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RESUMO

Avanços na distribuição Birnbaum-Saunders

A distribuição Birnbaum-Saunders (BS) é o modelo mais popular utilizado para descrever
processos de fadiga. Ao longo dos anos, essa distribuição vem recebendo aplicações nas mais
diversas áreas, demandando assim algumas extensões mais flexíveis para resolver problemas
mais complexos. Uma das extensões mais conhecidas na literatura é a família de distribuições
Birnbaum-Saunders generalizada (GBS), que inclui as distribuições Birnbaum-Saunders caso-
especial (BS-SC) e Birnbaum-Saunders t generalizada (BSGT) como modelos especiais. Em-
bora a distribuição BS-SC tenha sido previamente desenvolvida na literatura, nunca foi estudada
mais profundamente e, assim, nesta tese, um estudo bayesiano é desenvolvido acerca da mesma
além de um novo gerador de números aleatórios dessa distribuição ser apresentado. Adicional-
mente, um modelo de regressão baseado na distribuição BSGT é desenvolvido utilizando-se os
modelos aditivos generalizados para locação, escala e forma (GAMLSS), os quais apresentam
grande flexibilidade tanto para a assimetria como para a curtose. Uma nova extensão da dis-
tribuição BS também é apresentada, denominada família de distribuições Birnbaum-Saunders
potência (BSP), que contém inúmeros casos especiais ou limites já publicados na literatura,
incluindo a família GBS. A principal característica desta nova família é que ela é capaz de
produzir formas tanto uni como bimodais dependendo do valor de seus parâmetros. Esta nova
família também é introduzida na estrutura dos modelos GAMLSS para fornecer uma ferramenta
capaz de modelar todos os parâmetros da distribuição como funções lineares e/ou não-lineares
suavizadas de variáveis explicativas. Ao longo desta tese são apresentadas cinco diferentes
aplicações em conjuntos de dados reais para ilustrar os resultados teóricos obtidos.

Palavras-chave: Distribuição Birnbaum-Saunders generalizada; GAMLSS; Modelos aditivos
generalizados; Regressão não paramétrica; Linguagem R; Splines penalizados
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ABSTRACT

Advances on the Birnbaum-Saunders distribution

The Birnbaum-Saunders (BS) distribution is the most popular model used to describe life-
time process under fatigue. Throughout the years, this distribution has received a wide ranging
of applications, demanding some more flexible extensions to solve more complex problems.
One of the most well-known extensions of the BS distribution is the generalized Birnbaum-
Saunders (GBS) family of distributions that includes the Birnbaum-Saunders special-case (BS-
SC) and the Birnbaum-Saunders generalized t (BSGT) models as special cases. Although the
BS-SC distribution was previously developed in the literature, it was never deeply studied and
hence, in this thesis, we provide a full Bayesian study and develop a tool to generate ran-
dom numbers from this distribution. Further, we develop a very flexible regression model,
that admits different degrees of skewness and kurtosis, based on the BSGT distribution using
the generalized additive models for location, scale and shape (GAMLSS) framework. We also
introduce a new extension of the BS distribution called the Birnbaum-Saunders power (BSP)
family of distributions, which contains several special or limiting cases already published in the
literature, including the GBS family. The main feature of the new family is that it can produce
both unimodal and bimodal shapes depending on its parameter values. We also introduce this
new family of distributions into the GAMLSS framework, in order to model any or all the pa-
rameters of the distribution using parametric linear and/or nonparametric smooth functions of
explanatory variables. Throughout this thesis we present five different applications in real data
sets in order to illustrate the developed theoretical results.

Keywords: Generalized additive models; Generalized Birnbaum-Saunders distribution; GAMLSS;
Non-parametric regression; Penalized splines; R software
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1 INTRODUCTION

In the last decades, several new distributions, especially continuous univariate ones, and
models are being created in order to solve increasingly more complex problems. Among them,
the Birnbaum-Saunders (BS) (BIRNBAUM; SAUNDERS, 1969) distribution is the most pop-
ular model used to describe lifetime process under fatigue. Throughout the years, the BS
distribution is being applied in different fields apart from the fatigue problems (PESCIM et
al., 2014), demanding some extensions in order to provide more flexible models. Díaz-García
and Leiva (2005) proposed the generalized Birnbaum-Saunders (GBS) family of distributions
based on elliptical distributions, e.g. student’s t, Cauchy and Laplace distribution. Díaz-García
and Domínguez-Molina (2006) presented the three-parameter BS distribution. Later, Vilca and
Leiva (2006) developed a BS model based on skew normal distributions. Vilca et al. (2010)
and Castillo et al. (2011) developed the epsilon-skew BS distribution. More recently, Cordeiro
and Lemonte (2011) and Pescim et al. (2014) defined the beta BS and the Kummer beta BS
distributions, respectively.

In several practical applications, the response variable Y is affected by one or more explana-
tory variables. In the cases where the response variable follows a non-Gaussian distribution that
belongs to the exponential family, the generalized linear model (GLM) (NELDER; WEDDER-
BURN, 1972) is one of the most used models in the literature, being applied in different prob-
lems, such as in Demétrio et al. (2007) who evaluated possible factors that affects conception
rates in lactating holstein cows; Mascarin et al. (2010) and Urbano et al. (2013) studied the
relationship between larva mortality at different virus concentrations at different temperatures;
among others.

Another very common approach to explain a response variable using explanatory variables
is the generalized additive models (GAM) (HASTIE; TIBSHIRANI, 1990). As in the GLM,
this model allows that the response variable follow any distribution that belongs to the expo-
nential family. In GAM, the mean µ of the response variable is modelled as parameteric and/or
non-parametric functions, e.g. penalized splines (EILERS; MARX, 1996), of the explanatory
variables. Some applications using this approach can be seen in Pearce et al. (2011) who
presented a study about the relationship of air pollutant concentration with variables as tem-
perature, atmospheric pressure and radiation; Pullenayegum et al. (2013) performed a study of
health utilities among patients with diabetes; McKeown and Sneddon (2014) measured patients’
emotions over time; among others.

The main assumption of the previous models is that the response variable Y must follow a
distribution which belongs to the exponential family. Since the BS distribution and its exten-
sions do not belong to the exponential family, usually their regression models are based on the
log location-scale models (LAWLESS, 2003). Among them, Rieck and Nedelman (1991) and
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Barros et al. (2008) proposed the log-Birnbaum-Saunders and log-Birnbaum-Saunders-t regres-
sion models, respectively. However, as in the GLM and GAM, we are just allowed to model
the mean µ of the response variable as a function of explanatory variables. Such properties may
be an issue when we are modelling very complex data sets, specially the ones involving highly
skew data and excess kurtosis.

In order to provide more flexibility to the usual models, Rigby and Stasinopoulos (2005)
developed the generalized additive models for location, scale and shape (GAMLSS). A very
flexible class of univariate semi-parametric regression models which allows any parameter (not
only the location parameter) from a given distribution (that does not necessarily belong to the
exponential family) to be modelled as parametric and/or additive nonparametric smooth func-
tions of explanatory variables. This approach is receiving great deal of attention in recent years
since any distribution can be used to model a given response variable Y , including high skewed,
platykurtic and leptokurtic shapes, as functions of a set of covariates. For instance, GAMLSS
framework was used to study the projections of production of natural gas in Voudouris et al.
(2014), to study bacterial cellulose production from agro-industrial waste in Hernández et al.
(2015), to model proportion data including 0 and 1 in Hossain et al. (2016), among others.

This present thesis has as main objective to provide some advances on the BS distribution
and it is organized in four different chapters as follows. In Chapter 2, we discuss the estimation
of the Birnbaum-Saunders special-case (BS-SC) distribution under the Bayesian framework,
proposing a new method based on Markov chain Monte Carlo (MCMC) to generate observa-
tions for the given distribution. In Section 2.1 we give a very brief review of the Birnbaum-
Saunders (BS) distribution, linking it with the generalized Birnbaum-Saunders (GBS) family of
distributions, presenting some of the works available in the literature and motivating the use of
the BS-SC distribution. Section 2.2 provides a study about some properties of the BS-SC distri-
bution. In Section 2.3 we discuss about prior distribution and posterior analysis. We conduct a
simulation study generating observations from the BS-SC distribution using the proposed ran-
dom number generator through the MCMC method in Section 2.4. An application is presented
in Section 2.5. Some concluding remarks are addressed in Section 2.6.

In Chapter 3, we provide a regression model for the Birnbaum-Saunders generalized t

(BSGT) (Genç, 2013) distribution, which is a special case of the GBS family, based on the
GAMLSS framework. In Section 3.1 we cite some works available in the literature using the
BS distribution and some of its extensions, providing a motivation for the use of the new regres-
sion model. Section 3.2 presents a review of the BSGT distribution, showing some of its special
and/or limiting cases. In Section 3.3 we introduce the BSGT distribution into the GAMLSS
framework. A simulation study is performed in Section 3.4. We provide an application in
Section 3.5. Section 3.6 ends Chapter 3 with some concluding remarks.

In Chapter 4, we define a new family of distributions called the Birnbaum-Saunders power
(BSP) distribution. Section 4.1 introduces the new family of distributions. In Section 4.2 we
present some of its special and/or limiting cases. The method of maximum likelihood is dis-
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cussed in Section 4.3 in order to obtain estimates for the BSP parameters. Section 4.4 visits the
GAMLSS framework again, presenting a new R package specially developed for fitting BSP
models. We show the great flexibility of the new BSP distributions in an application available
in Section 4.5. We end this chapter with some concluding remarks in Section 4.6.

Finally, in Chapter 5 we focus on the bimodality shapes of the BSP family of distributions.
In Section 5.1 we present a motivation to use this family. Section 5.2 presents a brief review
about the GAMLSS framework used to produce the bimodal regression model. A simulation
study, including explanatory variables is presented in Section 5.3. Section 5.4 provides two real
data set applications. Finally, Section 5.5 concludes the chapter with some comments.
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2 BAYESIAN INFERENCES FOR THE BIRNBAUM-SAUNDERS
SPECIAL-CASE DISTRIBUTION1

Abstract

In this paper, we discuss the estimation of the Birnbaum-Saunders Special-Case (BS-SC)
distribution through the Bayesian approach considering its parameters independents, assuming
gamma priors for both of them. As the full posterior conditionals do not have closed forms we
use the Metropolis-Hastings algorithm to generate samples from the joint posterior distribution.
We present a simulation study proposing the Markov chain Monte Carlo (MCMC) method as a
random number generator, considering the cases where the BS-SC distribution has symmetric
and asymmetric shapes. An application related to ozone concentration is presented in this paper
using the described methodology.

Keywords: Generalized Birnbaum-Saunders distributions; Markov Chain Monte Carlo; Metro-
polis-Hastings algorithm; Random number generator

2.1 Introduction

The Birnbaum-Saunders (BS) distribution was developed to study problems of vibration in
commercial aircraft that caused fatigue in the materials (BIRNBAUM; SAUNDERS, 1969).
The authors used their knowledge of fatigue problems to build a new family of distributions,
which models materials lifetime subject to dynamic loads. Through the years, the BS distri-
bution has been widespread in many works, such as Rieck and Nedelman (1991) created a
log-linear model for the BS distribution; Achcar (1993) introduced the Bayesian approach on
the estimation of the BS parameters; Villegas et al. (2011) introduced the BS mixed models for
censored data; Balakrishnan et al. (2011) presented mixtured models based on the BS distribu-
tion; among others.

A random variable T with parameters α > 0 and β > 0, denoted by T ∼ BS(α, β), is
defined in terms of the Gaussian distribution as follows

T = β

αZ
2

+

√(
αZ

2

)2

+ 1

2

, (2.1)

where Z ∼ N(0, 1). Its probability density function (pdf) is given by

fT (t) =
t−3/2(t+ β)

2α
√

2πβ
exp

{
− 1

2α2

(
t

β
+
β

t
− 2

)}
, t > 0, (2.2)

where α > 0 is the shape parameter and β > 0 is the scale parameter and median of the
distribution. As α grows, the BS distribution becomes positively asymmetrical, whereas when
α→ 0, the distribution becomes symmetric around β.

1Luiz Ricardo Nakamura, Roseli Aparecida Leandro (ESALQ/USP) and Cristian Villegas (ESALQ/USP). Re-
vista Brasileira de Biometria, v. 34, n. 2, Forthcoming.
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Later, Díaz-García and Leiva (2005) proposed a new family of distributions so-called the
generalized Birnbaum-Saunders (GBS), defined in terms of elliptic distributions. Here, the
assumption that Z ∼ N(0, 1) from equation (4.1) is relaxed for any univariate symmetric dis-
tribution, i.e.

T = β

αU
2

+

√(
αU

2

)2

+ 1

2

,

where U ∼ S(0, 1; g), g corresponds to the kernel of the pdf of symmetric distribution used and
α and β are the same as presented in equation (2.2). Thus, it follows that a random variable T
follows a GBS distribution, denoted by T ∼ GBS(α, β; g), if its pdf is given by

fT (t) = c
t−3/2(t+ β)

2α
√
β

g

[
1

α2

(
t

β
+
β

t
− 2

)]
, t > 0, (2.3)

where c is the normalization constant and g corresponds to the kernel of the pdf of symmetric
distribution to be used. In particular, when U ∼ N(0, 1) we have the BS distribution. For
instance, some other extensions of the BS distribution can be found in Vilca-Labra and Leiva
(2006) who assumed that U could follow any skew elliptical distribution; Owen (2006) de-
veloped a three-parameter BS distribution; Gómez et al. (2009) introduced the generalized
slash Birnbaum-Saunders family of distributions; Castillo et al. (2009) proposed a new exten-
sion based on the epsilon-skew symmetric distributions; Guiraud et al. (2009) and Leiva et al.
(2012) introduced a non-centrality parameter to the BS and BS-t distributions; among others.

Due to their properties and flexibility in modelling different types of data, the GBS distri-
butions received wide attention in different research areas, e.g. Leiva et al. (2008) modelled
the air pollutant concentration in Chile using the GBS distributions; Leiva et al. (2012) used
the GBS distributions in the forestry sciences, modelling the diameter of trees; Marchant et al.
(2013) utilized distributions from the GBS family on a financial dataset. Cancho et al. (2010)
present the only study using Bayesian approach on a GBS distribution besides the standard BS.

One of the GBS distributions that are not explored in the literature is the Birnbaum-Saunders
special-case (BS-SC) distribution, also proposed by Díaz-García and Leiva (2005), which has
as baseline the special-case distribution. For further information, see (GUPTA; VARGA, 1993).
The BS-SC model has heavier tails than the classic BS distribution and so could be used in cases
where there are only a few observations on the extremes of the distribution. Also, since the BS-
SC has heavy tails we can compare it with the BS-t distribution but, in a Bayesian approach,
the BS-SC distribution is easier to fit considering that the BS-t model has a degree of freedom
parameter (ν) which is somewhat not very easy to estimate.

In this paper we consider the Bayesian inference as a tool for parameter estimation of the
BS-SC distribution. This approach was chosen since the distribution has only its first moment
and therefore becomes the natural choice for the inference process, since in the classical ap-
proach some asymptotic assumptions are violated and thus the estimates are not reliable. The
modelling of uncertainty on shape (α) and scale (β) parameters, considered independent in
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this work, was performed by gamma prior distributions due to their parametric space. Since
the full conditional posterior distributions do not have closed form, the Metropolis-Hastings
(HASTINGS, 1970) was used to obtain samples of the joint posterior distribution, and hence
the Bayesian estimates.

For the simulation study, we propose the generation of data from BS-SC distribution to be
performed by MCMC-based algorithms (as Metropolis-Hastings), since the quantile function of
this model does not have a closed form. After data generation Bayesian estimates were obtained
and compared. Finally, an application, comparing the BS, BS-t and BS-SC distributions, to a
real dataset related to ozone concentration in New York city is presented in order to validate the
inference process.

The rest of this paper is organized as follows. In Section 1.2, we define the BS-SC distri-
bution, notation and structure, comparing it to the classic BS distribution. In Section 1.3, prior
distribution and posterior analysis are described. In Section 1.4, we bring up the simulation
study, with data generation and its estimates. In Section 1.5, an illustrative example based on
real data is provided. Finally, Section 1.6 ends with some concluding remarks.

2.2 Birnbaum-Saunders Special-Case distribution

Let X be a random variable which follows a Special-Case (SC) distribution (GUPTA; VARGA,
1993), denoted by X ∼ SC(µ, σ), so its pdf is given by

fX(x) =
2

1
2

πσ

(
1 +

[
(x− µ)2

σ2

]2)−1
, x ∈ R (2.4)

where µ ∈ R and σ > 0 are, respectively, location and scale parameters of the distribution.
The SC model is a symmetric distribution (GUPTA; VARGA, 1993) that has heavier tails

than the Gaussian distribution and hence could be an interesting competitive model to it and to
the BS-t distribution when there are some extreme values in the tails of the distribution. Further,
the SC distribution allocates more information around its mode as we can see in Figure 2.1 that
presents a comparison between the BS and BS-SC models for different values of σ2.

The only moments that can be obtained for this distribution are the first and second one. For
any n ≥ 3, E(Xn) does not exist since they diverge. Mean and variance of the SC distribution
are given respectively by

E(X) = µ and Var(X) = σ2,

which are the same of the Gaussian distribution.
An extension of the BS distribution was proposed by Díaz-García and Leiva (2005), where

they presented the family of generalized Birnbaum-Saunders (GBS) distributions, which pdf
is expressed in (2.3). One particular case of the GBS distribution is the Birnbaum-Saunders
special-case (BS-SC) distribution that is obtained writing the pdf (2.4) as equation (2.3).
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(a) (b)

(c) (d)

Figure 2.1 – Probability density functions for Gaussian and SC distributions with µ = 0 and
different values of σ: (a) σ2 = 4; (b) σ2 = 1; (c) σ2 = 0.25; and (d) σ2 = 0.04.

We say that a random variable T follows a BS-SC distribution, denoted as T ∼ BS − SC(α,

β), if its pdf is given by

fT (t) =
t−3/2(t+ β)

πα
√

2β

[
1 +

1

α4

(
t

β
+
β

t
− 2

)2
]−1

, t > 0,

where α > 0 and β > 0 are the shape and scale parameters. If T ∼ BS − SC(α, β), then
Y = aT ∼ BS −S C (α, aβ) and Y = T−1 ∼ BS − SC(α, β−1) (DÍAZ-GARCÍA; LEIVA,
2005).
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According to theorem 3 from Díaz-García and Leiva (2005), the only moment that can be
obtained of the BS-SC distribution is the first one, given by

E(T ) = β

(
1 +

α2

2

)
,

which is exactly equal to the first moment of the classic BS distribution (BIRNBAUM; SAUN-
DERS, 1969).

The pdf behavior of a random variable T ∼ BS − SC(α, β) is quite similar to BS pdf
(Figure 2.2). Graphically, the main difference between the BS-SC and BS distributions as
expected from the comparison between the SC and Gaussian distribution, comes from the fact
that the first one has heavier extreme tails than the second one. Also, we can observe that the
BS-SC distribution allocates more observations around its mode than the BS distribution when
0 < α < 1. These two main differences make the BS-SC more attractive than the classic BS
distribution in cases where some extreme values are observed on the tails of the distribution.

2.3 Prior distribution and posterior analysis

Let T1, . . . , Tn be independent and identically distributed random variables, where Ti ∼
BS− SC(α, β), i = 1, . . . , n. A useful reparametrization for the classic BS distribution is
λ = α−2 since we can take a conditionally conjugate gamma prior for λ. Here we use the
same reparametrization although the conjugate property is not valid in our case. Thus, setting
λ = α−2, the BS-SC likelihood function, without normalization constant, can be written as

L(λ, β|D) ∝ λn/2

βn/2

n∏
i=1

t
−3/2
i (ti + β)

n∏
i=1

[
1 + λ2

(
ti
β

+
β

ti
− 2

)2
] , λ > 0, (2.5)

where D denotes the data.
The uncertainty of the parameters λ and β, considered to have independent prior distribu-

tions, is described as

π(λ) ∝ λa−1e−bλ, λ > 0, (2.6)

and

π(β) ∝ βc−1e−dβ , β > 0, (2.7)

i.e., we used the gamma distribution with shape and rate hyperparameters a and b, respectively,
for λ and gamma distribution with shape and rate hyperparamenters c and d, respectively, for β.
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(a) (b)

(c) (d)

Figure 2.2 – Probability density functions for BS and BS-SC distributions with β = 10 and
different values of α: (a) α = 0.2; (b) α = 0.5; (c) α = 1.2; and (d) α = 1.5.

Combining the information from data in equation (4.4), with the prior information from
equations (2.6) and (2.7), we obtain the joint posterior density function of (λ,β), i.e.

π(λ, β|D) ∝ λ
n
2
+a−1e−bλ−dβ

β
n
2
−c+1

n∏
i=1

t
−3/2
i (ti + β)

n∏
i=1

[
1 + λ2

(
ti
β

+
β

ti
− 2

)2
] . (2.8)

Therefore, the marginal posterior distributions are easily obtained from equation (2.8) as
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follows

π(λ|β,D) ∝ λ
n
2
+a−1e−bλ

n∏
i=1

[
1 + λ2

(
ti
β

+
β

ti
− 2

)2
]

and

π(β|λ,D) ∝ βc−
n
2
−1e−dβ

n∏
i=1

t
− 3

2
i (ti + β)

n∏
i=1

[
1 + λ2

(
ti
β

+
β

ti
− 2

)2
] .

We can observe that the marginal posterior distributions do not have closed form and, thus,
to acquire samples from the joint posterior distribution the Metropolis-Hastings (HASTINGS,
1970) algorithm will be used.

2.4 Simulation study

Since the quantile function of the BS-SC distribution has no closed form, we propose in this
paper the data generation of this model via Metropolis-Hastings algorithm. The steps to obtain
the observations are described below:

• Step 1: Establish an initial value for the start of the algorithm, denoted by y(0);

• Step 2: y(i+1) = y(i), where y(i), i = 0, . . . ,M − 1, is the new sample of the chain;

• Step 3: Generate a new candidate ynew from a proposal distribution g(y);

• Step 4: Generate u from an Uniform(0,1);

• Step 5: If u > f(y(i))
f(ynew)

g(ynew)

g(y(i))
we should keep the observation y(i), otherwise y(i) = ynew;

• Step 6: Repeat Steps 2 to 5 until a certain number of observations M is obtained.

It is noteworthy that the acceptance rate should be maintained between 25% and 45%, con-
sidering that a low acceptance rate may indicate that the sample values are in the distribution
tails, while a high acceptance rate may indicate that the values are being sampled only from
regions with high probability density.

In this study we generate four different scenarios with the BS-SC model, covering cases
where the shape of the distribution is near symmetrical (α = 0.2) or very asymmetrical (α =

1.5):

• Scenario 1: BS − SC(α = 0.2, β = 1.5)

• Scenario 2: BS − SC(α = 0.2, β = 0.2)
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Table 2.1 – Average estimates and the associated Monte Carlo errors for the Bayesian approach
of the simulation from the BS-SC distribution with different values of α and β

Empirical Number of Prior 1 Prior 2
distribution observations α̂ β̂ α̂ β̂

15 0.2144 (0.0009) 1.5037 (0.0200) 0.2086 (0.0009) 1.5031 (0.0011)
α = 0.2 20 0.2106 (0.0007) 1.5038 (0.0013) 0.2065 (0.0007) 1.5031 (0.0009)
β = 1.5 30 0.2056 (0.0005) 1.5024 (0.0007) 0.2030 (0.0005) 1.5022 (0.0007)

50 0.2036 (0.0004) 1.5007 (0.0005) 0.2022 (0.0003) 1.5006 (0.0005)
100 0.2018 (0.0002) 1.5006 (0.0004) 0.2012 (0.0002) 1.5006 (0.0004)
15 0.2121 (0.0011) 0.2004 (0.0002) 0.2064 (0.0009) 0.2004 (0.0001)

α = 0.2 20 0.2120 (0.0008) 0.2004 (0.0001) 0.2072 (0.0007) 0.2004 (0.0001)
β = 0.2 30 0.2059 (0.0005) 0.2009 (0.0001) 0.2036 (0.0005) 0.2001 (0.0001)

50 0.2040 (0.0004) 0.2002 (<0.0001) 0.2026 (0.0003) 0.2001 (<0.0001)
100 0.2021 (0.0003) 0.2001 (<0.0001) 0.2014 (0.0002) 0.2000 (<0.0001)
15 1.5591 (0.0142) 1.5812 (0.0236) 1.5260 (0.0204) 1.5115 (0.0055)

α = 1.5 20 1.5572 (0.0106) 1.5675 (0.0191) 1.5260 (0.0156) 1.5123 (0.0050)
β = 1.5 30 1.5263 (0.0063) 1.5596 (0.0122) 1.5178 (0.0160) 1.5109 (0.0043)

50 1.5201 (0.0043) 1.5399 (0.0067) 1.5209 (0.0063) 1.5100 (0.0035)
100 1.5156 (0.0031) 1.5256 (0.0031) 1.5141 (0.0030) 1.5092 (0.0026)
15 1.5942 (0.0117) 0.2198 (0.0017) 1.5348 (0.0205) 0.2012 (0.0024)

α = 1.5 20 1.5428 (0.0066) 0.2150 (0.0011) 1.5122 (0.0192) 0.2011 (0.0021)
β = 0.2 30 1.5404 (0.0046) 0.2102 (0.0007) 1.5109 (0.0110) 0.2007 (0.0020)

50 1.5129 (0.0059) 0.2039 (0.0005) 1.5096 (0.0061) 0.2002 (0.0016)
100 1.5028 (0.0029) 0.2012 (0.0003) 1.5022 (0.0030) 0.2005 (0.0009)

• Scenario 3: BS − SC(α = 1.5, β = 1.5)

• Scenario 4: BS − SC(α = 1.5, β = 0.2)

For each scenario we used five different sample sizes (n1 = 15, n2 = 20, n3 = 30,
n4 = 50 and n5 = 100) and generated 1,000 datasets. In computing the Bayesian estimates
we ran 50,000 iterations, with a burn-in=10,000 and thin=10. For prior information we have
used two different gamma priors: i) Prior 1 is a non-informative prior with hyperparameters
a = b = c = d = 0.01; and ii) Prior 2 is an informative prior in which the hyper-parameters
was chosen in such a way that the prior mean became the expected value of the corresponding
parameter. All the simulation study was performed on R software (R CORE TEAM, 2013) in a
HP Proliant M530e Gen8 computer. Table 2.1 presents the posterior mean for both parameters,
α and β, obtained from the Bayesian methods, as well as their Monte Carlo errors (in parenthe-
ses) for both priors. Clearly the posterior means that were calculated are really close to the real
simulated values, indicating that both simulation and inference processes are satisfactory. Fur-
ther, as expected, the informative prior (Prior 2) outperformed the non-informative prior (Prior
1), especially when the distribution is asymmetrical (α = 1.5) with a low sample size.

2.5 Application

In this section we illustrate the proposed methodology to estimate the parameters of the BS-
SC distribution in a real dataset that refers to the ozone concentration in New York city in 1973.
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This dataset is available on lattice package in R under the name environmental and
further details can be obtained in Bruntz et al. (1974).

Non-informative prior distributions for the parameters α and β of the BS, BS-SC and
BS-t distributions, considered to be independent, were used to obtain the Bayesian estimates
(λ = 1/α2 ∼ Gamma(0.01, 0.01) and β ∼ Gamma(0.01, 0.01)). Moreover, for the BS-t
distribution it was considered the uniform distribution as a prior distribution for the inverse of
ν, i.e., 1/ν ∼ U(0.1, 0.5) that is somewhat informative but it was necessary in order to obtain
the convergence for all three parameters of the model.

Two chains were generated for each model (Figure 2.3 presents the ones related to the BS-
SC distribution) by Metropolis-Hastings algorithm with 50,000 iterations, where the first 10,000
were discarded as a burn-in and it was used a thin of 10 in this case. Both chains converged
according to the Gelman & Rubin criterion (GELMAN; RUBIN, 1992). Furthermore, the auto-
correlation of the parameters is well controlled. Therefore, according to these indications, there
is no problem on the posterior statistics.

Figure 2.3 – History of generated chains and their densities of the parameters α and β from
BS-SC distribution, for the ozone concentration dataset.
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Table 2.2 provides posterior means, standard deviations and the 95% highest posterior den-
sity (HPD) credible intervals of the parameters of the BS-SC, BS and BS-t distributions. More-
over, Table 2.2 displays the deviance information criterion (DIC) value in order to compare
these models (smaller values of DIC provide better fit), see (CARLIN; LOUIS, 2009). DIC
was used since it is the most common goodness-of-fit measure in Bayesian analysis (GELMAN
et al., 2013). We can observe that the parameters standard deviations for the distributions are
not numerically high when compared to the posterior mean itself, excepting for ν that is ac-
tually expected. Furthermore, the HPD amplitude is not high, indicating that the parameters
estimates are satisfactory (Table 2.2). Finally, we can say that the BS-SC distribution is the best
model since it returned smaller value of DIC (2551.243). The fit of the BS-SC, BS and BS-t
distributions, using Bayesian approach, to the dataset in study, can be seen on Figure 2.4.

Table 2.2 – Posterior means, standard deviations and 95% HPD credible intervals of parameters
from the BS-SC distribution of the ozone concentration dataset

Standard Lower Upper
Parameter Estimate deviation HPD (95%) DIC

BS-SC α 1.0880 0.0808 0.9376 1.2531 2551.243
β 31.9780 2.4781 27.3799 37.0678

BS α 0.9994 0.0690 0.8701 1.1379 2631.518
β 27.9995 2.3373 23.7091 32.9264

BS-t α 0.8235 0.0737 0.6808 0.9642 2592.069
β 31.0800 2.5860 26.1370 36.2266
ν 8.4160 7.4744 2.5073 15.1702

2.6 Concluding remarks

In this paper we presented the Bayesian inference as an alternative to be used in parameters
estimation of the Birnbaum-Saunders Special-Case distribution since only the first moment of
this distribution can be obtained, and then the frequentist approach should be avoided as some
asymptotic properties are violated. We showed that there is no closed conditional posterior
distributions when the gamma distribution – intuitively assumed due to the parametric spaces
– with independent parameters is assumed as a prior distribution and, thus, the Metropolis-
Hastings algorithm is required to generate the MCMC samples. However, as elucidated in the
simulation study and in the real dataset application, the estimates for parameters α and β ob-
tained by this approach are satisfactory. Furthermore, we showed that it is possible to use the
Metropolis-Hastings algorithm for the simulation of BS-SC data in an accurate way and it possi-
bly could be used in any model. We presented one application related to the ozone concentration
in New York city showing that, despite the similarity between the BS-SC distribution and the
BS standard model, the BS-SC distribution fitted better according to the deviance information
criterion. Finally, the Bayesian methodology applied to this work, on estimation and data sim-
ulation, and on problems involving BS-SC distribution was shown to be extremely efficient and
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Figure 2.4 – Histogram of the ozone dataset and the fitted curve from BS-SC and BS distribu-
tions.

interesting.
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3 MODELLING LOCATION, SCALE AND SHAPE
PARAMETERS OF THE BIRNBAUM-SAUNDERS
GENERALIZED t DISTRIBUTION1

Abstract

The Birnbaum-Saunders generalized t (BSGT) distribution is a very flexible family of distri-
butions that admits different degrees of skewness and kurtosis and includes some important spe-
cial or limiting cases available in the literature, such as the Birnbaum-Saunders and Birnbaum-
Saunders t distributions. In this paper, we provide a regression type model to the BSGT dis-
tribution based on the generalized additive models for location, scale and shape (GAMLSS)
framework. The resulting model has high flexibility and therefore a great potential to model the
distribution parameters of response variables that present light or heavy tails, i.e. platykurtic or
leptokurtic shapes, as functions of explanatory variables. For different parameter settings, some
simulations are performed to investigate the behavior of the estimators. The potentiality of the
new regression model is illustrated by means of a real motor vehicle insurance data set.

Keywords: Finance; GAMLSS; Generalized additive models; Penalized splines; Positively
skewed data

3.1 Introduction

The Birnbaum-Saunders (BS) distribution is the most popular model used to describe the
lifetime process under fatigue. It was proposed by Birnbaum and Saunders (1969) due to the
problems of vibration in commercial aircraft that caused fatigue in the materials. This distri-
bution is also known as the fatigue life distribution and can be used to represent failure time in
various scenarios. As reported by Pescim et al. (2014), the BS distribution has received wide
ranging applications in past years that include: Leiva et al. (2008) modelled the air pollutant
concentration at ten monitoring stations located in different zones in Santiago, Chile; Podlaski
(2008) modelled the diameter at breast height of near-natural complex structure silver fir (Abies

alba Mill.) forests; Leiva et al. (2009) and Vilca et al. (2010) studied the level of water quality
in Santiago, Chile, by modelling of hourly dissolved oxygen concentrations at four stations;
Garcia-Papani et al. (2016) studied the phosphorus concentration in Cascavel, Brazil; among
others.

Because of the widespread study and applications of the BS distribution, there is a need
for new generalizations of this distribution. Díaz-García and Leiva (2005) proposed a family
of generalized Birnbaum-Saunders (GBS) distributions based on countoured elliptical distribu-
tions such as Pearson VII and Student’s t distributions, Vilca and Leiva (2006) introduced a
BS model based on skew normal distributions. Gómez et al. (2009) extended the BS distribu-
tion from the slash-elliptic model. Vilca et al. (2010) and Castillo et al. (2011) developed the

1Luiz R. Nakamura, Robert A. Rigby (LMU), Dimitrios M. Stasinopoulos (LMU), Roseli A. Leandro
(ESALQ/USP), Cristian Villegas (ESALQ/USP) and Rodrigo R. Pescim (UEL). Submitted.
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epsilon-skew Birnbaum-Saunders distribution. More recently, Cordeiro and Lemonte (2011)
and Pescim et al. (2014) defined the beta Birnbaum-Saunders and the Kummer beta Birnbaum-
Saunders models, respectively.

Despite some of those BS generalized distributions induce asymmetry, symmetry and pro-
mote weight variation of the tail, they do not provide all these shapes in the same density func-
tion. A highly flexible model which admits light or heavy tails, shaper or flatter peaked shape
and it has some important special and/or limiting cases, is the Birnbaum-Saunders generalized
t (BSGT) distribution proposed by Genç (2013). This generalization of the BS distribution con-
tains some models previously studied in the literature and, therefore, the BSGT enables to study
and fit various types of data with different shapes by a unified approach.

In many practical applications, the responses are affected by explanatory variables such as
the socioeconomics and school levels, blood pressure, cholesterol level, soil quality, climate,
among many others. BS regression models are widely used to estimate the reliability or predict
the durability of non-repairable copies of materials. Among them, Rieck and Nedelman (1991)
proposed a log-linear regression model based on the BS distribution. Diagnostic analysis for the
BS regression model were developed by Galea et al. (2004), Leiva et al. (2007) and Xie and Wei
(2007), while the Bayesian inference was introduced by Tsionas (2001). Barros et al. (2008)
proposed a class of lifetime regression models that includes the log-Birnbaum-Saunders-t (BS-
t) regression models as special case. Furthermore, Lemonte and Cordeiro (2009) and Villegas
et al. (2011) studied the BS nonlinear and BS mixed models, respectively. However, those
BS regression models follow the same idea of many previous regression type models in the
literature such as generalized linear models (NELDER; WEDDERBURN, 1972), generalized
additive models (HASTIE; TIBSHIRANI, 1990) and log location-scale models (LAWLESS,
2003). These models use only the location parameter of the distribution of the response variable
which is a major limitation since other parameters may need to be modelled.

In this context, Rigby and Stasinopoulos (2005) developed the generalized additive models
for location, scale and shape (GAMLSS), a very general class of univariate regression models
whose main advantage is that all parameters of a given distribution (that does not necessarily
belong to the exponential family) can be modelled as parametric and/or additive non-parametric
smooth functions of explanatory variables, which can lead to a simpler distribution for a given
response variable Y , simplifying the interpretation of the problem in study. Within GAMLSS
the shape of the conditional distribution of the response variable can vary according to the values
of the explanatory variables, allowing great modelling flexibility.

In this paper, we introduce the BSGT distribution into the GAMLSS framework in order
to provide a very flexible regression model for this family, modelling all of its four parameters
using explanatory variables. The new regression model may be fitted to a data set with light or
heavy tails, i.e. a platykurtic or leptokurtic response variable as, for example, the total claim
amount of an insurance company. The rest of this paper is outlined as follows. Section 3.2
provides a brief review of the BSGT family of distributions. The BSGT is introduced into the
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GAMLSS framework in Section 3.3. Section 3.4 shows a simulation study with different values
of the parameters. A real data set application regarding insurance is provided in Section 3.5
to show the BSGT flexibility, and comparing it with well-known models. Section 3.6 ends the
paper with some concluding remarks.

3.2 The BSGT distribution – a brief review

Díaz-García and Leiva (2005) proposed the GBS family of distributions defined by transfor-
mation from any random variable Z with symmetric distribution S (GUPTA; VARGA, 1993),
with density given by

fZ(z|ζ, φ, δ) = cK

[
(x− ζ)2

φ2

]
, −∞ < z <∞,

as

Y = β

αZ
2

+

√(
αZ

2

)2

+ 1

2

(3.1)

where Z ∼ S(ζ = 0, φ = 1, δ), δ correponds to the parameters inherited from the baseline
distribution, c is the normalizing constant such that fY (y) is a proper density, K(·) is the kernel
of the density of Z, α > 0 represents the shape parameter and β > 0 is the scale parameter and
is also the median of the distribution. As α → 0, the GBS distribution becomes symmetrical
around β, whereas when α grows the distribution becomes increasingly positively skewed. Its
probability density function (pdf) can be expressed as

fY (y|α, β, δ) =
c

2αβ
1
2
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for y > 0.
If Z has a generalized t (GT) distribution, Z ∼ GT (0, 1, ν, τ), with pdf given by

fZ(z|ν, τ) =
τ

2ν
1
τB
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1
τ
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) (
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ν

)ν+ 1
τ

,

where −∞ < z < ∞, ν > 0, τ > 0 and B(·) is the beta function, then the random variable Y
obtained from transformation (3.1) has a BSGT distribution with pdf given by

fY (y|α, β, ν, τ) =
τy−

3
2 (y + β)
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2
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, (3.2)

where y > 0, α > 0, β > 0, ν > 0 and τ > 0. As in (3.1), if the shape parameter α → 0,
the distribution becomes near symmetrical around β and when α grows, the model becomes
increasingly positively skewed; β is a scale parameter and is also the median of the distribution;
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and ν and τ are the parameters related to the peak and tails of the distribution. Note that as y →
∞ then fY (y|α, β, ν, τ) = O

(
y−

ντ
2
−1), the same order as a t distribution with ντ/2 degrees of

freedom. Hence, small values of the product of ν and τ result in a heavier upper tail. Similarly,
larger values of the product of ν and τ will result in a lighter upper tail. Parameter τ also affects
the peak of the distribution: 0 < τ ≤ 1 results in a spiked peak in the distribution, with a sharp
spike (i.e. infinite derivative) if 0 < τ < 1, while a larger τ results in an increasingly flatter
peak.

Despite its flexibility that can combine symmetrical/asymmetrical shapes with light or heavy
tails (i.e. leptokurtic or platykurtic densities), the BSGT model is important since it has some
special or limiting cases already proposed in the literature such as the BS, BS-t, BS-Laplace,
BS-Cauchy and BS-power exponential (BSPE) distributions, as displayed in Figure 3.1.

Figure 3.1 – Relationships of the BSGT special models

3.3 GAMLSS model for the BSGT distribution

GAMLSS are semi-parametric regression models that involve a distribution for the response
variable (parametric part) and may involve non-parametric smoothing terms when modelling
parameters of the distribution as functions of explanatory variables. The GAMLSS R im-
plementation, called the gamlss package, includes distributions with up to four parameters
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that are commonly represented by µ for location, σ for scale and ν and τ for shape (RIGBY;
STASINOPOULOS, 2005). Hence, for the BSGT distribution, we consider µ = β, σ = α,
ν = ν and τ = τ to obey the established notation in GAMLSS framework in R software
(STASINOPOULOS; RIGBY, 2007). Moreover, from this point, we say that a random variable
Y follows a BSGT distribution, denoted by Y ∼ BSGT(µ, σ, ν, τ).

The GAMLSS model for the BSGT distribution assumes that conditional on its parameters
(µ, σ, ν and τ ), observations Yi are independent BSGT(µ,σ,ν, τ ) variables with pdf given in
(3.2), and can be expressed as

g1(µ) = η1 = X1β1 +

J1∑
j=1

hj1(xj1)

g2(σ) = η2 = X2β2 +

J2∑
j=1

hj2(xj2)

g3(ν) = η3 = X3β3 +

J3∑
j=1

hj3(xj3)

g4(τ ) = η4 = X4β4 +

J4∑
j=1

hj4(xj4), (3.3)

where gk(·), k = 1, 2, 3, 4, are the link functions, β>k =
(
β1k, . . . , βJ ′

kk

)
denotes the parameter

vector associated to explanatory variables with design matrix Xk and each hjk function is a
smooth non-parametric function of an explanatory variable xjk, being typically a smoothing
spline (for more details, see e.g. HASTIE; TIBSHIRANI, 1990) or P-spline (EILERS; MARX,
1996).

3.3.1 Selecting the response variable distribution and diagnostics

Two different stages comprehend the strategy to fit a GAMLSS model: fitting and diagnos-
tics. In the fitting stage, we fit different models using a generalized Akaike information criterion
(GAIC, for more information, see VOUDOURIS et al., 2012) to compare them (the model with
the smallest GAIC is selected). The Akaike information criterion (AIC) (AKAIKE, 1974) and
Schwarz Bayesian criterion (SBC) (SCHWARZ, 1978) are special cases of the GAIC(k) when
k = 2 and k = log(n), respectively.

In the diagnostic stage, we use the normalized (randomized) quantile residuals (DUNN;
SMYTH, 1996) which are defined by

r̂i = Φ−1(ûi),

where Φ−1 is the inverse cumulative distribution function of a standard normal variable and
û = FY (y|θ̂) is the fitted cumulative distribution function. The main advantage of this type of
residual is that its true values ri, i = 1, . . . , n always have a standard normal distribution given
the assumption that the model is correct, whatever the distribution of the response variable,



38

i.e. if the model for the response variable is correct, the residuals have a standard normal
distribution.

3.3.2 Selecting the explanatory variables

In order to select the explanatory variables for the BSGT model, we use a backward/forward
algorithm implemented in gamlss package called StepGAICAll.A:

1) Step 1: select a model for µ using a forward GAIC selection procedure and fixing σ, ν
and τ ;

2) Step 2: select a model for σ using a forward GAIC selection procedure given the model
for µ in Step 1 and fixing ν and τ ;

3) Step 3: select a model for ν using a forward GAIC selection procedure given the models
for µ and σ obtained in Steps 1 and 2, respectively, and fixing τ ;

4) Step 4: select a model for τ using a forward GAIC selection procedure given the models
for µ, σ and ν obtained in Steps 1, 2 and 3, respectively;

5) Step 5: perform a backward GAIC selection procedure to select a model for ν given the
models for µ, σ and τ obtained from Steps 1, 2 and 4, respectively;

6) Step 6: perform a backward GAIC selection procedure to select a model for σ given the
models for µ, ν and τ obtained from Steps 1, 5 and 4, respectively;

7) Step 7: perform a backward GAIC selection procedure to select a model for µ given the
models for σ, ν and τ obtained from Steps 6, 5 and 4, respectively.

The resulting model may contain different terms for each of the parameters µ, σ, ν and τ .

3.3.3 Computational functions

In order to perform a simulation study with the BSGT distribution and a real data set appli-
cation using the BSGT regression model, we implemented this family into the gamlss package
in R (for more details about GAMLSS framework estimation processes, see Appendices A, B
and C or RIGBY; STASINOPOULOS, 2005) and the following functions will be available in
the gamlss.dist package:

1) dBSGT() gives the BSGT probability density function;

2) pBSGT() gives the BSGT cumulative distribution function (cdf);

3) qBSGT() gives the BSGT quantile function, i.e. inverse cdf; and

4) rBSGT() is the BSGT random number generator.
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It is noteworthy that we can also fit the special and/or limiting cases of the BSGT distribution
in gamlss, e.g. in order to fit a BS-t distribution, we use the following arguments within the
main function gamlss(): tau.fix=TRUE and tau.start=2 in order to fix τ = 2 in
BSGT(µ, σ, ν, τ) model.

3.4 Simulation study

We performed a simulation study generating 12 different scenarios with two sample sizes
(n = 100 and n = 500) using the rBSGT() function. The scenarios were chosen in such a way
that all possible density shapes could be covered, using as true parameter values µ = 50 and

1) σ = 0.5 for near symmetrical (Table 3.1) and σ = 1.5 for very asymmetrical shapes
(Table 3.2);

2) ν = 1.0 for heavy-tailed and ν = 5.0 for less heavy tailed;

3) τ = 1.5, τ = 2.0 and τ = 10.0 since a low value of τ tends to a sharper peaked shape
(leptokurtic), while a high value of τ tends to a flatter peaked shape (platykurtic).

The simulation study was performed in a HP Proliant M530e Gen8 Computer under a De-
bian Linux operating system. Tables 3.1 and 3.2 present the true simulated parameter values,
average estimates (AE) and standard deviations (SD) for the estimated parameters for near
symmetrical (σ = 0.5) and very asymmetrical (σ = 1.5) scenarios, respectively. The re-
quired numerical evaluations are implemented in R software through the gamlss function
(STASINOPOULOS; RIGBY, 2007).

As expected, we observe (from Tables 3.1 and 3.2) that when n = 500 we obtain closer
estimates compared to the true generating value and the SD values decrease. Moreover, we
can note that the estimates of parameters ν and τ are slightly more imprecise than µ and σ

which could be happening since they are often highly correlated. Also, the distribution of the
parameter estimators of ν and τ are highly positively skewed.
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Table 3.1 – Real parameter value, average estimates (AE) and standard deviations (SD) based
on 1,000 simulations of the near symmetrical version of the BSGT distribution

n = 100 n = 500
Parameters True value AE SD AE SD

Scenario 1
µ 50 50.040 2.616 50.000 1.065
σ 0.5 0.461 0.116 0.490 0.050
ν 1.0 1.272 0.986 1.130 0.487
τ 1.5 1.775 1.176 1.526 0.349

Scenario 2
µ 50 50.160 2.373 49.940 1.091
σ 0.5 0.469 0.089 0.494 0.036
ν 1.0 1.266 1.028 1.145 0.539
τ 2.0 2.319 1.459 2.053 0.523

Scenario 3
µ 50 49.950 1.220 50.000 0.507
σ 0.5 0.482 0.037 0.499 0.018
ν 1.0 1.030 1.996 1.232 0.953
τ 10.0 12.02 6.040 10.900 4.111

Scenario 4
µ 50 50.060 2.305 50.040 0.993
σ 0.5 0.494 0.078 0.5012 0.042
ν 5.0 3.790 3.640 5.263 3.277
τ 1.5 1.857 0.722 1.578 0.301

Scenario 5
µ 50 50.020 1.943 50.020 0.865
σ 0.5 0.484 0.059 0.5002 0.031
ν 5.0 3.695 3.749 5.388 3.659
τ 2.0 2.606 1.259 2.115 0.438

Scenario 6
µ 50 50.020 0.981 50.010 0.379
σ 0.5 0.473 0.032 0.494 0.013
ν 5.0 3.047 4.068 4.406 4.012
τ 10.0 10.570 3.351 11.530 2.868
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Table 3.2 – Real parameter value, average estimates (AE) and standard deviations (SD) based
on 1,000 simulations of the very asymmetrical version of the BSGT distribution

n = 100 n = 500
Parameters True value AE SD AE SD

Scenario 7
µ 50 51.010 8.381 50.100 3.198
σ 1.5 1.389 0.345 1.478 0.153
ν 1.0 1.245 0.970 1.151 0.502
τ 1.5 1.718 1.081 1.511 0.326

Scenario 8
µ 50 50.240 7.263 50.120 3.061
σ 1.5 1.415 0.273 1.487 0.106
ν 1.0 1.177 1.004 1.153 0.603
τ 2.0 2.418 1.540 2.051 0.492

Scenario 9
µ 50 50.100 3.068 50.040 1.222
σ 1.5 1.444 0.113 1.494 0.052
ν 1.0 1.056 1.872 1.322 1.288
τ 10.0 13.360 7.911 10.790 3.944

Scenario 10
µ 50 50.42 6.671 50.09 2.753
σ 1.5 1.476 0.230 1.498 0.124
ν 5.0 4.339 4.229 5.090 3.061
τ 1.5 1.919 0.931 1.577 0.303

Scenario 11
µ 50 50.14 5.430 49.95 2.258
σ 1.5 1.455 0.173 1.496 0.089
ν 5.0 3.815 4.008 4.965 3.120
τ 2.0 2.570 1.099 2.118 0.416

Scenario 12
µ 50 50.05 2.678 50.020 1.011
σ 1.5 1.419 0.097 1.482 0.040
ν 5.0 3.041 8.159 4.732 5.874
τ 10.0 13.850 8.780 12.720 5.166
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3.5 Application: motor vehicle insurance data

In this Section, we illustrate the usefulness of the BSGT regression model, using the GAMLSS
framework, to the total claim amount (response variable, Y ) from motor vehicle insurance poli-
cies over a twelve-month period in 2004–2005 (DE JONG; HELLER, 2008, p. 15). The original
data set was composed of approximately 68,000 policies, but here, we used only those with at
least one claim (totalling 3,911 policies). Using this reduced data set, Y ranges from 1.09 to
55,720.00, with mean=2,145.00, median=844.70, standard deviation=3,765.86, skewness=4.74
and kurtosis=38.58.

Since Y is a very positively skewed variable we used four different distributions besides the
BSGT distribution which are possible suitable candidates for the response variable: the Box-
Cox t (BCTo), generalized gamma (GG), inverse Gaussian (IG) distributions that are already
available in gamlss.dist package and the BS distributions which is a special case of the
BSGT distribution. The covariates used to build the models in order to explain Y are displayed
in Table 3.3.

Table 3.3 – Covariates of the motor vehicle insurance data
Variable Type Range

Vehicle value (X1) Quantitative $0–$139,000
Number of claims (X2) Factor 1, 2, 3, 4
Automobile manufacturing company (X3) Factor A, B, C, D
Vehicle age (X4) Factor 1, 2, 3, 4

(1 is recent)
Driver gender (X5) Factor male, female
Driver’s area of residence (X6) Factor A, B, C, D, E, F
Age band of policy holder (X7) Factor 1, 2, 3, 4, 5, 6

(1 is the youngest)
Amount of exposure during the year (X8) Quantitative 0–1

Here, we replaced X1 by X∗1 = log(X1 + 1) to modify the high skewness exhibited by
this variable. After some previous analysis, we excluded six observations that presented X1 =

0, i.e. the vehicles with value equals zero and the only two observations with X2 = 4, i.e.
when there were four claims, since they were considered as outliers. Finally, we fitted several
regression models using the backward/forward algorithm available in Section 3.3. Moreover,
we considered a P-spline (pb; for more details, see EILERS; MARX, 1996) in both quantitative
covariates (X∗1 and X8). Appropriate link functions for each of the parameters were chosen in
all five distributions: when a distribution parameter θ has range −∞ < θ < ∞, we used the
identity link function, whereas, when θ > 0 the logarithm link function was adopted.

A backward/forward selection of explanatory terms as described in Section 3.3 was per-
formed for all parameters through stepGAICAll.A function in gamlss package (STASI-
NOPOULOS; RIGBY, 2007) and values of global deviance (GD), Akaike information criterion
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(AIC) and Schwarz information criterion (SBC) were computed in order to compare all fitted
models. Table 3.4 displays those statistics from the best fitted models for each used distribution,
and so, the BSGT regression model could be chosen as the more suitable model since it returned
the smallest GD, AIC and SBC values (65,534.1, 65,607.1 and 65,836.0, respectively).

Table 3.4 – Statistics from the best fitted models for each used distribution
Model GD AIC SBC
BSGT 65,534.1 65,607.1 65,836.0
BCTo 65,903.2 65,972.9 66,191.6
GG 65,953.8 66,019.4 66,225.2
IG 66,638.5 66,684.9 66,830.6
BS 66,205.5 66,271.5 66,478.6

The final and best model from the BSGT distribution under the GAMLSS framework (3.3)
is given by

log(µ) = 7.796− 0.094X∗1 + 0.759(if X2 = 2) + 1.231(if X2 = 3)

+ 0.208(if X6 = B) + 0.215(if X6 = C) + 0.148(if X6 = D)

+ 0.390(if X6 = E) + 0.473(if X6 = F )− 0.563X8,

log(σ) = 1.344 + h12(X
∗
1 )− 0.306(if X2 = 2)− 0.610(if X2 = 3)

+ 0.160(if X6 = B) + 0.157(if X6 = C) + 0.098(if X6 = D)

+ 0.129(if X6 = E) + 0.129(if X6 = F )− 0.397X8,

log(ν) = −3.948 + 0.003(if X4 = 2) + 0.073(if X4 = 3) + 0.166(if X4 = 4)

− 0.086(if X6 = B)− 0.262(if X6 = C)− 0.442(if X6 = D)

− 0.635(if X6 = E)− 0.856(if X6 = F )

and

log(τ) = 4.747 + 0.449(if X6 = B) + 0.475(if X6 = C) + 1.009(if X6 = D)

+ 1.185(if X6 = E) + 1.099(if X6 = F ). (3.4)

We can note that four covariates were considered on the location parameter µ in the final
BSGT model and both of the quantitative ones did not require any smoothing function. From
the model for the median µ in (3.4), we observe that the higher is the vehicle value the lower
is the median total claim amount which is somewhat unexpected. The same occurs with the
exposure during the year. From the other two covariates considered in µ, we can say analyzing
Figures 3.2(a) and (b) that the greater is the number of claims, greater will be the median total
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.2 – Regression terms for parameter (a) and (b) µ; (c), (d) and (e) σ; (f) and (g) ν; and
(h) τ . Note that linear relationships were omitted
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claim amount and that people living in areas E and F tend to have higher median claim amounts,
respectively.

As it was observed in model (3.4), we just need a smoothing function (h12) to model the
covariate X∗1 in σ. This relationship is showed in Figure 3.2(c) and we can note that for lower
vehicle values there is a positive effect on the dispersion and after a certain point this relation
becomes negative. Figures 3.2(d) and (e) present the relationship between the number of claims
and driver’s area of residence, respectively, with the dispersion. Further, the exposure during
the year has a negative linear effect on dispersion. Figures 3.2(f)–(h) represent the relationships
between selected covariates with the tails of the distribution.

Finally, the histogram and Q-Q plot of the normalized quantile residuals (DUNN; SMYTH,
1996) of model (3.4) are displayed in Figure 3.3. Figure 3.3(a), apart from one outlier, show
us that the residuals adequately follow a normal distribution. Figure 3.3(b) confirms this outlier
and also shows that there are a few points off the line in the high end of the range, but in general,
the BSGT regression model provides a good fit to these data.

(a) (b)

Figure 3.3 – (a) Histogram and (b) Q-Q plot of the normalized quantile residuals from the BSGT
fitted regression model

3.6 Concluding remarks

In this paper, we used the Birnbaum-Saunders generalized t (BSGT) distribution proposed
by Genç (2013) which admits light or heavy tails, shaper or flatter peaked shape and it has some
important special cases studied in the literature. Based on this distribution, we proposed a BSGT
regression model using the flexibility of the GAMLSS framework (RIGBY; STASINOPOU-
LOS, 2005). The new regression model can be used as an alternative to model light and heavy-
tailed response variables as parametric and/or additive non-parametric smooth functions of ex-
planatory variables. Hence, this extended regression model is very flexible in many practical
situations. Moreover, we conducted a simulation study using 12 different scenarios in order
to cover all possible BSGT density shapes: near symmetrical and very asymmetrical, light and
heavy-tailed (i.e. platykurtic and leptokurtic). We also discussed model checking analysis using
the normalized quantile residuals in the new regression model fitted to a real data. An applica-
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tion to insurance data set demonstrated that it can be used quite effectively to provide better fits
than others flexible regression models.
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4 A NEW EXTENSION OF THE BIRNBAUM-SAUNDERS
DISTRIBUTION USING THE GAMLSS FRAMEWORK1

Abstract

In this paper, we introduce a new very flexible extension of the Birnbaum-Saunders (BS)
distribution with up to six parameters, called the Birnbaum-Saunders power (BSP) distribution,
which includes most of the BS type distributions already available in the literature. We provide
a method for obtaining maximum likelihood estimators for its parameters and present some
special cases of this new distribution family. We also introduce this new distribution into the
generalized additive models for location, scale and shape (GAMLSS) framework, in order to
model any or all the parameters of the distribution using parametric linear and/or non-parametric
smooth functions of explanatory variables. A new generic package gamlss.BSP is created in
R to fit the model. Finally, we present an application which relates the GAG concentration in
children to age to illustrate the importance of the new family of distributions.

Keywords: Centile estimation; Generalized additive models; Penalized splines; R software; Re-
gression; Skewed data

4.1 Introduction

The Birnbaum-Saunders (BS) distribution was developed by Birnbaum and Saunders (1969),
motivated by problems of vibration in commercial aircraft that caused fatigue in materials, and
became a very popular model to treat fatigue problems over the past few years. A positive ran-
dom variable Y that follows a BS distribution with parameters σ > 0 and ψ > 0 is defined by
the transformation

Y = ψ

Z
2

+

√(
Z

2

)2

+ 1

2

,

where Z ∼ N(0, σ2) has a normal distribution with mean 0 and standard deviation σ. In the
BS distribution, σ represents the shape parameter (denoted by α in the original parametrisation
proposed by BIRNBAUM; SAUNDERS, 1969) andψ is the scale parameter and also the median
of the distribution. As σ → 0, the BS distribution becomes symmetrical around ψ, whereas
when σ grows the distribution becomes increasingly positively skewed.

In this paper, we introduce a new generalization of the BS distribution, called the Birnbaum-
Saunders power (BSP) family of distributions, that admits different degrees of skewness and
kurtosis and includes most of the Birnbaum-Saunders type distributions already available in the
literature. Let Z follow any distribution on the real line, denoted by Z ∼ D(θ), with parameter

1Luiz R. Nakamura, Robert A. Rigby (LMU), Dimitrios M. Stasinopoulos (LMU), Roseli A. Leandro
(ESALQ/USP) and Cristian Villegas (ESALQ/USP). Submitted.
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vector θ, and let

Y = ψ

Z
2

+

√(
Z

2

)2

+ 1

ξ , (4.1)

where Y > 0, then the distribution of Y is named here as the Birnbaum-Saunders power (BSP)
distribution, where ψ > 0 is a scale parameter and ξ > 0 is a skewness parameter. For simplicity
we will assume, from now on, that Z follows a distribution with up to four parameters, i.e.
θ = (µ, σ, ν, τ)>, where −∞ < µ <∞ is the location parameter, σ > 0 is the scale parameter
and ν and τ are usually parameters related to the tails of the distribution of Z. However, after
the transformation is performed, µ and σ are called non-centrality and shape parameters of Y
respectively. Hence, the resulting BSP distribution for Y has up to six parameters and will be
denoted as Y ∼ BSP (ψ, ξ, µ, σ, ν, τ).

The following previous extensions of the BS distribution, proposed in the literature, due to
the necessity of more flexible models than the standard BS, are special cases of (4.1). Letting
ξ = 2 in (4.1) and assuming Z follows any symmetric distribution with parameter µ = 0 gives
the generalized Birnbaum-Saunders (GBS) family of distributions (DÍAZ-GARCÍA; LEIVA,
2005) for Y . The authors used eight different baseline distributions for Z: t, Pearson VII,
Cauchy, special-case, Kotz type, Bessel, Laplace and logistic distributions. Later, Sanhueza et
al. (2008) and Genç (2013) developed two other distributions for Y , which belong to the GBS
family, using the power exponential and the generalized t distributions for Z respectively as the
baseline models. Letting Z have a normal distribution with mean µ = 0 in (4.1) gives the three-
parameter BS distribution (DÍAZ-GARCÍA; DOMÍNGUEZ-MOLINA, 2006) for Y . Guiraud
et al. (2009) and Leiva et al. (2012) included a non-centrality parameter µ in the normal and t
distributions for Z, but used fixed ξ = 2 in (4.1), respectively.

The inverse of the one to one transformation (4.1) is given by

Z =

[(
Y

ψ

) 1
ξ

−
(
Y

ψ

)− 1
ξ

]
, (4.2)

and hence if Y follows a BSP distribution then its probability density function (pdf) can be
written as

fY (y|ψ, ξ;θ) = fZ(z|θ)

∣∣∣∣∣dzdy
∣∣∣∣∣, y > 0,

where θ corresponds to the parameters inherited from the baseline distribution and

dz

dy
=

1

yξ

[(
y

ψ

) 1
ξ

+

(
y

ψ

)− 1
ξ

]
.

Finally, from Equation (4.1), the exact 100α centile of Y , denoted by yα and defined by
FY (yα) = p(Y ≤ yα) = α, is given by

yα = ψ

[
zα
2

+

√(zα
2

)2
+ 1

]ξ
, (4.3)
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where zα is the 100α centile of the baseline distribution. Note that for symmetric distributions
of Z with parameter µ = 0, then the median y0.5 of Y is exactly ψ, since z0.5 = 0.

The rest of this paper is organized as follows. In Section 4.2 we provide some special and
limiting cases of the BSP distribution. In Section 4.3 we consider the maximum likelihood
method to estimate the model parameters. In Section 4.4 we discuss the GAMLSS (generalized
additive models for location, scale and shape) framework, which we use to develop the BSP
regression model and its inference, creating a new generic package in R software. Section 4.5
presents an application modelling the distribution of GAG concentration against age to illustrate
the flexibility of the BSP distribution, comparing it with some known models in the literature.
Finally, Section 4.6 ends the paper with some concluding remarks.

4.2 Special cases of the BSP distribution

The BSP family of distributions allows great flexibility in its tails since any distribution in
the real line can be transformed using (4.1) and then the resulting pdf inherits some properties
of the baseline model, such as light or heavy tails and sharp or flat peaks. In this section, we
define some of the many novel distributions that belong to the BSP family, highlighting some
of their special or limiting cases.

4.2.1 BSPNO distribution

Let Z follow a normal distribution with parameters mean µ and standard deviation σ, i.e.
Z ∼ N(µ, σ2) in (4.1). The resulting random variable Y , denoted here by Y ∼ BSPNO (ψ, ξ,

µ, σ), has the Birnbaum-Saunders power normal (BSPNO) distribution with pdf given by

fY (y|ψ, ξ, µ, σ) =
1

ξ
√

2πσ2y

[(
y

ψ

) 1
ξ

+

(
y

ψ

)− 1
ξ

]
exp

{
−1

2

(
z − µ
σ

)2
}
,

where z is given by (4.2). For ξ = 2, we have the non-central Birnbaum-Saunders distribution
(GUIRAUD et al., 2009). If µ = 0 we have the three-parameter Birnbaum-Saunders distribution
(DÍAZ-GARCÍA; DOMÍNGUEZ-MOLINA, 2006). Finally, if ξ = 2 and µ = 0 we have the
standard BS distribution (BIRNBAUM; SAUNDERS, 1969).

4.2.2 BSPT distribution

If in equation (4.1) Z has a scaled and shifted t distribution with its location, scale and
degrees of freedom parameters µ, σ and ν, respectively, then Y follows a Birnbaum-Saunders
power t (BSPT) distribution with pdf given by

fY (y|ψ, ξ, µ, σ, ν) =
Γ
(
ν+1
2

)
ξσ
√
νπΓ

(
ν
2

)
y

[(
y

ψ

) 1
ξ

+

(
y

ψ

)− 1
ξ

](
1 +

(z − µ)2

νσ2

)−( ν+1
2 )

,

where z is given by (4.2), denoted here as Y ∼ BSPT (ψ, ξ, µ, σ, ν). If ξ = 2 the model is
reduced to the non-central Birnbaum-Saunders t distribution (LEIVA et al., 2012) and if also



54

µ = 0 we have the standard Birnbaum-Saunders t (BST) distribution (DÍAZ-GARCÍA; LEIVA
et al., 2005).

4.2.3 BSPGT distribution

The Birnbaum-Saunders power generalized t (BSPGT) distribution is obtained from (4.1)
by letting Z have a generalized t distribution (MCDONALD; NEWEY, 1988), and its resulting
pdf is given by

fY (y|ψ, ξ, µ, σ, ν, τ) =
τ

2ξσν
1
τB
(
1
τ
, ν
)
y

[(
y

ψ

) 1
ξ

+

(
y

ψ

)− 1
ξ

]

×
(

1 +
|z − µ|τ

νστ

)−(ν+ 1
τ )
,

where z is given by (4.2), denoted here by Y ∼ BSPGT (ψ, ξ, µ, σ, ν, τ). When τ ≤ 1 the
resulting density presents a spike. For µ = 0 and ξ = 2, we have the BSGT family of dis-
tributions (GENÇ, 2013) which has several special or limiting cases, e.g. ν → ∞ gives the
Birnbaum-Saunders power exponential distribution, while τ = 2 gives a reparametrization of
the BST distribution.

4.2.4 Plots of the BSP probability density functions

Figure 4.1 (a) and (b) display the BSPNO distribution with σ = 0.5 and σ = 1.5 respec-
tively, while Figure 4.1 (c) and (d) display the BSPT distribution with σ = 0.5 and σ = 1.5,
respectively. Figure 4.2 displays the BSPGT distribution. Panels (a) and (b) display σ = 0.5 and
σ = 1.5, respectively, and τ = 1, while panels (c) and (d) display σ = 0.5 and σ = 1.5, respec-
tively, and τ = 5. Within each of the panels in Figures 4.1 and 4.2, the pdf for all combinations
of ξ = 1, 2, 3 and µ = −0.5, 0.5 are plotted. As we can see, the non-centrality parameter µ
affects the location of the distribution while, as described after (4.1), ξ may be interpreted as a
skewness parameter. Some different shapes are not presented here due to the limited space, e.g.
all BSP distributions present bimodality when ξ → 0 and σ is large.

4.3 Inference

Let Y be a random variable following a BSP distribution with parameter vector ζ = (ψ, ξ;θ)>.
Let y = (y1, . . . , yn)> be a random sample from a BSP distribution. The log-likelihood function
for ζ is given by

l(ζ;y) =
n∑
i=1

log fY (yi|ζ) =
n∑
i=1

log fZ(zi|θ) +
n∑
i=1

log

(∣∣∣∣∣dzidyi

∣∣∣∣∣
)
, (4.4)

where the relationship between z and y is given by (4.2). Note that only the first term in (4.4)
involves parameters θ, while both terms involve parameters ψ and ξ through zi.
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(a) (b)

(c) (d)

Figure 4.1 – Plots of the (a) BSPNO(30, ξ, µ, 0.5); (b) BSPNO(30, ξ, µ, 1.5); (c)
BSPT (30, ξ, µ, 0.5, 2); (d) BSPT (30, ξ, µ, 1.5, 2)

The elements of the score vector of ζ are obtained from (4.4) and are given by

Uψ(ζ) =
∂l(ζ,y)

∂ψ
= −1

ξ

 n∑
i=1

 y
1
ξ

i

ψ
1
ξ
+1

+
ψ

1
ξ
−1

y
1
ξ

i

 ∂lzi
∂zi

+
1

ψ

n∑
i=1

ψ
2
ξ − y

2
ξ

i

y
2
ξ

i + ψ
2
ξ

 ,

Uξ(ζ) =
∂l(ζ,y)

∂ξ
= − 1

ξ2

n∑
i=1

log

(
yi
ψ

)[(
yi
ψ

) 1
ξ

+

(
yi
ψ

)− 1
ξ

]
∂lzi
∂zi
− n

ξ

− 1

ξ2

n∑
i=1

y
2
ξ

i log
(
yi
ψ

)
+ ψ

2
ξ log

(
ψ
yi

)
y

2
ξ

i + ψ
2
ξ

,
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(a) (b)

(c) (d)

Figure 4.2 – Plots of the (a) BSPGT (30, ξ, µ, 0.5, 1, 1); (b) BSPGT (30, ξ, µ, 1.5, 1, 1); (c)
BSPGT (30, ξ, µ, 0.5, 1, 5); (d) BSPGT (30, ξ, µ, 1.5, 1, 5)

and

Uθh(ζ) =
∂l(ζ,y)

∂θh
=

n∑
i=1

∂lzi
∂θh

,

where θh, h = 1, 2, 3, 4, are the elements of the parameter vector θ for a four parameter distri-
bution D(θ) and lzi = log fZ(zi|θ).

The maximum likelihood estimate ζ̂ of ζ is obtained solving the equations Uψ(ζ) = 0,
Uξ(ζ) = 0 and Uθh(ζ) = 0, for h = 1, 2, 3, 4. These equations cannot be solved analytically
and thus need to be solved numerically, e.g. using the optim function implemented in R

software (R CORE TEAM, 2013).
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For hypothesis testing and confidence interval estimation of the model parameters ζ =

(ψ, ξ;θ)>, we can use the k × k observed information matrix J(ζ), where k is the number of
parameters of Y . Under regularity conditions, including that the true parameter vector ζ lies in
the interior of the parameter space for ζ and not at the boundary, the asymptotic distribution of
√
n(ζ̂−ζ) isNk(0, I(ζ)−1), where I(ζ) is the expected information matrix. In practice I(ζ) is

replaced by J(ζ̂), the observed information matrix evaluated at ζ̂. Hence approximate standard
errors can be calculated and used to construct Wald tests and Wald confidence intervals for
the distribution parameters. However, generalized likelihood ratio tests and profile likelihood
confidence intervals (AITKIN et al., 2009) for parameter values are more reliable.

It is noteworthy that when Y ∼ BSPGT (ψ, ξ, µ, σ, ν, τ), then for all its special or limit-
ing cases where 0 < τ ≤ 1 the regularity conditions assumed for asymptotic normality of the
maximum likelihood estimators are not valid, since the likelihood function is not always differ-
entiable since it has spikes, and thus it is not reliable to use the tests and confidence intervals
for parameters described above.

4.4 GAMLSS framework

In order to provide a regression model for the BSP family of distributions we used the gen-
eralized additive models for location, scale and shape, GAMLSS, framework (RIGBY; STA-
SINOPOULOS, 2005). GAMLSS are semi-parametric regression models that involve a dis-
tribution for the response variable (parametric part) and may involve parametric linear and/or
non-parametric smoothing terms when modelling any or all of the parameters of the distribu-
tion as functions of explanatory variables. This approach is being widely used in different fields,
such as in long-term survival models (de CASTRO et al., 2010), economics (MATSUMOTO et
al., 2012), and natural sciences (ZHANG et al., 2015), among others.

Generically, let Y ∼ D(θ), where D represents the response variable distribution that does
not necessarily belong to the exponential family and θ is its vector of parameters of length p.
The GAMLSS model can be defined as

gk(θk) = ηk = Xkβk +

Jk∑
j=1

hjk(xjk), (4.5)

for k = 1, . . . , p,where gk(·) denote the known monotonic link functions, β>k = (β1k, . . . , βJ ′
kk

)

is the parameter vector associated with the explanatory variables in design matrixXk and each
hjk function is a smooth non-parametric function of an explanatory variable xjk, being typically
a penalized spline (P-splines) (EILERS; MARX, 1996) or a smoothing spline (e.g. HASTIE;
TIBSHIRANI, 1990). We can see from (4.5) that any distribution parameter can be modelled
as a function of explanatory variables. If no covariates are selected in the model for the kth

parameter then it is modelled as a constant.
Implementation of fitting a BSP regression model is achieved using a new generic package,

called gamlss.BSP, that allows the BSP distribution for Y to be fitted (with parametric and/or



58

nonparametric functions of explanatory variables) for any corresponding distribution for Z on
the real line currently available in the gamlss.family package. The following functions are
available in the gamlss.BSP package:

• BSP.d: creates the BSP probability density function;

• BSP.p: creates the BSP cumulative density function (cdf);

• BSP.q: creates the BSP quantile function, i.e. inverse cdf;

• BSP.r: creates the BSP random number generator; and

• gen.BSP: automatically generates the new BSP distribution and the four previous func-
tions;

• gamlss.BSP: the main function of the package, fits a BSP model;

• centiles.BSP: produces centile curves for the fitted BSP model.

For further details about the GAMLSS framework estimation processes, see Appendices A, B
and C and Rigby and Stasinopoulos (2005).

4.5 Application

In order to illustrate their usefulness, in this section we fit some BSP regression models,
using the GAMLSS framework, to data on the concentration of a chemical GAG in the urine
of 314 children between the ages 0 and 17 (VENABLES; RIPLEY, 2002; available in R soft-
ware under the name GAGurine in package MASS). The response variable GAG ranges from
1.8 to 56.3, with mean= 13.17, median= 10.60, standard deviation=8.99, skewness= 1.60 and
kurtosis= 6.40. The explanatory variable is age in years of the child.

Since GAG is a positively skewed response variable, we used five different distributions,
besides the BSPNO, BSPT and BSPGT distributions, that are possible suitable candidates
for the response variable distribution: Box-Cox Cole and Green (BCCGo) (COLE; GREEN,
1992), Box-Cox power exponential (BCPEo) (RIGBY; STASINOPOULOS, 2004), Box-Cox t
(BCTo) (RIGBY; STASINOPOULOS, 2006), gamma (GA) and inverse Gaussian (IG) distri-
butions which are already available in gamlss.dist package (STASINOPOULOS; RIGBY,
2007).

In order to model the distribution of the response variable GAG, we used the age of the
child as an explanatory variable. Preliminary analysis indicated a single outlier (GAG=1.8 at
age 7.07 years) which was removed and also indicated that a transformation of the explanatory
variable age was needed. The transformation x = log(age + 0.01) was used.

We modelled the dependence of each (link transformed) parameter (of each distribution
for GAG) on x (the transformed age) using a penalized smoothing spline, i.e. P-spline (for
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further details, see EILERS; MARX, 1996). Moreover, appropriate link functions for each of
the parameters were chosen in all fitted models: when−∞ < θk <∞ we used the identity link
function, whereas when θk > 0 the logarithm link function was used.

Table 4.1 displays the number of distribution parameters, the total (effective) degrees of
freedom (df) used in the model, the values of the global deviance (GD, equals twice the fitted
log likelihood) and Akaike information criterion (AIC) (AKAIKE, 1974) for each model, which
were used to compare the fitted models. The BSPT model outperformed all others since it
returned the lowest AIC value (1539.29).

Table 4.1 – Statistics from the fitted models
Model Parameters df GD AIC
BSPT 5 19.38 1500.54 1539.29
BCCGo 3 15.97 1509.23 1541.17
BCTo 4 18.58 1507.28 1544.45
BSPNO 4 18.41 1508.32 1545.15
IG 2 13.00 1525.95 1551.95
BSPGT 6 20.61 1507.72 1552.79
BCPEo 5 25.73 1504.12 1555.58
GA 2 12.26 1544.44 1568.97

The fitted models for ψ, ξ, µ, σ and ν for the BSPT model are displayed in Figure 4.3. The
fitted model for the scale parameter ψ indicates that the value of this parameter increases very
rapidly in children with age from 0 to 0.03, after which ψ decreases until the age 17 years. The
relationship between parameter ξ and variable age shows that in children with age from 0 to
0.1 the parameter ξ grows very rapidly, slightly decreases until age 0.5 years and then starts
to increase gradually until 17 years old. The spikes in the early ages on the fitted models for
ψ and ξ are probably a result of a few low values of GAG at ages very close to 0 (see Figure
4.5), which may indicate the necessity of observing more data points in this age region. The
fitted model for the non-centrality parameter µ indicates that as the age grows, the parameter
µ declines from positive to negative. It is noteworthy here that the standard BST distribution
(i.e. BSPT with ξ = 2 and µ = 0) does not fit as well to this data set (AIC= 1548.88) since ξ
is always well below 2 and the parameter µ changes from well above 0 to well below 0 as the
age increases. The fitted value for the shape parameter σ declines from 1.42 to 1.25 with age.
Finally, the fitted value of the tail parameter ν increases with age, from below 1 to above 6. In
the smaller ages the fitted distribution is very heavy tailed (including the Birnbaum-Saunders
power Cauchy distribution, i.e. ν = 1).
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(a) (b)

(c) (d)

(e)

Figure 4.3 – The fitted parameters from the BSPT model against age: (a) ψ; (b) ξ; (c) µ; (d) σ;
and (e) ν
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Figure 4.4 displays the (normalized quantile) residuals (DUNN; SMYTH, 1996) from the
BSPT model. If the model for the response variable is correct, then the residuals have a standard
normal distribution. Panel (a) plots the residuals against age, whereas panels (b) and (c) display
a kernel density estimate for the residuals and a simulated envelope, respectively. The residuals
adequately follow a normal distribution and appear random.

(a) (b)

(c)

Figure 4.4 – The residuals from the BSPT model: (a) against age; (b) kernel density estimate;
and (c) simulated envelope

Figure 4.5 displays seven fitted centile curves, defined by equation (4.3), for concentration
of chemical GAG against age for the fitted BSPT model, with centiles 100α=5, 10, 25, 50, 75,
90, 95. For clarity of presentation they are plotted for age ranging from 0 to 1 year in Figure
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4.5(a) and for age ranging from 1 to 17 years in Figure 4.5(b).

(a) (b)

Figure 4.5 – Observed chemical GAG, with seven fitted centile curves (5, 10, 25, 50, 75, 90,
95) from the fitted BSPT model, against age: (a) 0–1 years and (b) 1–17 years

Figure 4.6 shows the worm plots (VAN BUUREN; FREDRIKS, 2001), that are used as
a residual-based diagnostic. In the plot the cases are split into nine age intervals with equal
number of cases. Worm plots are detrended normal Q-Q residual plots for cases in each of the
nine age intervals and their different shapes can indicate whether the assumed distribution for
the response variable is reasonable or not for a particular age interval: a vertical shift, a slope,
a parabola or a S shape, indicate a misfit in the mean, variance, skewness and excess kurtosis
of the residuals, respectively (VAN BUUREN; FREDRIKS, 2001). The nine plots are read in
rows from the bottom left plot to the top right plot and correspond to the nine age intervals given
above the worm plot from lowest to highest age.

As can be seen in Figure 4.6, there is a slight problem in the 8th age interval (corresponding
to ages 9.055–12.895 years) where we note a vertical shift above the horizontal origin line,
indicating that the location of the distribution of GAG, in this age interval, is too low. However,
since at least 95% of the points in each plot lie between the elliptical 95% pointwise interval
band curves, we can say that the model is adequate.
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Figure 4.6 – Worm plot for the fitted BSPT model

The last residual-based diagnostic used in this paper is the Z statistics, that are useful to test
whether the residuals have a standard normal distribution, since it tests whether the mean, vari-
ance, skewness and excess kurtosis of the residuals are 0, 1, 0 and 0, respectively, within each
age interval group (further information about the statistical tests used can be found in ROYS-
TON; WRIGHT, 2000; D’AGOSTINO et al., 1990). Figure 4.7 presents the visual display of
the four statistical tests for nine age intervals (which are exactly the same age intervals as pre-
sented in Figure 4.6), for the fitted BSPT model. The interpretation of Figure 4.7 is as follows:
the first (Z1), second (Z2), third (Z3) and fourth (Z4) columns represent the test statistics for the
mean, variance, skewness and kurtosis of the residuals (for the nine age intervals), respectively.
The colors blue and red represent whether the test statisticZ is negative or positive, respectively.
The larger the value of |Z|, the larger is the circle. Finally, a square within a circle indicates that
|Z| > 1.96 suggesting a misfit of the model to the response variable within the corresponding
inverval of age (HOSSAIN et al., 2016).
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Figure 4.7 – Z statistics for the fitted BSPT model

As we can note from Figure 4.7 that the BSPT model does not present any misfits, since no
squares can be seen in the figure, even in the 8th age interval. Based on all residual diagnostics
we can say that the BSPT model provides a reasonable fit to the data set in the study.

4.6 Concluding remarks

We presented a new very flexible extension of the BS distribution, that has most of the BS
type distributions already available in the literature as special cases and described the method
of maximum likelihood estimation for its parameters. In order to present its regression model
we incorporated the distribution in the GAMLSS framework, and developed and presented a
new generic package for fitting the model, called gamlss.BSP. A real data set, relating to the
concentration of chemical GAG in urine of children to age, was used to illustrate the importance
of the BSP regression model, showing that it produced better results than several other flexible
distributions.
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5 THE BIRNBAUM-SAUNDERS POWER FAMILY OF
DISTRIBUTIONS: BIMODALITY APPLICATIONS1

Abstract

The huge advance in the computational field, which enables the study and estimation of
more complex data sets, stimulates the creation of a wide range of new distributions in order to
model several distinct problems. The Birnbaum-Saunders power (BSP) family of distributions
is a new very flexible model which adds two new parameters (location and scale) to any distri-
bution on the real line. This family includes some important special and/or limiting cases in the
literature, including the generalized Birnbaum-Saunders (GBS) family of distributions. In this
paper we introduce the BSP family of distributions as an alternative family to model data sets
with bimodal response variables using the generalized additive models for location, scale and
shape (GAMLSS). A simulation study with covariates and two applications in real data sets are
conducted in order to illustrate the great flexibility of this family.

Keywords: Bimodal data; GAMLSS; Generalized additive models; Penalized splines; R soft-
ware; Regression

5.1 Introduction

The development of generalized families of distributions is fundamental to all topics related
to statistics and it is a powerful tool for theoretical and applied statisticians. One of the main
purposes to study new families of distributions is to increase the flexibility to model various
types of data sets in which there is a clear need for extended forms of these distributions such
as agronomic and environmental sciences, engineering, biological and medical studies, lifetime
and reliability analysis, economics, finance and insurance. Consequently, significant progress
has been achieved over the past decades in the generalization of some well-known distributions
and at the same time they have provided great flexibility and applicability in modelling data in
practice.

In this sense, recent developments that focus on new techniques for building new families
(or generators) of distributions have been proposed in the statistical literature. Some well-
known generators are the Azzalini’s skewed family by Azzalini (1985), the exponentiated-G
(EG) family by Mudholkar et al. (1995), the Marshall-Olkin generated family (MO-G) by
Marshall and Olkin (1997), the beta-G by Eugene et al. (2002), the Kumaraswamy-G (Kw-
G for short) by Cordeiro and de Castro (2011), the McDonald-G (Mc-G) by Alexander et al.
(2012), the Kummer beta-G (KB-G) by Pescim et al. (2012) and more recently the transformer
(T-X) by Alzaatreh et al. (2013).

Those families of distributions have received a great deal of attention in recent years because
they allow more flexible densities and introduce skewness and vary tail weight. However, they

1Luiz R. Nakamura, Rodrigo R. Pescim (UEL), Robert A. Rigby (LMU), Dimitrios M. Stasinopoulos (LMU),
Roseli A. Leandro (ESALQ/USP) and Cristian Villegas (ESALQ/USP). To be submitted.
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cannot model a bimodal response variable distribution which frequently occurs in real data
analysis. According to Famoye et al. (2004), a bimodal response variable distribution can
occur in many areas of science. Withington et al. (2000) showed that plasma vecuronium and
vecuronium clearance requirements have bimodal behavior in the study of cardiopulmonary
bypass in infants. Freeland et al. (2000), Wolf and Sumner (2001), Zangvil et al. (2001) and
Isaacson (2000) reported that bimodal distributions frequently occur in the study of genetic
diversity, in agricultural farm size distribution, in atmospheric pressure and in the study of
anabolic steroids on animals, respectively.

In Chapter 4, we proposed the Birnbaum-Saunders power (BSP) family of distributions
which provides different degrees of skewness and kurtosis and includes most Birnbaum-Saunders
type models available in the literature. The BSP family of distributions is defined by the trans-
formation

Y = ψ

Z
2

+

√(
Z

2

)2

+ 1

ξ , (5.1)

where Y > 0, ψ > 0 is a scale parameter and ξ > 0 is a skewness parameter and the random
variable Z follows any arbitrary baseline distribution on the real line, denoted by Z ∼ D(θ),
with parameter vector θ. Here, we assume that the distribution of Z has up to four parameters,
i.e. θ = (µ, σ, ν, τ)>, where−∞ < µ <∞ is the location parameter, σ > 0 is the scale param-
eter and ν and τ are parameters related to tail weight. Hence, the BSP family of distributions
is very flexible and it can be used in many practical situations. In fact, it can be asymmetric
(highly positively skewed and highly negatively skewed) or close to symmetric and can also
exhibit bimodality.

The study of the BSP distributions is important since it extends some models previously con-
sidered in the literature. If ξ = 2 and Z ∼ N(0, σ2), it yields the standard Birnbaum-Saunders
distribution (BIRNBAUM; SAUNDERS, 1969). If ξ = 2 and Z follows any symmetric distri-
bution with non-centrality parameter µ = 0, it reduces to the generalized Birnbaum-Saunders
(GBS) distribution (DÍAZ-GARCÍA; LEIVA, 2005).

The probability density function (pdf) corresponding to (5.1) can be expressed as

fY (y|ψ, ξ,θ) = fZ(z|θ)

∣∣∣∣dzdy
∣∣∣∣ , y > 0, (5.2)

where

dz

dy
=

1

y ξ

[(
y

ψ

) 1
ξ

+

(
y

ψ

)− 1
ξ

]
,

and z is related to y by (5.1).
Hereafter, we denote Y the random variable with pdf given by (5.2), by Y ∼ BSP(ψ, ξ, µ, σ,

ν, τ). This pdf has up to six parameters depending on the baseline distribution and also it allows
for a high degree of flexibility. In Section 4.2, we defined and studied the Birnbaum-Saunders
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power normal (BSPNO), the Birnbaum-Saunders power t (BSPT) and the Birnbaum-Saunders
power generalized t (BSPGT) distributions by taking fZ(z|θ) to be the pdf of the normal, scaled
and shifted t and generalized t distributions, respectively. In this chapter, we use the bimodality
properties of the BSPNO and BSPT distributions to model some bimodal data.

The BSP family of distributions defined by the pdf (5.2) is also an alternative family of
models to fit a bimodal response variable which cannot be properly fitted by existing families
of distributions. We note that while the parameters µ, ψ, ν and τ control the location, scale and
weight of tails and adds flexibility, the parameters ξ and σ are responsible for yielding bimodal
behavior in the BSP pdfs, i.e., for ξ → 0 and σ large (usually > 1) BSP distributions present
bimodality. Figure 5.1 displays some possible shapes of the BSPNO and BSPT pdfs. All the
plots ploted have ψ = 20 and ξ = 0.1. These plots show the great flexibility achieved with the
new bimodal distributions.

(a) (b)

Figure 5.1 – Plots of the (a) BSPNO and (b) BSPT density functions

In this chapter, we introduce the BSP family of distributions as an alternative to fit bimodal
response variables with the hope that it will attract wider applications in several areas of re-
search. The rest of paper is outlined as follows. Section 5.2 presents a brief review about the
GAMLSS framework. In Section 5.3, we run a simulation study modelling all parameters of
the BSP family of distributions using covariates. Two real data set applications are presented in
Section 5.4, one related to geysers and other regarding prawns. Section 5.5 ends the paper with
some concluding remarks.
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5.2 GAMLSS framework

In Section 4.4, we proposed a regression model for the BSP family of distributions based on
the generalized additive models for location, scale and shape, GAMLSS, framework. GAMLSS
are very flexible semi-parametric regression models that involve a distribution for the response
variable, that does not necessarily belong to the exponential family, where all of its parameters
can be modelled using parametric and/or non-parametric smooth functions, such as penalized
splines (EILERS; MARX, 1996), of a set of explanatory variables, thus allow modelling of the
location, scale and shape parameters.

The GAMLSS models are defined as follows. Let Y ∼ D(θ), where D is the response vari-
able distribution with parameter vector θ = (θ1, . . . , θk)

>. For k = 1, . . . , p, let gk(·) be known
monotonic link functions relating each of the parameters with their respectively predictors ηk.
Then the GAMLSS models can be written as

gk(θk) = ηk = Xkβk +

Jk∑
j=1

hjk(xjk),

where Xk is a known design matrix, β>k =
(
β1k, . . . , βJ ′

kk

)
is a parameter vector of length J ′k

and each hjk function is a smooth non-parametric function of an explanatory variable xjk, for
j = 1, . . . , Jk and k = 1, . . . , p.

We created a new generic package (as mentioned in Section 4.4) in R (R CORE TEAM,
2013), that will be available soon in the Comprehensive R Archive Network (CRAN), named
gamlss.BSP, that allows the BSP family of distributions for Y to be fitted for any corre-
sponding baseline distribution for −∞ < Z <∞ currently available in the gamlss.family
package. For further details about the GAMLSS estimation, see Appendices A, B and C and
Rigby and Stasinopoulos (2005).

5.3 Simulation study

In order to simulate values from the BSP distribution with pdf (5.2), when F−1Z (u|θ) exists,
we can use the quantile function of Y , i.e. the inverse cumulative distribution function,QY (u) =

F−1Y (u|ψ, ξ,θ), given by

QY (u) = ψ

F−1Z (u|θ)

2
+

√(
F−1Z (u|θ)

2

)2

+ 1

ξ , (5.3)

where u is an uniform random variable on the interval from zero to one.
We conduct three Monte Carlo simulation studies to assess the finite sample behavior of

the maximum likelihood estimators (MLEs) of the parameters of the BSP distribution for two
different sample sizes (n = 50 and n = 100) and two baseline distributions for Z: i) normal
and ii) scaled and shifted student’s t distributions. For all scenarios we obtained 1,000 Monte
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Carlo replications and, for each replication, we calculate the MLEs of the parameters. After
all replications we determined the average estimates (AEs), biases and mean squared errors
(MSEs). The simulations are carried out using the package gamlss.BSP in R.

5.3.1 BSPNO simulation

In order to generate values from the BSPNO distribution, we use the function rBSPNO

available in the gamlss.BSP package. The true parameter values used in the data-generating
process are ψ = 20, ξ = 0.1, µ = β01 + β11x1 = 2 + 3x1 and σ = exp {β02 + β12x1} =

exp {log(5) + log(2)x1}, where x1 was generated from a binomial(n, 0.5), n = 50, 100, distri-
bution. The simulation results are reported in Table 5.1.

Table 5.1 – The average estimates (AE), biases and mean squared errors (MSE) based on 1,000
simulations for the BSPNO model

n = 50 n = 100
Parameter AE Bias MSE Parameter AE Bias MSE

β01 2.292 0.292 3.926 β01 2.120 0.120 1.358
β11 3.909 0.909 22.050 β11 3.331 0.331 7.965
β02 1.743 0.134 0.143 β02 1.656 0.046 0.067
β12 0.741 0.047 0.086 β12 0.713 0.020 0.037
ψ 20.082 0.082 0.233 ψ 20.039 0.039 0.106
ξ 0.093 0.007 0.000 ξ 0.098 0.002 0.000

5.3.2 BSPT simulation

Now, we generate observations from the BSPT distribution using the rBSPTF function
available in the gamlss.BSP package. The true parameter values for this simulation study
are ψ = 20, ξ = 0.2, ν = 2, µ = β01 + β11x1 = 2 + 3x1 and σ = exp {β01 + β11x1} =

exp {log(5) + log(2)x1}, where the explanatory variable x1 was generated from a binomial(n,
0.5), n = 50, 100, distribution as in the previous case. Table 5.2 displays the simulation results
for the BSPT distribution.

Table 5.2 – The average estimates (AE), biases and mean squared errors (MSE) based on 1,000
simulations for the BSPT model

n = 50 n = 100
Parameter AE Bias MSE Parameter AE Bias MSE

β01 1.858 0.142 2.444 β01 1.941 0.059 1.102
β11 3.056 0.056 15.516 β11 2.841 0.159 4.810
β02 1.519 0.091 0.145 β02 1.549 0.061 0.058
β12 0.677 0.017 0.141 β12 0.686 0.007 0.058
ν 2.194 0.194 1.094 ν 2.364 0.364 0.914
ψ 20.387 0.387 1.446 ψ 20.116 0.116 0.547
ξ 0.200 0.000 0.001 ξ 0.200 0.000 0.001
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We can note the apparant consistency of the estimates of the proposed models in agreement
with theoretical properties for MLEs. The results from Tables 5.1 and 5.2 indicate that the
MSEs of the parameter estimates decay toward zero as the sample size increases, as expected
under standard regularity conditions. Further, as the sample size n increases, the AE tend to be
closer to the true parameter value. Figures 5.2 (a) and (b) display the true density and the density
of the average values of the parameters, for n = 100, from the BSPNO and BSPT simulation
studies, respectively.

(a) (b)

Figure 5.2 – Estimated densities at the true parameter values and at the AEs obtained in the sim-
ulation study, considering n = 100 of the (a) BSPNO and (b) BSPT distributions

It is noteworthy that despite of the number of parameters from the BSP distributions and
their bimodal shapes of the response variable, we did not encounter any convergence problems
using the gamlss.BSP package in R.

5.4 Applications

In this section we provide two applications to real bimodal data to illustrate the great flex-
ibility of the BSP regression model based on the GAMLSS framework. The computations
are performed using the gamlss.BSP and gamlss.mx (STASINOPOULOS; RIGBY, 2007)
packages. In both applications we compare the BSPNO and BSPT models with a mixture-
normal model.

5.4.1 Eruption data

The first data set modelled in this paper refers to two variables measured on the Old Faithful
geyser in Yellowstone National Park, Wyoming, USA, available on R software under the data
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set name faithful: waiting time between eruptions (Y ) and duration of the eruption (X).
The response variable Y , displayed in Figure 5.3, ranges from 43.0 to 96.0 and X ranges from
1.6 to 5.1. There was a total of 272 observations in this data set.

Figure 5.3 – Histogram of the waiting time between eruption on the Old Faithful geyser

Since the variable waiting time between eruptions is bimodal, we used two special models
from the BSP family of distributions: BSPNO and BSPT, and also we compare them with
a mixture-normal model. Table 5.3 displays the number of distribution parameters, the total
(effective) degrees of freedom (df) used in the respective model, the values of global deviance
(GD), Akaike information criterion (AIC) (AKAIKE, 1974) and Schwarz Bayesian criterion
(SBC) (SCHWARZ, 1978). We can see that the BSPNO model is chosen as the best fitted
model to the eruption data, since it returned the smallest GD, AIC and SBC values (1,688.62,
1,714.32 and 1,760.66, respectively).
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Table 5.3 – Statistics from the fitted models for the eruption data
Model Parameters df GD AIC SBC
BSPNO 4 12.85 1,688.62 1,714.32 1,760.66
Mixture-normal 4 16.72 1,688.86 1,722.30 1,782.57
BSPT 5 20.02 1,688.82 1,728.85 1,801.03

The fitted model from the BSPNO distribution under the GAMLSS framework is given by
Y ∼ BSPNO(ψ, ξ, µ, σ) where

log(ψ) = 3.677 + h11(X)

log(ξ) = −1.564− 0.136X

µ = 0.525− 0.195X

log(σ) = 0.508 + h14(X), (5.4)

where the parameters ψ and σ are explained by non-parametric (penalized splines) functions
h11 and h14, respectively. Both functions are displayed in Figure 5.4. Panel (a) presents the
relationship between the location parameter ψ and the covariate X . Although it has an almost
linear relationship, we can see that when the eruption time is less than three minutes, the func-
tion grows fast and after this point it starts to grow slower. The fitted model for the shape
parameter σ indicates that the value of this parameter increases in eruption times up to about
2.75 minutes, decreases until eruption times about 4.6 minutes, then increases. We can also see
from model (5.4) that the longer is the eruption time the lower are the values of parameters ξ
and µ. Note that parameter ξ will always be close to zero (one of the assumptions in order to
obtain a bimodal shape for a BSP model).
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(a) (b)

Figure 5.4 – The fitted parameters from the BSPNO model against eruption time: (a) ψ and (b)
σ

Figure 5.5 displays the normalized quantile residuals (DUNN; SMYTH, 1996) from the
BSPNO fitted model (5.4). The true residuals follow a standard normal distribution if the model
is correct. Panels (a) and (b) give a plot of the residuals against the eruption time and a simulated
envelope, respectively, and they indicate that a normal distribution for the residuals appears
reasonable and that the residuals appear to be random.

(a) (b)

Figure 5.5 – The residuals from the BSPNO model: (a) against the eruption time and (b) simu-
lated envelope
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Figure 5.6 presents the worm plot (VAN BUUREN; FREDRIKS, 2001). If a vertical shape,
a slope, a quadratic or a cubic shape is observed, it may indicate misfits in the location, scale,
skewness and excess kurtosis of the residuals, respectively, and hence, there is a problem with
the fitted model. Moreover, 95% of the residual points should lie between the elliptical 95%
pointwise interval band curves. The plots are read in rows from the bottom left plot to the top
right plot and correspond, in this case, to the nine intervals in the eruption time variable given
above the worm plot, from the shortest to the longest eruption time. We can verify from the
worm plots that the model is adequate throughout all the eruption time intervals.

Figure 5.6 – Worm plot for the fitted BSPNO model
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5.4.2 Prawn data

The second data set analyzed in this chapter regards prawn (farfantepenaeus brasiliensis)
biometric measurements, collected in three different regions of Rio Grande do Norte State coast,
Brazil. This data set, comprehending 120 observations, was collected by Pinheiro (2008). Here
we have the response variable prawn weight (Figure 5.7), which ranges from 1.98 and 35.78 g,
and we try to explain it using three different covariates: X1 is the region where prawns were
collected and has three different levels (1: Baia Formosa, 2: Diogo Lopes and 3: Touros), X2

is the prawn gender (0: female and 1: male) and X3 is the prawn length that ranges from 55.8
and 138.2 mm.

Figure 5.7 – Histogram of the prawn weight
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Since the response variable prawn weight has a bimodal shape we have as possible suitable
distributions the BSP family of distributions. In this data set, as in the previous one, we used the
BSPNO, BSPT and mixture-normal models. Table 5.4 displays results of the best fitted models
for each distribution, presenting the number of distribution parameters, the effective degrees of
freedom (df) used in fitting the model, global deviance (GD), AIC and SBC.

Table 5.4 – Statistics from the fitted models for the prawn data
Model Parameters df GD AIC SBC
BSPT (with µ = 0) 4 15.63 290.52 321.78 365.33
BSPNO 4 11.93 309.52 333.38 366.63
Mixture-normal 4 13.00 448.29 474.29 510.52

We can see from Table 5.4 that BSPT (with µ = 0) is the best fitted model according to the
AIC and SBC measures (321.78 and 365.33, respectively). The BSPT model as the best model
here is given by

log(ψ) = −0.475− 0.048(if X2 = 1) + h11(X3)

log(ξ) = −1.199 + 2.365(if X1 = 2) + 2.133(if X1 = 3) + h12(X3)

µ = 0.000

log(σ) = 1.346− 3.146(if X1 = 2)− 2.958(if X1 = 3)

log(ν) = 1.285. (5.5)

From (5.5), we can see that µ = 0, which implies that the parameter ψ is exactly the median
of the BSP distribution (see Section 4.1). Hence, from the model for the median ψ, we observe
that male prawns tend to be smaller than female ones as expected (BAUER, 2004). Moreover
ψ is also modelled by a non-parametric function, denoted by h11, over the covariate length
(Figure 5.8(a)). Although this function is roughly linear, the penalized spline was important
to obtain reliable residuals, which are presented in Figure 5.9. As expected, the larger is the
animal the heavier it will be. Prawns collected from locations number two (Diogo Lopes) and
three (Touros) produce a greater value of the parameter ξ. Parameter ξ is also modelled by a
non-parametric function (h12). This relationship is shown in Figure 5.8(b) and indicates that
the value of parameter ξ decreases until about 115 mm and then stabilizes as a constant up to
138.2 mm. Variable location was the only one selected to explain the parameter σ. As we can
see, prawns collected from region number one (Baia Formosa) produces high values of this
parameter. Finally, parameter ν is modelled as a constant (1.285). As we can see, the BSPT
distribution was needed to model this data set since a small value of ν produces a heavy-tailed
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(a) (b)

Figure 5.8 – Relationship between length and parameters ψ and ξ

distribution (close to the Birnbaum-Saunders power Cauchy distribution, which is obtained
when ν = 1).

Figure 5.9 displays the normalized quantile residuals for the prawn data. Panel (a) shows
us that the residuals adequately follow a normal distribution. This information is corroborated
by the simulation envelope presented in Panel (b), since the majority of the points are within
the simulated confidence bands. Panel (c) presents the worm plot for the BSPT fitted model
and there are no evidences of inadequacies in it, since all the residuals fall in the “acceptance”
region inside the two elliptic curves and no specific shape is detected in the points.

5.5 Concluding remarks

In this chapter, we used the new very flexible Birnbaum-Saunders power (BSP) family of
distributions as a new alternative for fitting bimodal response variables. In order to fit a BSP re-
gression model, we used the GAMLSS framework, which proved to be a very powerful method-
ology. A simulation study using the BSPNO and BSPT distributions (with a covariate) was
performed, showing that the estimates of all parameters are satisfactory. Further, we did not
face any convergence problems using the gamlss.BSP package in software R. Finally, two
applications to real data sets show the great flexibility of the BSP family of distributions when
applied to problems involving a bimodal response variable and we hope that it can attract wider
applications in statistics.
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(a) (b)

(c)

Figure 5.9 – The residuals from the BSPT model: (a) against the index; (b) simulated envelope;
and (c) worm plot
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6 CONCLUSION

In this thesis, we provided some advances on the Birnbaum-Saunders (BS) distribution.
Firstly, we adopted a Bayesian approach in order to estimate the two parameters of the Birnbaum-
Saunders special-case (BS-SC) distribution. Although this distribution has been previously de-
veloped in the literature, its properties were never studied. We showed that the BS-SC distribu-
tion has heavier tails and allocates more information around the mean than the BS distribution
and hence, it could be an interesting competitive model to the BS and the BS-t distributions
when there are extreme values in tails of the distribution. In the Bayesian approach the BS-SC
model is simpler considering that the BS-t distribution has a degree of freedom parameter (ν)
which is somewhat not very easy to estimate. The Bayesian approach was necessary since only
the first moment of the BS-SC distribution can be obtained. We showed that we can generate
data from the BS-SC distribution using a Metropolis-Hastings algorithm. An application was
conducted to demonstrate that this distribution can produce a better fit than the BS and BS-t
distributions according to the deviance information criterion (DIC).

Another interesting and more flexible extension of the BS distribution studied in this thesis
was the Birnbaum-Saunders generalized t (BSGT) distribution, which admits different degrees
of skewness and kurtosis and includes some important special or limiting cases available in the
literature, such as the BS and BS-t distributions. We developed a regression model for this
distribution based on the generalized additive models for location, scale and shape (GAMLSS)
framework, allowing any parameter of the BSGT distribution to be modelled as parametric
and/or nonparametric functions of explanatory variables. A simulation study was conducted
to investigate the behavior of the estimators and this new regression model was applied to a
real motor vehicle insurance data set. In the application, the BSGT regression model produced
better results than some well-known models in the GAMLSS literature according to the Akaike
information and Schwarz Bayesian criteria (AIC and SBC, respectively).

We developed a new extension of the BS distribution, called the Birnbaum-Saunders power
(BSP) family of distributions which has several special cases, including the BSGT distribution.
For any baseline distribution with support on the real line, we can add two extra parameters us-
ing simple formulae to create a BSP distribution. This family can produce unimodal or bimodal
shapes, depending on the values of its parameters. Implementation of fitting a BSP regression
model was achieved using a new generic package, that we called gamlss.BSP in software R,
that allows the BSP distribution for Y to be fitted with parametric and/or nonparametric func-
tions of explanatory variables, for any corresponding distribution for Z on the real line currently
available in the gamlss.family package. A simulation study using two of its special cases
– Birnbaum-Saunders power normal (BSPNO) and Birnbaum-Saunders power t (BSPT) distri-
butions – with a response variable with bimodal shape and a covariate, performed by the new
package, was presented and regardless this behavior and the number of parameters (four and
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five) we did not face any convergence problems. The potentiality of the BSP family of dis-
tributions was illustrated in three different applications to real data sets throughout this thesis,
showing its great flexibility.

Finally, we hope this thesis encourages people to use different extensions of the BS dis-
tributions and also to use the GAMLSS framework to produce very flexible semi-parametric
regression models to explain the behavior of very complex data sets.
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APPENDIX A - Estimation in GAMLSS

The generalized additive models for location, scale and shape (GAMLSS) defined in (3.3)
and (4.5) can be written in the form h(x) = Zγ, i.e.

gk(θk) = Xkβk +

Jk∑
j=1

Zkjγkj, (1)

where θ>k = (θi1, . . . , θip) is the vector of parameters of length p, gk(·) denote known monotonic
link functions, β>k = (β1k, . . . , βJ ′k) is the parameter vector associated with the explanatory
variables in design matrixXk, Z is the basis matrix which depends on the explanatory variable
x, γ is a parameter vector to be estimated, subject to a quadratic penalty of the form λγ>Gγ,
for a known matrix G = D>D, λ is the parameter responsible by the smoothing needed for
the fit andD is a difference matrix of order k.

The GAMLSS model can be fitted by the maximum penalized likelihood method with
respect to β =

(
β>1 , . . . ,β

>
k

)> and γ = (γ11, . . . ,γ1J1 ,γ21, . . . ,γkJk)
>, for a fixed λ =

(λ11, . . . , λ1J1 , λ21, . . . , λkJk)
>. The penalized log-likelihood function for model (1) can be

written as

lp = l − 1

2

p∑
k=1

Jk∑
j=1

λkjγ
>
kjGkjγkj,

where l =
n∑
i=1

log f(yi|µi, σi, νi, τi). Note that if no smooth functions are adressed in the model,

a simple maximum likelihood estimation should be performed.
In order to estimate β and γ for fixed λ, Rigby and Stasinopoulos (2005) provide two differ-

ent algorithms: CG (stands for Cole and Green) and RS (stands for Rigby and Stasinopoulos).
The main difference between them is that RS algorithm maximizes the penalized likelihood
over each of the parameters in turn and CG jointly updates all parameters. Both algorithms are
described in Appendices B and C, respectively. There is also a third option, which is a combi-
nation of the two algorithms, where the RS is performed in early iterations of a given problem
and later switches to the CG algorithm. Full details can be seen in Rigby and Stasinopoulos
(2005).
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APPENDIX B - The RS algorithm

The RS algorithm is divided in three different phases: the outer iteration, the inner iteration
and the modified backfitting algorithm. For simplicity, we will assume that the distribution of
the response variable we are working with has four parameters, hence given the initial values
(µ0 = θ01,σ0 = θ02,ν0 = θ03, τ0 = θ04) for (µ = θ1,σ = θ2,ν = θ3, τ = θ4), the first step,
outer iteration has the following steps:

1) Given the estimates σ̂, ν̂ and τ̂ from the last cycle, maximize the penalized log-likelihood
over µ, i.e. fit a model for µ;

2) Given the estimates µ̂, ν̂ and τ̂ from the last cycle, fit a model for σ;

3) Given the estimates µ̂, σ̂ and τ̂ from the last cycle, fit a model for ν;

4) In the last step we fit a model for τ given the estimates µ̂, σ̂ and τ̂ from the last cycle.

When all steps are completed, the global deviance (GD = −2l̂, where l̂ is the current log-
likelihood), is calculated and a checked for convergence. If the convergence is achieved then
the algorithm stops, otherwise all the process is repeated.

In each of the itens described before, i.e. for each fitting of a distribution parameter θk,
k = 1, . . . , p, the inner iteration is performed. Basically, a working variable is generated to fit
each θk as follows

zk = ηk +w−1k ◦ uk, (2)

where ηk = gk(θk) is the predictor vector of θk, uk is the score function, i.e.

uk =
∂l

∂ηk
=

(
∂l

∂θk

)
◦
(
dθk
dηk

)
,

wk = (wk1, . . . , wkn)> is the vector of iterative weights, which, in our case, is given by

wk = uk ◦ uk,

and w−1k ◦ uk =
(
w−1k1 uk1, . . . , w

−1
knukn

)−1 is the Hadamard product.
Given the current estimates for each parameter, wk and zk are recalculated and used in a

weighted fit against all the explanatory variables considered for parameter k using modified
backfitting process. This process is performed until there is no change in the GD.

For simplicity, let us consider only two smoothers, γk1 and γk2 with basis matrices Zk1 and
Zk2, respectively. Given the current values for the working variable zk, the working weights
wk, the smoothers for parameter and their respectively basis matrices, the backfitting process
works as follows:

1) Calculate the partial residuals for βk, i.e. ε = zk −Zk1γ̂k1 −Zk2γ̂k2;
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2) Fit a weighted least squares algorithm on ε againtXk to get a new estimate for β̂k;

3) Calculate the partial residuals for γ̂k1, i.e. ε = zk −Xkβ̂k −Zk2γ̂k2 ;

4) Fit a penalized weighted least squares algorithm on ε against Zk1 using weights wk to
obtain a new γ̂k1;

5) Calculate the partial residuals for γ̂k2, i.e. ε = zk −Xkβ̂k −Zk1γ̂k1;

6) Fit a penalized weighted least squares algorithm on ε against Zk2 using weights wk to
obtain a new γ̂k2;

The backfitting process is finished when β̂k, γ̂k1 and γ̂k2 converge by some criterion.
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APPENDIX C - The CG algorithm

The CG algorithm is divided in two different phases: the outer and the inner iteration. In
the outer iteration, we need to create a working variable given by

zk = ηk +w−1ks ◦ uk,

where zk is defined in equation (2). For simplicity, we will consider that the distribution of
the response variable we are working with has four parameters. Considering k = 1, 2, 3, 4 and
s = 1, 2, 3, 4, where k ≤ s, in our case, we can define the working weights wks as

wks =

(
∂l

∂θs

)
◦
(
∂θs
∂ηs

)
◦ uk.

During the inner iteration of the CG algorithm, we shall consider a new working variable,
defined by

z∗k = zk + z′k,

where z′k is a combination of the cross derivatives of the log-likelihood with respect to pairs of
parameters of the distribution. Considering the four parameter distribution we will have

z′1 = −w−111 ◦
[
w12 ◦

(
η2 − η0

2

)
+w13 ◦

(
η3 − η0

3

)
+w14 ◦

(
η4 − η0

4

)]
z′2 = −w−122 ◦

[
w12 ◦

(
η2 − η0

2

)
+w23 ◦

(
η3 − η0

3

)
+w24 ◦

(
η4 − η0

4

)]
z′3 = −w−133 ◦

[
w13 ◦

(
η2 − η0

2

)
+w23 ◦

(
η3 − η0

3

)
+w34 ◦

(
η4 − η0

4

)]
z′4 = −w−144 ◦

[
w14 ◦

(
η2 − η0

2

)
+w24 ◦

(
η3 − η0

3

)
+w34 ◦

(
η4 − η0

4

)]
.

Using the new adjusted working variables we fit a model for each parameter using the modi-
fied backfitting algorithm described in Appendix B. The inner process continues until the global
deviance (GD) reaches a value that does not change. Then a new outer iteration is performed
recalculating the quantities zk, wks and η0

k. The CG algorithm continues until the deviance
evaluated in the outer iteration converges according to some criterion.


