960, the maize single-cross
hybrid was introduced into the agriculture and gradually replaced open pollination varieties,
mainly in the United States of America (Hallauer et al., 2010, p.4). In Brazil, the first single-
cross hybrid was developed by Agroceres in 1945, with inbred lines from Federal University of
Viçosa in partnership with Agronomic Institute of Campinas (Fornasieri Filho, 2007).

In the 1990s, a new concept of maize production, called “safrinha” (second crop season),
was introduced in Brazil. The main factor for its introduction was an innovation in the soil
cultivation, called “Sistema de Plantio Direto” (no-till farming), which allows farmers to start
early the first crop season (Fornasieri Filho, 2007). In this system, the first crop season is
planted from September to November and the second from January to March. In the first crop
season, plants have favorable growing conditions as the increase of temperature and rainfall plus
a reduced intensity of plant disease and insect pests. On the other hand, these conditions are
the opposite in the second crop season. From the end of January, the intensity of rainfall and
averages temperatures decreases, and moreover, field crops have to face the spore load plus pest
infestations not efficiently controlled from the first crop season. Hence, beyond the change in
the system of production, breeding for these specific conditions are also a requirement.

Hybrids with broad adaptability and good stability are some of the factors that have
improved the maize supply chain in Brazil. Over the past four decades, improvements of 225%
in the average yield per hectare, of 362% in the country production and of 42% in the cultivated
area, have established maize as the second most cultivated crop in Brazil (Conab, 2017b).

For the first and second maize crop seasons of 2016/2017, farmers in Brazil could
choose the best cultivar among 315 registered at the Ministry of Agriculture, Livestock and
Food Supply in Brazil (Filho and Borgui, 2016). Among all possibilities, 214 genotypes had
some transgenic event (whether for resistance to herbicides, insect pests or both). Approximately
68% of cultivars were single-cross hybrids, 17% were three-way crosses, 6% were double cross and
9% were open pollinated cultivars and other materials. Regarding maturity groups, there was
a predominance of early group (68%), followed by extra-early (23%) and intermediate maturity
group (3%). The estimated production for these crop seasons was 91,468.4 million tons, grown
on 17,077.1 million hectares, being the second crop season responsible for approximately 67% of
the harvest (Conab, 2017a).

2.2 Linear Mixed Models in Plant Breeding

A linear mixed model is a statistical model containing both fixed and random effects,
with the exception of the mean µ and the vector of residuals ϵ, respectively (Searle et al.,
1992; Galwey, 2006; Mrode, 2014). The general form of a linear mixed model is:

y = Xb+Zu+ ϵ
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Where:

y: is a n x 1 vector of phenotypes
X: is the incidence matrix of fixed effects with dimension n x p

b: is a p x 1 vector of fixed effects
Z: is the incidence matrix for random effects with dimension n x q

u: is a q x 1 vector of random effects (e.g., breeding values of individuals)
ϵ: is a n x 1 vector of residuals

Both fixed (b) and random (u) effects can be computed by the mixed models equations
(MME) presented by Henderson (1950) as follow:[

XTR−1X XTR−1Z

ZTR−1X ZTR−1Z +G−1

][
b̂

û

]
=

[
XTR−1y

ZTR−1y

]

The estimator û follows u ∼ NMV(0, G), being G the variance-covariance (VCOV)
structure of individuals. Standard models assume unrelated individuals, then G = Iσ2

a, in which
I is an identity matrix and σ2

a the variance component for additive effects. The vector of residuals
ϵ follows ϵ ∼ NMV(0, R), being R = Iσ2

ϵ the VCOV structure for residuals. The generalized
least squares solution for b̂ is the best linear unbiased estimator (BLUE), and for û is the best
linear unbiased predictor (BLUP). In practical sense, estimations of G and R comes prior to
estimation of b̂ and û, giving rise to empirical BLUE and BLUP (Piepho et al., 2008).

Mixed models equations proposed by Henderson (1950, 1963) were initially applied
for livestock and nowadays are widespread for animal breeding (Quaas and Pollak, 1980; Bi-
enefeld et al., 2007; VanRaden, 2008). In plant breeding, according to Piepho et al. (2008),
its application have arrived later due several reasons, as the great availability of phenotypic
records for the same line across environments, an unlikely situation in animal breeding. Specifi-
cally in maize breeding, mixed models have been used to select individuals and also to estimate
variance components (Bernardo, 1996; Eller et al., 2008; Piepho et al., 2008; Arnhold
et al., 2009; Mi et al., 2011; Poland et al., 2011; DoVale and Fritsche-Neto, 2013), to
account genotype by environment (GxE) interaction (Balestre et al., 2009; Piepho, 2009;
Burgueño et al., 2011; Mendes et al., 2012; Malosetti et al., 2013) and to predict unob-
served genotypes based on a genomic selection (GS) model (Bernardo and Yu, 2007; Piepho,
2009; Schrag et al., 2009; Riedelsheimer et al., 2012; Massman et al., 2013; Albrecht
et al., 2014; Bernardo, 2014).

2.2.1 Modeling Variance-Covariance Structures and Relationship Matrix

The matrices G = Iσ2
a and R = Iσ2

ϵ described above assumes independence and homo-
geneity of variance among individuals and residuals. In terms of genetic effects, this assumption
may be unrealistic for individuals from the same breeding program. Different VCOV structures,
some of them presented below, can be considered to best-fit an specific biological situation
(Piepho et al., 2008; Van Eeuwijk et al., 2016).

(i) Identity (I)
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It admits that all individuals are independent and with homogeneous variance. It is the
simplest VCOV structure, usually used as default in statistical models. Analysis of variance
(ANOVA) depends on this assumption.


σ2 0 . . . 0

0 σ2 . . . 0
...

... . . . ...
0 0 . . . σ2


(ii) Diagonal (D)

It admits independence and heterogeneous variances. In practice, can be interpreted as
each hybrid has its own variance component.


σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
... . . . ...

0 0 . . . σ2
J


(iii) Compound symmetry (CS)

It assumes homogeneous variances and the same pairwise correlation for all hybrids. There-
fore, the estimation of two parameters are required.


σ2
1 + σ2 σ2

1 . . . σ2
1

σ2
1 σ2

1 + σ2 . . . σ2
1

...
... . . . ...

σ2
1 σ2

1 . . . σ2
1 + σ2


(iv) First-order autoregressive (AR1)

It assumes homogeneous variances and correlations that decline exponentially with dis-
tance. It is commonly used for symmetrical measurements in space or time.



σ2 ρ ρ2 . . . ρd(1,J)

ρ σ2 ρ . . . ρd(2,J)

ρ2 ρ σ2 . . . ρd(3,J)

...
...

... . . . ...
ρd(J,1) ρd(J,2) ρd(J,3) . . . σ2


(v) Unstructured (UN)

It allows heterogeneous variances and covariances between individuals. The number of
parameters to be estimated is t(t + 1)/2, and as the number of environments t increase,
fitting such model can become computational prohibitively and impractical (Kelly et al.,
2007).
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σ2
1 σ12 . . . σ1J

σ12 σ2
2 . . . σ2J

...
... . . . ...

σ1J σ2J . . . σ2
J


(vi) Factor analytic of order k - FA(k)

Proposed by Piepho (1997, 1998) and Smith et al. (2001), it is a parsimonious structure
that provides a good approximation to the unstructured matrix. It has been used in multi-
environment trials (MET) analysis (Smith et al., 2015). Ψ: specific variance for each
environment; λj : the coefficient (or loading) for environment j.


λ2
1 +Ψ1 λ1λ2 . . . λ1λJ

λ2λ1 λ2
2 +Ψ2 . . . λ2λJ

...
... . . . ...

λJλ1 λJλ2 . . . λ2
J +ΨJ


The inclusion of factor analytic structure in the framework of MET allows predictions

to take into account information from correlated environments (Smith et al., 2015). In an
implicit model, GxE is included into the model in a single term that predicts each hybrid within
an environments (i = 1, 2, ..., t hybrids within j = 1, 2, ..., J environments), together with an
appropriate VCOV structure (Gezan et al., 2016). In MET, the VCOV matrices of genetics and
residuals effects are defined as Cov(g,g′) = G0⊗Ig and Cov(ϵ,ϵ’) = In⊗R0, respectively, where
G0 is a T x T matrix of genetic effects within environments, Ig is an identity matrix of order
g that assumes independent and homogeneous variances between individuals, In is an identity
matrix of order n that assumes independent and homogeneous variances among environments,
R0 = Cov(ϵij , ϵij′) is a J x J covariance matrix of residuals within environments and ⊗ is the
Kronecker product. Both G0 and R0 can be modeled with different VCOV structures.

The matrices G = Iσ2
a and Cov(g,g’) = G0⊗Ig, for single and multiples environments,

respectively, can be modeled by the numerator relationship matrix A = {a(i, i′)} (Henderson,
1976). The resemblance between relatives for any pair of individuals, for additive effects, is
twice the coancestry coefficient (fi,i′ ) (Wright, 1921) multiplied by the variance component of
additive effects σ2

a. Therefore, A = 2[fi,i′ ] is the additive relationship matrix and Aσ2
a is the

VCOV structure (Crossa et al., 2006). The matrix A can be obtained by pedigree information
(expected) (Bernardo, 1996; Crossa et al., 2010; Albrecht et al., 2014), by molecular
markers (realized) (Habier et al., 2009; Hayes et al., 2009; Balestre et al., 2010; Crossa
et al., 2010; Massman et al., 2013; Albrecht et al., 2014; Technow et al., 2014) or both
sources (Burgueño et al., 2012; Albrecht et al., 2014). The realized relationship matrix can
be computed by the methodology proposed by VanRaden (2008).

In the past few years, the cost of molecular information have decreased due to cost-
effective high-throughput sequencing technologies (Gorjanc et al., 2017). The large availability
of genomic information for several crops reshaped the breeding programs, bringing for breeders
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modern technologies known as genomic selection (Meuwissen et al., 2001), in which mixed
models can also be applied.

2.3 Genomic Selection and Multi-Environment Trials

Proposed by Meuwissen et al. (2001), genomic selection (GS) is a form of marker-
assisted selection (MAS) in which markers covering the whole genome are used to predict the
genomic estimated breeding value (GEBV) of an individual. In practical sense, for GS be
implemented in a breeding program it is necessary to split the program into three populations,
named as: (i) Training Population (TRN); (ii) Validation or Testing Population (TST) and (iii)
Breeding Population (Heffner et al., 2009; Jannink et al., 2010; Nakaya and Isobe, 2012;
Desta and Ortiz, 2014; Ferrão et al., 2017).

The first data set is the Training Population (TRN), where individuals must be geno-
typed and phenotyped for the traits of interest. There is no standard procedure for selecting
which individuals should be included in this data set, but the guideline is superior genotypes
or those of breeder’s interest (Nakaya and Isobe, 2012; Desta and Ortiz, 2014; Ferrão
et al., 2017). The TRN is used to define the predictive model and to estimate the allelic effects,
the later will be account to estimate the GEBV of individuals only with genomic information
(Heffner et al., 2009; Ferrão et al., 2017).

The Validation or Testing Population (TST), slightly smaller than TRN, should also
be genotyped and phenotyped for the traits of interest. Its aim is to evaluate the predictive
accuracy of the model previously defined through the correlation between the GEBVs and the
true phenotype value of the individuals (e.g. adjusted means) (Ferrão et al., 2017). The GS
model will be applied in the Breeding Population (just genotyped) and the GEBV of unobserved
individuals will be predicted based on genomic information (Heffner et al., 2009; Nakaya
and Isobe, 2012; Desta and Ortiz, 2014). Therefore, the efficiency of predictions relies on the
genetic relatedness between individuals from TRN and the Breeding Population (Nakaya and
Isobe, 2012; Desta and Ortiz, 2014). GS models based on linear mixed models have been
used in maize breeding programs with different purposes (Bernardo and Yu, 2007; Piepho,
2009; Schrag et al., 2009; Riedelsheimer et al., 2012; Massman et al., 2013; Bernardo,
2014; Krchov and Bernardo, 2015) due to its simplicity and low computational demands
(Heslot et al., 2015).

Despite the gradual reduction of the cost of genotyping, the cost of phenotyping does
not exhibit the same behavior (Bernardo, 2008; Krchov and Bernardo, 2015). The cost
of one maize yield-trial plot is US$ 13.00, assuming two lines per plot and considering more
than 2,001 plots evaluated (for less plots, the price should increases) (Tech Services Inc.,
2018). The cost of GBS genotyping in a sequencing coverage (x) of 2x is US$ 25,00 per maize
line (Gorjanc et al., 2017). Bernardo and Yu (2007) have suggested that genotyping would
be more feasible than phenotyping when the price of each marker be 5000 times lower than
the price of a phenotypic data information. In this example, the value of each SNP marker is
52000 times less costly than the value of obtaining a phenotypic record. In addition, Krchov
and Bernardo (2015) pointed out that due seasonal variation and labor required for field
trials, genotyping is more convenient than phenotyping. Recent studies on GS based on mixed
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models have presented predictive accuracies ranging from 0.40 to 0.90 for grain yield in maize
(Technow et al., 2014; Crossa et al., 2017), and due to the high cost of phenotyping, its
potential to reshape maize breeding programs is highlighted.

Phenotyping in MET plays an important role to access the performance of lines across
target breeding zones (Resende et al., 2012). The inclusion of GxE interaction into GS models
can boost predictions up and contribute to a better understanding of GxE interaction (Bur-
gueño et al., 2012). Mixed models offers a great flexibility for considering different VCOV
structures for both genetic and residuals effects in MET, allowing genetic correlations between
environments and the best fit structure for residuals effects (Pastina et al., 2012; Piepho et al.,
2012; Margarido et al., 2015).

The GxE interaction is an important component of genetic variability and indicates
that the performance of genotypes are directly affected by the environment. Environments with
high positive genetic correlations will have fewer crossover interactions, that is no substantial
changes in the rank of genotypes across environments, and more significant crossover interactions
is expected when environments have low or negative correlations, causing reranking of genotypes
across environments (Yan, 2016; Van Eeuwijk et al., 2016). In maize breeding, GxE interaction
can be used to select target breeding regions (Yan, 2016), to select hybrids for broad or specific
environments (Fehr, 1993; Balestre et al., 2009), to select inbred lines to be used as parents
of newly synthetic populations (Yan et al., 2000; Balestre et al., 2009; Dias et al., 2018), and
recently, included into GS models for hybrids prediction (Bernardo and Yu, 2007; Burgueño
et al., 2012; Dos Santos et al., 2016; Dias et al., 2018).

In genomic selection, most results of GBLUP models were fitted for single-environment
predictions (Zhang et al., 2015; Cuevas et al., 2016), which may lead for a lost of information.
Modeling VCOV structures in the framework of mixed models allows to consider heterogeneity
of variances and genetic correlation between environments, being a good approach to predict
unobserved genotypes (Van Eeuwijk et al., 2016). The factor analytic (Piepho, 1997, 1998;
Smith et al., 2001) VCOV structure leads to a good approximation over the unstructured matrix
with less parameters to be estimated, being a parsimonious way to account GxE interaction
(Smith et al., 2015).

Recently, some studies have reported an increase in the predictive accuracy of maize
hybrids when GxE is accounted (Crossa et al., 2010; Technow et al., 2014; Beyene et al.,
2015; Acosta-Pech et al., 2017; Crossa et al., 2017). Recalling the example of the costs of
genotyping and phenotyping mentioned above, the budget needed for phenotyping 100 maize
single-cross hybrids in 15 environments without replicates would be estimated at US$ 19,500.
This value would be the same budget needed to genotype 780 inbred lines and with an appro-
priate GS model, to predict 303,810 single-cross hybrids. Therefore, GS models that account
information from MET by allowing heterogeneous variances and covariances between genotypes
and environments are promising for predictions of unobserved single-cross hybrids.
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East, E. M., 1908 Inbreeding in corn. Connecticut Agricultural Experimental Station Report
pp. 419–28.



21

Eller, M. S., J. B. Holland, and G. A. Payne, 2008 Breeding for Improved Resistance To
Fumonisin Contamination in Maize. Toxin Reviews 27: 371–389.

Fehr, W. R., 1993 Principles of Cultivar Development: Theory and Technique. Macmillian
Publishing Company, first edition.

Ferrão, L. F. V., R. Ortiz, and A. A. F. Garcia, 2017 Genomic Selection: State of the
Art. In Genetic Improvement of Tropical Crops, edited by H. Campos and P. D. S. Caligari,
chapter 2, pp. 19–54, Springer International Publishing AG.

Filho, I. A. P. and E. Borgui, 2016 Mercado de Sementes de Milho no Brasil Safra 2016/2017.
Technical Report January, Embrapa Milho e Sorgo, Sete Lagoas.

Fornasieri Filho, D., 2007 Manual da Cultura do Milho. Funep, Jaboticabal.

Galwey, N. W., 2006 Introduction to Mixed Modelling: Beyond Regression and Analysis of
Variance. Wiley, first edition.

Gezan, S. A., M. P. de Carvalho, and J. Sherrill, 2016 Statistical methods to explore
genotype-by-environment interaction for loblolly pine clonal trials. Tree Genetics and Genomes
13: 1.

Gorjanc, G., J.-F. Dumasy, S. Gonen, R. C. Gaynor, R. Antolin, and J. M. Hickey,
2017 Potential of Low-Coverage Genotyping-by-Sequencing and Imputation for Cost-Effective
Genomic Selection in Biparental Segregating Populations. Crop Science 57: 1–17.

Habier, D., R. L. Fernando, and J. C. M. Dekkers, 2009 Genomic selection using low-
density marker panels. Genetics 182: 343–353.

Hallauer, A. R., M. J. Carena, and J. B. Miranda Filho, 2010 Quantitative Genetics
in Maize Breeding. Springer New York Dordrecht Heidelberg London, Ames.

Hayes, B. J., P. M. Visscher, and M. E. Goddard, 2009 Increased accuracy of artificial
selection by using the realized relationship matrix. Genetics Research 182: 343–353.

Heffner, E. L., M. E. Sorrells, and J.-L. Jannink, 2009 Genomic Selection for Crop
Improvement. Crop Science 49: 1–12.

Henderson, C. R., 1950 Estimation of Genetic Parameters. Annals of Mathematical Statistics
21: 309–310.

Henderson, C. R., 1963 Selection index and expected genetic advance. In Statistical genetics
and plant breeding, p. 623, National Academy of Genetic Advance - National Research Council,
Washington DC.

Henderson, C. R., 1976 A Simple Method for Computing the Inverse of a Numerator Rela-
tionship Matrix Used in Prediction of Breeding Values. Biometrics 32: 69–83.

Heslot, N., J.-L. Jannink, and M. E. Sorrells, 2015 Perspectives for Genomic Selection
Applications and Research in Plants. Crop Science 55: 1–12.



22

Jannink, J.-L. L., A. J. Lorenz, and H. Iwata, 2010 Genomic selection in plant breeding:
from theory to practice. Briefings in Functional Genomics 9: 166–177.

Kelly, A. M., A. B. Smith, J. A. Eccleston, and B. R. Cullis, 2007 The accuracy
of varietal selection using factor analytic models for multi-environment plant breeding trials.
Crop Science 47: 1063–1070.

Krchov, L.-M. and R. Bernardo, 2015 Relative Efficiency of Genomewide Selection for
Testcross Performance of Doubled Haploid Lines in a Maize Breeding Program. Crop Science
55: 2091–2099.

Malosetti, M., J. M. Ribaut, and F. A. van Eeuwijk, 2013 The statistical analysis of
multi-environment data: Modeling genotype-by-environment interaction and its genetic basis.
Frontiers in Physiology 4: 1–17.

Margarido, G. R. A., M. M. Pastina, A. P. Souza, and A. A. F. Garcia, 2015 Multi-trait
multi-environment quantitative trait loci mapping for a sugarcane commercial cross provides
insights on the inheritance of important traits. Molecular Breeding 35: 1–15.

Massman, J. M., A. Gordillo, R. E. Lorenzana, and R. Bernardo, 2013 Genomewide
predictions from maize single-cross data. Theoretical and Applied Genetics 126: 13–22.
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3 PREDICTING THE PERFORMANCE OF UNTESTED MAIZE
SINGLE-CROSS HYBRIDS BASED ON INFORMATION FROM GENOMIC
RELATIONSHIP MATRIX AND GENOTYPE BY ENVIRONMENT
INTERACTION

Keywords: Genomic Selection (GS); GBLUP; Multi-Environment Trials (MET); Variance-
Covariance (VCOV).

3.1 Abstract

Genomic selection (GS) has been implemented in several commercial plant and animal
breeding programs and it has proven to improve efficiency and maximize genetic gains. The
inclusion of GxE interaction into GS models allows to borrow information through correlated
environments and could boost hybrids prediction accuracy. The goals of this study were (i) to
evaluate the predictive accuracies of GBLUP (Genomic Best Linear Unbiased Prediction) models
to predict grain yield performance of unobserved tropical maize single-cross hybrids, using mod-
els that take into account GxE interaction by fitting a factor analytic (FA) variance-covariance
(VCOV) structure, and (ii) to investigate the usefulness of genomic relationship information
in combination with different VCOV for genetics and residuals effects, under different levels
of unbalanced environments. Predictions were performed for two situations: (CV1) untested
hybrids, and (CV2) hybrids evaluated in some environments but missing in others. Phenotypic
data of grain yield was measured in 156 maize single-cross hybrids at 12 environments. Hy-
brids genotypes were inferred based on their parents (inbred lines) via SNP (single nucleotide
polymorphism) markers obtained from GBS (genotyping-by-sequencing). Models that borrowed
information from correlated environments presented higher predictive accuracy over those that
ignored it. Models with genomic relationship information and GxE interaction were able to keep
predictive accuracies up 0.400 with less than 66% of missing environments (eight environments
randomly selected), being superior than FA models that not accounted genomic information.
Modeling genetic effects was more important than residuals effects. These results highlights
the importance of including genomic relationship information and variance-covariance struc-
tures that allows models to borrow information from relatives and related environments for
predictions of unobserved tropical maize single-cross hybrids.
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3.2 Introduction

Future prospects of population growth and rising demand for biologically derived prod-
ucts increases even more the role of releasing worldwide stable cultivars. In order to increase
food security, commercial maize (Zea mays L.) breeding programs try to release as fast as
possible promising cultivars to the market (Federizzi et al., 2012), evaluating hybrids candi-
dates across representative environments and years. Phenotyping in multi-environment trials
(MET) plays an important role to access the performance of lines across target breeding regions
(Oakey et al., 2016) and is one of the most resource-demanding stage in the breeding program
(Fritsche-Neto et al., 2010). The differential responses of hybrids across environments is
known as genotype-by-environment (GxE) interaction.

Breeders have commonly to identify superior hybrids across environments (Elias et al.,
2016). This is challenging especially due to the difficulties to understand if the progeny perfor-
mance are related to just genetical effects or GxE interaction. Environments with high genetic
correlations will have fewer crossover interactions, which can result in no substantial changes in
the rank of genotypes across environments. More significant crossover interactions is expected
when environments have low correlations, causing reranking of genotypes across environments
(Van Eeuwijk et al., 2016; Yan, 2016). Therefore, GxE interaction is an important component
for hybrids evaluation.

The GxE interaction can be incorporated into a genomic selection (GS) model to predict
the performance of untested genotypes in one or more target environments (Burgueño et al.,
2012; Lopez-Cruz et al., 2015; Crossa et al., 2016). The concept of GS was introduced by
Meuwissen et al. (2001) for livestock and can be defined as a form of marker-assisted selection in
which markers covering the whole genome are used to estimate genomic breeding values (GEBV)
of the lines. GS has been implemented in a range of breeding programs (Jonas and de Koning,
2016) and has proved to facilitate the rapid selection of superior lines and to accelerate the
breeding cycles (Crossa et al., 2017), becoming an important tool to increase the annual rate
of genetic gains (Heffner et al., 2010; Hickey et al., 2017). A key point for the success of GS
is the large availability of cost-effective high-throughput sequencing technologies (Crossa et al.,
2017), resulting in the availability of large-scale genomic information for most crops, while the
cost of phenotyping trends to increase (Bernardo, 2008; Krchov and Bernardo, 2015).

The first model proposed for maize single-cross hybrids prediction based on Best Linear
Unbiased Prediction (BLUP) was implemented by Bernardo (1994) and did not account the
GxE interaction. After, Bernardo (1995, 1996a,b) included pedigree information into the
models obtained from the coancestry coefficient by the use of the expected relationship matrix
A. Pedigree-based additive infinitesimal models (Fisher, 1918; Wright, 1921) rely on the
concept of identity-by-descent (IBD), which refers to alleles that are descended from a common
ancestor in a base population. Marker-based relationship matrix A estimates the identity-by-
state relationship between pair of individuals (VanRaden, 2008; Powell et al., 2010), which
does not require any known pedigree. The marker-based A matrix inputs the main source
of relatedness among individuals in linear mixed models in a modeling framework known as
GBLUP (Genomic Best Linear Unbiased). Both matrices can be incorporated into mixed models
for hybrids prediction, but the realized matrix has the advantage of capturing the Mendelian
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sampling under the absence of inbreeding depression and assortative mating (Powell et al.,
2010; Burgueño et al., 2012).

High levels of predictive accuracies have been found for genomic selection models that
incorporate both genomic information from the realized genomic relationship matrix and GxE
interaction (Jarqúin et al., 2014; Acosta-Pech et al., 2017). One of the strategies to include
GxE interaction is to modeling the genetic variance-covariance (VCOV) matrix G across envi-
ronments. A common approach to model G is the unstructured matrix, that allows a genetic
variance for each environment and different covariances among pairs of environments. However,
this structure contains p = t(t + 1)/2 parameters (p) to be estimated, and as the number of
environments t increase, fitting the model became computational prohibitively and impractical
(Kelly et al., 2007). An alternative way to overcome this difficult is to use the factor analytic
structure (Piepho, 1997, 1998; Smith et al., 2001) to fit the MET model, which requires a
reduced number of parameters to be estimated. The FA structure has been used in several
breeding programs and has shown a good applicability over the unstructured VCOV structure
(Kelly et al., 2007; Oakey et al., 2016).

Unbalanced data from MET is a routine in plant breeding programs, resulting in dif-
ficulties for data analysis (Dawson et al., 2013). The process of selection naturally discards
lines with poor performance and, on the other hand, new entries are added every year (Piepho
et al., 2008). Historically, joint analysis of variance (ANOVA) and linear regression models
were used to analyse and quantify GxE interaction (Elias et al., 2016), in which genetic effects
are assumed to come from the same distribution and share a homogeneous variance component
(Ferrão et al., 2017). Therefore, for hybrids yield prediction, GS models that properly deal
with unbalanced data in MET would lead to better predictive accuracies across environments.

In genomic selection, most results of GBLUP models were fitted for single-environment
predictions (Zhang et al., 2015; Cuevas et al., 2016). However, the inclusion of MET and mod-
eling both genetics (G) and residuals (R) effects with an appropriated VCOV structure could
boost genomic predictions accuracies. Therefore, the goals of this work were (i) to predict the
performance of untested tropical maize single-cross hybrids for grain yield using GBLUP model
in the framework of multi-environmental trials analyses, and (ii) to investigate the usefulness of
genomic relationship information in combination with different variance-covariance structures
for genetics and residuals effects, under different levels of unbalanced environments.
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3.3 Materials and Methods

3.3.1 Experimental Data

The dataset was obtained by the maize breeding program of Embrapa Maize and
Sorghum Brazilian public institution. Yield data was collected at two different crop seasons
in Brazil in 2012, the first ranging from September to November, and the second from January
to March, or field management (high yield inputs or following the standard recommendation for
maize field). The population of 152 maize hybrids were split into three trials (T1, T2, and T3)
evaluated side-by-side at eight different contrasting sites.

In the first crop season, plants have favorable growing conditions as the increase of
temperature and rainfall, plus a reduced intensity of plant disease and insect pests. In the
second crop season, these conditions were the opposite. From the end of January to the following
months, the intensity of rainfall and averages temperatures are decreasing, and beyond this, field
crops have to face the spore load plus pest infestations not efficiently controlled from the first
crop season. The combination of locations, crop seasons and field management were designated
as “environment”, giving a total of 12 environments (Figure A.8). The trait under consideration
is grain yield, in tons per hectare (t ha−1), corrected to 13% of grain moisture.

The first two trials (T1 and T2) and the third (T3) evaluated 60 and 32 hybrids each,
respectively. In the field, each trial was augmented by four common checks (commercial maize
cultivars) and arranged as a balanced lattice square of 8x8 (T1 and T2) and 6x6 (T3), with 2
replications. These trials represent three different steps of the maize breeding program. The
first two trials (T1 and T2) consists in 120 hybrids from an intermediate stage, and the third
trial (T3) in 32 hybrids from an advanced stage of the Maize Breeding Program.

The amount of 156 hybrids comprises 149 single-crosses, two three-way crosses, one
double cross and four commercial checks, being only the single-crosses under consideration for
genomic selection. The single-crosses were obtained from 144 inbred lines, classified as dent (64
lines) and flint (77 lines) heterotic groups, and also another group C (3 lines), which combines
well with both dent and flint sources. Four lines were used as testers from the opposite heterotic
group to synthesize the most part of hybrids.

3.3.2 Genotypic Data

A panel of 680 inbred lines from Maize Breeding Program of Embrapa Maize and
Sorghum were genotyped with the standard genotyping-by-sequencing (GBS) protocol (Elshire
et al., 2011) by the Genomic Diversity Facility at Cornell University (Ithaca, NY, USA). Tags
were aligned to the B73 reference genome (AGPv3) (Schnable et al., 2009). Standard quality
controls were applied to the data, removing all non-bi-allelic markers, and single nucleotide
polymorphisms (SNPs) were discarded if at least one of is true: the minor allele frequency
(MAF) was lower than 5%; more than 20% of missing genotypes were found; and the inbreeding
coefficient was lower than 0.8. The SNPs were called using the GBS pipeline available in the
software TASSEL v.5 (Glaubitz et al., 2014). After filtering, missing data were imputed
using Beagle 4.1 (Browning and Browning, 2016). The number of SNPs per chromosome
ranged from 1,951 (chromosome 10) to 5,024 (chromosome 1) and the final number of SNPs was
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29,515. From these 680 lines, the lines used as parents of the single-cross hybrids of this study
were selected. Then, for each SNP, the genotypes of the single-crosses hybrids were inferred
based on the genotype of their parents (inbred line) in the software R version 3.4.3 (R Core
Team, 2017). One of the 144 inbred lines used as parents was not genotyped, resulting in
the availability of the genotypic information of 147 hybrids instead of 149 hybrids. Principal
components analysis (PCA) of SNP matrix of the 143 inbred lines was performed in the software
TASSEL v.5 (Glaubitz et al., 2014) to verified the consistency of heterotic groups.

3.3.3 Statistical Models

All statistical-genetics models were fitted using the package ASReml-R (Butler et al.,
2009) by solving the mixed-model equations proposed by Henderson (1950). To solve the
equations, variance components were estimated using the residual maximum likelihood (REML)
(Patterson and Thompson, 1971) estimation method, by minimizing the residual likelihood
function using the Average Information algorithm (Gilmour et al., 1995).

3.3.3.1 Single-Environment Trial Analyses

Single-environment trial analyses within each environment was performed with the
model

y = Xβ +Z1b+Z2g + ϵ (3.1)

where:
y: is a n x 1 vector of phenotypes for m hybrids and j replicates
X: is the incidence matrix of fixed effects coefficients with dimension n x j

β: is a j x 1 vector of fixed effects of replicates
Z1: is the incidence matrix for random effects of blocks (b), nested in replications, with dimen-
sion n x r.j

b: is a r.j x 1 vector of random effects of blocks within replications, where b ∼ NMV(0, σ2
b I)

Z2: is the incidence matrix for random effects of hybrids (g) with dimension n x g

g: is a g x 1 vector of random effects of hybrids, where g ∼ NMV(0, σ2
gI)

ϵ: is a n x 1 vector of residuals, where ϵ ∼ NMV(0, σ2
ϵ I)

The generalized measure of heritability was estimated using Ĥ2 = 1 - [PEV/(2σ2
g)],

where PEV (prediction error variance) is the mean variance of the difference between two genetic
effects and σ2

g is the genetic variance (Cullis et al., 2006). The coefficient of variation (CV
%) was also estimated using CV % = σ

µ x 100, where σ is the square root of residual variance
component (σ2

ϵ ) and µ is the average of grain yield of each trial within environment.

3.3.3.2 Genomic Selection and Multi-Environment Trials Analyses (MET)

In order to predict single-cross hybrids yield performance under multi-environment tri-
als (MET), we fitted different models formulation, differing by their genetic (Σg) and residual
(Σr) variance-covariance structures. Single-cross hybrids that did not have genotypic informa-
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tion (2 of 156), tree-way and double crosses (3 of 156) and commercial checks (4 of 156) were
considered as checks and modeled as fixed effects. The following model was fitted:

y = Xβ +Z1b+Z2g + ϵ (3.2)

where:
y: is a n x 1 vector of phenotypes for m hybrids across s environments and q trials, where n =
Σs
i=1ni, in which ni is the number of plots in environment s

X: is the incidence matrix of fixed effects coefficients with dimension n x k

β: is a k x 1 vector of fixed effects of environments, trials within environments, replicates within
trials within environments, checks, and checks in environments
Z1: is the incidence matrix for random effects of blocks within replications within trials within
environments, with dimension n x v

b: is a v x 1 vector of random effects of blocks within replications within trials within environ-
ments, where b ∼ NMV(0, σ2

b I)
Z2: is the incidence matrix for random effects of hybrids within environments with dimension
n x g.s

g: is a g x 1 vector of random effects of hybrids within environments, where g ∼ NMV(0, G ⊗
A)
ϵ: is a n x 1 vector of residuals within environments, where ϵ ∼ NMV(0, ⊕s

i=1 Ini ⊗ R)
The Kronecker product is denoted by ⊗ and Ini is an identity matrix mapping the pres-

ence and absence of some variance or covariance component in the variance-covariance matrix
structure. The A is the realized genomic relationship matrix and G and R are VCOV structures
of its effects and dimensions. Genomic selection models were evaluated for the presence of the
genomic relationship matrix A.

3.3.3.3 Variance-Covariance Structures in MET

The variance-covariance structures for random effects of hybrids and residuals within
environments were defined as Σg = G ⊗ I or Σr = I ⊗ R, respectively. Matrices G and R were
both modeled with identity (I) and diagonal (D) structures. To account the correlation structure
of genetic and GxE effects across environments, displayed by genes commonly expressed between
pairs of environments, the G matrix was modeled using the factor analytic (FA(k)) structure
of order k. It was also tried to fitted models with the unstructured matrix for G, however due
to the number of environments, these models presented convergence problems.

Models were divided into three classes, (1) FA models without incorporating the ge-
nomic relationship matrix - models 1 to 8, (2) FA models with genomic relationship information
- models 9 to 16, and (3) models assuming no correlation across environments of the GxE effects
but including genomic relationship information - models 17 to 20 (Table 1). In the first class of
models (models 1 to 8) hybrids were modeled as independents, being Σg = (I ⊗ FA(k)), and in
the second and third class of models (models 9 to 20) hybrids were modeled with the additive
genomic relationship matrix A, being Σg = (A ⊗ FA(k), I, or D). For each k factor, the R
matrix was modeled with identity or diagonal matrices, being Σr = (I ⊗ I) or Σr = (I ⊗ D),
respectively (Table 1).
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The second and third class of models considered the realized genomic relationship
matrix A, computed using SNP markers from GBS, following the methodology described by
VanRaden (2008) as,

A =
ZZ′

2Σpi(1− pi)
(3.3)

where Z = M - P, where M is the incidence matrix for markers considering two alleles
(A and a) for a given ith marker locus, coded as 0, 1 and 2 for AA, Aa and aa, respectively, and
P is derived from observed allele frequencies expressed as P = 2pi, where pi is the MAF of locus
i. The additive genomic relationship matrix A was estimated using the package AGHmatrix
(Amadeu et al., 2016) in software R version 3.4.3 (R Core Team, 2017).

The third class of models ignored the MET modeling, not borrowing informations from
correlated environments. For these models, VCOV structures as identity or diagonal matrices
were evaluated. The first and the second classes of models considered the MET modeling,
taking account genetic and additive correlations between environments, respectively, using factor
analytic structure of order k (FA(k)) proposed by Piepho (1997, 1998) and Smith et al.
(2001). Estimations of genetic variance and correlation matrices between environments, for
FA(k) models, were obtained by Ĝ = (ΛΛ′ + Ψ) and Ĉ = DGD, respectively, where Λ is a
s x k matrix of loading for all environments, Ψ is s x s diagonal matrix of specific variances of
each environment and D̂ is a diagonal matrix of the inverse of the square roots of the diagonal
values of Ĝ.

3.3.4 Models Selection Criteria

Two criteria were used to compare the models: (i) the goodness of fit via Akaike
information criterion - AIC (Akaike, 1974) and Bayesian information criterion - BIC (Schwarz,
1978), and (ii) for FA(k) models, the overall percentage of genetic variance (v̄) accounted,
defined as v̄ = 100tr (ΛΛ′)/tr (ΛΛ′ + Ψ), where “tr” is the trace of the matrix and the other
terms were previously defined (Smith et al., 2015). For first and second class of models, it was
selected the best order (k) of FA structure to go forward with genomic predictions. For the
third class of models, regardless the best-fit model, predictive accuracy was accounted for all
models to quantify the influence of modeling VCOV matrices on genomic predictions. For AIC
and BIC criteria, models that have the lowest values were considered. To verify the advantage
of FA structure under G, the predictive accuracies of these models were compared with those of
models that did not take into account information from correlated environments, hybrids within
environments, or both.

3.3.5 Cross-Validation Schemes

Models were also compared based on their predictive accuracy, computed via Pearson
correlation between genetic estimated breeding value (GEBV) and observed adjusted means
(yi), obtained from single-environment trial analysis without molecular marker information.
Two distinct cross-validation strategy, CV1 and CV2, were implemented as proposed by Bur-
gueño et al. (2012). In the first case (CV1), hybrids from validation set were deleted in all
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environments and predictions were performed based on the phenotypic information from other
hybrids, through the realized genomic relationship matrix (A). The second strategy (CV2) high-
light the situation where hybrids are phenotyped in some environments but missing in others.
Predictions in this scenario take into account information from correlated environments if GxE
interaction is modeled, and if a relationship matrix is included, information from relatives evalu-
ated in multiple environments. Predictions in the CV2 scenario, in an increasing level of missing
environment, were made as follow: in the first case, one environment selected at random was
considered as missing data and hybrids prediction were performed for this environment; then,
two environments selected at random were considered as missing data and hybrids prediction
were performed for these environments; and so on until 11 missing environments at random, the
last level of CV2 scenario.

For both CV1 (in all environments) and CV2 (in each selected environment), ten times
replicated five-fold cross-validation procedure was implemented to achieve the predictive ac-
curacies, in which all single-cross hybrids with genotypes (147) were randomly split into five
non-overlapping groups, being four of them training sets (80%) and one validation set (20%),
considered as not phenotyped on each environment. Therefore, all results are based on 20% of
missing hybrids. Permutation of these five groups led to five possible training and validation
data sets. For all levels of missing environment, predictions were grouped and correlated with
observed adjusted means.

3.3.6 Hybrids Rank

It was also computed the coincidence index of hybrids rank across and within environ-
ments for the top 20% hybrids and for the bottom 20% hybrids, produced by GEBV against
observed performance (balanced data), for each model and level of missing environment. Addi-
tionally, linear regression coefficient of the observed performance on GEBV across environments
was taken into account to analyse the efficiency of predictions relative to the levels of missing
environment.
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3.4 Results

3.4.1 Models Selection

The AIC criteria for models from first class ranged from 4704.20 (model GFA(1)−I) to
4322.03 (model GFA(3)−D) and for second class of models from 4727.79 (model AFA(1)−I) to
4291.82 (model AFA(4)−D). Within each class, the inclusion of diagonal structure for residuals
effects reduced the values of both AIC and BIC criteria for the same k factor. The same pattern
was observed when the additive genomic relationship matrix A was included for models 5 to 8
and 13 to 16, in which R = D. However, the inclusion of the A matrix increased the values of
both criteria for models 1 to 4 and 9 to 12, in which R = I (Table 1).

The percentage of genetic variance accounted for FA models (%vaf) ranged from 48.2%
to 81.7% for the first class of models and from 57.4% to 88.5% for the second class of models.
As expected, in both classes, as k became greater, the higher was the %vaf. Likewise for the
AIC and BIC criteria, when R = D, the %vaf always increased for the same k factor. The
inclusion of the A matrix also increased the %vaf, regardless residuals modeling. In the first
class of models, the best AIC value was found for model 3, modeled with G = FA(3) and R
= D. The %vaf of this model was 76%, superior to the cut-off value of 75% adopted. Smith
et al. (2015) used 80% as a cut-off value for %vaf, but their data-base comprised 200 cultivars
evaluated across 196 trials. For the second class of models that included genomic information,
model 11 with k = 3 also explained more than 75% of %vaf. The BIC criteria for both classes of
models always selected models with k = 1 and R = D, being not helpful to select factor analytic
models. Therefore, models 3 and 7 from first class of models and models 11 and 15 from second
class of models, all with k = 3 and varying identity and diagonal structures for residuals, were
selected to go forward with genomic selection (Table 1).

For the third class of models, the best AIC value was found for model AD−D (20) and
the best BIC value for model AI−D (18). Regardless the best-fit model for this class, all second
class models were used in genomic selection to analyze the influence of modeling genetics and
residuals effects in the predictive accuracy.

3.4.2 Estimates of Genetic Parameters

Genetic variances were significantly greater than zero (σ2
g > 0) for most of the trials

within environments based on the likelihood ratio test (LRT) with α = 0.05, with the exception
of T1 within environment 5 and T3 within environments 1 and 4. For the later ones, the
coefficients of variation (CV %) were greater than 13%. The generalized measure of heritability
ranged from 0.38 to 0.90, being zero for trial T3 within environment 1 where the genetic variance
component was estimated as zero. Single-environment trial analysis also revealed that, at the
same location, environments which fields were sown in the first crop season were more productive
than environments sown in the second crop seasons (Table 2).

Additive and genetic correlations varied considerably between pairs of environments for
models that comprise GxE interaction using a FA structure. Models AFA(3)−D and AFA(3)−I ,
that included the genomic additive relationship matrix, presented in general higher correlations
than models IFA(3)−D and IFA(3)−I , in which hybrids were considered non genetically related
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to each other. For example, the lowest value of pairwise correlation among environments found
for models AFA(3)−D and AFA(3)−I was 0.21, and for models IFA(3)−D and IFA(3)−I was 0.06
and 0.08, respectively. Residuals modeling changed the magnitude of correlations, being slightly
higher for models AFA(3)−I and IFA(3)−I , in which ΣR = (I ⊗ I). The correlations induced by
modeling residuals effects were smaller than those induced by modeling genetic effects. Overall,
the estimated additive and genetic correlations between environments were reasonably high,
with an average pairwise correlation of 0.58, 0.61, 0.47 and 0.51 for models AFA(3)−D, AFA(3)−I ,
IFA(3)−D and IFA(3)−I respectively. Correlations lower than 0.37 were found for 9, 6, 19 and 14
pairs of environments for these models, respectively. Based on the average of correlation of one
environment to the others for each model, in general, environments 6, 7 and 11 had the lowest
values of correlation and environments 5 and 9 the greatest ones (Figure 1).

Principal component analysis (PCA) showed good heterotic group consistency of the
143 inbred lines used as parents of the single-cross hybrids (Figure 2). Using SNP markers
information, the genotypes of the single-cross hybrids were inferred and, due the good consistency
of inbred lines heterotic groups, most hybrids were not close related (Figure 3). The four lines
used as testers produced 48, 38, 23 and 20 single-cross hybrids. Within each of these groups,
hybrids are half-sibs and their expected relatedness coefficient is 0.25 (Lynch and Walsh, 1998).
From genomic relationship matrix, on average, these coefficients were 0.27, 0.29, 0.36 and 0.30,
respectively.

3.4.3 Predictive Accuracy

When hybrids from validation set were considered as not phenotyped in all environ-
ments (CV1), all models that included genomic information presented similar results. Models
AFA(3)−D, AD−D, and AI−D, in which R = D, had predictive accuracies of 0.273, 0.262 and
0.274, respectively. Models AFA(3)−I , AD−I , and AI−I , in which R = I, had predictive accu-
racies of 0.261, 0.232 and 0.264, respectively (Figure 4). Modelling the residuals with diagonal
structure performed slightly better. Models from the first class were not able to predict in the
CV1 scenario, since these models does not borrow information from relatives within environ-
ments through the additive genomic relationship matrix A.

The inclusion of GxE interaction in the CV2 scenario with FA structure, until the level
of five missing environments at random, almost double the predictive accuracy independently
of residuals modeling. Taking model AD−D from third class as a reference, models from first
class had predictive accuracies on average of 70.30%, 62.92%, 62.38%, 61.05%, 52.11%, 58.66%,
40.77%, 36.35%, 37.78%, 12.63% and -19.67% superior/inferior over the reference model, from
one to 11 missing environments at random, respectively. The only exception was for the level of
11 missing environments at random, in which the reference model performed better. For mod-
els from second class, the predictive accuracies were 71.38%, 70.46%, 68.49%, 70.87%, 53.11%,
71.07%, 57.15%, 50.89%, 56.88%, 34.13% and 19.53% superior over the reference model, respec-
tively. Therefore, for first class models that did not account genomic information, borrowing
information from correlated environments increased the predictive accuracy up to 50% over
the reference model until six missing environments at random. Six environments represents a
reduction of 50% of data. For the second class models that accounted GxE interaction and
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genomic information, predictions were up to 50% over the reference model until nine missing
environments at random, representing 75% of the data (Figure 4 and Tables A.3, A.4, A.5 and
A.6).

Models from first and second classes had similar performance from one to five missing
environments at random, and rising the number of missing environments, models from second
class that explored genomic information had better performance. From six to 11 missing envi-
ronments at random, models from second class performed on average 7.83%, 11.63%, 10.66%,
13.87%, 19.01% and 48.8% better than models from first class. Models AFA(3)−D and AFA(3)−I

were able to keep predictions up to 0.400 until eight missing environments at random, and
models IFA(3)−D and IFA(3)−I , until five environments at random, highlighting the influence of
missing environments for models that do not accounted genomic information. In general, as
the number of missing environments became larger, the predictive accuracies got smaller for FA
models, mainly for first class of models. Overall, the predictive accuracy of models AFA(3)−D,
AFA(3)−I , IFA(3)−D and IFA(3)−I , across all levels of missing environment, ranged from 0.444 to
0.325, 0.462 to 0.305, 0.449 to 0.200 and 0.460 to 0.220, respectively (Figure 4 and Tables A.3,
A.4, A.5 and A.6).

The third class of models, not modeled with FA structure but with the genomic rela-
tionship matrix A, had similar predictive accuracies across all levels of missing environments,
including the CV1 scenario. For these models, heterogeneous residuals variances performed
slightly better in all levels of missing environment. For example, in a pairwise comparison be-
tween models AD−D and AD−I , the first model had on average an advantage of 14.3% in the
predictive accuracy. For models AI−D and AI−I , this advantage decreased to 3.6%. For this
class, models AD−D and AI−D had the lowest values of AIC and BIC, respectively, and in terms
of prediction, no differences were found. Overall, models AI−I , AI−D, AD−I and AD−D had
predictive accuracies ranging from 0.284 to 0.240, 0.280 to 0.258, 0.253 to 0.211 and 0.276 to
0.242, respectively (Figure 4 and Tables A.3, A.4, A.5 and A.6).

The efficiency of predictions relative to the levels of missing environments, based on
the linear regression coefficient of the observed performance of hybrids on GEBV across envi-
ronments, reflects the gradual reduction of predictive accuracy relative to the increase of miss-
ing environments for models that explore correlations between environments (models IFA(3)−D,
IFA(3)−I , AFA(3)−D and AFA(3)−I) (Figure A.9). For models AFA(3)−D and AFA(3)−I , in the CV1
scenario, the coefficients of determination were similar to the results of models from third class,
not modeled with FA structure. For the third class of models, the coefficients of determination
were almost the same regardless the level of missing environments (Figure A.10).

The predictive accuracy of models that included the GxE interaction via FA structure
were superior within all environments. This superiority was less evident for environments 6,
7 and 11, that had the lowest values of average correlation among themselves and the others
environments. On the other hand, for environments 5 and 9, which had the greatest values of
average correlation, the difference of predictive accuracy between models with and without FA
structure was more evident. Although environments 3, 4, 8, 10 and 12 not presented elevated
levels of correlations, the superiority of the models that included GxE interaction was also
evident (Figure 5).



36

3.4.4 Changes in Ranking

For selection across environments, models IFA(3)−D and IFA(3)−I had the best values of
coincidence index of all models and levels of CV2. For these models, until 10 missing environ-
ments at random, with one exception, all values were higher than 80%. Models AFA(3)−D and
AFA(3)−I , likewise with the exception of one value, presented values of coincidence higher than
80% until eight missing environments at random. In the more extreme scenario (CV1), predic-
tions of these models were just based on the additive matrix A, and the coincidence index ranged
from 37% to 47% for both top and bottom hybrids, respectively. Models from third class, that
ignored correlation between environments, presented on average 20% and 16% of coincidence of
the top and bottom 20% hybrids, respectively, across all levels of missing environment (Figure
6).

Models that included GxE interaction also showed advantage over models that ignored
it for selection within environments. When one environment was missing at random, the first
level of CV2, models AFA(3)−D and AFA(3)−I had coincidence index of 64% and 58% for the
top hybrids, and of 60% and 54% for the bottom ones, respectively. For these models, values of
coincidence were above 50% until the level of seven missing environments at random. Models
IFA(3)−D and IFA(3)−I , from first class, performed slightly better than models AFA(3)−D and
AFA(3)−I . For these models, values of coincidence index were above 50% until the missing of
nine environments at random. Additive models from third class that ignored correlation between
environments did not improve their performance, being their results similar to the coincidence
index across environments (Figure 7).
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3.5 Discussion

The performance of maize single-cross hybrids or any crop is directly affected by the
environment. The relative performance and rank of genotypes may vary according to the en-
vironment, and from a plant breeding view, this is known as genotype by environment (GxE)
interaction. The GxE interaction occurs due to differential expression of genes across environ-
ments (Zhang et al., 2015; Ferrão et al., 2017), which means that environmental conditions or
even the level of technology for field production could change phenotypic performance through
different patterns of gene-expression profiling. In practice, plant breeders have the options of
utilize, avoid, or ignore it (Eisemann et al., 1990; Yan, 2016).

In a first approach, our goal here is to evaluate if the inclusion of GxE interaction
in a phenotypic model can boost predictions of untested tropical maize single-cross hybrids,
in an intermediate stage of hybrids evaluation, based on 20% of missing hybrids under an
increasing level of missing environments. In this case, the inclusion of factor analytic structure for
genetic effects allowed that predictions taken into account information from phenotypic records
of these hybrids in correlated environments. In a second moment and for the same models, we
investigated if the inclusion of the genomic relationship matrix could improve predictions due
that genomic estimated breeding values were estimated through information between hybrids
within the missing environment(s), between hybrids across environments and among correlated
environments.

The experiments were conduced at different locations or conditions (crop-seasons or
field management), therefore we also investigated the influence of residuals modeling in the
predictive accuracy of all models. Two variance-covariance (VCOV) structures were tested: the
identity and diagonal matrices. The former structure determined that all environments shared
the same variance component, and the later that each environment had an unique variance
component. Mixed models are flexible in terms of including different assumptions of genetics
(G) and residuals (R) modeling, allowing suitable VCOV structures that best-fit an specific
biological situation (Van Eeuwijk et al., 2016).

Three statistical criteria were used to select the best-fit FA model and therefore its k

order to go forward with genomic selection. Recall that three classes of models were evaluated:
(1) FA models do not incorporating the genomic relationship matrix, (2) FA models with genomic
relationship information, and (3) models assuming correlation absence across environments of
the GxE effects but including genomic relationship information. In a contrast of models with
and without FA structure, account GxE interaction resulted in a better goodness of fit of models,
highlighting the importance to take into account information from related environments. Zhang
et al. (2015) and Cuevas et al. (2016) pointed out the actual practice of applying univariate
or single-environment GBLUP models, ignoring correlation across environments and causing
loss of information. Improvements in the goodness of fit were also observed when the genomic
relationship matrix was included for FA models at the same k factor, for models that considered
heterogeneous variances of residuals. Under a biological reasoning it is expected some correlation
between the yield performance of hybrids across environments in a breeding program rather than
homogeneous variances and the absence of correlations. On the other hand, models under a FA
structure in G and with homogeneous structure in R showed an increasing value of both AIC
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and BIC when incorporating the A relationship matrix. This results indicates that modeling the
G under an FA structure, and the parsimonious strategy of unique residual variance components
in R, tends to result in a better representation of the full sample of unobserved set of hybrids.

Considering heterogeneous variance components for residuals resulted in improvements
in the goodness of fit for all models. One possible explanation is that each environment present
its own source of variation that can not be explained by the model, due to climate conditions,
plant diseases, or any other source not considered by the model. The BIC always penalized
FA models of high orders. FA models are nested (FA1, FA2, FA3, and so on) (Smith et al.,
2015), and as explained by Sorensen and Gianola (2002), BIC is well defined for non-nested
models. The percentage of genetic variance accounted by the k factors, as expected, increased
as k became greater. Smith et al. (2015) observed the same pattern of BIC to select FA models.
Therefore, in the GS context, more than one criteria should be used to select the best fit model
(Ferrão et al., 2017).

The predictive accuracies and coincidence for hybrids ranking of models that borrowed
information from correlated environments, clearly showed the importance of including GxE in-
teraction into GBLUP models, even in high levels of missing environments. The matrices of
genetic and additive correlation across environments for models with and without genomic in-
formation, respectively, confirmed the high association between environments. Genetic effects
are expected to vary according to the environment (Zhang et al., 2015; Ferrão et al., 2017)
due to the GxE interaction. Hence, models that allow different variance components across en-
vironments are more realistic and capable of capturing these patterns. Residuals modeling with
heterogeneous variances for models under FA in G did not improve predictive accuracies over
models whith homogeneous variances for residuals. Similar results were found by Burgueño
et al. (2012), where genetic effects were more important than residuals effects.

The gains in prediction accuracy obtained in CV2 over CV1 scenario, with models
that account GxE interaction, were directly related to the ability of these models of borrowing
information from correlated environments. Hence, the magnitude of correlations is an important
parameter to be considered. Similar results were found by Burgueño et al. (2012), Crossa
et al. (2014) and Lopez-Cruz et al. (2015). Therefore, predictions of newly lines, a situation
statistically created by the CV1 scenario, were more challenging than predicting single-cross
hybrids evaluated in some environments but missing in others (CV2).

Several studies included FA structure to account the GxE interaction (Kelly et al.,
2007; Burgueño et al., 2011; Cullis et al., 2014; Smith et al., 2015; Dias et al., 2018b),
and specifically for genomic selection, it have been used for wheat (Burgueño et al., 2012;
Dawson et al., 2013; Rutkoski et al., 2015), barley (Malosetti et al., 2016; Oakey et al.,
2016) and maize (Schulz-Streeck et al., 2013; Dias et al., 2018a). Our results have shown
a great flexibility of FA structure to handle with low, moderate and high levels of missing data
in the framework of MET, as also pointed out by Elias et al. (2016) in a revision about GxE
interaction in plant breeding experiments. Phenotyping in multi-environment trials is routine in
plant breeding programs, and although the FA structure is an approximation to the unstructured
VCOV matrix, it provides reliable information to acess the performance of single-cross maize
hybrids within environments (Smith et al., 2001; Kelly et al., 2007).
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A better understand of GxE interaction is important to any breeding program. Accu-
rate information of GxE interaction can be used as a guideline to (i) define breeding strategies
looking at a specific future market share or for a regular breeding zone, (ii) evaluate stability of
genotypes for a specific environment/condition or for a mega-environment, (iii) maximize ge-
netic gain, among others (Gezan et al., 2016; Dias et al., 2018a). Another advantage of using
FA models and genomic information is that latent regression plots can be obtained to analyse
the stability of breeding values of hybrids across environments (Smith et al., 2015; Dias et al.,
2018a) and to select the inbred lines parents of hybrids that presented great stability of additive
effects to generate synthetic populations for the next breeding cycle (Dias et al., 2018a).

Cost reduction and improved selection are examples of how GS can reshape breeding
programs (Hickey et al., 2017), but its application depends on the ability of models to predict
real situations faced in the breeding programs (Ferrão et al., 2017). Our results emphasize
that even in high levels of missing data, models that account correlation between environments
and genomic information can be a valuable tool to predict breeding values. Just as an exam-
ple, considering the cost of GBS genotyping in a sequencing coverage (x) of 2x as US$ 25,00
(Gorjanc et al., 2017) per line and that the cost of one maize yield-trial plot as US$ 13,00
(Tech Services Inc., 2018). Then, the budget needed for a breeding program similar to the
data presented in this study would be: US$ 3,575 for genotyping the 143 inbred lines used as
parents, and US$ 45,864 for phenotyping the 147 single-cross hybrids considered for genomic
selection at 12 environments. Using a genomic selection model that embrace GxE interaction
plus genomic information, it was shown that until eight missing environments at random or
66% of missing data, predictions of untested single-cross hybrids were up 0.400 with an average
coincidence index of at least of 80% and of 50% for selections across and within environments,
respectively. Hence, a reduction of breeding costs by 8.33% or US$ 3,822 can be achieved if
hybrids were predict in one environment. This amount is sufficient to cover the costs of inbred
lines genotyping (US$ 3,575). For the following levels of missing environment, the amount of
costs reduction is linear; if hybrids were predicted in two environments, the reduction would
be by 16.67% or US$ 7,644; for three environments by 25,00%, and so on, until a reduction by
66,67% or US$ 30,576 for prediction at eight environments.

Regardless the level of missing data for genomic prediction, any reduction of the total
budged of hybrids phenotyping could be allocated to optimize the breeding program. An in-
teresting way to allocate the saved budget is the production of newly synthetic populations for
inbred lines extractions, which is the source of cultivars which meet specific breeding objectives
(Bernardo, 2010, p.15). As example, the cost for producing a newly synthetic population
obtained from 10 inbred lines - including the cost of labor, time demanded and nursery space
for crosses - is on average US$ 1,200 (Dr. David Benson - Global Consultant, CEO and founder
of Cornhusker Hybrids - personal communication, February 21st, 2018). Then, if hybrids were
predicted in one environment, the saved budget could be used to produce three newly synthetic
population or to cover the costs of inbred lines genotyping, as mentioned above. Other possi-
bilities to allocate the saved budget is the evaluation of more hybrids at the intermediate stage
and therefore increase the intensity of selection, to obtain genotypic data for newly inbred lines
and hence predict the performance of newly developed single-cross hybrids, or even to reduce
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costs. It was also noted by Krchov and Bernardo (2015) that once genomic selection is
implemented in the breeding process, the reduction in the amount of phenotyping leads to a
better quality of the field data, enhancing the effectiveness of selection.

So far, all results of FA models that included genomic information were based on the
additive relationship matrix. However, as maize is an allogamous species, it is also worthwhile
to investigate the inclusion of dominance effects into the models and therefore make hybrids
predictions with a GBLUP model that account additive plus dominance effects. Results of
this approach showed no improvements in hybrids predictions neither in hybrids ranking (data
not shown), although some exciting results have been reported in the literature (Dos Santos
et al., 2016; Dias et al., 2018a). Due to small dominance effect relationships between hybrids,
the dominance relationship matrix was less informative than the additive relationship matrix
and hence did not improve prediction accuracy. Similar results were found by Ertl et al. (2014).
Another point could be that an increase in the population size could have better estimated the
dominance effects.

Finally, we obtained encouraging accuracies of tropical maize single-cross hybrids for
genomic selection implementation by accounting genomic additive relationship information and
the effects of genetic heterogeneity and genotype by environment interaction. Our methodology
can also be expanded to other crops in which MET plays an important role in the breeding
process. Future research in the integration of optimized experimental designs and crop growth
models (Heslot et al., 2015; Rincent et al., 2017), that combine ecophysiological and genetics
modeling, seems to be a promising way for genomic selection predictions.
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4 CONCLUSIONS

(i) The inclusion of factor analytic structure boosted the predictive accuracy of untested
maize single-cross hybrids, regardless residuals modeling;

(ii) Models that included genomic relationship information and GxE interaction by
factor analytic structure achieved higher predictive accuracy in elevated levels of missing envi-
ronments; and

(iii) High levels of predictive accuracy of untested maize single-cross hybrids were found
with moderated to low levels of missing environments.
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Crossa, J., P. Pérez, J. Hickey, J. Burgueño, L. Ornella, J. Cerón-Rojas,
X. Zhang, S. Dreisigacker, R. Babu, Y. Li, D. Bonnett, and K. Mathews, 2014
Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112: 48–60.
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Y. Beyene, S. Dreisigacker, R. Singh, X. Zhang, M. Gowda, M. Roorkiwal,
J. Rutkoski, and R. K. Varshney, 2017 Genomic Selection in Plant Breeding: Meth-
ods, Models, and Perspectives. Trends in Plant Science 22: 961–975.

Cuevas, J., J. Crossa, V. Soberanis, S. Pérez-Elizalde, P. Pérez-Rodŕiguez,
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Table 1: Goodness of fit for models divided into three classes, (1) FA models without incorpo-
rating the genomic relationship matrix - models 1 to 8, (2) FA models with genomic relationship
information - models 9 to 16, and (3) models assuming no correlation across environments of the
GxE effects but including genomic relationship information - models 17 to 20. I: identity ma-
trix, FA(k): factor analytic matrix of order k, D: diagonal matrix, and A: additive relationship
matrix from molecular markers.

Model Covariance structure Selection criteria
Number Code Σg Σr Nu. Par.a AIC BIC %varb

BLUP
1 IFA(1)−I I ⊗ FA(1) I ⊗ I 26 4704.08 4866.09 48.2
2 IFA(2)−I I ⊗ FA(2) I ⊗ I 37 4667.45 4879.30 61.7
3 IFA(3)−I I ⊗ FA(3) I ⊗ I 47 4663.74 4937.91 70.8
4 IFA(4)−I I ⊗ FA(4) I ⊗ I 56 4669.78 4981.34 80.4
5 IFA(1)−D I ⊗ FA(1) I ⊗ D 37 4376.63 4607.18 51.7
6 IFA(2)−D I ⊗ FA(2) I ⊗ D 48 4340.81 4639.91 64.3
7 IFA(3)−D I ⊗ FA(3) I ⊗ D 58 4322.03 4664.74 76.0
8 IFA(4)−D I ⊗ FA(4) I ⊗ D 67 4322.88 4709.21 81.7

GBLUP
9 AFA(1)−I A ⊗ FA(1) I ⊗ I 26 4727.79 4889.79 57.4
10 AFA(2)−I A ⊗ FA(2) I ⊗ I 37 4697.69 4903.31 70.0
11 AFA(3)−I A ⊗ FA(3) I ⊗ I 47 4698.65 4954.12 76.6
12 AFA(4)−I A ⊗ FA(4) I ⊗ I 56 4704.20 5009.52 81.6
13 AFA(1)−D A ⊗ FA(1) I ⊗ D 37 4331.08 4561.63 63.5
14 AFA(2)−D A ⊗ FA(2) I ⊗ D 48 4306.55 4593.18 74.0
15 AFA(3)−D A ⊗ FA(3) I ⊗ D 58 4302.04 4644.76 83.4
16 AFA(4)−D A ⊗ FA(4) I ⊗ D 67 4291.82 4671.91 88.5
17 AI−I A ⊗ I I ⊗ I 3 5103.38 5122.07 -
18 AI−D A ⊗ I I ⊗ D 14 4595.73 4682.96 -
19 AD−I A ⊗ D I ⊗ I 14 4953.22 5040.45 -
20 AD−D A ⊗ D I ⊗ D 25 4583.74 4739.52 -

a Number of parameters estimated for each model. b Percentage of genetic variance accounted
for FA models.
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Figure 1: Heatmap of genetic and additive correlations between environments, for FA models
without incorporating the genomic relationship matrix (IFA(3)−D and IFA(3)−I), and for FA
models with genomic relationship information (AFA(3)−D and AFA(3)−I).
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Figure 2: Plot of first two principal components from principal component analysis (PCA),
based on 29,515 SNP markers for 143 inbreed lines used as parents of maize single-cross hybrids.
In the right side, legend means heterotic groups C (group C), D (Dent) and F (Flint).



52

-0.5

0.0

0.5

1.0

1.5

Group 1 Group 2 Group 3 Group 4

G
ro

u
p

 4
G

ro
u

p
 3

G
ro

u
p

 2
G

ro
u

p
 1

Figure 3: Heatmap of realized genomic relationship matrix A for 147 maize single-cross hybrids
ordered by four groups of half-sibs, each group synthesized by the same tester. From group one to
four, the size of the groups are 48, 38, 23 and 20 single-cross hybrids, with an average relatedness
coefficient of 0.27, 0.29, 0.36 and 0.30, respectively. The remaining hybrids were synthesized by
others testers.
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APPENDIX
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Figure A.8: Geographic coordinates of environments in the map of Brazil. Env 1: first crop
season at Campo Mourão - PR, Env 2: second crop season at Campo Mourão - PR; Env 3:
first crop season at Goiânia - GO; Env 4: first crop season at Londrina - PR, Env 5: second
crop season at Londrina - PR; Env 6: high yield enhancing inputs at Nossa Senhora das Dores
- SE, Env 7: standard yield inputs at Nossa Senhora das Dores - SE; Env 8: first crop season at
Planaltina - DF; Env 9: first crop season at Sinop - MT, Env 10: second crop season at Sinop -
MT; Env 11: first crop season at São Raimundo das Mangabeiras - MA; and Env 12: first crop
season at Vilhena - RO.
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