
University of São Paulo
“Luiz de Queiroz” College of Agriculture

The new class of Kummer beta generalized distributions:
theory and applications

Rodrigo Rossetto Pescim

Thesis submitted in partial fulfillment of the requirements
for the degree of Doctor in Science. Area of concentration:
Agricultural Statistics and Experimentation

Piracicaba
2014



Rodrigo Rossetto Pescim
Degree in Mathematics

The new class of Kummer beta generalized distributions:
theory and applications

versão revisada de acordo com a resolução CoPGr 6018 de 2011

Adviser:

Prof. Dr. CLARICE GARCIA BORGES DEMÉTRIO

Thesis submitted in partial fulfillment of the requirements
for the degree of Doctor in Science. Area of concentration:
Agricultural Statistics and Experimentation

Piracicaba
2014



            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dados Internacionais de Catalogação na Publicação  

DIVISÃO DE BIBLIOTECA - DIBD/ESALQ/USP 

 
 

Pescim, Rodrigo Rossetto  
The new class of Kummer beta generalized distributions: theory and 

applications / Rodrigo Rossetto Pescim.- - versão revisada de acordo com a 
resolução CoPGr 6018 de 2011. - - Piracicaba, 2013. 

130 p: il. 

Tese (Doutorado) - - Escola Superior de Agricultura “Luiz de Queiroz”, 2013. 
 

1. Análise Bayesiana 2. Distribuição Birnbaum-Saunders 3. Distribuição gama  
4. Distribuição normal 5. Matriz de informação observada 6. Razão de 
verossimilhança I. Título 

                                                                              CDD 519.532 
                                                                                   P473n                                                         

  
 
 
 

“Permitida a cópia total ou parcial deste documento, desde que citada a fonte -O autor” 
 



3

DEDICATION

To my parents,
José Gilberto Pescim and Luzia Aparecida Rossetto
Pescim, For their love, patience and unfailing support to
me.

To my grandparents,
João Pescim (in memorian) and Alice Moniz Pescim,
For their love, tenderness and comprehension.

To my friend,
Mariana Ragassi Urbano, because you always give me
something.

To them,
I lovingly dedicate this work.



4

pular pagina



5

ACKNOWLEDGMENTS

I would like to express my gratitude to all those who gave me the possibility to complete this
thesis, especially my parents José Gilberto Pescim and Luzia Aparecida Rossetto Pescim, my
uncles Antonio Edson Pescim, José Gilmar Wolf, Luis Edilberto Pescim, my aunts Neuza Maria
Favoreto Pescim and Marlene Aparecida Pescim Wolf, my cousins Guilherme Favoreto Pescim,
Patrícia Penatti Pescim and Isabela Pescim Wolf, for their love and supporting me throughout
my life.

To my adviser, Prof. Dr. Clarice Garcia Borges Demétrio, for the continuous support of my
Doctorate, for her patience, motivation, enthusiasm and immense knowledge.

To Prof. Dr. Gauss Moutinho Cordeiro and Prof. Dr. Edwin Moisés Marcos Ortega, for
their scientific contribution, intellectual input and especially for participating in the whole pro-
cess of the Doctorate training.

To Prof. Dr. Saralees Nadarajah of the University of Manchester and his family, for all their
support during my stay in Manchester.

To Prof. Dr. Taciana Villela Savian, Prof. Dr. Cristian Marcelo Villegas Lobos and Prof.
Dr. Roseli Aparecida Leandro at ESALQ/USP, and Prof. John Hinde at NUI Galway, Ireland,
for their valuable guidance and friendship.

To Sibelle Santanna da Silva, by the moments of happiness.

To my special friends, Mariana Ragassi Urbano, Ana Julia Righetto, Pedro Henrique Ramos
Cerqueira and Thiago Gentil Ramires, who were always willing to help, and also, for providing
me a more enjoyable life in the last four years.

To my friends from Manchester, Stuart Morrison, Fabiane Trindade, Jane Morakabi, Dan
Sadullah and Daniel Ponicke, for their help, support and friendship.

To my friends from Piracicaba and from the Department of Exact Sciences at ESALQ/USP,
Cássio Dessotti, Guilherme Biz, Lucas Cunha, Edilan Quaresma, Ezequiel Lopez, Maurício
Lordello, Djair (Djavan), Everton da Rocha, Simone Grego, Iuri Ferreira, Thiago Oliveira, Luiz
Ricardo Nakamura, Marina Maestre, Alessandra Santos, Ricardo Klein, Maria Cristina Mar-
tins, Rafael Moral, Simone Werner, José Nilton, Fernando Mayer, Tiago Santana and Everton
de Toledo Hanser.

To employees of the Department of Exact Sciences at ESALQ/USP, the secretaries Solange
de Assis Paes Sabadin, Mayara Segatto and Luciane Brajão, and the computer technicians Jorge
Alexandre Wiendl and Eduardo Bonilha.

This work was supported by CNPq, Conselho Nacional de Desenvolvimento Científico e
Tecnológico, Brazil.



6

pular pagina



7

SUMMARY

RESUMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 THE KUMMER BETA GENERALIZED FAMILY OF DISTRIBUTIONS . . . . . . . . . . 19
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Special KB Generalized Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 KB-normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 KB-Weibull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 KB-gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.4 KB-Gumbel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Expansions for the Density and Cumulative Distribution Functions . . . . . . . . . . 27
2.4 General Properties of the KB-G Family . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Generating Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Mean Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.4 Rényi Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Order Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.1 Maximum likelihood method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.2 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7.1 USS Halfbeak diesel engine data set . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7.2 INPC data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3 THE KUMMER BETA BIRNBAUM-SAUNDERS: AN ALTERNATIVE FATIGUE LIFE DIS-

TRIBUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 A New Distribution for Reliability Studies . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Expansions for Cumulative and Density Functions . . . . . . . . . . . . . . . . . . . 58
3.4 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Generating function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6 Incomplete Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7 Other Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



8

3.7.1 Mean Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.7.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.8 Order statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.9 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.10Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.10.1Breaking stress of carbon fibres data set . . . . . . . . . . . . . . . . . . . . . . . 71
3.11Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4 A NEW EXTENSION OF THE GENERALIZED GAMMA DISTRIBUTION . . . . . . . . 79
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Special Cases of the KBGG Distribution . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.1 Kummer Beta Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.2 Beta Generator (for c = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.3 Exponentiated Generator (for b = 1 and c = 0) . . . . . . . . . . . . . . . . . . . 83
4.2.4 Baseline distributions (for a = b = 1 and c = 0) . . . . . . . . . . . . . . . . . . 84
4.3 Expansion for the Density Function . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Moments and Generating Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 Incomplete Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6 Mean Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.7 Rényi Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.8 Order Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.9 Inference and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.9.1 Classical Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.9.2 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.10Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.10.1Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.10.2Bayesian Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.11Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



9

RESUMO

A nova classe de distribuições Kummer beta generalizada: teoria e
aplicações

Neste trabalho, foi proposta uma nova classe de distribuições generalizadas, baseada na
distribuição Kummer beta (NG; KOTZ, 1995), que contém como casos particulares os gera-
dores exponencializado e beta de distribuições. A principal característica da nova família de
distribuições é fornecer grande flexibilidade para as extremidades da função densidade e por-
tanto, ela torna-se adequada para a análise de conjuntos de dados com alto grau de assimetria
e curtose. Também foram estudadas duas novas distribuições que pertencem à nova família de
distribuições, baseadas nas distribuições Birnbaum-Saunders e gama generalizada, que possuem
função de taxas de falhas que assumem diferentes formas (unimodal, forma de banheira, cres-
cente e decrescente). Em todas as pesquisas, propriedades matemáticas gerais como momentos
ordinários e incompletos, função geradora, desvios médio, confiabilidade, entropias, estatísti-
cas de ordem e seus momentos foram discutidas. A estimação dos parâmetros é abordada pelo
método da máxima verossimilhança e pela análise bayesiana e a matriz de informação obser-
vada foi derivada. Considerou-se, também, a estatística de razão de verossimilhanças e testes
formais de qualidade de ajuste para comparar todas as distribuições propostas com alguns de
seus submodelos e modelos não encaixados. Os resultados desenvolvidos foram aplicados a
seis conjuntos de dados.

Palavras-chave: Análise bayesiana; Distribuição Birnbaum-Saunders; Distribuição gama;
Distribuição normal; Matriz de informação observada; Razão de
verossimilhanças
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ABSTRACT

The new class of Kummer beta generalized distributions: theory and
applications

In this study, a new class of generalized distributions was developed, based on the Kummer
beta distribution (NG; KOTZ, 1995), which contains as particular cases the exponentiated and
beta generators of distributions. The main feature of the new family of distributions is to pro-
vide greater flexibility to the extremes of the density function and therefore, it becomes suitable
for analyzing data sets with high degree of asymmetry and kurtosis. Also, two new distributions
belonging to the new class of distributions, based on the Birnbaum-Saunders and generalized
gamma distributions, that has as main characteristic the hazard function which assumes differ-
ent forms (unimodal, bathtub shape, increase, decrease) were studied. In all studies, general
mathematical properties such as ordinary and incomplete moments, generating function, mean
deviations, reliability, entropies, order statistics and their moments were discussed. The estima-
tion of parameters is approached by the method of maximum likelihood and Bayesian analysis
and the observed information matrix is derived. It is also considered the likelihood ratio statis-
tics and formal goodness-of-fit tests to compare all the proposed distributions with some of its
sub-models and non-nested models. The developed results for all studies were applied to six
real data sets.

Keywords: Bayesian analysis; Birnbaum-Saunders distribution; Gamma distribution; Kummer
beta distribution; Likelihood ratio; Normal distribution; Observed information
matrix
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1 INTRODUCTION

The continuous univariate distributions are fundamental to statistical science and are a po-
werful indispensable tool for applied statisticians. These distributions have been extensively
used over the past decades for fitting data sets in several fields of research such as medical
and environmental sciences, biological studies, demography, engineering, actuarial sciences,
economics, finance and insurance. However, in many applied areas such as lifetime analysis,
reliability, finance and insurance, there is a clear need for extended forms of these univariate
distributions. Consequently, a significant progress has been performed for the generalization of
some well-known distributions and their applications to a variety of problems in many areas of
research.

In this sense, generalized distributions have been widely studied in the last decades. (AMO-
ROSO, 1925) was the precursor of extending continuous distributions, discussing a generali-
zation of the gamma distribution to fit observed distribution of income rate. Since then, nu-
merous authors have developed generalized distributions including (GOOD, 1953) and (WISE,
1975) that extended the inverse normal distribution, (LJUBO, 1965) and (HOSKING; WALLIS,
1987) who generalized the Pareto distribution. Recent developments focus on new techniques
for building new meaningful classes of continuous distributions, including the exponentiated
generator (EG) approach introduced by (MULDHOLKAR; SRIVASTAVA; FRIEMER, 1995)
and the beta generator (BG) approach pioneered by (EUGENE; LEE; FAMOYE, 2002), have
been proposed to provide more flexibility and applicability for the new distributions. (LAI,
2013) provided a good review about constructions and applications of the generalized lifetime
distributions. Now, we shall give more attention to the generalized distributions based on the
exponentiated and beta generators.

Hereafter, we define the exponentiated-G (“EG” for short) distribution for an arbitrary con-
tinuous baseline distribution function G(x), say X ∼ EG(a), a > 0, if X has cumulative
distribution function (cdf) given by

FEG(x) = G(x)a, (1.1)

where a > 0 is an additional shape parameter. Note that the cdf of EG distribution depends on
the shape parameter a and the parameter vector γ of the baseline G distribution.

The probability density function (pdf) corresponding to (1.1) can be expressed as

fEG(x) = a g(x)G(x)a−1. (1.2)

The EG distribution (1.2) is also known as alternative Lehmann type I distribution. According
to (CORDEIRO; ORTEGA; CUNHA, 2013), “for a > 1 and a < 1 and for larger values of
x, the multiplicative factor aG(x)a−1 is greater and smaller than one, respectively. The reverse
assertion is also true for smaller values of x. The latter immediately implies that the ordinary
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moments associated with the density function fEG(x) are strictly larger (smaller) than those
associated with the density g(x) when a > 1 (a < 1).”

The general properties of EG distributions have been studied by many authors in recent
years, see (MULDHOLKAR; SRIVASTAVA; FRIEMER, 1995, 1996) for exponentiated Weibull
(EW), (GUPTA; GUPTA; GUPTA, 1998) for exponentiated Pareto (EPa), (GUPTA; KUNDU,
2001) for exponentiated exponential (EE), (NADARAJAH, 2005) for exponentiated Gumbel
(EGu), (SHIRKE; KAKADE, 2006) for exponentiated log-normal (ELN), (NADARAJAH;
GUPTA, 2007) for exponentiated gamma (EGa) and (CORDEIRO; ORTEGA; SILVA, 2011)
for exponentiated generalized gamma (EGG) distributions, among others.

Now, we shall consider the beta generator introduced by (EUGENE; LEE; FAMOYE, 2002)
as follows. For any parent distribution and density, G(.) and g(.), respectively, and let X =

G−1(U) with U ∼ beta(a, b), the standard beta distribution, the continuous random variable X
is said to have a beta generalized (BG) distribution. This, can be characterized by its cdf

FBG(x) =
1

B(a, b)

∫ G(x)

0

ωa−1 (1− ω)b−1 dω, (1.3)

where a > 0 and b > 0 are two extra shape parameters that aim to introduce skewness and
to provide greater flexibility of its tails, B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function,
Γ(a) =

∫∞
0
xa−1 e−x dx is the gamma function, Iy(a, b) = By(a, b)/B(a, b) is the incomplete

beta function ratio and By(a, b) =
∫ y

0
ta−1 (1 − t)b−1dt is the incomplete beta function. One

major benefit of this class of distributions is its ability of fitting skewed data that can not be
properly fitted by existing distributions. It has been receiving increased attention over the last
decade, in particular after the works of (EUGENE; LEE; FAMOYE, 2002) and (JONES, 2004).

We can also express (1.3) in terms of the hypergeometric function (GRADSHTEYN; RY-
ZHIK, 2007), since the properties of the hypergeometric function are well established in the
literature. We can obtain

FBG(x) =
G(x)

aB(a, b)
2F1(a, 1− b, a+ 1;G(x)). (1.4)

The pdf associated to (1.3) takes the form

fBG(x) =
g(x)

B(a, b)
G(x)a−1 [1−G(x)]b−1. (1.5)

The pdf fBG(x) will be most tractable when both functions G(x) and g(x) have simple analytic
expressions. Except for some special choices of these functions, the density fBG(x) will be
difficult to cope with some generality.

The first distribution of BG class was the beta normal (BN) distribution, introduced by
(EUGENE; LEE; FAMOYE, 2002). Since then, many other specific beta-G distributions have
been proposed by (NADARAJAH; KOTZ, 2004, 2005), (AKINSETE; FAMOYE; LEE, 2008),
(PARANAÍBA et al., 2011) and (CORDEIRO et al., 2013). Some practical applications have
been considered, for example, (AKINSETE; FAMOYE; LEE, 2008) fitted the beta Pareto (BPa)
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distribution to flood data; (RAZZAGHI, 2009) applied the BN distribution to continuous dose-
response modelling; (PESCIM et al., 2010) applied the beta generalized half-normal (BGHN)
distribution to myelogenous leukemia data and (CORDEIRO; LEMONTE, 2011) fitted the beta
Birnbaum-Saunders (BBS) distribution to fatigue data.

However, the classical beta generator can add a limited structure, depending on the base-
line distribution and consequently, those BG distributions do not offer greater flexibility to the
extremes of their density functions. Moreover, (ALEXANDER et al., 2012) demonstrated that
generators of new distributions with one more shape parameter than the beta generator are nec-
essary to provide additional control over both skewness and kurtosis. From this, the Kummer
beta (KB) distribution with three parameters, introduced and studied by (NG; KOTZ, 1995),
generalizes the classical beta distribution and provides greater flexibility to extremes (left and
right) of the density function giving to it a range of applicability.

In this present work, we propose a new class of generalized distributions based on the KB
distribution which is an extension of the exponentiated and beta generators, in order to extend
well-known distributions such as normal, Weibull, gamma, Gumbel, Birnbaum-Saunders and
generalized gamma for applications in lifetime analysis, reliability, actuarial and environmental
sciences. Thus, the thesis is organized as follows. In Chapter 2, we define a new family of
distributions so-called the Kummer beta generalized (KB-G) class of distributions. In Section
2.1 is presented the motivation to construct the new family of distributions. Section 2.2 provides
some special cases. In Section 2.3, we derive general expansions for the new cdf and pdf in
terms of exponentiated and beta generators of distributions. We can apply these expansions to
several KB-G distributions. In Section 2.4, we obtain the general properties of the KB-G family
of distribution such as moments, generating functions, mean deviations and Rényi entropy.
In Section 2.5, we provide some expansions for the pdf of the order statistics. The method of
maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters
in Section 2.6. In Section 2.7, we analyze two real data sets using special KB-G distributions.
Section 2.8 ends with some concluding remarks.

In Chapter 3, we introduce the new fatigue life distribution so-called Kummer beta Birnbaum-
Saunders (KBBS) distribution for reliability studies. In Section 3.1, we give a review of the
problem related to fatigue process. In Section 3.2, we define the KBBS distribution and plot its
density and hazard rate functions. Section 3.3 provides useful expansions for the density and
cumulative functions. We obtain explicit expressions for the moments (Section 3.4), genera-
ting functions (Section 3.5), incomplete moments (Section 3.6), mean deviations and reliability
(Section 3.7) and order statistics (Section 3.8). Some inferential tools are discussed in Section
3.9. An application presented in Section 3.10 reveal the usefulness of the new distribution for
fatigue life data. Concluding remarks are addressed in Section 3.11.

In Chapter 4, we propose the Kummer beta generalized gamma (KBGG) distribution. In
Section 4.1, we discuss a review of the generalized gamma (GG) distribution. In Section 4.2,
we derive more than 32 special distributions from KBGG model. In Section 4.3, we show that
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the KBGG distribution can be expressed as a linear combination of EGG density functions.
This is an important result to provide some mathematical properties of the EGG distribution.
We obtain explicit expressions for the moments and generating function (Section 4.4), mean
deviations and Rényi entropy (Section 4.5) and distribution of order statistics (Section 4.6). In
Section 4.7, we discuss maximum likelihood estimation and statistical inference. In Section
4.8, three applications are presented to reveal the usefulness of the new distribution for real data
sets. Concluding remarks are addressed in Section 4.9.
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2 THE KUMMER BETA GENERALIZED FAMILY OF DISTRIBUTIONS

Abstract

(NG; KOTZ, 1995) introduced a probability distribution that provides greater flexibility to
extremes. We define and study a new class of distributions so-called the Kummer beta genera-
lized family to extend the normal, Weibull, gamma, Gumbel, Pareto and logistic distributions,
among several other well-known distributions. Some special models of this new class of dis-
tributions are discussed. The ordinary moments of any distribution in the new family can be
written as linear functions of probability weighted moments of the baseline distribution. We
also obtain the density function of the order statistics, mean deviations and entropies. We adopt
the method of maximum likelihood and Bayesian approach to fit the distributions in the new
class and illustrate its potentiality with applications for two real data sets.

Keywords: Gamma distribution; Kummer beta distribution; Likelihood ratio test;
Normal distribution; Order statistic

2.1 Introduction

According to (NADARAJAH; KOTZ, 2007), “the beta family distribution, whose origin
can be traced to 1676 in a letter from Sir Issac Newton to Henry Oldenbeg, has been used
extensively in theoretical and applied statistics for over a century. Originally defined on the unit
interval (0, 1) but extended to any finite interval, the beta distribution can take an amazingly
great variety of forms. It can be fitted practically to any data representing a phenomenon in
almost any field of application.”

In fact, the beta distribution is one of the most important models to account for the random
phenomena which produce results in the range (0, 1) due to flexibility of its parameters. It is
very versatile and can be used to analyze different types of data sets. Many of the finite range
distributions encountered in practice can be transformed into the standard beta distribution. In
econometrics, for example, quite often the data are analyzed using finite-range distributions.
In the statistics literature, there are a plenty of applications for the beta distribution. (BURY,
1999) discussed a number of applications in engineering using the beta model. (BALDING;
NICHOLS, 1995) applied the beta distribution in population genetics for a statistical descrip-
tion of the frequencies of alleles. (WILEY; HERSCHOKORU; PADIAU, 1989) developed a
statistical model based on the beta distribution to obtain the probability of HIV transmission
during sexual contact between an individual infected and a healthy individual.

Generalized beta distributions have been widely studied in statistics and numerous authors
have developed various classes of these distributions. (EUGENE; LEE; FAMOYE, 2002) pro-
posed a general class of distributions for a random variable defined from the logit of the beta
random variable by employing two parameters whose role is to introduce skewness and to vary
tail weight.
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Following (EUGENE; LEE; FAMOYE, 2002) who defined the beta normal (BN) distribu-
tion, (NADARAJAH; KOTZ, 2004) introduced the beta Gumbel distribution (BGu), provided
expressions for the moments, examined the asymptotic distribution of the extreme order statis-
tics and performed maximum likelihood estimation. (NADARAJAH; GUPTA, 2004) defined
the beta Fréchet (BF) distribution and derived the analytical shapes of the density and hazard
rate functions. Further, (NADARAJAH; KOTZ, 2005) proposed the beta exponential (BE)
distribution and obtained the moment generating function (mgf), the first four moments, the
asymptotic distribution of the extreme order statistics and discussed maximum likelihood esti-
mation. More recently, (PESCIM et al., 2010), (PARANAÍBA et al., 2011) and (CORDEIRO;
LEMONTE, 2011) studied important mathematical properties of the beta generalized half-
normal (BGHN), beta Burr XII (BBXII) and beta Birnbaum-Saunders (BBS) distributions,
respectively. However, we can note that those distributions do not offer more flexibility to ex-
tremes (right and left) of the curves of the density functions and therefore they are not suitable
for analyzing data sets with high degree of asymmetry and kurtosis.

(NG; KOTZ, 1995) proposed the Kummer beta (KB) distribution on the unit interval (0, 1)
with cumulative distribution function (cdf) and probability density function (pdf) given by

FKB(x) = K

∫ x

0

ta−1 (1− t)b−1 exp(−c t)dt,

and

fKB(x) = K xa−1 (1− x)b−1 exp(−c x), 0 < x < 1,

where a > 0, b > 0 and −∞ < c <∞. Here,

K−1 =
Γ(a)Γ(b)

Γ(a+ b)
1F1(a; a+ b;−c) (2.1)

and

1F1(a; a+ b;−c) = Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

ta−1 (1− t)b−1 exp(−c t)dt =
∞∑
k=0

(a)k(−c)k

(a+ b)k k!

is the confluent hypergeometric function (ABRAMOWITZ; STEGUN, 1968), Γ(·) is the gamma
function and (d)k = d(d + 1) . . . (d + k − 1) denotes the ascending factorial. According to
(NAGAR; GUPTA, 2002), “(GORDY, 1998) has also defined the Kummer beta distribution in
relation to the problem of common value auction. This distribution is an extension of the beta
distribution, and for a < 1 (and certain values of the parameter c) yields bimodal distribu-
tions on finite range.” Plots of the KB density function are displayed in Figure 2.1 for selected
parameter values.

Consider starting from a parent continuous cdf G(x). A natural way of generating families
of distributions on some other support from a simple starting baseline distribution with pdf
g(x) = dG(x)/dx is to apply the quantile function to a family of distributions on the interval
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Figure 2.1 – Plots of the Kummer beta pdf for some parameter values

(0, 1). In other words, let X = G−1(U) with U ∼ KB(a, b, c), the Kummer beta distribution.
Then, the random variable X is said to have a Kummer beta generalized (KB-G) distribution.

From an arbitrary baseline cdf G(x), the KB-G family of cumulative distributions is defined
by

FKBG(x) = K

∫ G(x)

0

ta−1 (1− t)b−1 exp(−c t)dt, (2.2)

where a > 0 and b > 0 are shape parameters which introduce skewness, and thereby promote
weight variation of the tails, whereas the parameter −∞ < c <∞ “squeezes” the pdf to the left
or right, i.e., it leads the tail weights of the pdf to extremes of the curves of density functions.
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The pdf corresponding to (2.2) can be expressed as

fKBG(x) = K g(x)G(x)a−1 [1−G(x)]b−1 exp [−c G(x)] , (2.3)

where K is defined in (2.1).
The KB-G family of distributions defined by (2.3) is an alternative family of models to the

class of distributions proposed by (ALEXANDER et al., 2012). The shape parameter c > 0, in
(ALEXANDER et al., 2012), together with a > 0 and b > 0 promote the weight variation of
the tails and more flexibility. On the other hand, the parameter −∞ < c < ∞ of the proposed
family offers more flexibility to the extremes (left and/or right) for the density function curves
and therefore the new family of distributions becomes more suitable for analyzing data sets with
high degree of asymmetry. For each continuousG distribution (here and henceforth “G” denotes
the baseline distribution), we can associate the KB-G distribution with three extra parameters
a, b and c defined by the pdf (2.3).

Special generalized distributions can be generated as follow. The KB-normal (KBN) dis-
tribution is obtained by taking G(x) in equation (2.2) to be the normal cdf. Analogously, the
KB-Weibull (KBW), KB-gamma (KBGa) and KB-Gumbel (KBGu) distributions are obtained
by taking G(x) to be the cdf of the Weibull, gamma and Gumbel distributions, respectively.
Hence, each new KB-G distribution can be obtained from a specified G distribution. The KB
distribution is a clearly example of the KB-G distribution when G is the uniform distribution on
(0, 1), whereas the G distribution corresponds to a = b = 1 and c = 0.

The class of distributions (2.3) includes two important special cases: the beta-generalized
(BG) and exponentiated generalized (EG) classes of distributions defined by (EUGENE; LEE;
FAMOYE, 2002) and (MUDHOLKAR; SRIVASTAVA; FRIEMER, 1995) when c = 0 and for
c = 0 and b = 1, respectively. We can note that the BG distributions can be limited in one
aspect. They have only two additional shape parameters and so they can add only a limited
structure to the generated distribution. For instance, a BG distribution may have problems to
capture the behaviour of random variables with symmetric but highly leptokurtic distributions.
While the beta parameters offer explicit control over skewness when the baseline distribution
is symmetric, they have less control over higher moments such as kurtosis. Further, the EG
distribution still introduces only one extra shape parameter, whereas three parameters may be
required to control both tail weights and the distribution of weight in the center. Hence, the
generated distribution (2.3) is a more flexible model since it has one more shape parameter than
the classical beta or exponentiated generators.

We study some mathematical properties of the KB-G family of distributions because it ex-
tends several widely-known distributions in the literature. This chapter is outlined as follows.
Section 2.2 provides some special cases. In Section 2.3, we derive general expansions for the
new cdf and pdf in terms of exponentiated and beta generators of distributions. We can apply
these expansions to several KB-G distributions. In Section 2.4, we obtain the general properties
of the KB-G family of distribution such as moments, generating function, mean deviations and
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Rényi entropy. In Section 2.5, we provide some expansions for the pdf of the order statistics.
The method of maximum likelihood and a Bayesian procedure are adopted for estimating the
model parameters in Section 2.6. In Section 2.7, we analyze two real data sets using special
KB-G distributions. Section 2.8 ends with some concluding remarks.

2.2 Special KB Generalized Distributions

The KB-G density function (2.3) allows for greater flexibility of its tails and promotes the
variation of the tail weights to the extremes of the distribution. It can be widely applied in many
areas of engineering and biological sciences. The pdf (2.3) will be most tractable when the
cdf G(x) and the pdf g(x) have simple analytic expressions. We have considered six different
baselines: normal, Weibull, gamma, Gumbel, Pareto and logistic distributions. In each case, the
baseline cdf and pdf of the corresponding KB-G model are summarized in Table 2.1. The KB-G
distributions can be applied to the same areas as their corresponding baseline distributions, to
offer an improved fit to the data sets.

For brevity, in the remainder of this section, we shall only comment in detail four of the
most important KB-G distributions: the Kummer beta normal (KBN), the Kummer beta Weibull
(KBW), the Kummer beta gamma (KBGa) and the Kummer beta Gumbel (KBGu) distributions.

2.2.1 KB-normal

The KB-normal (KBN) pdf is obtained from (2.3) by taking G(·) and g(·) to be the cdf and pdf
of the normal distribution, N(µ, σ2), so that

f(x) =
K

σ
ϕ

(
x− µ

σ

)[
Φ

(
x− µ

σ

)]a−1 [
1− Φ

(
x− µ

σ

)]b−1

exp

[
−c Φ

(
x− µ

σ

)]
,

where x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter, a and b are
positive shape parameters, c ∈ R, and ϕ(·) and Φ(·) are the pdf and cdf of the standard
normal distribution, respectively. A random variable with the above pdf is denoted by X ∼
KBGN(a, b, c, µ, σ2). For µ = 0 and σ = 1, we have the standard KBN distribution. Following
the same methodology proposed by (NADARAJAH, 2008), the nth moment of the KBN distri-
bution can be expressed as a finite sum of the Lauricella functions of type A (EXTON, 1978),
when a, b and c are integer numbers.

2.2.2 KB-Weibull

The cdf of the Weibull distribution with parameters λ > 0 and γ > 0 isG(x) = 1−exp[−(λx)γ]

for x > 0. Correspondingly, the KB-Weibull (KGW) density, say KBW(a, b, c, γ, λ), reduces
to

f(x) = K γ λγ xγ−1 {1− exp [−(λx)γ]}a−1 exp {−c [1− exp [−(λx)γ]]− b(λx)γ} ,
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where x, a, b, λ, γ are real-positive values and c ∈ R. For γ = 1, we obtain the KB-exponential
(KBE) distribution. The KBW(1, 1, 0, 1, λ) distribution corresponds to the exponential distri-
bution with parameter λ.

2.2.3 KB-gamma

Let Y be a random variable which follows a gamma distribution with cdf G(y) = γ1(α, β y) =

γ(α, β y)/Γ(α) for y, α, β > 0, where γ(a, y) =
∫ y

0
ta−1e−tdt is the incomplete gamma fun-

ction. The pdf of a random variableX having the KBGa distribution, say X ∼ KBGa(a, b, c, α, β),
can be expressed as

f(x) =
K βα

Γ(α)
xα−1 γ1(α, βx)

a−1 [1− γ1(α, βx)]
b−1 exp [−c γ1(α, βx)− βx] .

For α = 1 and c = 0, we obtain the KBE distribution. The KBGa(1, 1, 0, 1, β) distribution
reduces to the exponential distribution with parameter β.

2.2.4 KB-Gumbel

The pdf and cdf of the Gumbel distribution with location parameter µ ∈ R and scale parameter
σ > 0 are given by

g(x) = σ−1 exp

[
x− µ

σ
− exp

(
x− µ

σ

)]
, x > 0,

and

G(x) = 1− exp

[
− exp

(
−x− µ

σ

)]
,

respectively. The mean and variance are equal to µ − γσ and π2σ2/6, respectively, where
γ ≈ 0.57722 is the Euler’s constant. By inserting these equations in (2.3), we obtain the KBGu
distribution, say KBGu(a, b, c, µ, σ).

Figure 2.2 represents some of the possible shapes of four KB-G density functions. These
plots show the great flexibility achieved with the new distributions.
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KBGu(0.8,1,c,0,1) pdfs (the red lines represent the BG pdfs)
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2.3 Expansions for the Density and Cumulative Distribution Functions

The cdf F (x) and pdf f(x) = dF (x)/dx of the KB-G distribution are usually straightforward
to compute from G(x) and g(x) = dG(x)/dx. However, we provide expansions for these
functions in terms of infinite (or finite) weighted sums of cdf’s and pdf’s of exponentiated-G
distributions, respectively. In the next sections, based on these expansions, we obtain some
of its structural properties including explicit expressions for the moments, moment generating
functions, mean deviations and for the pdf of the order statistics and their moments.

Using the exponential expansion in (2.2), we can write

F (x) =
∞∑
i=0

wiHa+i,b(x), (2.4)

where wi = [K B(a+ i, b)(−c)i]/i! and

Ha,b(x) =
1

B(a, b)

∫ G(x)

0

ta−1 (1− t)b−1dt

denotes the BG cdf with positive shape parameters a and b (EUGENE; LEE; FAMOYE, 2002).
Equation (2.4) reveals that the KB-G cdf is a linear combination of BG cdf’s. This result is
important to derive some properties of any KB-G distribution from those properties of the BG
distribution.

For b > 0 real non-integer, we have the power series representation

[1−G(x)]b−1 =
∞∑
j=0

(−1)j
(
b− 1

j

)
G(x)j, (2.5)

where the binomial coefficient is defined for any positive real number. Expanding the term
exp[−cG(x)] in power series and using (2.5) in equation (2.2), the KB-G cumulative distribu-
tion can be expressed as

F (x) =
∞∑

i,j=0

wi,j G(x)
a+i+j, (2.6)

where

wi,j =
K (−1)i+j ci

i! (a+ i+ j)

(
b− 1

j

)
.

If b is an integer, the index i in the previous sum stops at b − 1. If a is an integer, equation
(2.6) reveals that the KB-G pdf can be written by the baseline pdf multiplied by an infinite
power series of its cdf.

Otherwise, if a is a real non-integer, we can expand G(x)a+i+j as follows:

G(x)a+i+j = {1− [1−G(x)]}a+i+j =
∞∑
k=0

(−1)k
(
a+ i+ j

k

)
[1−G(x)]k (2.7)
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and using the binomial expansion for [1−G(x)]k, we obtain

[1−G(x)]k =
k∑

r=0

(−1)r
(
k

r

)
G(x)r. (2.8)

Then, inserting (2.8) into (2.7), we have

G(x)a+i+j =
∞∑
k=0

k∑
r=0

(−1)k+r

(
a+ i+ j

k

) (
k

r

)
G(x)r.

Further, equation (2.2) can be rewritten as

F (x) =
∞∑

i,j,k=0

k∑
r=0

ti,j,k,rG(x)
r, (2.9)

where

ti,j,k,r = ti,j,k,r(a, b, c) = (−1)k+r

(
a+ i+ j

k

) (
k

r

)
wi,j

and wi,j is defined in (2.6). Replacing
∑∞

k=0

∑k
r=0 by

∑∞
r=0

∑∞
k=r in equation (2.9), we obtain

F (x) =
∞∑
r=0

brG(x)
r, (2.10)

where the coefficient br =
∑∞

i,j=0

∑∞
k=r ti,j,k,r represents a sum of constants.

Expansion (2.10), which holds for any real non-integer a, gives the KB-G cdf as an infinite
weighted power series of cdf’s of the G distribution. If b is an integer, the index i in (2.9) stops
at b− 1.

We also note that the cdf of the KB-G family of distributions can be expressed in terms of
cumulative EG distributions. We have

F (x) =
∞∑
r=0

br Vr(x), (2.11)

where Vr = G(x)r is the cdf of the EG distribution with power parameter r.
The corresponding expansions for the KB-G density function are obtained by simple diffe-

rentiation of (2.6) for a > 0 integer as

f(x) = g(x)
∞∑

i,j=0

w∗
i,j G(x)

a+i+j−1, (2.12)

where w∗
i,j = (a + i + j)wi,j . Analogously, from equations (2.10) and (2.11), for a > 0 real

non-integer, we obtain

f(x) = g(x)
∞∑
r=0

b∗r G(x)
r, (2.13)
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and

f(x) =
∞∑
r=0

cr vr+1(x), (2.14)

respectively, where b∗r = (r + 1) br+1 and cr = br+1 for r = 0, 1 . . ., and vr+1 = (r +

1) g(x)G(x)r denotes the EG density function with parameter r + 1. Equation (2.14) reveals
that the KB-G density function is a linear combination of EG densities. This result is important
to derive some properties of the KB-G distribution from those of the EG distribution.

Equations (2.12)-(2.14) are the main results of this section. They play an important role in
this work.

2.4 General Properties of the KB-G Family

In this section, we derive some mathematical properties such as moments, moment generating
function, mean deviation and entropy for any KB-G distribution.

2.4.1 Moments

In a statistical analysis especially in applied statistics, there is a great need and importance in
the study of the moments of a probability distribution. Some of the most important features
and characteristics of a distribution can be studied through moments (e.g., tendency, dispersion,
skewness and kurtosis).

The sth moment of the KB-G distribution can be expressed as an infinite weighted sum of
the probability weighted moments (PWM) of order (s, q) of the baseline G distribution from
equation (2.12) for a integer and from (2.13) for a real non-integer. We assume that T and
X follow the baseline G and KB-G distributions, respectively. The sth moment of X can be
expressed in terms of the (s, q)th PWMs of T , say τs,q = E[T sG(T )q] (for q = 0, 1, . . .), as
defined by (GREENWOOD et al., 1979). These weighted moments, τs,q, can be derived for
most baseline distributions.

For an integer a, we have

µ′
s = E(Xs) =

∞∑
i,j=0

w∗
i,j

∫
xs g(x)G(x)a+i+j−1 dx =

∞∑
i,j=0

w∗
i,j τs,a+i+j−1.

For a real non-integer a, we can write from (2.13)

µ′
s =

∞∑
r=0

b∗r

∫
xs g(x)G(x)r dx =

∞∑
r=0

b∗r τs,r.

So, we can calculate the moments of any KB-G distribution in terms of infinite weighted sums
of PWMs of the baseline G distribution.
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Alternatively, we can express µ′
s from (2.13) in terms of the baseline quantile function

QG(u) = G−1(u). We have

µ′
s =

∞∑
r=0

b∗r

∫
xs g(x)G(x)r dx. (2.15)

Setting u = G(x) in (2.15), we obtain

µ′
s =

∞∑
r=0

b∗r

∫ 1

0

urQG(u)
s dt.

Now, we provide the moments of the KB-G distributions from equation (2.14) in terms of
moments of the EG distributions. Suppose Yr+1 has the EG density vr+1 = (r + 1) g(x)G(x)r

with power parameter (r + 1). As a first example, consider for G the Weibull distribution with
scale parameter λ > 0 and shape parameter γ > 0. If Yr+1 has the EW distribution, its moments
are

E(Y s
r+1) = (r + 1) γ λγ

∫ ∞

0

ys+γ−1 exp [− (λ y)γ] {1− exp [− (λ y)γ]}r dy. (2.16)

Using the binomial expansion in (2.16), we obtain

E(Y s
r+1) = (r + 1) γ λγ

r∑
j=0

(−1)j
(
r

j

) ∫ ∞

0

ys+γ−1 exp [−(j + 1) (λ y)γ] dy. (2.17)

Replacing u = (j + 1) (λ y)γ in equation (2.17), the sth moment of the EW distribution can be
expressed as

E(Y s
r+1) =

(r + 1)

λs
Γ

(
s

γ
+ 1

) r∑
j=0

(−1)j

(j + 1)1+s/γ

(
r

j

)
. (2.18)

From equations (2.14) and (2.18), the sth moment of the KBW distribution reduces to

µ′
s = λ−s Γ

(
s

γ
+ 1

) ∞∑
r=0

r∑
j=0

(r + 1) cr (−1)j

(j + 1)1+s/γ

(
r

j

)
.

As a second example, taking the Gumbel distribution with cdfG(x) = 1−exp[− exp(−x−µ
σ

)],
the moments of Yr+1 having the exponentiated Gumbel (EGu) with parameter (r + 1) can be
obtained from (NADARAJAH; KOTZ, 2006) as

E(Y s
r+1) =

(r + 1)

σ

∫ ∞

−∞
ys
{
1− exp

[
− exp

(
−y − µ

σ

)]}r

exp

[
y − µ

σ
− exp

(
y − µ

σ

)]
dy,

which, by replacing u = exp

[
−
(
y − µ

σ

)]
, reduces to

E(Y s
r+1) = (r + 1)

∫ ∞

0

[µ− σ log(u)]s [1− exp(−u)]r exp(−u)du. (2.19)
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Using the binomial expansion twice in (2.19), we obtain

E(Y s
r+1) = (r + 1)

s∑
k=0

k∑
m=0

(−1)k+m µs−k

(
s

k

)(
k

m

)
I(k,m), (2.20)

where I(k,m) denotes the integral

I(k,m) =

∫ ∞

0

[log(u)]k exp[−(m+ 1)u]du.

We can note that, by equation (2.6.21.1) in (PRUDNIKOV; BRYCHKOV; MARICHEV, 1986),
the integral I(k,m) can be calculated as

I(k,m) =

(
∂

∂p

)k [
(r + 1)−pΓ(p)

] ∣∣∣∣
p=1

. (2.21)

By combining (2.20) and (2.21), the sth moment of Yr+1 is given by

E(Y s
r+1) = (r + 1)

s∑
k=0

k∑
m=0

(−1)k+m µs−k

(
s

k

)(
k

m

)(
∂

∂p

)k [
(r + 1)−pΓ(p)

] ∣∣∣∣
p=1

.(2.22)

From (2.14) and (2.22), the sth moment of the KBGu distribution becomes

µ′
s =

∞∑
r=0

cr (r + 1)
s∑

k=0

k∑
m=0

(−1)k+m µs−k

(
s

k

)(
k

m

)(
∂

∂p

)k [
(r + 1)−pΓ(p)

] ∣∣∣∣
p=1

.

2.4.2 Generating Function

Let X ∼ KB-G(a, b, c). In this section, we provide four representations for the moment ge-
nerating function (mgf) of X , say M(t) = E[exp(tX)]. Clearly, the first one is given by the
exponential expansion

M(t) = E[exp(tX)] = E

[
∞∑
s=0

Xs

s!
ts

]
=

∞∑
s=0

µ′
s

s!
ts,

where µ′
s = E(Xs). The second one comes from equation (2.3) and is given by

M(t) = E[exp(tX)] =

∫
exp(tx)f(x)dx

= K

∫
exp(tx) g(x)G(x)a−1 [1−G(x)]b−1 exp [−cG(x)] dx

= K

∫
exp [tx− cG(x)] G(x)a−1 [1−G(x)]b−1g(x)dx

= K E
{
exp [tX − cG(X)] Ga−1(X) [1−G(X)]b−1

}
. (2.23)

Using expansion (2.5) in equation (2.23), we obtain

M(t) = K
∞∑
j=0

(−1)j
(
b− 1

j

)
E
[
exp (tX − Uc)

U−(a+j−1)

]
,
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where U is a uniform random variable on the unit interval. Note that X and U are not indepen-
dent.

A third representation for M(t) is obtained from (2.14) as

M(t) =

∫
exp(tx)f(x)dx

=
∞∑
i=0

ci

∫
exp(tx) vi+1(x)dx

=
∞∑
i=0

ci Mi+1(t),

where Mi+1(t) is the mgf of Yi+1 ∼ EG(i+1). Hence, for any KB-G distribution, M(t) can be
immediately determined from the mgf of the baseline G distribution.

A fourth representation for M(t) can be derived from (2.13) as

M(t) =

∫
exp(tx)f(x)dx

=
∞∑
i=0

b∗i

∫
exp(tx) g(x)G(x)idx

=
∞∑
i=0

b∗i ρ(t, i), (2.24)

where the function ρ(t, r) =
∫
exp(tx) g(x)G(x)rdx can be expressed from the baseline quan-

tile function QG(u) as

ρ(t, a) =

∫ 1

0

ua exp [tQG(u)] du. (2.25)

We can obtain the mgf of several KB-G distributions from equations (2.24) and (2.25). For
example, the mgf’s of the KB-exponencial (KBE) (with parameter λ), KB-logistic (KBL) and
KB-Pareto (KBPa) (with parameter ν > 0) distributions are calculated from their respective
quantile functions as

MKBGE(t) =
∞∑
i=0

b∗i

∫ 1

0

ui (1− u)−λ t−1

du =
∞∑
i=0

b∗i B
(
i+ 1, 1− λ t−1

)
,

MKBGL(t) =
∞∑
i=0

b∗i

∫ 1

0

ui+t (1− u)1−tdu =
∞∑
i=0

b∗i B (i+ t+ 1, 1− t)

and

MKBGPA(t) =
∞∑
i=0

b∗i

∫ 1

0

ui exp

[
t

(1− u)1/ν

]
du =

∞∑
i,p=0

b∗i t
p

p!
B
(
i+ 1, 1− p ν−1

)
,

respectively.
Clearly, four representations for the characteristic function (chf) ϕ(t) = E[exp(i tX)] of

any KB-G distribution are immediately obtained from the above representations for the mgf by
ϕ(t) =M(i t), where i =

√
−1.
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2.4.3 Mean Deviations

The amount of scattering in a population may be measured by the totality of the absolute values
of the deviations from the mean (in case of a symmetric distribution) or in relation to the median
(in case of an asymmetric distribution).

LetX ∼ KB-G(a, b, c). The mean deviations about the mean, δ1(X), and about the median,
δ2(X), are defined, respectively, by

δ1(X) =

∫ ∞

−∞
|x− µ′

1| f(x) dx and δ2(X) =

∫ ∞

−∞
|x−M | f(x) dx.

The mean deviation in relation to the mean and to the median can be simplified as

δ1(X) =

∫ ∞

−∞
|x− µ′

1| f(x) dx

=

∫ µ′
1

−∞
(µ′

1 − x) f(x) dx+

∫ ∞

µ′
1

(x− µ′
1) f(x) dx

=

∫ µ′
1

−∞
(µ′

1 − x) f(x) dx+

∫ ∞

−∞
(x− µ′

1) f(x) dx−
∫ µ′

1

−∞
(x− µ′

1) f(x) dx

= 2

∫ µ′
1

−∞
(µ′

1 − x) f(x) dx

= 2µ′
1 F (µ

′
1)− 2T (µ′

1) (2.26)

and

δ2(X) =

∫ ∞

−∞
|x−M | f(x) dx

=

∫ M

−∞
(M − x) f(x) dx+

∫ ∞

M

(x−M) f(x) dx

=

∫ M

−∞
(M − x) f(x) dx+

∫ ∞

−∞
(x−M) f(x) dx−

∫ M

−∞
(x−M) f(x) dx

= 2

∫ M

−∞
(M − x) f(x) dx+

∫ ∞

−∞
x f(x) dx−M

∫ ∞

−∞
f(x) dx

= µ′
1 + 2M F (M)−M − 2T (M), (2.27)

respectively, where µ′
1 = E(X), F (µ′

1) comes from (2.2), M = Median(X) denotes the
median determined from the nonlinear equation F (M) = 1/2 and T (z) =

∫ z

−∞ x f(x)dx.
Applying (2.13) in T (z), we obtain

T (z) =
∞∑
r=0

b∗r

∫ z

−∞
x g(x)G(x)r. (2.28)

Substituting u = G(x) in (2.28), it yields

T (z) =
∞∑
r=0

b∗r Tr(z), (2.29)
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where the integral Tr(z) can be written in terms of the quantile function, QG(u) = G−1(u), by

Tr(z) =

∫ G(z)

0

urQG(u) du. (2.30)

The mean deviations of any KB-G distribution can be computed from equations (2.26)-
(2.30). An alternative representation for T (z) is derived from (2.14) as

T (z) =

∫ z

−∞
x f(x)dx =

∞∑
r=0

cr Jr+1(z), (2.31)

where

Jr+1(z) =

∫ z

−∞
x vr+1(x)dx. (2.32)

Equation (2.32) is the basic quantity to compute the mean deviations in terms of the EG distri-
butions. Hence, the KB-G mean deviations depend only on the quantity Jr+1(z). So, alternative
representations for δ1(X) and δ2(X) are given by

δ1(X) = 2µ′
1F (µ′

1)− 2
∞∑
r=0

cr Jr+1 (µ
′
1) and δ2(X) = µ′

1 − 2
∞∑
r=0

cr Jr+1(M).

A simple application is provided for the KBW distribution. The EW density function with
parameters λ, γ and r + 1 is given by (for x > 0)

vr+1(x) = (r + 1) γ λγ xγ−1 exp [−(λx)γ] {1− exp [−(λx)γ]}r

and then

Jr+1(z) = (r + 1) γ λγ
∫ z

0

xγ exp [−(λx)γ] {1− exp [−(λx)γ]}r dx.

Following the same steps of expression (2.16), we have

Jr+1(z) = (r + 1) γ λγ
∞∑
j=0

(−1)j
(
r

j

) ∫ z

0

xγ exp [−(j + 1)(λx)γ] dx. (2.33)

The integral (2.33) can be calculated by incomplete gamma function and then

Jr+1(z) = (r + 1)λ−1

∞∑
j=0

(−1)j
(
r
j

)
(j + 1)1+γ−1 γ

(
1 + γ−1, (j + 1)(λz)γ

)
.

Equations (2.29) and (2.31) are the main results of this section.

2.4.4 Rényi Entropy

Entropies are measures which quantifies the diversity or randomness of a random variable X .
They express the expected information content or uncertainty of a probability distribution. En-
tropy measures provide important tools to indicate variety in distributions at particular moments
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in time (for example, market shares) and to analyze evolutionary processes over time (technical
change). There are several applications of entropy mainly in innovation studies and income
inequality.

One of the most popular measures of entropy is the Rényi entropy defined by

JR(ξ) =
1

1− ξ
log

[∫ ∞

−∞
f ξ(x)dx

]
, ξ > 0 and ξ ̸= 1.

For any KB-G distribution, the integral above can be expressed as∫ ∞

−∞
f ξ(x)dx = Kξ

∫ ∞

−∞
gξ(x)Gξ(a−1)(x) [1−G(x)]ξ(b−1) exp [−ξ cG(x)] dx (2.34)

and then, expanding the exponential and the binomial terms in (2.34), we obtain∫ ∞

−∞
f ξ(x)dx = Kξ

∞∑
i,j=0

(−1)i+j(c ξ)i

i!

(
ξ(b− 1)

j

)
Ii,j(ξ), (2.35)

where Ii,j(ξ) denotes the integral

Ii,j(ξ) =

∫ 1

0

gξ−1 (QG(u)) u
i+j+ξ(a−1) du,

to be calculated for each KB-G model. We note that, QG(.) represents the quantile function of
the baseline G distribution. For the KBE (with parameter λ), KBL and KBPa (with parameter
ν) distributions, we obtain

Ii,j(ξ) = λξ−1B (i+ j + ξ(a− 1) + 1, ξ) , Ii,j(ξ) = B (i+ j + ξ a , ξ) ,

and

Ii,j(ξ) = νξ−1B
(
i+ j + ξ(a− 1) + 1, ν−1(ξ − 1) + ξ

)
,

respectively. Equation (2.35) is the main result of this section.

2.5 Order Statistics

Order statistics have been used in a wide range of problems, including robust statistical estima-
tion and detection of outliers, characterization of probability distributions and goodness-of-fit
tests, entropy estimation, analysis of censored data, reliability analysis, quality control and
strength of materials.

Suppose X1, . . . , Xn is a random sample from a continuous distribution and let X1:n <

· · · < Xi:n denote the corresponding order statistics. There has been a large amount of work
relating to moments of order statistics Xi:n, see (ARNOLD; BALAKRISHNAN; NAGARAJA,
1992), (DAVID; NAGARAJA, 2003) and (AHSANULLAH; NEVZOROV, 2005) for excellent
accounts. It is well-known that

fi:n(x) =
f(x)

B(i, n− i+ 1)
F (x)i−1 [1− F (x)]n−i , (2.36)
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Using the binomial expansion in (2.36), we have

fi:n(x) =
f(x)

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i

j

)
F (x)i+j−1. (2.37)

We now provide an expression for the pdf of the KB-G order statistics as a function of the
baseline pdf multiplied by infinite weighted sums of powers of G(x). Based on this result we
can derive the ordinary moments of the order statistics of any KB-G distribution as infinite
weighted sums of the PWMs of the baseline G distribution.

Replacing (2.10) in equation (2.37), we have

F (x)i+j−1 =

(
∞∑
r=0

br u
r

)i+j−1

, (2.38)

where u = G(x) is the baseline cdf.
We use the identity (

∑∞
k=0 ak x

k)n =
∑∞

k=0 dk,n x
k (GRADSHTEYN; RYZHIK, 2007),

where

d0,n = an0 and dk,n = (ka0)
−1

k∑
m=1

[m(n+ 1)− k] am dk−m,n

(for k = 1, 2, . . .) in equation (2.38) to obtain

F (x)i+j−1 =
∞∑
r=0

dr,i+j−1G(x)
r, (2.39)

where

d0,i+j−1 = bi+k−1
0 and dr,i+j−1 = (kbr)

−1

r∑
m=1

[(i+ j)m− r] bm dr−m,i+j−1.

For real non-integer a > 0, inserting (2.13) and (2.39) into equation (2.37) and changing
indices, we can rewrite fi:n(x) for any KB-G distribution in the form

fi:n(x) =
g(x)

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i

j

) ∞∑
u,v=0

b∗u du,i+j−1G(x)
u+v. (2.40)

For an integer a > 0, we can obtain from equations (2.12), (2.37) and (2.39)

fi:n(x) =
g(x)

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i

j

) ∞∑
p,q,u=0

w∗
p,q du,i+j−1G(x)

a+p+q+u−1. (2.41)

Equations (2.40) and (2.41) immediately yield the pdf of the KB-G order statistics as a fun-
ction of the baseline pdf multiplied by infinite weighted sums of powers of G(x). Hence, the
moments of the KB-G order statistics can be expressed as infinite weighted sums of PWMs of
the G distribution. Clearly, equation (2.41) can be given in terms of linear combinations of EG
densities. So, the moments and mgf of the KB-G order statistics can immediately follow from
linear combinations of those quantities for the EG distributions.
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2.6 Inference

2.6.1 Maximum likelihood method

Let γ be the p-dimensional parameter vector of the baseline G distribution in equations (2.2)
and (2.3). We consider independent random variables X1, . . . , Xn, each Xi following a KB-G
distribution with parameter vector θ = (a, b, c,γT )T . The log-likelihood function ℓ = ℓ(θ) for
the model parameters obtained from (2.3) is

ℓ(θ) = n log(K) +
n∑

i=1

log g (xi; γ)− c

n∑
i=1

G (xi; γ)

+ (a− 1)
n∑

i=1

log [G (xi; γ)] + (b− 1)
n∑

i=1

log [1−G (xi; γ)] . (2.42)

The elements of score vector are given by

∂ℓ(θ)

∂a
=

n

K

∂K

∂a
+

n∑
i=1

log [G (xi; γ)] ,

∂ℓ(θ)

∂b
=

n

K

∂K

∂b
+

n∑
i=1

log [1−G (xi; γ)] ,

∂ℓ(θ)

∂c
=

n

K

∂K

∂c
−

n∑
i=1

G (xi; γ)

and

∂ℓ(θ)

∂γj
=

n∑
i=1

[
1

g (xi; γ)

∂g (xi; γ)

∂γj
− c

∂g (xi; γ)

∂γj

+
(a− 1)

G (xi; γ)

∂G (xi; γ)

∂γj
+

(b− 1)

1−G (xi; γ)

∂G (xi; γ)

∂γj

]
,

for j = 1, . . . , p, where

∂K

∂a
= −

{
[ψ(a)− ψ(a+ b)] 1F1(a, a+ b,−c) + ∂ 1F1(a,a+b,−c)

∂a

}
B(a, b) [1F1(a, a+ b,−c)]2

,

∂K

∂b
= −

{
[ψ(b)− ψ(a+ b)] 1F1(a, a+ b,−c) + ∂ 1F1(a,a+b,−c)

∂b

}
B(a, b) [1F1(a, a+ b,−c)]2

,

∂K

∂c
=

a 1F1(a+ 1, a+ b+ 1,−c)
(a+ b)B(a, b)1F1(a, a+ b,−c)

,
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∂ 1F1(a, a+ b,−c)
∂a

= − [ψ(a)− ψ(a+ b)] 1F1(a, a+ b,−c)

−
∞∑
k=0

(a)k(−c)k

k!(a+ b)k
[ψ(a+ b+ k)− ψ(a+ k)]

and

∂ 1F1(a, a+ b,−c)
∂b

= ψ(a+ b) 1F1(a, a+ b,−c) +
∞∑
k=0

(a)k(−c)k

k!(a+ b)k
ψ(a+ b+ k).

These partial derivatives depend on the specified baseline G distribution. Numerical maximiza-
tion of the log-likelihood (2.42) is accomplished by using the RS method (RIGBY; STASI-
NOPOULOS, 2005) available in the gamlss package (STASINOPOULOS; RIGBY, 2007) in
statistical software R.

For interval estimation of each parameter in θ = (a, b, c,γT )T , and tests of hypotheses, we
require the observed information matrix. Interval estimation for the model parameters can be
obtained with standard likelihood theory. The elements of the information matrix for (2.42)
are given in the Appendix A. Under suitable regularity conditions, the asymptotic distribution
of the maximum likelihood estimator (MLE) θ̂ is multivariate normal with the mean vector θ
and the variance and covariance matrix that can be estimated by {−∂2ℓ(θ)/∂θ∂θT} evaluated
at θ = θ̂. The required second derivatives can be computed numerically.

Consider two nested KB-G distributions: a KB-GA distribution with corresponding pa-
rameters θ1, . . . , θr and maximized log-likelihood −2 ℓ(θ̂A), and a KB-GB distribution con-
taining the same parameters θ1, . . . , θr plus additional parameters θr+1, . . . , θp and maximized
log-likelihood −2 ℓ(θ̂B), the models otherwise being identical. For testing the KB-GA distri-
bution against the KB-GB distribution, the likelihood ratio (LR) statistic is simply equal to
w = −2 [ℓ(θ̂A)− ℓ(θ̂B)] and it has an asymptotic χ2

p−r distribution.
We compare non-nested KB-G distributions by penalizing the over-fitting using the Akaike

information criterion (AIC) given by AIC = −2 ℓ(θ̂) + 2p∗ and the Bayesian information crite-
rion (BIC) defined by BIC = −2 ℓ(θ̂) + p∗ log(n), where p∗ is the number of model parameters
and n is the sample size. The distribution with the smallest value of any of these criteria (among
all distribution considered) is usually taken as the best choice for describing the given data set.

2.6.2 Bayesian Inference

The Bayesian approach allows the incorporation of previous knowledge of the parameters
through informative prior density functions. When this information is not available, we can
consider a non-informative prior. In the Bayesian context, the information referring to the
model parameters is obtained through a posterior marginal distribution. Thus, two difficulties
usually arise. The first refers to attaining marginal posterior distribution, and the second to the
calculation of the moments of interest. Both cases require numerical integration that, many
times, do not present an analytical solution. To overcome these problems, we use the simula-
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tion methods based on the Markov Chain Monte Carlo (MCMC), such as the Gibbs sampler
and Metropolis-Hastings algorithms.

Since we have no prior information from historical data or from previous experiment, we
assign weakly informative prior distributions to the parameters. Since we assumed informative
(but weakly) prior distribution, the posterior distribution is a well-defined proper distribution.
We assume the elements of the parameter vector θ = (a, b, c,γT )T to be independent and
consider that the joint prior distribution of all unknown parameters has a density function given
by

π(a, b, c, γ) ∝ π(a)× π(b)× π(c)× π(γ), (2.43)

where γ is the p-dimensional parameter vector of the baseline G distribution. We can note, in
the literature, that gamma and normal priors are most commonly used priors for positive and
real-values parameters.

Combining the likelihood function (2.42) and the joint prior distribution (4.42), the joint
posterior distribution for a, b, c and γ can be expressed as

π(a, b, c,γ|x) ∝ Kn exp

[
−c

n∑
i=1

G(xi;γ)

]

×
n∏

i=1

g(xi;γ)G(xi;γ)
a−1 [1−G(xi;γ)]

b−1 × π(a, b, c,γ). (2.44)

In general, the joint posterior density function (2.44) for any KB-G distribution may be
analytically intractable because its integration is not easy to perform. So, the inference on
the parameters can be based on MCMC simulation methods to draw samples of the marginal
distributions and then, we calculate the features of interest. In this way, we first determine the
full conditional distributions of each unknown parameter and after that, we require the use of
MCMC computations to obtain the posterior estimates of parameters.

2.7 Applications

In this section, we shall present two applications using well-known data sets to demonstrate the
flexibility and applicability of the proposed family of distributions.

2.7.1 USS Halfbeak diesel engine data set

Here, we shall compare the fits of the Kummer beta gamma (KBGa) distribution with those
of two sub-models (i.e. the beta gamma (BGa) and gamma distributions) and also to the fol-
lowing non-nested models: the Kumaraswamy generalized gamma (KwGG) (PASCOA; OR-
TEGA; CORDEIRO, 2011) and the Kumaraswamy Weibull (KwW) (CORDEIRO; ORTEGA;
NADARAJAH, 2010) distributions to the data set studied by (ASCHER; FEINGOLD, 1984).

They describe a real data set from USS Halfbeak (submarine) diesel engine. The data are
73 failure times (in hours) of unscheduled maintenance actions for the USS Halfbeak number
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4 main propulsion diesel engine over 25.518 operating hours. Table 2.2 gives a descriptive
summary for the data and suggest skewed distribution. The KBGa model seems to account very
well for the degrees of skewness and kurtosis present in the data set.

Table 2.2 – Descriptive statistics for diesel engine data from the USS Halfbeak

Mean Median SD Variance Skewness Kurtosis Min. Max.
19.39 21.46 5.81 33.83 -1.54 4.45 1.38 25.51

(i) Maximum Likelihood Estimation

Firstly, in order to estimate the model parameters, we consider the maximum likelihood
method discussed in Section 2.6.1. We take the estimates of α and β from the fitted gamma
distribution as starting values for the numerical iterative procedure. All computations were per-
formed using statistical software R. Table 2.3 lists the maximum likelihood estimates (MLEs)
and the corresponding standard errors (SEs) of the parameters and the values of the following
statistics for some models: AIC and BIC as discussed before. The results indicate that the
KBGa model has the smallest values of these statistics among all fitted models. So, it could be
chosen as the more suitable model.

Table 2.3 – MLEs and the corresponding SEs (given in parentheses) of the model parameters
for the diesel engine data and the measures AIC and BIC.

Model α β a b c AIC BIC
KBGa 32.9915 1.5723 0.0630 4.0543 -11.7926 395.7 407.0

(0.0097) (0.0191) (0.0081) (0.0121) (0.0114)
BGa 28.5945 0.6636 0.1524 114.3634 0 446.1 455.2

(0.0122) (0.0036) (0.0059) (0.0779) (-)
Gamma 5.8340 0.3007 1 1 0 492.8 497.3

(0.0095) (0.0051) (-) (-) (-)
KwGG α τ k λ φ

25.0291 73.5624 2.2142 0.0134 0.6825 416.8 428.2
(0.0325) (0.0841) (0.0262) (0.0001) (0.0011)

KwW d β a b
8.9196 0.0239 0.4772 17.5320 (-) 457.2 466.2

(0.0218) (0.0003) (0.0047) (0.0541) (-)

A comparison of the proposed distribution with some of its sub-models using LR statistics
is given in Table 2.4. We reject the null hypotheses of the two LR tests in favor of the KBGa
distribution. The rejection is extremely highly significant for the diesel engine data. This gives
a clear evidence of the potential of the three skewness parameters when modeling real data.

Secondly, in order to assess whether the model is appropriate, Figures 2.3a and 2.3b display
the histogram of the data and the fitted KBGa density function and some densities of its sub-
models and non-nested models, respectively. Further, Figures 2.3c and 2.3d display plots of the
empirical and estimated survival functions of the KBGa distribution and of some sub-models
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Table 2.4 – LR statistics for the diesel engine data.

Model Hypotheses Statistic w p-value
KBGa vs BGa H0 : c = 0 vs H1 : H0 is false 103.13 < 0.0001
KBGa vs Gamma H0 : a = b = 1 and c = 0 vs H1 : H0 is false 52.46 < 0.0001

and non-nested models, respectively. We can conclude that the KBGa distribution is a very
suitable model to fit to these data.

The QQ plots of the normalized quantile residuals were introduced by (DUNN; SMYTH,
1996) and more recently used by (CORDEIRO et al., 2013). Figure 2.4 indicates the improved
fit achieved using the KBGa distribution over the other distributions. We also emphasize the
gain yielded by the KBGa distribution in relation to the gamma, BGa, KwGG and KwW distri-
butions.

(ii) Bayesian Analysis

In the Bayesian context, if X is a random variable which follows the KBGa(a, b, c, α, β)
distribution, we assume that all parameters a, b, c, α and β have independent priors given by
equation (2.45),

π(a, b, c, α, β) ∝ π(a)× π(b)× π(c)× π(α)× π(β). (2.45)

Here, a ∼ Γ(a1, b1), b ∼ Γ(a2, b2), c ∼ N(µ0, σ
2
0), α ∼ Γ(a3, b3) and β ∼ Γ(a4, b4), where,

Γ(ai, bi) denotes the gamma distribution with mean ai/bi, variance ai/b2i for ai > 0 and bi > 0,
and N(µ0, σ

2
0) represents the normal distribution with mean µ0, variance σ2

0 for µ0 ∈ R and
σ2
0 > 0.

Inserting G(x;γ) and g(x;γ) to be the cdf and pdf of the gamma distribution in equation
(2.44), we obtain the joint posterior density function for a, b, c, α and β as

π(a, b, c, α, β|x) ∝
(
K βα

Γ(α)

)n

exp

[
−β

n∑
i=1

xi − c
n∑

i=1

γ1(α, β xi)

]

×
n∏

i=1

xα−1
i γ1(α, β xi)

a−1 [1− γ1(α, β xi)]
b−1

×π(a, b, c, α, β) (2.46)

and then, the full conditional distributions of each unknown quantity are given by

π(a|x, b, c, α, β) ∝ Kn

n∏
i=1

γ1(α, β xi)
a−1 × π(a),

π(b|x, a, c, α, β) ∝ Kn

n∏
i=1

[1− γ1(α, β xi)]
b−1 × π(b),

π(c|x, a, b, α, β) ∝ Kn exp

[
−c

n∑
i=1

γ1(α, β xi)

]
× π(c),
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Figure 2.3 – (a) Estimated densities of the KBGa and its sub-models (b) Estimated densities of
the KBGa, KwGG and Kw-Weibull models (c) Empirical and estimated survival
functions of the KBGa and its sub-models (d) Empirical and estimated survival
functions of the KBGa, KwGG and Kw-Weibull models

π(α|x, a, b, c, β) ∝
(

βα

Γ(α)

)n

exp

[
−c

n∑
i=1

γ1(α, β xi)

]

×
n∏

i=1

xα−1
i γ1(α, β xi)

a−1 [1− γ1(α, β xi)]
b−1 × π(α)
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Figure 2.4 – QQ plot of the normalized quantile residuals with an identity line for the distribu-
tions: (a) Gamma, (b) BGa, (c) KwGG, (d) KwW and (e) KBGa



44

and

π(β|x, a, b, c, α) ∝ βαn exp

[
−β

n∑
i=1

xi − c

n∑
i=1

γ1(α, β xi)

]

×
n∏

i=1

γ1(α, β xi)
a−1 [1− γ1(α, β xi)]

b−1 × π(β). .

Since the full conditional distributions for a, b, c, α and β do not have a closed form, we require
the use of the Metropolis-Hastings algorithm. All MCMC computations were implemented in
statistical software R.

Now, we consider the following independent priors to perform the Metropolis-Hastings al-
gorithm:
a ∼ Γ(0.001, 0.001), b ∼ Γ(0.001, 0.001), c ∼ N(0, 1000), α ∼ Γ(0.001, 0.001) and β ∼
Γ(0.001, 0.001),

so that we have a vague prior distribution. Considering these prior density functions, we ge-
nerated two parallel independent runs of the Metropolis-Hastings with size 300.000 for each
parameter, disregarding the first 30.000 iterations to eliminate the effect of the initial values
and, to avoid correlation problems, we considered a spacing of size 10, obtaining a sample of
size 27.000 from each chain. To monitor the convergence of the Metropolis-Hastings, we per-
formed the methods suggested by (COWLES; CARLIN, 1996). To monitor the convergence
of the samples, we used the between and within sequence information, following the approach
developed in (GELMAN; RUBIN, 1992) to obtain the potential scale reduction, R̂. In all cases,
these values were close to one, indicating the convergence of the chain.

The histograms with the approximate posterior marginal density functions of the parameters
are displayed in Figure 2.5. We report, in Table 4.4, the posterior summaries (posterior means,
standard deviation (SD) and the 95% highest posterior density (HPD) intervals) for all parame-
ters of the KBGa distribution. We can note that the values for posterior means (Table 2.5) are
in good agreement with the MLEs, as expected.

Table 2.5 – Posterior summaries for the parameters of the KBGa model for the diesel engine
data

Parameter Mean SD HPD (95%) R̂
a 0.0603 0.0099 (0.0406; 0.0793) 0.9997
b 4.0500 0.0100 (4.0305; 4.0698) 0.9998
c -11.7900 0.0100 (-11.8097; -11.7704) 1.0005
α 32.9901 0.0099 (32.9699; 33.0089) 1.0009
β 1.5700 0.0100 (1.5507; 1.5899) 1.0003
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Figure 2.5 – Approximate posterior marginal densities for the parameters of the KBGa model
for the diesel engine data

2.7.2 INPC data set

This section contains an application of the Kummer beta normal (KBN) distribution to real
data. We also compare the fits of the KBN distribution with those of two sub-models (i.e.
the beta normal (BN) and normal distributions) and also to the following non-nested models:
the Kumaraswamy normal (KwN) (CORDEIRO; de CASTRO, 2011), the McDonald Normal
(McN) (CORDEIRO et al., 2012) and the skew-normal (SN) distributions to INPC data set.

The INPC is a national index of consumer prices of Brazil, released by IBGE (Instituto
Brasileiro de Geografia e Estatística). The period of collection goes from day 1 to 30 of the
reference month and the target population includes families dwelling in the urban areas, whose
head of the household is considered the main employee. The survey was conducted in the
metropolitan regions of Belém, Belo Horizonte, Brasília, Curitiba, Fortaleza, Goiânia, Porto
Alegre, Recife, Rio de Janeiro, São Paulo and Salvador. The data set was extracted from IBGE
database available at http : //www.ibge.gov.br/home/estatistica/indicadores/. Table 2.6
presents a descriptive summary for the INPC data set and suggest skewed distribution with high
degrees of skewness and kurtosis.

(i) Maximum Likelihood Estimation

Table 2.7 gives the MLEs and the corresponding SEs (given in parentheses) of the model
parameters and the values of the following statistics for some models: AIC and BIC. The com-
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Table 2.6 – Descriptive statistics for INPC data set.

Mean Median SD Variance Skewness Kurtosis Min. Max.
0.64 0.50 0.60 0.36 1.56 6.59 -0.49 3.39

putations were performed using the statistical software R. The AIC and BIC values for the KBN
model are the smallest values among those fitted sub-models and non-nested models.

Table 2.7 – MLEs and the corresponding SEs (given in parentheses) of the model parameters
for the INPC data and the measures AIC and BIC

Model µ σ a b c AIC BIC
KBN 0.4467 0.5573 4.3336 0.2712 9.4513 238.9 254.2

(0.0547) (0.0018) (0.0248) (0.0040) (0.0042)
BN -0.4391 0.4686 5.3041 0.2905 0 256.0 268.3

(0.1590) (0.0028) (0.0246) (0.0431) (-)
Normal 0.6442 0.5988 1 1 0 288.5 294.6

(0.0477) (0.0337) (-) (-) (-)
KwN µ σ a1 b1

-0.6987 0.5230 13.2245 0.2899 (-) 252.6 264.8
(0.0117) (0.0148) (0.0205) (0.0031) (-)

McN µ σ a1 b1 c1
-1.2530 0.5993 13.9336 0.2858 3.8102 251.1 266.4
(0.0205) (0.0178) (0.0631) (0.0307) (0.0412)

Skew-Normal µ σ α (-) (-)
-0.0282 0.9005 4.3606 (-) (-) 250.0 259.1
(0.0480) (0.0622) (0.0970) (-) (-)

A formal test of the need for the third skewness parameter in KB-G distributions is based on
the LR statistics. Applying this to INPC data set, the results are shown in Table 2.8. We reject
the null hypotheses of the LR test in favor of the KBN distribution. The rejection is extremely
highly significant and it gives clear evidence of the potential need for three skewness parameters
when modeling real data.

Table 2.8 – LR statistics for the INPC data

Model Hypotheses Statistic w p-value
KBN vs BN H0 : c = 0 vs H1 : H0 is false 19.13 < 0.0001
KBN vs Normal H0 : a = b = 1 and c = 0 vs H1 : H0 is false 55.59 < 0.0001

Figures 2.6a and 2.6b display the histogram of the data and the fitted KBN density fun-
ction and some densities of its sub-models and non-nested models, respectively. We note that
the KBN distribution produces better fit than the other models. The QQ plots of the normali-
zed quantile residuals in Figure 2.7 reveal the improvement in the fit achieved with the KBN
distribution over the other distributions.
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Figure 2.6 – (a) Estimated densities of the KBN and its sub-models (b) Estimated densities of
the KBN, KwN, McN and skew-normal models

(ii) Bayesian Analysis

As an alternative analysis, we also use the Bayesian approach. In this context, we assume
that the parameters (a, b, c, µ and σ) of the KBN distribution have independence priors, i.e.

π(a, b, c, µ, σ) ∝ π(a)× π(b)× π(c)× π(µ)× π(σ). (2.47)

Here, a ∼ Γ(a1, b1), b ∼ Γ(a2, b2), c ∼ N(µ0, σ
2
0), µ ∼ N(µ1, σ

2
1) and σ ∼ Γ(a4, b4).

Replacing G(x;γ) and g(x;γ) to be the cdf and pdf of the normal distribution in equation
(2.44), we have the joint posterior density function for a, b, c, µ and σ as

π(a, b, c, µ, σ|x) ∝
(
K

σ

)n

exp

[
−c

n∑
i=1

Φ

(
xi − µ

σ

)
− 1

2

n∑
i=1

(
xi − µ

σ

)2
]

×
n∏

i=1

[
Φ

(
xi − µ

σ

)]a−1 [
1− Φ

(
xi − µ

σ

)]b−1

×π(a, b, c, µ, σ) (2.48)

and then, the full conditional distributions of each unknown quantity can be expressed as

π(a|x, b, c, µ, σ) ∝ Kn

n∏
i=1

[
Φ

(
xi − µ

σ

)]a−1

× π(a),

π(b|x, a, c, µ, σ) ∝ Kn

n∏
i=1

[
1− Φ

(
xi − µ

σ

)]b−1

× π(b),
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Figure 2.7 – QQ plot of the normalized quantile residuals with an identity line for the distri-
butions: (a) Normal, (b) BN, (c) KwN, (d) McN, (e) Skew-Normal and (f) KBN
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π(c|x, a, b, µ, σ) ∝ Kn exp

[
−c

n∑
i=1

Φ

(
xi − µ

σ

)]
× π(c),

π(µ|x, a, b, c, σ) ∝ exp

[
−c

n∑
i=1

Φ

(
xi − µ

σ

)
− 1

2

n∑
i=1

(
xi − µ

σ

)2
]

×
n∏

i=1

[
Φ

(
xi − µ

σ

)]a−1 [
1− Φ

(
xi − µ

σ

)]b−1

× π(µ),

and

π(σ|x, a, b, c, µ) ∝ 1

σn
exp

[
−c

n∑
i=1

Φ

(
xi − µ

σ

)
− 1

2

n∑
i=1

(
xi − µ

σ

)2
]

×
n∏

i=1

[
Φ

(
xi − µ

σ

)]a−1 [
1− Φ

(
xi − µ

σ

)]b−1

× π(σ). .

We use the Metropolis-Hastings algorithm to generate variables a, b, c, µ and σ from the re-
spective conditional posterior densities since their forms are somewhat complex. All MCMC
computations were also implemented in statistical software R.

Now, we consider the following independent priors to perform the Metropolis-Hastings al-
gorithm: a ∼ Γ(0.001, 0.001), b ∼ Γ(0.001, 0.001), c ∼ N(0, 1000), µ ∼ N(0, 1000) and
σ ∼ Γ(0.001, 0.001). Considering the density functions of the vague prior distributions above,
we generated two parallel independent runs of the Metropolis-Hastings with the same characte-
ristics of the Bayesian analysis performed in Section 2.7.1.

The plots of the histograms with the approximate posterior marginal density functions of
the parameters are illustrated in Figure 2.8. We report, in Table 2.9 , the posterior summaries
(posterior means, standard deviation (SD) and the 95% highest posterior density (HPD) inter-
vals) for all parameters of the KBN distribution. We can note that the values for posterior means
(Table 2.9) are in good agreement with the MLEs.

Table 2.9 – Posterior summaries for the parameters of the KBN model for the INPC data

Parameter Mean SD HPD (95%) R̂
a 4.3298 0.0098 (4.3107; 4.3493) 0.9999
b 0.2699 0.0102 (0.2505; 0.2898) 1.0007
c 9.4499 0.0102 (9.4301; 9.4696) 0.9998
µ 0.4401 0.0099 (0.4199; 0.4589) 1.0004
σ 0.5515 0.0101 (0.5307; 0.5699) 1.0010

2.8 Concluding Remarks

Following the idea of the class of beta generalized distributions and the distribution introduced
by (NG; KOTZ, 1995), we define a new family of Kummer beta generalized (KB-G) distri-
butions to extend several widely known distributions such as the normal, Weibull, gamma,
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Figure 2.8 – Approximate posterior marginal densities for the parameters of the KBN model for
the INPC data

Gumbel, Pareto and logistic distributions. For each continuous G distribution, we can define
the corresponding KB-G distribution using simple formulae. Some mathematical properties of
the KB-G distributions are readily obtained from those of the baseline G distributions. The mo-
ments of any KB-G distribution can be expressed explicitly in terms of infinite weighted sums of
probability weighted moments (PWMs) of G distribution. The same happens for the moments
of order statistics of the KB-G distributions. The estimation of the parameters is approached by
two different methods: maximum likelihood and Bayesian approach. We consider likelihood
ratio (LR) statistics and formal goodness-of-fit tests (AIC and BIC) to compare the KBGa and
KBN models with some of their sub-models and non-nested models. Two applications to real
data sets show the feasibility of the proposed class of models. We hope this generalization may
attract wider applications in statistics.
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3 THE KUMMER BETA BIRNBAUM-SAUNDERS: AN ALTERNATIVE
FATIGUE LIFE DISTRIBUTION

Abstract

(BIRNBAUM; SAUNDERS, 1969a) defined a positive continuous distribution commonly
used in reliability studies. Based on this probability distribution, we introduce the so-called
Kummer beta Birnbaum-Saunders distribution for modeling fatigue life data. Various properties
of the new model including explicit expressions for the ordinary and imcomplete moments,
generating function, mean deviations, reliability, density function of the order statistics and their
moments are derived. We investigate maximum likelihood estimation of the model parameters.
The superiority of the new model is illustrated by means of one failure real data set.

Keywords: Birnbaum-Saunders distribution; Fatigue life distribution; Kummer beta
distribution; Lifetime data; Maximum likelihood estimation

3.1 Introduction

Fatigue is a structural damage which occurs when a material is exposed to stress and tension
fluctuations. When the effect of vibrations on material specimens and structures is studied,
the first point to be considered is the mechanism that could cause fatigue to these materials.
To understand the fatigue process and the genesis of the fatigue life and cumulative damage
distributions, we recall concepts related to crack, cycle, fatigue and load.

In summary, the fatigue process (fatigue life) begins with an imperceptible fissure, the ini-
tiation, growth, and propagation of which produces a dominant crack in the specimen due to
cyclic patterns of stress, whose ultimate extension causes the rupture or failure of this specimen.
The failure occurs when the total extension of the crack exceeds a critical threshold for the first
time. The partial extension of a crack produced by fatigue in each cycle is modeled by a random
variable which depends on the type of material, the magnitude of the stress, and the number of
previous cycles, among other factors. More details about the fatigue process can be revised, for
example, in (VALLURI, 1963), (BIRNBAUM; SAUNDERS, 1969a), (MURTHY, 1974) and
(SAUNDERS, 1976).

Motivated by problems of vibration in commercial aircraft that caused fatigue in the ma-
terials, (BIRNBAUM; SAUNDERS, 1969a, 1969b) proposed the two-parameter Birnbaum-
Saunders (BS) distribution, also known as the fatigue life distribution, with shape parameter
α > 0 and scale parameter β > 0, say BS(α, β). This distribution can be used to lifetime data
and it is widely applicable to represent failure times of fatiguing materials. If Z is a standard
normal random variable, the random variable X defined by

X = β

αZ2 +

[(
αZ

2

)2

+ 1

]1/2
2

,
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has a BS(α, β) distribution whose cumulative distribution function (cdf) is given by

G(x) = Φ(ν), x > 0, (3.1)

where ν = α−1ρ(x/β), ρ(z) = z1/2 − z−1/2 and Φ(.) is the standard normal cumulative
function. The parameter β is the median of the distribution, i.e. G(β) = Φ(0) = 1/2. For any
k > 0, kX ∼ BS(α, kβ). (KUNDU; KANNAN; BALAKRISHNAN, 2008) investigated the
shape of the BS hazard function. Results on improved statistical inference for this model are
discussed by (WU; WONG, 2004), (LEMONTE; CRIBARI-NETO; VASCONCELLOS, 2007)
and (LEMONTE; SIMAS; CRIBARI-NETO, 2008). (DÍAZ-GARCIA; LEIVA, 2005) proposed
a new family of generalized BS distributions based on contoured elliptical distributions, whereas
(GUIRAUD; LEIVA; FIERRO, 2009) introduced a non-central version of the BS distribution.
The probability density function (pdf) corresponding to (3.1) is

g(x) = r(α, β)x−3/2 (x+ β) exp

[
−τ(x/β)

2α2

]
, x > 0, (3.2)

where r(α, β) = exp(α−2)(2α
√
2πβ)−1 and τ(z) = z − z−1. The fractional moments of (3.2)

are (RIECK, 1999)

E(Xp) = βp I(p, α), (3.3)

where

I(p, α) =
Kp+1/2(α

−2) +Kp−1/2(α
−2)

2K1/2(α−2)
, (3.4)

and Kp(z) denotes the modified Bessel function of the third kind with p representing its order
and z the argument. Its integral representation is Kp(z) = 0.5

∫∞
−∞ exp[−z cosh(t) − p t]dt. A

discussion of this function can be found in (WATSON, 1995).
The Kummer beta (KB) distribution may be characterized by the density function (NG;

KOTZ, 1995)

fKB(x) = K xa−1 (1− x)b−1 e−ct, 0 < x < 1, (3.5)

where a > 0, b > 0 and −∞ < c <∞. Here,

K−1 =
Γ(a) Γ(b)

Γ(a+ b)
1F1(a; a+ b;−c)

and

1F1(a; a+ b;−c) = Γ(a+ b)

Γ(aΓ(b)

∫ 1

0

ta−1 (1− t)b−1e−ct dt =
∞∑
k=0

(a)k (−c)k

(a + b)k k!

is the confluent hypergeometric function (ABRAMOWITZ; STEGUN, 1968), Γ(·) is the gamma
function and (d)k = d(d+1) . . . (d+k−1) denotes the ascending factorial. An important special
model is the classical beta distribution when c = 0.
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For an arbitrary continuous baseline distribution G(x) with parameter vector γ and density
function g(x), the Kummer beta generalized (denoted by the prefix “KB-G” for short) cumula-
tive function is defined by

FKBG(x) = K

∫ G(x)

0

ta−1 (1− t)b−1 e−ct dt, (3.6)

where a > 0 and b > 0 are shape parameters which induce skewness, and thereby promote
weight variation of the tails, whereas the parameter −∞ < c < ∞ “squeezes” the pdf to the
left or right, i.e., it gives weights to the extremes of the density functions. For more details, see
(PESCIM et al., 2012).

The density function corresponding to (3.6) can be expressed as

fKBG(x) = K g(x)G(x)a−1 [1−G(x)]b−1 exp [−c G(x)] . (3.7)

Clearly, we obtain the classical beta distribution for c = 0. Equation (3.7) will be most tractable
when both functions G(x) and g(x) have simple analytic expressions. Its major benefit is to
offer more flexibility to extremes (right and/or left) of the density functions and therefore it
becomes suitable for analyzing data with high degree of asymmetry.

In this work, we introduce a new five-parameter distribution called the Kummer beta Birnbaum-
Saunders (KBBS) distribution which contains as sub-models the BS and beta Birnbaum-Saunders
(BBS) (CORDEIRO; LEMONTE, 2011) distributions. The main motivation for this extension
is that the new distribution is a highly flexible life distribution which admits different degrees
of kurtosis and asymmetry. The KBBS distribution comes from (3.7) by taking G(x) and g(x)
as the cdf and pdf of the BS(α,β) distribution, respectively. We also provide a comprehen-
sive description of some of its mathematical properties with the hope that it will attract wider
applications in reliability, engineering and in other areas of research.

This chapter is outlined as follows. In Section 3.2, we define the KBBS distribution and
plot its density and hazard rate functions. Section 3.3 provides useful expansions for the den-
sity and cumulative distribution functions. We obtain explicit expressions for the moments
(Section 3.4), generating function (Section 3.5), incomplete moments (Section 3.6), mean devi-
ations and reliability (Section 3.7) and order statistics (Section 3.8). Some inferential tools are
discussed in Section 3.9. An application presented in Section 3.10 reveal the usefulness of the
new distribution for fatigue life data. Concluding remarks are addressed in Section 3.11.

3.2 A New Distribution for Reliability Studies

By taking the cdf (3.1) and pdf (3.2) of the BS distribution with shape parameter α > 0 and
scale parameter β > 0, the cdf and pdf of the KBBS distribution are obtained from equations
(3.6) and (3.7) as (x > 0)

F (x) = K

∫ Φ(ν)

0

ta−1 (1− t)b−1 e−ct dt (3.8)
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and

f(x) = K r(α, β) x−3/2 (x+ β) Φ(ν)a−1 [1− Φ(ν)]b−1 exp

{
−
[
τ(x/β)

2α2
+ cΦ(ν)

]}
. (3.9)

Hereafter, we denote by X the random variable following (3.9), say X ∼ KBBS(a, b, c, α, β).
This density has four shape parameters a, b, c and α, which allow for a high degree of flexibility.
The parameter c controls tail weights to the extremes of the distribution. The associated hazard
rate function becomes

λ(x) =
K r(α, β) x−3/2 (x+ β) Φ(ν)a−1

[1− F (x)] [1− Φ(ν)]−(b−1)
exp

{
−
[
τ(x/β)

2α2
+ cΦ(ν)

]}
. (3.10)

The study of the new distribution is important since it extends some distributions previously
considered in the literature. In fact, the BS model (with parameters α and β) arises when
a = b = 1 and c = 0, with a continuous crossover towards models with different shapes (e.g. a
specified combination of skewness and kurtosis). The KBBS model contains as sub-models the
BBS and the exponentiated Birnbaum-Saunders (EBS) (CORDEIRO; LEMONTE; ORTEGA,
2011) distributions when c = 0 and b = 1 in addition to c = 0, respectively. Plots of the KBBS
density and hazard rate functions for selected parameter values are displayed in Figures 3.1 and
3.2, respectively. It is evident that the shapes of the new density function are much more flexible
than the BS distribution. Further, it allows four major hazard shapes: increasing, decreasing,
bathtub and unimodal failure rates.

3.3 Expansions for Cumulative and Density Functions

Expansions for equations (3.8) and (3.9) can be derived using the concept of exponentiated dis-
tributions. (CORDEIRO; LEMONTE; ORTEGA, 2011) defined a random variable Y following
the EBS distribution with parameters α, β and γ > 0, say Y ∼ EBS(α, β, γ). The cdf and pdf
of Y are denoted by H(y;α, β, γ) = Φ(ν)γ and h(y;α, β, γ) = γ gα,β(y) Φ(ν)

γ−1, respectively,
where ν is defined in (3.1).

By expanding the term exp [−cΦ(ν)] in (3.9), we have

f(x) =
∞∑
j=0

(−1)j cj

j!K−1
r(α, β)x−3/2 (x+ β) exp

[
−τ(x/β)

2α2

]
Φ(ν)a+j−1 [1− Φ(ν)]b−1 ,

and then, using the the binomial expansion for [1− Φ(ν)]b−1, we obtain the pdf of the KBBS
distribution as a linear combination (for a > 0 integer) of the EBS densities given by

f(x) =
∞∑

j,k=0

wj,k h(x;α, β, a+ j + k), (3.11)

where h(x;α, β, a + j + k) = (a + j + k)g(x)Φ(ν)a+j+k−1 denotes the EBS(α, β, a + j + k)

density function and the coefficient wj,k is given by

wj,k =
(−1)j+k cjK

j!(a+ j + k)

(
b− 1

k

)
.
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Figure 3.1 – Plots of the density function (3.9) for some parameter values
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Figure 3.2 – The KBBS hazard rate function (a) Increasing and decreasing hazard rate function
(b) Unimodal hazard rate function (c) Bathtub hazard rate function

By integrating (3.11), we obtain

F (x) =
∞∑

j,k=0

wj,k Φ(ν)
a+j+k. (3.12)

If a is a positive non-integer, we can expand Φ(ν)a+j+k as

Φ(ν)a+j+k = {1− [1− Φ(ν)]}a+j+k =
∞∑
p=0

(−1)p
(
a+ j + k

p

)
[1− Φ(ν)]p . (3.13)
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Using the binomial expansion in (3.13), we have

[1− Φ(ν)]p =

p∑
r=0

(−1)r
(
p

r

)
Φ(ν)r,

and then,

Φ(ν)a+j+k =
∞∑
p=0

p∑
r=0

(−1)p+r

(
a+ j + k

p

)(
p

r

)
Φ(ν)r.

Replacing
∑∞

p=0

∑p
r=0 by

∑∞
r=0

∑∞
p=r, we obtain

Φ(ν)a+j+k =
∞∑
r=0

∞∑
p=r

(−1)p+r

(
a+ j + k

p

)(
p

r

)
Φ(ν)r

and

Φ(ν)a+j+k =
∞∑
r=0

sr(a+ j + k) Φ(ν)r, (3.14)

where the coefficients are

sr(m) =
∞∑
p=r

(−1)p+r

(
a+ k + j

p

)(
p

r

)
.

Thus, from equations (3.2), (3.12) and (3.14), the KBBS cumulative distribution can be ex-
pressed as

F (x) =
∞∑
r=0

br Φ(ν)
r, (3.15)

where br =
∑∞

j,k=0 wj,k sr(a+ j + k).

For a > 0 real non-integer, the KBBS density function expansion corresponding to (3.15) is
obtained by simple differentiation

f(x) =
∞∑
r=0

br h(x;α, β, r). (3.16)

Equation (3.16) reveals that the KBBS density function is a linear combination of EBS density
functions. This result is important to derive some properties of the KBBS distribution from
those of the EBS distribution.

3.4 Moments

The ordinary moments ofX can be determined from the probability weighted moments (GREEN-
WOOD et al., 1979) of the BS distribution formally defined for p and r non-negative integers
by

τp,r−1 =

∫ ∞

0

xp g(x) Φ(ν)r−1 dx. (3.17)
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The integral (3.17) can be computed numerically in several software such as MAPLE, MAT-
LAB, MATHEMATICA, Ox and R. (CORDEIRO; LEMONTE, 2011) proposed an alternative
representation to compute τp,r−1 given by

τp,r−1 =
βp

2r−1

r−1∑
j=0

(
r − 1

j

) ∞∑
k1,...,kj

A(k1, . . . , kj)

×
2sj+j∑
m=0

(−1)m
(
2sj + j

m

)
I

(
p+

(2sj + j − 2m)

2
, α

)
, (3.18)

where sj = k1 + . . .+ kj , A(k1, . . . , kj) = α−2sj−j ak1 , . . . , akj , ak = (−1)k2(1−2k)/2[
√
π(2k+

1)]−1 and I(p+ (2sj + j − 2m)/2, α) is determined from (3.4).
The sth moment of X can be expressed from equation (3.16) as

µ′
s =

∞∑
r=0

br τs,r−1, (3.19)

where τs,r−1 is obtained from (3.17) and br is defined in (3.15).
The four first moments of the KBBS distribution were calculated by numerical integration

and through infinite weighted sums in equation (3.19) using the statistical software R. The
values from both techniques are usually close when ∞ is replaced by a large number as 500 in
(3.19). For selected values a = 2, b = 1.5, c = 4, α = 0.5 and β = 1, Table (3.1) gives some
numerical analysis for those moments and for variance, skewness and kurtosis.

Table 3.1 – Values of the four first moments, variance, skewness and kurtosis of the KBBS
distribution for a = 2, b = 1.5, c = 4, α = 0.5 and β = 1 obtained by numerical
integration and through infinite weighted sums, where j, k, r = 0, . . . , n

Moments
Infinite weighted sums

Numerical integration
n=50 n=100 n=250 n=500

µ′
1 0.85967 0.85920 0.85898 0.85893 0.85890
µ′
2 0.83508 0.83355 0.83278 0.83258 0.83242
µ′
3 0.93435 0.92920 0.92633 0.92550 0.92479
µ′
4 1.23327 1.21506 1.20395 1.20042 1.19703

Variance 0.09604 0.0953 0.09492 0.09481 0.09471
Skewness 1.72439 1.6716 1.63790 1.62691 1.61629
Kurtosis 9.18582 8.6644 8.28549 8.14676 7.99257

The skewness and kurtosis measures can be calculated from the ordinary moments using
well-known relationships. Plots of the skewness and kurtosis of the KBBS distribution as a
function of c for selected values of a and b for α = 0.5 and β = 1.0 are displayed in Figures 3.3
and 3.4, respectively. Figures 3.3a and 3.3b immediately indicate that the additional parameter
c promotes high levels of asymmetry.
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Figure 3.3 – Skewness of the KBBS distribution as a function of c for some values of a and b
for α = 0.5 and β = 1.0 (a) b = 1.5 and (b) a = 1.2
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Figure 3.4 – Kurtosis of the KBBS distribution as a function of c for some values of a and b for
α = 0.5 and β = 1.0 (a) b = 1.5 and (b) a = 1.2

3.5 Generating function

In this section, we provide a representation for the moment generating function (mgf) of X ,
say M(t) = E[exp(tX)], which is obtained as a linear combination of the mgf’s of the EBS
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distributions. From expansion (3.16), we obtain

M(t) =
∞∑
r=0

brMr(t), (3.20)

where Mr(t) is the mgf of the EBS(α, β, r) distribution and br is defined by (3.15).
Thus, Mr(t) can be expressed as

Mr(t) = r

∫ ∞

0

exp(tx) g(x) Φ(ν)r−1 dx, (3.21)

where g(x) is the BS(α, β) density function. Setting u = Φ(ν) in (3.21), we have

Mr(t) = r

∫ 1

0

ur−1 exp[tQBS(u)] du, (3.22)

where x = QBS(u) is the quantile function of the BS distribution and u = Φ(ν) is given by
(3.1).

Now, we derive a power series expansion for the quantile function of the EBS distribution
which can be useful to calculate the mgf of the KBBS distribution. We use throughout an
equation in Section 0.314 of (GRADSHTEYN; RYZHIK, 2007) for a power series raised to a
positive integer j given by (

∞∑
i=0

ai x
i

)j

=
∞∑
i=0

cj,i x
i, (3.23)

where the coefficients cj,i (for i = 1, 2, . . .) are computed from the recurrence equation

cj,i = (ia0)
−1

i∑
m=1

[m(j + 1)− i] am cj,i−m (3.24)

and cj,0 = aj0. The coefficient cj,i can be determined from cj,0, . . . , cj,i−1 and hence from the
quantities a0, . . . , ai. In fact, cj,i can be given explicitly in terms of the coefficients ai, although
it is not necessary for programming numerically our expansions in any algebraic or numerical
software.

Following (CORDEIRO; LEMONTE, 2011), we can invert u = Φ(ν) if the condition −2 <

(x/β)1/2 − (β/x)1/2 < 2 holds, to express x as a power series expansion of u

x = QBS(u) =
∞∑
q=0

ρq ν
q, (3.25)

where the coefficients are ρ0 = β, ρ2q+1 = βα2q+1
(
1/2
q

)
2−2q for q ≥ 0, ρ2 = βα2/2 and

ρ2q = 0 for q ≥ 2. From (3.23), we can write (3.25) as

x = QBS(u) =
∞∑
q=0

ρq ν
q =

∞∑
q=0

ρq

(
∞∑
i=0

di y
i

)q

=
∞∑
i=0

zi (u− 1/2)i, (3.26)
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where zi = (2π)1/2
∑∞

q=0 ρq eq,i and the quantities eq,i follow recursively from equation (3.24)
by eq,0 = dq0 and

eq,i = (id0)
−1

q∑
m=1

[m(q + 1)− i] dm eq,i−m.

Here, the quantities dm are defined by dm = 0 (for m = 0, 2, 4, . . .) and dm = j(m−1)/2 (for
m = 1, 3, 5, . . .), where the jm’s are calculated recursively from

jm+1 =
1

2(2m+ 3)

m∑
v=0

(2v + 1) (2m− 2v + 1) jv jm−v

(v + 1) (2v + 1)
.

We have j0 = 1, j1 = 1/6, j2 = 7/120, j3 = 127/7560, . . ..
Replacing equation (3.26) in (3.22) and using the exponential expansion, we obtain

Mr(t) =
∞∑
p=0

r tp

p!

∫ 1

0

ur−1

(
∞∑
i=0

ziw
i

)p

du. (3.27)

where w = u− 1/2. From equations (3.23) and (3.24), we have(
∞∑
i=0

ziw
i

)p

=
∞∑
i=0

δp,iw
i =

∞∑
i=0

δp,i (u− 1/2)i,

where δp,0 = ρp0 and

δp,i = (iz0)
−1

i∑
m=1

[m(p+ 1)− i] zm δp,i−m,

and then, equation (3.27) becomes

Mr(t) =
∞∑

p,i=0

r tp

p!
δp,i

∫ 1

0

ur−1 (u− 1/2)i du. (3.28)

Using the binomial expansion in (3.28), the mgf of the EBS distribution can be expressed as

Mr(t) =
∞∑
p=0

δ∗p,r t
p, (3.29)

where

δ∗p,r =
∞∑
i=0

i∑
q=0

(
i

q

)
(−1)i−q r δp,i
p! (q + r) 2i−q

.

Finally, substituting (3.29) into (3.20), the mgf of the KBBS distribution reduces to

M(t) =
∞∑
p=0

ηp t
p, (3.30)

where ηp =
∑∞

r=0 br δ
∗
p,r.
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3.6 Incomplete Moments

Many important questions in econometrics require more than just knowing the mean of a dis-
tribution, but its shape as well. This is also obvious not only in the study of econometrics and
income distributions but in many other areas of research. For empirical purposes, the shape of
many distributions can be usefully described by what we call the incomplete moments. These
types of moments play an important role for measuring inequality, for example, income quan-
tiles and Lorenz and Bonferroni curves, which depend upon the incomplete moments of a dis-
tribution. The nth incomplete moment of X is given by

Tn(y) =

∫ y

0

xn f(x)dx.

By inserting (3.16) in Tn(y), we obtain

Tn(y) = r(α, β)
∞∑
r=0

br

∫ y

0

xn−3/2 (x+ β) exp

[
−τ(x/β)

2α2

]
Φ(ν)r−1dx.

From (CORDEIRO; LEMONTE, 2011), we have

Φ(ν)r−1 =
1

2r−1

r−1∑
j=0

(
r − 1

j

) ∞∑
k1,...,kj=0

A(k1, . . . , kj)

β(2sj+j)/2

2sj+j∑
m=0

(−β)m
(
2sj + j

m

)
x(2sj+j−2m)/2,

where sj and A(k1, . . . , kj) are defined in (3.18). Thus,

Tn(y) = r(α, β)
∞∑
r=0

br
2r−1

r−1∑
j=0

(
r − 1

j

)

×
∞∑

k1,...,kj=0

β−(2sj+j)/2A(k1, . . . , kj)

2sj+j∑
m=0

(−β)m
(
2sj + j

m

)

×
∫ y

0

xn+(2sj+j−2m−3)/2 (x+ β) exp

[
−τ(x/β)

2α2

]
dx. (3.31)

Let

D(p, q) =

∫ q

0

xq exp

[
−(x/β + β/x)

2α2

]
dx = βp+1

∫ q/β

0

uq exp

[
−(u+ u−1)

2α2

]
du.

From (TERRAS, 1981), we can write the integral in (3.31) as

D(p, q) = βp+1κp+1(α
−2)− qp+1Kp+1

(
q

2α2β
,
β

2α2q

)
,

where Kp(x1, x2) denotes the incomplete Bessel function with arguments x1 and x2 and order
p. For further details, see (JONES, 2007a, 2007b) and (HARRIS, 2008).

Hence, the nth incomplete moment of X can be expressed as

Tn(y) = r(α, β)
∞∑
r=0

br
2r−1

r−1∑
j=0

(
r − 1

j

) ∞∑
k1,...,kj=0

β−(2sj+j)/2A(k1, . . . , kj)

2sj+j∑
m=0

(−β)m
(
2sj + j

m

)

×
[
D

(
n+

2sj + j − 2m− 1

2
, y

)
+ β D

(
n+

2sj + j − 2m− 3

2
, y

)]
. (3.32)

Equation (3.32) is the main result of this section.



67

3.7 Other Measures

In this section, we calculate the following measures: mean deviations and the reliability for the
KBBS distribution.

3.7.1 Mean Deviations

We can derive the mean deviations about the mean µ′
1 (δ1) and about the medianM (δ2) in terms

of the first incomplete moment. The median is obtained by inverting F (M) = K
∫ Φ(ν)

0
ta−1 (1−

t)b−1 e−ct dt = 1/2 numerically. They can be expressed as

δ1 = 2
[
µ′
1 F (µ

′
1)− T1(µ

′
1)
]

and δ2 = µ′
1 + 2M F (M)−M − 2T1(M),

where T1(·) is the first incomplete moment of X given by (3.32) with n = 1. We have

T1(ω) = r(α, β)
∞∑
r=0

br
2r−1

r−1∑
j=0

(
r − 1

j

) ∞∑
k1,...,kj=0

β−(2sj+j)/2A(k1, . . . , kj)

2sj+j∑
m=0

(−β)m
(
2sj + j

m

)

×
[
D

(
2sj + j − 2m+ 1

2
, ω

)
+ β D

(
2sj + j − 2m− 1

2
, ω

)]
. (3.33)

The measures δ1 and δ2 are immediately calculated from (3.33) by setting ω = µ′
1 and ω = M ,

respectively.

3.7.2 Reliability

In the context of reliability, the stress-strength model describes the life of a component that
has a random strength X1 that is subjected to a random stress X2. The component fails at
the instant that the stress applied to it exceeds the strength, and the component will function
satisfactorily whenever X1 > X2. Hence, R = Pr(X1 < X2) is a measure of component
reliability which has many applications especially in engineering area (structures, deteriorating
of rocket motors and fatigue failure of aircraft structures). According to (PARANAÍBA et al.,
2011), in the area of stress-strength models there has been a large amount of work as regards
estimation of the reliability R when X1 and X2 are independent random variables belonging
to the same univariate family of distributions. We derive the reliability R when X1 and X2

have independent KBBS(α, β, a1, b1, c1) and KBBS(α, β, a2, b2, c2) distributions with the same
parameters α and β.

The pdf of X1 and the cdf of X2 can be written from equations (3.11) and (3.12) as

f1(x) = g(x)
∞∑

i,j=0

w1i,j (a1 + i+ j)Φ(ν)a1+i+j and F2(x) =
∞∑

k,p=0

w2k,pΦ(ν)
a2+k+p,

respectively, where

w1i,j =
(−1)i+j K1 c

i
1

i!(a1 + i+ j)

(
b1 − 1

j

)
and w2k,p =

(−1)k+pK2 c
k
2

k!(a2 + k + p)

(
b2 − 1

p

)
.
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The reliability, R, is defined by

R =

∫ ∞

0

f1(x)F2(x)dx

and then

R =
∞∑

i,j,k,p=0

w1i,j w2k,p

∫ ∞

0

g(x) Φ(ν)a1+a2+i+j+k+p−1 dx.

From equation (3.14), we can write

Φ(ν)a1+a2+i+j+k+p−1 =
∞∑
r=0

sr(a1 + a2 + i+ j + k + p− 1)Φ(ν)r,

and then R reduces to

R =
∞∑

i,j,k,p=0

w1i,j w2k,p

∞∑
r=0

sr(a1 + a2 + i+ j + k + p− 1) τ0,r−1,

where τ0,r−1 can be computed from (3.18).

3.8 Order statistics

Suppose X1, . . . , Xn is a random sample from the KBBS distribution and let X1:n < · · · < Xi:n

denote the corresponding order statistics. It is well-known that

fi:n(x) =
n! f(x)

(i− 1)! (n− 1)!
F (x)i−1 [1− F (x)]n−i . (3.34)

Using the binomial expansion in (3.34), we have

fi:n(x) =
n! f(x)

(i− 1)! (n− 1)!

n−i∑
j=0

(−1)j
(
n− i

j

)
F (x)i+j−1. (3.35)

Now, using (3.15) and (3.16) in (3.35), the pdf of Xi:n can be expressed as

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i

j

)[
g(x)

∞∑
r=0

br Φ(ν)
r

][
∞∑
k=0

dr Φ(ν)
r

]i+j−1

.

From equations (3.23) and (3.24), we obtain[
∞∑
r=0

br Φ(ν)
r

]i+j−1

=
∞∑
r=0

ci+j−1,r Φ(ν)
r,

where ci+j−1,0 = bi+j−1
0 and

ci+j−1,r = (rb0)
−1

r∑
m=1

[m (i+ j)− r] bm ci+j−1,r−m.
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Hence, the pdf of the ith order statistic for the KBBS distribution can be expressed as

fi:n(x) =
∞∑
r=0

mr h(x;α, β, 2r), (3.36)

where

mr =
n! br

(i− 1)! (2r + 1) (n− i)!

n−i∑
j=0

(−1)j
(
n− i

j

)
ci+j−1,r.

Equation (3.36) is the main result of this section. It gives the pdf of the KBBS order statistics as
a linear combination of EBS densities with parameters α, β and 2r. So, several mathematical
quantities of the KBBS order statistics such as ordinary and incomplete moments, generating
function, mean deviations (and several others) can come immediately from those quantities of
the EBS distribution.

3.9 Inference

The estimation of the model parameters of the KBBS distribution will be investigated by the
maximum likelihood method. Let X = (X1, . . . , Xn) be a random sample of this distribution
with unknown parameter vector θ = (α, β, a, b, c)T . The log-likelihood function for θ is

ℓ(θ) = n log(K) + n log [r(α, β)]− 3

2

n∑
i=1

log(xi) +
n∑

i=1

log(xi + β) − 1

2α2

n∑
i=1

τ(xi/β)

− c

n∑
i=1

Φ(νi) + (a− 1)
n∑

i=1

log[Φ(νi)] + (b− 1)
n∑

i=1

log [1− Φ(νi)]. (3.37)

The elements of score vector are given by

Uα(θ) = −n
α

(
1 +

2

α2

)
+

1

α3

n∑
i=1

(
xi
β

+
β

xi

)
− 1

α

n∑
i=1

νi ϕ(νi)

[
(a− 1)

Φ(νi)
− (b− 1)

1− Φ(νi)
− 2 c

]
,

Uβ(θ) = − n

2β
+

n∑
i=1

1

xi + β
+

1

2α2β

n∑
i=1

(
xi
β

− β

xi

)
− 1

2αβ

n∑
i=1

τ(
√
xi/β) ϕ(νi)

[
(a− 1)

Φ(νi)
− (b− 1)

1− Φ(νi)
− c

]
,

Ua(θ) =
n

K

∂K

∂a
+

n∑
i=1

log[Φ(νi)], Ub(θ) =
n

K

∂K

∂b
+

n∑
i=1

log[1− Φ(νi)]

and

Uc(θ) =
n

K

∂K

∂c
+

n∑
i=1

Φ(νi)
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where ϕ(·) is the standard normal density, νi = α−1[(xi/β)
1/2 − (xi/β)

−1/2] and τ(
√
xi/β) =

(xi/β)
1/2 + (β/xi)

1/2 for i = 1, . . . , n. The partial derivatives of K in relation to a, b and c are
given by

∂K

∂a
= −

{
[ψ(a)− ψ(a+ b)] 1F1(a, a+ b,−c) + ∂ 1F1(a,a+b,−c)

∂a

}
B(a, b) [1F1(a, a+ b,−c)]2

,

∂K

∂b
= −

{
[ψ(b)− ψ(a+ b)] 1F1(a, a+ b,−c) + ∂ 1F1(a,a+b,−c)

∂b

}
B(a, b) [1F1(a, a+ b,−c)]2

,

∂K

∂c
=

a 1F1(a+ 1, a+ b+ 1,−c)
(a+ b)B(a, b)1F1(a, a+ b,−c)

, where

∂ 1F1(a, a+ b,−c)
∂a

= − [ψ(a)− ψ(a+ b)] 1F1(a, a+ b,−c)

−
∞∑
k=0

(a)k(−c)k

k!(a+ b)k
[ψ(a+ b+ k)− ψ(a+ k)]

and

∂ 1F1(a, a+ b,−c)
∂b

= ψ(a+ b) 1F1(a, a+ b,−c) +
∞∑
k=0

(a)k(−c)k

k!(a+ b)k
ψ(a+ b+ k).

Maximization of (3.37) can be performed by using well established routines such as the nlm
routine or optim in statistical software R. Setting these equations to zero, U(θ) = 0, and solving
them simultaneously yields the maximum likelihood estimate (MLE) θ̂ of θ. These equations
cannot be solved analytically and statistical software can be used to solve them numerically by
means of iterative techniques such as the Newton-Raphson algorithm.

For interval estimation and test of hypothesis on the parameters in θ, we require the 5×5 to-
tal observed information matrix J(θ) = −{Urs}, where the elements Urs for r, s = α, β, a, b, c

are given in Appendix B. The estimated asymptotic multivariate normal N5(0,J(θ̂)
−1) distribu-

tion of θ̂ can be used to construct approximate confidence regions for the parameters and for the
hazard rate and survival functions. An asymptotic confidence interval with significance level γ
for each parameter θr is given by

ACI(θr, 100(1− γ)%) = (θ̂r − zγ/2
√
κ̂θr,θr , θ̂r + zγ/2

√
κ̂θr,θr),

where κ̂θr,θr is the rth diagonal element of J(θ)−1 estimated at θ̂, for r = 1, . . . , 4, and zγ/2 is
the quantile 1− γ/2 of the standard normal distribution.

The likelihood ratio (LR) statistic is useful for comparing the new distribution with some of
its special models. For example, we may adopt the LR statistic to check if the fit using the KBBS
distribution is statistically “superior” to a fit using the BS distribution for a given data set. In any
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case, considering the partition θ = (θT
1 ,θ

T
2 )

T , tests of hypotheses of the type H0 : θ1 = θ
(0)
1

versusHA : θ1 ̸= θ
(0)
1 can be performed using the LR statistic w = 2[ℓ(θ̂)−ℓ(θ̃)], where θ̂ and

θ̃ are the estimates of θ under HA and H0, respectively. Under the null hypothesis H0, w
d→ χ2

q ,
where q is the dimension of the vector θ1 of interest. The LR test rejects H0 if w > ξγ , where
ξγ denotes the upper 100γ% point of the χ2

q distribution.

3.10 Application

In this section, we use a real data set to compare the fits of the KBBS distribution with those of
two sub-models (i.e. the BBS and BS distributions) and also to the following non-nested mo-
dels: the McDonald-Birnbaum-Saunders (McBS) (CORDEIRO; LEMONTE; ORTEGA, 2011)
and McDonald-gamma (McGa) (MARCIANO et al., 2012) distributions. All the computations
were performed using the statistical software R. Obviously, due to the genesis of the BS and
gamma distributions, the fatigue processes are by excellence ideally modeled by these distri-
butions. Thus, the use of the KBBS distribution and its special models and also other lifetime
distributions for fitting to the current data set is justified.

3.10.1 Breaking stress of carbon fibres data set

Here, we shall compare the fitted KBBS, BBS, BS, McBS and McGa distributions to the data
from (NICHOLS; PADGETT, 2006) on the breaking stress of carbon fibres (in Gba). They
described the data from a process which produces carbon fibers to be used in constructing
fibrous composite materials. The carbon fiber 50 mm in length were sampled (n=66) from the
process, tested and their tensile strength were observed.

Firstly, in order to estimate the model parameters, we consider the maximum likelihood
estimation method discussed in Section 3.9. We take the estimates of α and β from the fitted
BS distribution as starting values for the numerical iterative procedure. All computations were
performed using the statistical software R. Table 3.2 lists the MLEs and the corresponding SEs
of the parameters and the values of the following statistics for some models: Akaike Information
Criterion (AIC), Consistent Akaike Information Criterion (CAIC) and Bayesian Information
Criterion (BIC). The results indicate that the KBBS model has the smallest values of these
statistics among all fitted models. So, it could be chosen as the more suitable model.

A comparison of the proposed distribution with some of its sub-models using LR statistics
is given in Table 3.3. We reject the null hypotheses of the two LR tests in favor of the KBBS
distribution. This gives a clear evidence of the potential of the three shape parameters when
modeling real data.

In order to assess if the model is appropriate, Figures 3.5a and 3.5b display the histogram
of the data and the fitted KBBS density function and some densities of its sub-models and non-
nested models, respectively. Further, Figures 3.5c and 3.5d display plots of the empirical and
estimated survival functions of the KBBS distribution and of some sub-models and non-nested
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Table 3.2 – MLEs, the corresponding SEs (given in parentheses) and information criteria for
breaking stress of carbon fibres data

Model α β a b c AIC BIC CAIC
KBBS 0.6770 2.9944 0.3430 11.4176 -22.2353 179.6 190.6 181.6

(0.0631) (0.0319) (0.0021) (0.4447) (6.3042)
BBS 1.0452 57.5997 0.1990 1876.8935 0 191.6 200.4 193.0

(0.0041) (0.3643) (0.0279) (605.85) (-)
BS 0.43712 2.51540 1 1 0 204.3 208.7 205.0

(0.0394) (0.1432) (-) (-) (-)
McGa α1 β1 a b c1

28.5769 2.3734 0.1240 48.0712 0.2335 182.0 193.0 184.0
(0.1195) (0.0972) (0.0052) (0.1405) (0.0988)

McBS α β a η c1
3.8736 0.1487 18.8160 35.5380 29.00002 182.1 193.0 184.0

(0.0232) (0.0176) (0.0549) (0.4378) (0.1761)

Table 3.3 – LR statistics for the breaking stress of carbon fibres data

Model Hypotheses Statistic w p-value
KBBS vs BBS H0 : c = 0 vs H1 : H0 is false 30.69 < 0.0001
KBBS vs BS H0 : a = b = 1 and c = 0 vs H1 : H0 is false 13.08 0.00029

models, respectively. We can conclude that the KBBS distribution is a very suitable model to
fit to these data.

Secondly, we shall apply formal goodness-of-fit tests in order to verify which distribution
gives the best fit to these data. We consider the Cramér-Von Mises (W ∗) and Anderson-Darling
(A∗) statistics. In general, the smaller the values of the statistics W ∗ and A∗, the better the fit to
the data. The test statistics W ∗ and A∗ are described in detail in (CHEN; BALAKRISHNAN,
1995). Let F (x;θ) be the cdf, where the form of F is known but θ (a k-dimensional parame-
ter vector, say) is unknown. To obtain the statistics W ∗ and A∗, we can proceed as follows:
1. Compute vi = F (xi; θ̂), where the xi’s are in ascending order;
2. Compute yi = Φ−1(vi) is the normal standard quantile function;
3. Compute ui = Φ[(yi − y)/sy], where y = n−1

∑n
i=1 yi and s2y = (n− 1)−1

∑n
i=1(yi − y)2;

4. Calculate

W 2 =
n∑

i=1

[
ui −

(2i− 1)

2n

]2
+

1

12n

and

A2 = −n− 1

n

n∑
i=1

[(2i− 1) log(ui) + (2n+ 1− 2i) log(1− ui)];

5. Modify W 2 into W ∗ =W 2(1 + 0.5/n) and A∗ into A∗ = A2(1 + 0.75/n+ 2.25/n2).
The values of the statisticsW ∗ andA∗ for all models are given in Table 3.4. Thus, according

to these formal tests, the KBBS model fits to the current data better than its sub-models and
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Figure 3.5 – (a) Estimated densities of the KBBS and its sub-models (b) Estimated densities of
the KBBS, Mc-BS and McGa models (c) Empirical and estimated survival functi-
ons of the KBBS and its sub-models (d) Empirical and estimated survival functions
of the KBBS, Mc-BS and McGa models

other lifetime models. These results illustrate the potentiality of the KBBS distribution and the
necessity of the additional shape parameters.

The QQ plots of the normalized quantile residuals was introduced by (DUNN; SMYTH,
1996) and more recently used by (CORDEIRO et al., 2013). Figure 3.6 indicates the improved
fit achieved using the KBBS distribution over the other distributions. We also emphasize the
gain yielded by the KBBS distribution in relation to the BS, BBS, McBS and McGa distribu-
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Table 3.4 – Formal tests for breaking stress of carbon fibres data

Model Statistic
W ∗ A∗

KBBS 0.0081 0.31232
BBS 0.2115 1.2216
BS 0.4603 2.5896

McBS 0.2522 0.5223
McGa 0.0812 0.5173

tions.

3.11 Concluding Remarks

The Birnbaum-Saunders (BS) distribution is widely used to model times to failure for materials
subject to fatigue. We propose the Kummer beta Birnbaum-Saunders (KBBS) distribution to
extend the BS distribution introduced by (BIRNBAUM; SAUNDERS, 1969a). We provide a
mathematical treatment of the new distribution including expansions for the cumulative and
density functions. We derive expansions for the ordinary and incomplete moments, generating
function, mean deviations, reliability and the moments of the order statistics. The estimation of
parameters is approached by the method of maximum likelihood and the observed information
matrix is derived. We consider the likelihood ratio (LR) statistics and formal goodness-of-
fit tests to compare the KBBS model with some of its sub-models and non-nested models.
An application of the KBBS distribution to a real data set indicates that the new distribution
provides consistently better fits than its sub-models and other lifetime models. We hope that this
generalization may attract wider applications in the literature of the fatigue life distributions.
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Figure 3.6 – QQ plot of the normalized quantile residuals with an identity line for the distribu-
tions: (a) BS, (b) BBS, (c) McBS, (d) McGa and (e) KBBS
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4 A NEW EXTENSION OF THE GENERALIZED GAMMA DISTRIBUTION

Abstract

A new extension of the generalized gamma distribution with six-parameter so-called the
Kummer beta generalized gamma distribution is introduced and studied. It contains at least 32
special models such as the beta generalized gamma, beta Weibull, beta exponential, generali-
zed gamma, Weibull and gamma distributions and thus could be a better model for analyzing
positive skewed data. The new density function can be expressed as a linear combination of
generalized gamma densities. Various mathematical properties of the new distribution inclu-
ding explicit expressions for the ordinary and incomplete moments, generating function, mean
deviations, entropy, density function of the order statistics and their moments are derived. The
elements of the observed information matrix are provided. We discuss the method of maximum
likelihood and a Bayesian approach to fit the model parameters. The superiority of the new
model is illustrated by means of three real data sets.

Keywords: Generalized gamma distribution; Kummer beta distribution; Lifetime data;
Maximum likelihood estimation; Mean deviation; Moment

4.1 Introduction

The generalized gamma (GG) distribution (STACY, 1962) is an important lifetime model
since it includes as special models the exponential, Weibull, gamma and Rayleigh distributions,
among others. It is suitable for modeling data with hazard rate function of different forms
(increasing, decreasing, bathtub and unimodal) and then it is useful for estimating individual
hazard functions and both relative hazards and relative times (COX, 2008). The GG distribu-
tion has been used in several research areas such as engineering, environment, hydrology and
survival analysis. For example, (ORTEGA; BOLFARINE; PAULA, 2003) discussed influence
diagnostics in GG regression models, (NADARAJAH; GUPTA, 2007) applied this distribution
to drought data, (COX et al., 2007) presented a parametric survival analysis based on GG ha-
zard functions and (COX, 2008) discussed and compared the F-generalized family with the GG
model. More recently, (BARKAUSKAS et al., 2009) modeled the noise part of a spectrum as
an autoregressive moving average (ARMA) model with the innovations following the GG dis-
tribution, (MALHOTRA; SHARMA; KALER, 2009) provided a unified analysis for wireless
system over generalized fading channels that is modeled by a two parameter GG model and
(XIE; LIU, 2009) analyzed three-moment auto conversion parametrization based on this model.
Further, (ORTEGA; CANCHO; PAULA, 2009) proposed a modified GG regression model to
allow the possibility that long-term survivors may be presented in the data and (CORDEIRO;
ORTEGA; SILVA, 2011) studied the exponentiated generalized gamma (EGG) distribution.

Let γ1 (k, x/α) be the cumulative distribution function (cdf) of the standard gamma distribu-
tion, where γ1(·, ·) is the incomplete gamma ratio function defined by γ1(k, x) = γ(k, x)/Γ(k),
γ(k, x) =

∫ x

0
wk−1 e−wdw and Γ(·) are the incomplete and complete gamma functions. The
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probability density function (pdf) of GG distribution, with three parameters α > 0, β > 0 and
k > 0, defined by (STACY, 1962), has the form

g(x;α, β, k) =
β

αΓ(k)

(x
α

)βk−1

exp

[
−
(x
α

)β]
, x > 0. (4.1)

In the density function (4.1), α > 0 is a scale parameter and β > 0 and k > 0 are shape
parameters. The cumulative distribution function (cdf) corresponding to (4.1) is

G(x;α, β, k) = γ1

[
k,
(x
α

)β]
. (4.2)

For an arbitrary baseline distribution G(x;γ) with parameter vector γ and density function
g(x;γ), (PESCIM et al., 2012) proposed the Kummer beta generalized (denoted by the prefix
“KB-G” for short) cumulative function defined by

FKBG(x) = K

∫ G(x;γ)

0

ta−1 (1− t)b−1 e−ct dt, (4.3)

where a > 0 and b > 0 are shape parameters which induce skewness, and thereby promote
weight variation of the tails, whereas the parameter −∞ < c < ∞ “squeezes” the pdf to the
left or right, i.e., it gives weights to the extremes of the density functions. Here,

K−1 =
Γ(a) Γ(b)

Γ(a+ b)
1F1(a; a+ b;−c)

and

1F1(a; a+ b;−c) = Γ(a+ b)

Γ(aΓ(b)

∫ 1

0

ta−1 (1− t)b−1e−ct dt =
∞∑
k=0

(a)k (−c)k

(a + b)k k!

is the confluent hypergeometric function (ABRAMOWITZ; STEGUN, 1968) and (d)k = d(d+

1) . . . (d + k − 1) denotes the ascending factorial. An important special model is the beta
distribution when c = 0. The density function corresponding to (4.3) can be expressed as

fKBG(x) = K g(x;γ)G(x;γ)a−1 [1−G(x;γ)]b−1 exp [−cG(x;γ)] . (4.4)

Equation (4.4) will be most tractable when both functions G(x;γ) and g(x;γ) have simple
analytic expressions. Its major benefit is to offer more flexibility to extremes (right and/or left)
of the density functions and therefore it becomes suitable for analyzing data with high degree
of asymmetry.

The class of distributions (4.4) includes two important special cases: the beta-generalized
(BG) and exponentiated generalized (EG) distributions defined by (EUGENE; LEE; FAMOYE,
2002) and (MUDHOLKAR; SRIVASTAVA; FRIEMER, 1995) when c = 0 and c = 0 and
b = 1, respectively.

In this work, we introduce a new six-parameter distribution called the Kummer beta gene-

ralized gamma (KBGG) distribution which contains at least 32 special sub-models. The main
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motivation for this extension is that the new distribution is a highly flexible life distribution
which admits different degrees of kurtosis and asymmetry. The KBGG density function is de-
fined from (4.4) by taking (4.2) and (4.1) as the cdf and pdf of the GG(α, β, k) distribution,
respectively. The six-parameter KBGG density function can be expressed as

f(x) = K
β

αΓ(k)

(x
α

)βk−1

exp

[
−
(x
α

)β]
γ1

[
k,
(x
α

)β]a−1

×
{
1− γ1

[
k,
(x
α

)β]}b−1

exp

{
−c γ1

[
k,
(x
α

)β]}
. (4.5)

The associated hazard rate function to (4.5) becomes

τ(x) =

K β
(

x
α

)βk−1
{
1− γ1

[
k,
(

x
α

)β]}b−1

αΓ(k) [1− F (x)] γ1

[
k,
(

x
α

)β]1−a
exp

[
−
{
c γ1

[
k,
(x
α

)β]
+
(x
α

)β}]
.(4.6)

Hereafter, we denote byX the random variable following (4.5), sayX ∼ KBGG(a, b, c, α, β, k).
This density has five shape parameters a, b, c, β and k which allow for a high degree of flexibi-
lity. The parameter c controls tail weights to the extremes of the distribution. The study of the
new distribution is important since it extends some distributions previously considered in the
literature. In fact, the generalized gamma (GG) model is clearly a basic exemplar for a = b = 1

and c = 0, with a continuous crossover towards models with different shapes (e.g. a specified
combination of skewness and kurtosis). The KBGG model contains as sub-models the beta ge-
neralized gamma (BGG) (CORDEIRO et al., 2012) and the exponentiated generalized gamma
(EGG) (CORDEIRO; ORTEGA; SILVA, 2011) distributions when c = 0 and b = 1 in addition
to c = 0, respectively. Plots of the new density function for selected parameter values are repre-
sented in Figure 4.1. It is evident that the shapes of this density function are much more flexible
than the GG distribution. Hence the KBGG can be used in many practical situations. In fact, it
can be symmetric, asymmetric and also exhibit bimodality. More details, see Section 4.10. We
also provide a comprehensive description of some of its mathematical properties with the hope
that it will attract wider applications in reliability, engineering, environment and in other areas
of research.

This chapter is outlined as follows. In Section 4.2, we derive more than 32 special distri-
butions from KBGG model. In Section 4.3, we demonstrate that the KBGG density function
can be expressed as a linear combination of GG density functions. This is an important result
to provide some mathematical properties of the GG distribution. We obtain explicit expressi-
ons for the moments and generating function (Section 4.4), incomplete moments (Section 4.5),
mean deviations (Section 4.6), Rényi entropy (Section 4.7) and order statistics (Section 4.8).
In Section 4.9, we discuss maximum likelihood estimation and statistical inference. In Section
4.10, three applications are presented to illustrate the usefulness of the new distribution for real
data. Concluding remarks are addressed in Section 4.11.
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Figure 4.1 – Plots of the KBGG density function (4.5) for some parameter values

4.2 Special Cases of the KBGG Distribution

The following well-known distributions are special sub-models of the KBGG distribution.

4.2.1 Kummer Beta Generator

• For k = 1, the KBGG distribution reduces to the Kummer beta Weibull (KBW) distribu-
tion. If k = 1 and β = 1, it yields the Kummer beta exponential (KBE) distribution. If
β = 2 in addition to k = 1, it gives the Kummer beta generalized Rayleigh (KBGR) dis-
tribution. For α =

√
2σ, β = 2 and k = p/2, the KBGG distribution corresponds to the
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Kummer beta scaled chi-square (KBSchi) distribution. For α =
√
θ, β = 2 and k = 3/2,

the KBGG distribution coincides with the Kummer beta Maxwell (KBMa) distribution.

• For β = 1, the KBGG distribution coincides with the four parameter Kummer beta
gamma (KBGa) distribution. Taking α = 2, β = 1 and k = p/2, we obtain the Kummer
beta chi-square (KBchi) distribution. Moreover, if α = 2

1
2γ θ, β = 2γ and k = 1/2, the

KBGG distribution becomes the Kummer beta generalized half-normal (KBGHN) distri-
bution. If α = 2

1
2 θ, β = 2 and k = 1/2, the KBGG model corresponds to the the Kummer

beta half-normal (KBHN) distribution. Finally, if α =
√
w/µ, β = 2 and k = µ, it yields

the Kummer beta Nakagami (KBNa) distribution.

4.2.2 Beta Generator (for c = 0)

• For c = 0, the KBGG distribution reduces to the five parameter beta generalized gamma
(BGG) distribution. If k = 1, the BGG distribution corresponds to the beta Weibull
(BW) distribution introduced by (FAMOYE; LEE; OLUMOLADE, 2005). If β = 1 and
k = 1, it gives the beta exponential (BE) distribution (NADARAJAH; KOTZ, 2005). If
β = 2 in addition to k = 1, it yields the beta generalized Rayleigh (BGR) distribution
(CORDEIRO et al., 2011). For α =

√
2σ, β = 2 and k = p/2, the BGG distribution

reduces to the beta scaled chi-square (BSchi) distribution. For α =
√
θ, β = 2 and

k = 3/2, the BGG distribution gives the beta Maxwell (BMa) distribution.

• For β = 1, the BGG distribution yields the four parameter beta gamma (BGa3) distri-
bution. If α = 1 in addition to β = 1, the special case corresponds to the beta gamma
(BGa2) distribution. Taking α = 2, β = 1 and k = p/2, we obtain the beta chi-square
(Bchi) distribution. Further, if α = 2

1
2γ θ, β = 2γ and k = 1/2, the BGG distribution

becomes the beta generalized half-normal (BGHN) distribution proposed by (PESCIM et
al., 2010). If α = 2

1
2 θ, β = 2 and k = 1/2, the BGG model reduces to the distribution

which is called the beta half-normal (BHN). (PESCIM et al., 2010).

• Finally, if α =
√
w/µ, β = 2 and k = µ, the BGG distribution becomes the Beta

Nakagami (BNa) distribution.

4.2.3 Exponentiated Generator (for b = 1 and c = 0)

• For b = 1 and c = 0 we obtain from (4.5) the density function of the EGG distribution
given by (4.1). If k = 1, the EGG distribution reduces to the density of the exponentiated
Weibull (EW) distribution introduced by (MUDHOLKAR; SRIVASTAVA; FRIEMER,
1995). If β = 1 in addition to k = 1, the special case corresponds to the exponentiated
exponential (EE) distribution (GUPTA; KUNDU, 2001). If β = 2 in addition to k = 1,
the special case corresponds to the generalized Rayleigh (GR) distribution. For α =

√
2σ,

β = 2 and k = p/2, the EGG distribution reduces to the exponentiated scaled chi-square
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(ESchi) distribution. For α =
√
θ, β = 2 and k = 3/2, the EGG distribution corresponds

to the exponentiated Maxwell (EMa) distribution.

• For β = 1, the EGG distribution reduces to the three parameter exponentiated gamma
(EGa3) distribution. If α = 1 in addition to β = 1, the special case corresponds to the
exponentiated gamma (EGa2) distribution. Taking β = 1 and λ = 1, the special case
corresponds to the two parameter gamma (Ga2p) distribution. Further, if β = λ = k = 1,
we obtain the one parameter gamma (Ga1p) distribution. Taking α = 2, β = 1 and
k = p/2, we obtain the exponentiated chi-square (Echi) distribution. Further, if λ = 1,
in addition to α = 2, β = 1 and k = p/2, we obtain the chi-square (Chi) distribution.
If α = 2

1
2γ θ, β = 2γ and k = 1/2, the EGG distribution becomes the exponentiated

generalized half-normal (EGHN) distribution.

• If α = 2
1
2 θ, β = 2 and k = 1/2, the EGG model reduces to the distribution we call the

exponentiated half-normal (EHN). Finally, if α =
√
w/µ, β = 2 and k = µ, the EGG

distribution becomes the exponentiated Nakagami (ENa) distribution.

4.2.4 Baseline distributions (for a = b = 1 and c = 0)

• For a = b = 1 and c = 0, the new model reduces to the three parameter generalized
gamma (GG) distribution. The case β = 1 corresponds to the classical two parameter
Weibull (W) distribution. If β = 1 and β = 2, in addition to k = 1, the special case
coincides with the exponential (E) and Rayleigh (R) distributions, respectively. For α =√
2σ, β = 2 and k = p/2, the special case corresponds to the scaled chi-square (SChi)

distribution. If α =
√
θ in addition to β = 2 and k = 3/2, it reduces to the Maxwell (Ma)

distribution (BEKKER; ROUX, 2005).

• Taking β = 1, the special case corresponds to the two parameter gamma (Ga) distribution.
If α = 2, in addition to β = 1 and k = p/2, we obtain the chi-square (Chi) distribution.
If α = 21/(2γ)θ in addition to β = 2γ, k = 1/2, it coincides with the generalized half-
normal (GHN) distribution introduced by (COORAY; ANANDA, 2008). Taking α =

2
1
2 θ in addition to β = 2 and k = 1/2, it reduces to the well-known half-normal (HN)

distribution. Further, if α =
√
w/µ in addition to β = 2 and k = µ, the special case

corresponds to the Nakagami (Na) distribution.

Several special sub-models of the KBGG model are illustrated in Table 4.1

4.3 Expansion for the Density Function

A useful expansion for equation (4.5) can be derived using the concept of exponentiated gene-
ralized distributions. First, we use an expansion for the general density function (4.4) expressed
as a linear combination of EG densities.
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Table 4.1 – Some special cases of the KBGG distribution

a = b = 1 and c = 0
Case α β k Distribution References
(1) α β k Generalized gamma (STACY, 1962)
(2) α β 1 Weibull
(3) α 1 k Gamma
(4) α 1 1 Exponential
(5) α 2 1 Rayleigh
(6)

√
θ 2 3/2 Maxwell

(7)
√
2α 2 p/2 Scaled Chi-Square

(8) 2
1
2α θ 2α 1/2 Generalized half-normal (COORAY; ANANDA, 2008)

b = 1 and c = 0
α β k a

(9) α β k a Exponentiated generalized gamma
(10) α β 1 a Exponentiated Weibull
(11) α 1 1 a Exponentiated gamma (NADARAJAH; GUPTA, 2007)
(12) α 1 1 a Exponentiated exponential (GUPTA; KUNDU, 2001)
(13) α 2 1 a Exponentiated Rayleigh
(14)

√
θ 2 3/2 a Exponentiated Maxwell

(15)
√
2α 2 p/2 a Exponentiated Scaled Chi-Square

(16) 2
1
2α θ 2α 1/2 a Exponentiated generalized half-normal

c = 0
α β k a b

(17) α β k a b Beta generalized gamma (CORDEIRO et al., 2013)
(18) α β 1 a b Beta Weibull
(19) α 1 k a b Beta gamma (KONG; LEE; SEPANSKI, 2007)
(20) α 1 1 a b Beta exponential (NADARAJAH; KOTZ, 2005)
(21) α 2 1 a b Beta generalized Rayleigh (CORDEIRO et al., 2011)
(22)

√
θ 2 3/2 a b Beta Maxwell

(23)
√
2α 2 p/2 a b Beta Scaled Chi-Square

(24) 2
1
2α θ 2α 1/2 a b Beta generalized half-normal (PESCIM et al., 2010)
α β k a b c

(25) α β 1 a b c Kummer beta Weibull (PESCIM et al., 2012)
(26) α 1 k a b c Kummer beta gamma (PESCIM et al., 2012)
(27) α 1 1 a b c Kummer beta exponential New
(28) α 2 1 a b c Kummer beta generalized Rayleigh New
(29)

√
θ 2 3/2 a b c Kummer beta Maxwell New

(30)
√
2α 2 p/2 a b c Kummer beta Scaled Chi-Square New

(31) 2
1
2α θ 2α 1/2 a b c Kummer beta generalized half-normal New

(32) 2
1
2 θ 2 1/2 a b c Kummer beta half-normal New
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(PESCIM et al., 2012) demonstrated that

fKBG(x) =
∞∑
r=0

cr vr+1(x), (4.7)

where the coefficients (for r = 0, 1 . . .) are cr =
∑∞

i,j=0

∑∞
k=r+1 ti,j,k,r+1,

ti,j,k,r = ti,j,k,r(a, b, c) =
K (−1)i+j+k+r ci

i! (a+ i+ j)

(
a+ i+ j

k

) (
k

r

)(
b− 1

j

)
and vr+1(x) = (r + 1) g(x)G(x)r denotes the EG density function with parameter r + 1.

Equation (4.7) reveals that the KB-G density function is a linear combination of EG densi-
ties. This result is important to derive some properties of the KBGG distribution from those of
the EGG distribution. This equation holds for any real non-integers a, b and c. If b is an integer,
the index i in cr stops at b− 1.

Replacing (4.1) and (4.2) in vr+1(x), we obtain the EGG(α, β, k, r + 1) density function
given by

vr+1(x) =
(r + 1) β

αΓ(k)

(x
α

)βk−1

exp

[
−
(x
α

)β]{
γ1

[
k,
(x
α

)β]}r

. (4.8)

We now need to use the series expansion for the incomplete ratio function in (4.8) given by

γ1

[
k,
(x
α

)β]
=

(
x
α

)βk
Γ(k)

∞∑
m=0

(−1)m
(
x
α

)βm
(k +m)m!

. (4.9)

Using the identity for power series raised to powers (GRADSHTEYN; RYZHIK, 2007), we
obtain for any r positive integer(

∞∑
m=0

am x
m

)r

=
∞∑

m=0

dr,m x
m, (4.10)

where the coefficients dr,m (for m = 1, 2, . . .) satisfy the recurrence relationship

dr,m = (ma0)
−1

m∑
p=1

(rp−m+ p) ap dr,m−p, (4.11)

where dr,0 = ar0. The coefficient dr,m comes from dr,0, . . . , dr,m−1 and hence from a0, . . . , am.
The coefficients dr,m can also be written explicitly as functions of the quantities am.

Further, using equations (4.9) and (4.10), we obtain the expanded form of an integer raised
to power of the GG cumulative distribution given by{

γ1

[
k,
(x
α

)β]}r

=

[(
x
α

)βk
Γ(k)

∞∑
m=0

(−1)m
(
x
α

)βm
(k +m)m!

]r

=

(
x
α

)βkr
Γ(k)r

[
∞∑

m=0

(−1)m
(
x
α

)βm
(k +m)m!

]r

=

(
x
α

)βkr
Γ(k)r

∞∑
m=0

dr,m

(x
α

)βm
, (4.12)
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where the coefficients dr,m are just obtained from equation (4.11) with ap = (−1)p/(k + p)p!.
Combining equations (4.8) and (4.12), we can rewrite the EGG density function as

vr+1(x) =
(r + 1) β

αΓ(k)

(x
α

)βk−1

exp

[
−
(x
α

)β] ( x
α

)βkr
Γ(k)r

∞∑
m=0

dr,m

(x
α

)βm
=

∞∑
m=0

dr,m (r + 1) β

αΓ(k)r+1

(x
α

)βk+βr+βm−1

exp

[
−
(x
α

)β]

=
∞∑

m=0

dr,m Γ [k(r + 1) +m]

Γ(k)r+1 (r + 1)−1

β e−(
x
α)

β

αΓ [k(r + 1) +m]

(x
α

)β[k(r+1)+m]−1

=
∞∑

m=0

ηr,m gα,β,k⋆(x), (4.13)

where
ηr,m =

dr,m Γ (k⋆)

Γ(k)r+1 (r + 1)−1
,

k⋆ = k(r + 1) +m and gα,β,k⋆(x) is the density function of the GG(α, β, k⋆) distribution.
Equation (4.13) reveals that the KBGG density function can be written as a linear combina-

tion of GG densities. This equation is the main result of this section. It plays an important role
in this chapter. In the next sections, based on this expression, we obtain some of the structural
properties for the KBGG distribution including explicit expressions for the ordinary and incom-
plete moments, generating function, mean deviations and for the pdf of the order statistics.

4.4 Moments and Generating Function

Let X be a random variable having a KBGG distribution. The sth moment of X can be ex-
pressed from (4.13) as

µ′
s = E(Xs) =

∞∑
r,m=0

ηr,m

∫ ∞

0

xs gα,β,k⋆(x)dx

and then

E(Xs) =
∞∑

r,m=0

ηr,m E(Xs
k⋆), (4.14)

where Xk⋆ ∼ GG(α, β, k⋆).
Equation (4.14) is an important result since it gives the moments of the KBGG distribution

as a linear combination of GG moments. So, we have

E(Xs
k⋆) =

β

αΓ(k⋆)

∫ ∞

0

xs
(x
α

)βk⋆−1

exp

[
−
(x
α

)β]
dx.

Next, by setting u =
(
x
α

)β in last integral, E(Xs
k⋆) reduces to

E(Xs
k⋆) = αs Γ [k(r + 1) +m+ s/β]

Γ(k(r + 1) +m)
. (4.15)
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Replacing (4.15) in (4.14), we obtain the sth moment of X given by

E(Xs) = αs

∞∑
r,m=0

ηr,m
Γ [k(r + 1) +m+ s/β]

Γ(k(r + 1) +m)
, (4.16)

where ηr,m is defined by (4.13).
Equation (4.16) is readily computed numerically using standard statistical software. It (and

other expansions in this paper) can also be evaluated in symbolic computation software such as
Mathematica and Maple. In numerical applications, a large natural number N can be used in
the sums instead of infinity. Several quantities of X (central moments, variance, skewness and
kurtosis) can be derived from this result.

The skewness and kurtosis measures can be calculated from the ordinary moments using
well-known relationships. Plots of the skewness and kurtosis of the KBGG distribution as a
function of c for selected values of a and b for α = 0.5, β = 1.0 and k = 2.0 are displayed in
Figures 4.2 and 4.3, respectively. Figures 4.2a and 4.2b immediately indicate that the additional
parameter c promotes high levels of asymmetry.
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Figure 4.2 – Skewness of the KBGG distribution as a function of c for some values of a and b
for α = 0.5, β = 1.0 and k = 2.0 (a) b = 2.0 and (b) a = 1.2

Further, we provide a representation for the moment generating function (mgf) of X , say
M(t) = E[exp(tX)], which is obtained as a linear combination of GG generating functions.
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Figure 4.3 – Kurtosis of the KBGG distribution as a function of c for some values of a and b for
α = 0.5, β = 1.0 and k = 2.0 (a) b = 2.0 and (b) a = 1.2

From equation (4.13) , we have

M(t) =

∫ ∞

0

exp(tx) f(x) dx

=
∞∑

r,m=0

ηr,m Mα,β,k⋆(t), (4.17)

where Mα,β,k⋆(t) denotes the mgf of the GG(α, β, k⋆) distribution.
From (4.17), we derive Mα,β,k⋆(t) as

Mα,β,k⋆(t) =
β

αΓ(k⋆)

∫ ∞

0

exp(tx)
(x
α

)βk⋆−1

exp

[
−
(x
α

)β]
dx.

Using the exponential expansion and replacing u =
(
x
α

)β in last integral, Mα,β,k⋆(t) reduces to

Mα,β,k⋆(t) =
1

Γ(k⋆)

∞∑
ν=0

(αt)ν

ν!

∫ ∞

0

u
ν
β
+k⋆−1 exp(−u) du. (4.18)

Calculating the integral in (4.18), we obtain

Mα,β,k⋆(t) =
1

Γ(k⋆)

∞∑
ν=0

Γ

(
ν

β
+ k⋆

)
(αt)ν

ν!
. (4.19)

Consider the Wright generalized hypergeometric function defined by

pΨq

[
(α1, A1), . . . , (αp, Ap)
(β1, B1), . . . , (βq, Bq)

; x

]
=

∞∑
n=0

∏p
j=1 Γ(αj + Ajn)∏q
j=1 Γ(βj +Bjn)

xn

n!
. (4.20)
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Combining (4.19) and (4.20), we can rewrite the mgf of the GG distribution as

Mα,β,k⋆(t) =
1

Γ(k⋆)
1Ψ0

[
(k⋆, β−1)

− ;αt

]
, (4.21)

provided that β > 1.
The KBGG generating function follows by inserting (4.21) in (4.17). For β > 1, we obtain

M(t) =
∞∑

r,m=0

ηr,m 1Ψ0

[
(k⋆, β−1)

− ;αt

]
. (4.22)

Equations (4.16) and (4.22) are the main results of this section. The mgf of any KBGG sub-
model, as those discussed in Section 4.2, can be calculated immediately from (4.22) by substi-
tution of known parameters.

4.5 Incomplete Moments

The answers to many important questions in economics require more than just knowing the
mean of the distribution, but its shape as well. This is obvious not only in the study of econo-
metrics but in other areas as well. Incomplete moments of the income distribution form natural
building blocks for measuring inequality, for example, the Lorenz curve, Pietra and Gini mea-
sures of inequality all depend upon the incomplete moments of the income distribution. The sth
incomplete moment of X is defined by ms(y) = E(Xs | X < y) =

∫ y

0
xs f(x)dx. Here, we

propose two methods to calculate the KBGG incomplete moments. From the linear combination
(4.13)

ms(y) =
∞∑

r,m=0

ηr,m t⋆s(y), (4.23)

where t⋆s(y) =
∫ y

0
xs gα,β,k⋆(x)dx denotes the sth incomplete moment of the GG distribution

with parameters α, β and k⋆ given by

t⋆s(y) =
β

αΓ(k⋆)

∫ y

0

xs
(x
α

)βk⋆−1

exp

[
−
(x
α

)β]
dx. (4.24)

Calculating the integral in (4.24), t⋆s(y) reduces to

t⋆s(y) = αs γ
(
k(r + 1) +m+ s/β, (y/α)β

)
Γ(k(r + 1) +m)

.

Substituting the last equation in (4.23), we obtain the sth incomplete moment of X given by

ms(y) = αs

∞∑
r,m=0

ηr,m
γ
(
k(r + 1) +m+ s/β, (y/α)β

)
Γ(k(r + 1) +m)

. (4.25)
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4.6 Mean Deviations

We can derive the mean deviations about the mean µ′
1 (δ1) and about the medianM (δ2) in terms

of the first incomplete moment. The median is obtained by inverting F (M) = K
∫ γ1

[
k,( x

α)
β
]

0 ta−1 (1−
t)b−1 e−ct dt = 1/2 numerically. They can be expressed as

δ1 = 2
[
µ′
1 F (µ

′
1)−m1(µ

′
1)
]

and δ2 = µ′
1 − 2m1(M),

where m1(·) is the first incomplete moment of X given by (4.25) with s = 1. We have

m1(ω) = α
∞∑

r,m=0

ηr,m
γ
(
k(r + 1) +m+ 1/β, (ω/α)β

)
Γ(k(r + 1) +m)

. (4.26)

The measures δ1 and δ2 are immediately calculated from (4.26) by setting ω = µ′
1 and ω = M ,

respectively.
Bonferroni and Lorenz curves are useful in fields such as reliability, economics, demogra-

phy, insurance and medicine. For the KBGG distribution, these curves can be calculated (for
given 0 < π < 1) from B(π) = (π µ′

1)
−1m1(q) and L(π) = (µ′

1)
−1m1(q), respectively, where

µ′
1 = E(X), q = F−1(π) can be computed for a given probability π by inverting (2.2) nume-

rically, when G(x;γ) is the cdf of the GG distribution. These measures are determined from
equation (4.26).

4.7 Rényi Entropy

The entropy of a random variable is a measure of variation of the uncertainty. Entropy has been
used in various situations in science and engineering and numerous measures of entropy have
been studied and compared in the literature. The Rényi entropy is defined by

JR(ξ) =
1

1− ξ
log

[∫
f ξ(x)dx

]
, ξ > 0 and ξ ̸= 1.

Note that the integral above is obtained from (4.5) as

I(ξ) =

∫ ∞

0

f ξ(x) dx =

(
K β

αΓ(k)

)ξ ∫ ∞

0

(x
α

)ξ(βk−1)

exp

[
−ξ
(x
α

)β]
γ1

[
k,
(x
α

)β]ξ(a−1)

×
{
1− γ1

[
k,
(x
α

)β]}ξ(b−1)

exp

{
−c ξ γ1

[
k,
(x
α

)β]}
dx.(4.27)

Using the exponential and binomial expansions in (4.27), we obtain

I(ξ) =

[
K β

αΓ(k)

]ξ ∞∑
i,j=0

(−1)i+j

i! (c ξ)−i

(
ξ(b− 1)

j

)

×
∫ ∞

0

(x
α

)ξ(βk−1)

exp

[
−ξ
(x
α

)β]{
γ1

[
k,
(x
α

)β]}ξ(a−1)+1+j

dx. (4.28)
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Noting that ξ > 0 and a > 0 are real non-integers, we can expand
{
γ1

[
k,
(
x
α

)β]}ξ(a−1)+1+j

as

{
γ1

[
k,
(x
α

)β]}ξ(a−1)+1+j

=

{
1−

[
1− γ1

[
k,
(x
α

)β]]}ξ(a−1)+1+j

=
∞∑
p=0

(−1)p
(
ξ(a− 1) + 1 + j

p

){
1− γ1

[
k,
(x
α

)β]}p

and then{
γ1

[
k,
(x
α

)β]}ξ(a−1)+1+j

=
∞∑
p=0

p∑
r=0

(−1)p+r

(
ξ(a− 1) + 1 + j

p

)(
p

r

){
γ1

[
k,
(x
α

)β]}r

.

Replacing
∑∞

p=0

∑p
r=0 by

∑∞
r=0

∑∞
p=r, the quantity, I(ξ) can be rearranged in the form

I(ξ) =

(
K β

αΓ(k)

)ξ ∞∑
r=0

ρr

×
∫ ∞

0

(x
α

)ξ(βk−1)

exp

[
−ξ
(x
α

)β]{
γ1

[
k,
(x
α

)β]}r

dx, (4.29)

where

ρr =
∞∑

i,j=0

∞∑
r=p

(−1)i+j+p+r

i! (c ξ)−i

(
ξ(b− 1)

j

)(
ξ(a− 1) + i+ j

p

)(
p

r

)
. (4.30)

Using expansion (4.12) in (4.29), we obtain

I(ξ) =

[
K β

αΓ(k)

]ξ ∞∑
r,m=0

dr,m
Γ(k)r

ρr

∫ ∞

0

(x
α

)β[k(r+ξ)+m]−ξ

exp

[
−ξ
(x
α

)β]
dx. (4.31)

Calculating the integral in (4.31), we have

I(ξ) =
Kξ βξ−1

Γ(k)ξ αξ−1

∞∑
r,m=0

ρ⋆r,m Γ

(
k(r + ξ) +m+

(1− ξ)

β

)
,

where
ρ⋆r,m =

dr,m ρr
Γ(k)r ξk(r+ξ)+m−(ξ+1)/β

.

Finally, the Rényi entropy reduces to

JR(ξ) = (1− ξ)−1 {ξ [log(K)− log Γ(k)] + (ξ − 1) [log(β)− log(α)]

+ log

[
∞∑

r,m=0

ρ⋆r,m Γ

(
k(r + ξ) +m+

(1− ξ)

β

)]}
.
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4.8 Order Statistics

Moments of order statistics play an important role in quality control testing and reliability,
where a practitioner needs to predict the failure of future items based on the times of a few
early failures. These predictors are often based on moments of order statistics. We now derive
an explicit expression for the density of the ith order statistics Xi:n, say fi:n(x), in a random
sample of size n from X ∼ KBGG(a, b, c, α, β, k). It is well-known that

fi:n(x) =
n! f(x)

(i− 1)! (n− 1)!
F (x)i−1 [1− F (x)]n−i , (4.32)

and using the binomial expansion in (4.32), we have

fi:n(x) =
n! f(x)

(i− 1)! (n− 1)!

n−i∑
j=0

(−1)j
(
n− i

j

)
F (x)i+j−1. (4.33)

We now demonstrate that fi:n(x) can be written as a linear combination of GG densities.
First, we provide an expansion for the cdf of the KBGG distribution. (PESCIM et al., 2012)
demonstrated that

FKBG(x) =
∞∑
r=0

brG(x;γ)
r, (4.34)

where the coefficient br =
∑∞

i,j=0

∑∞
k=r ti,j,k,r denotes a sum of constants and ti,j,k,r is defined

in (4.7).
Equation (4.34) gives the cumulative function for any KB-G distribution as an infinite

weighted power series of cdf’s of the baseline distribution. Inserting (4.2) in (4.34), we have
the KBGG cumulative function expanded as

F (x) =
∞∑
r=0

br

{
γ1

[
k,
(x
α

)β]}r

. (4.35)

Combining (4.7) and (4.35), the pdf of the ith order statistic, Xi:n, can be expressed as

fi:n(x) =
n−i∑
j=0

n! (−1)j

(i− 1)!(n− i)!

(
n− i

j

)[ ∞∑
r=0

cr vr+1(x)

][
∞∑
r=0

br

{
γ1

[
k,
(x
α

)β]}r
]i+j−1

.(4.36)

Applying the expression (4.10) in (4.36), we have[
∞∑
r=0

br

{
γ1

[
k,
(x
α

)β]}r
]i+j−1

=
∞∑
r=0

d⋆i+j−1,r

{
γ1

[
k,
(x
α

)β]}r

, (4.37)

where d⋆i+j−1,r is given by (4.11). Inserting (4.12) into (4.37), we obtain[
∞∑
r=0

br

{
γ1

[
k,
(x
α

)β]}r
]i+j−1

=
∞∑

r,m=0

dr,m d
⋆
i+j−1,r

Γ(k)r

(x
α

)β(kr+m)

. (4.38)
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Substituting (4.13) and (4.38) in (4.36), fi:n(x) reduces to

fi:n(x) =
∞∑

r,m=0

n−i∑
j=0

(−1)j
(
n−i
j

)
n! cr e(r,m) dr,m d

⋆
i+j−1,r

(i− 1)! (n− i)! Γ[k(r + 1) +m] Γ(k)r
gα,β,k⋆⋆(x), (4.39)

where k⋆⋆ = k(2r + 1) + 2m and

gα,β,k⋆⋆(x) =
β

αΓ(k⋆⋆)

(x
α

)βk⋆⋆−1

exp

[
−
(x
α

)β]
denotes the GG(α, β, k⋆⋆) density function.

Equation (4.39) reveals that the density function of the KBGG order statistics is an infi-
nite linear combination of GG densities. Hence, ordinary moments of order statistics can be
determined directly from those quantities of the GG distribution.

For a > 0 and b > 0 real non-integer, the sth moment of Xi:n comes from (4.39) as

E(Xs
i:n) =

∞∑
r,m=0

n−i∑
j=0

(−1)j
(
n−i
j

)
n! cr e(r,m) dr,m d

⋆
i+j−1,r

(i− 1)! (n− i)! Γ[k(r + 1) +m] Γ(k)r
E(Xs

r,m), (4.40)

where Xr,m ∼ GG(α, β, k⋆⋆). Equation (4.40) gives the sth moment of the KBGG order statis-
tics, which is the main result of this section.

Based upon these moments, we can derive expansions for the L-moments as infinite weighted
linear combinations of suitable KBGG means. The L-moments are analogous to the ordinary
moments but can be estimated by linear combinations of order statistics. They are linear fun-
ctions of expected order statistics defined by (HOSKING, 1990) and are relatively robust to the
effects of outliers.

4.9 Inference and Estimation

4.9.1 Classical Inference

The estimation of the model parameters of the KBGG distribution will be performed by the
maximum likelihood method. Let X = (X1, . . . , Xn) be a random sample of this distribution
with unknown parameter vector θ = (a, b, c, α, β, k)T . The total log-likelihood function for θ
is

ℓ(θ) = n log

[
K β

αΓ(k)

]
+ (β k − 1)

n∑
i=1

log
(xi
α

)
−

n∑
i=1

(xi
α

)β
+ (a− 1)

n∑
i=1

log

{
γ1

[
k,
(xi
α

)β]}
+ (b− 1)

n∑
i=1

log

{
1− γ1

[
k,
(xi
α

)β]}
− c

n∑
i=1

γ1

[
k,
(xi
α

)β]
. (4.41)

The elements of score vector are given by
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Uα(θ) = −n
α
− n(β k − 1)

α
+
β

α

n∑
i=1

ui −
β(a− 1)

α

n∑
i=1

vi
γ(k, ui)

+
β(b− 1)

α

n∑
i=1

vi
Γ(k)− γ(k, ui)

+
β c

αΓ(k)

n∑
i=1

vi,

Uβ(θ) =
n

β
+

n∑
i=1

u
1/β
i −

n∑
i=1

ui si + (a− 1)
n∑

i=1

vi si
γ(k, ui)

+ (1− b)
n∑

i=1

vi si
Γ(k)− γ(k, ui)

− c

Γ(k)

n∑
i=1

vi si,

Uk(θ) = −ψ(k) + β
n∑

i=1

u
1/β
i − n (a− 1)ψ(k) + (a− 1)

n∑
i=1

γ′(k, ui)|k
γ(k, ui)

+ (1− b)
n∑

i=1

γ′(k, ui)|k
Γ(k)− γ(k, ui)

+ ψ(k) (b− 1)
n∑

i=1

γ(k, ui)

Γ(k)− γ(k, ui)

− c

Γ(k)

n∑
i=1

γ′(k, ui)|k +
c ψ(k)

Γ(k)

n∑
i=1

γ(k, ui),

Ua(θ) =
n

K

∂K

∂a
+

n∑
i=1

log[γ1(k, ui)] , Ub(θ) =
n

K

∂K

∂b
+

n∑
i=1

log[1− γ1(k, ui)]

and Uc(θ) =
n

K

∂K

∂c
−

n∑
i=1

γ1(k, ui),

where ui =
(
xi

α

)β , vi =
(
xi

α

)βk
exp

[(
xi

α

)β], si = log
(
xi

α

)
, γ′(k, ui)|k =

∑∞
n=0

(−1)n

n!
J(ui, k +

n − 1, 1), ψ(.) is the digamma function and J(ui, k + n − 1, 1) is defined in Appendix C. The
partial derivatives of K with respect to a, b and c are calculated in chapter 1 of this thesis.

The maximum likelihood estimate (MLE) θ̂ of θ is obtained numerically from the nonlinear
equations Ua(θ) = Ub(θ) = Uc(θ) = Uα(θ) = Uβ(θ) = Uk(θ) = 0. For interval
estimation and hypothesis testing on the model parameters, we require the 6 × 6 observed
information matrix J = J(θ) whose elements are given in Appendix C. Under conditions that
are fulfilled for parameters in the interior of the parameter space but not on the boundary, the
asymptotic distribution of θ̂ − θ is N6(0,K(θ̂)−1) where K(θ) is the expected information
matrix. This matrix can be replaced by J(θ̂), i.e., the observed information matrix evaluated
at θ̂. The estimated asymptotic multivariate normal N6(0,J(θ̂)

−1) distribution of θ̂ can be
used to construct approximate confidence regions for the parameters and for the hazard and
survival functions. We can compute the maximum values of the unrestricted and restricted
log-likelihoods to construct LR (likelihood ratio) statistics for testing some sub-models of the
KBGG distribution. For example, we may use LR statistics to check whether the fit using the
KBGG distribution is statistically “superior” to a fit using the KBGHN, KBW, BGG and GG
distributions for a given data set.
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4.9.2 Bayesian Inference

Since we have no prior information from historical data or from previous experiment, we as-
sign conjugate but weakly informative prior distributions to the parameters. Since we assumed
informative (but weakly) prior distribution, the posterior distribution is a well-defined proper
distribution. We assume that the parameters (a, b, c, α, β and k) have independent priors and
consider that the joint prior distribution of all unknown parameters has a density function given
by

π(a, b, c, α, β, k) ∝ π(a)× π(b)× π(c)× π(α)× π(β)× π(k), (4.42)

where, a ∼ Γ(a1, b1), a1 and b1 known; b ∼ Γ(a2, b2), a2 and b2 known; c ∼ N(µ0, σ
2
0), µ0 and

σ2
0 known; α ∼ Γ(a3, b3), a3 and b3 known; β ∼ Γ(a4, b4), a4 and b4 known; k ∼ Γ(a5, b5), a5

and b5 known; where Γ(ai, bi) denotes the gamma distribution with mean ai/bi, variance ai/b2i
for ai > 0 and bi > 0, and N(µ0, σ

2
0) represents the normal distribution with mean µ0, variance

σ2
0 for µ0 ∈ R and σ2

0 > 0. We note that gamma and normal priors are most commonly used
priors for positive and real-values parameters.

Combining the likelihood function (4.41) and the prior distribution (4.42), the joint posterior
distribution for a, b, c, α, β and k reduces to

π(a, b, c, α, β, k|x) ∝
[
Kβ

αΓ(k)

]n
exp

{
−c

n∑
i=1

γ1

[
k,
(xi
α

)β]
−

n∑
i=1

(xi
α

)β}

×
n∏

i=1

(xi
α

)βk−1

γ1

[
k,
(xi
α

)β]a−1{
1− γ1

[
k,
(xi
α

)β]}b−1

×π(a, b, c, α, β, k). (4.43)

The joint posterior density (4.43) is analytically intractable because the integration of the
joint posterior density is not easy to perform. So, the inference can be based on MCMC simula-
tion methods such as the Gibbs sampler and Metropolis-Hastings algorithm, which can be used
to draw samples, from which features of the marginal distributions of interest can be inferred. In
this direction, we first obtain the full conditional distributions of the unknown quantities given
by

π(a|x, b, c, α, β, k) ∝ Kn

n∏
i=1

γ1

[
k,
(xi
α

)β]a−1

× π(a),

π(b|x, a, c, α, β, k) ∝ Kn

n∏
i=1

{
1− γ1

[
k,
(xi
α

)β]}b−1

× π(b),

π(c|x, a, b, c, α, β, k) ∝ Kn exp

{
−c

n∑
i=1

γ1

[
k,
(xi
α

)β]}
× π(c),
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π(α|x, a, b, c, β, k) ∝ 1

αn
exp

{
−c

n∑
i=1

γ1

[
k,
(xi
α

)β]
−

n∑
i=1

(xi
α

)β}

×
n∏

i=1

(xi
α

)βk−1

γ1

[
k,
(xi
α

)β]a−1{
1− γ1

[
k,
(xi
α

)β]}b−1

×π(α),

π(β|x, a, b, c, α, k) ∝ βn exp

{
−c

n∑
i=1

γ1

[
k,
(xi
α

)β]
−

n∑
i=1

(xi
α

)β}

×
n∏

i=1

(xi
α

)βk−1

γ1

[
k,
(xi
α

)β]a−1{
1− γ1

[
k,
(xi
α

)β]}b−1

×π(β)

and

π(k|x, a, b, c, α, β) ∝ 1

Γ(k)n
exp

{
−c

n∑
i=1

γ1

[
k,
(xi
α

)β]}

×
n∏

i=1

(xi
α

)βk−1

γ1

[
k,
(xi
α

)β]a−1{
1− γ1

[
k,
(xi
α

)β]}b−1

×π(k).

Since the full conditional distributions do not have explicit expressions, we require the use
of the Metropolis-Hastings algorithm to generate the variables a, b, c, α, β and k for the KBGG
distribution.

4.10 Applications

In this section, we use three real data sets which come from diverse fields such as actuarial
sciences, environmental studies and engineering to compare the fits of the KBGG distribution
with those of three sub-models (i.e. BGG, EGG and GG distributions) and also to the follow-
ing non-nested model: the Kumaraswamy generalized gamma (KwGG) distribution (PASCOA;
ORTEGA; CORDEIRO, 2011). In each case, the parameters are estimated by maximum likeli-
hood and Bayesian methods (Section 4.9) using the statistical software R. The primary reason
for choosing these data is that they allow us to show how in different fields it is necessary
to have positively skewed distributions with non-negative support. Moreover, these data sets
present different degrees of skewness and kurtosis.

(i) Minimum pension data set

It is important for the Mexican Institute of Social Security (IMSS) to study the distributional
behaviour of the mortality of retired people on disability because it enables the calculation of
long and short term financial estimation, such as the assessment of the reserve required to pay
the “minimum pensions”. The data set corresponding to 280 lifetimes (in years) of retired
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women with temporary disabilities, which are incorporated in the Mexican insurance public
system and who died during 2004 were reported and analyzed by (BALAKRISHNAN et al.,
2009).

(ii) Ozone data set

These data were analyzed by (LEIVA; BARROS; PAULA, 2009) and correspond to daily ozone
level measurements in New York in May-September, 1973, from the New York State Depart-
ment of Conservation.

(ii) Conductor data set

Failures can occur in microcircuits because of the movement of atoms in the conductors in the
circuit, this is referred to the electromigration. The data set refers to an accelerated life test of
59 conductors reported by (LAWLESS, 1982).

4.10.1 Maximum Likelihood Estimation

First, we give the MLEs (and the corresponding standard errors in parentheses) of the para-
meters and the values of the Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) statistics. The smaller the values of these criteria, the better the fit. Note that
over-parameterization is penalized in these criteria, so that the three additional parameters in
the KBGG model do not necessarily lead to smaller values of the AIC and BIC statistics. Next,
we perform LR tests for formal tests of the additional shape parameters. Finally, we provide
histograms of the data sets to show a visual comparison of the KBGG fitted density functions.

In order to estimate the model parameters, we take the estimates of α, β and k from the
fitted GG distribution as starting values for the numerical iterative procedure. Table 4.2 lists the
MLEs (and the corresponding standard errors in parentheses) of the parameters and the values
of the AIC and BIC statistics. The results indicate that the KBGG model has the smallest values
of the statistics (AIC and BIC) among all fitted models. So, it could be chosen as the most
suitable model. A comparison of the proposed distribution with some of its sub-models using
LR statistics is shown in Table 4.3. The p-values indicate that the proposed model yields the
best fit to the three data sets. This gives a clear evidence of the potential of the three parameters
when modeling real data. In order to assess if the model is appropriate, Figure 4.4 displays
histograms with estimated KBGG density functions for each data sets, respectively. We can
conclude that the new distribution is a very suitable model to fit the three data sets.

4.10.2 Bayesian Analysis

For the three real data sets, the following independent priors were considered to perform the
Metropolis-Hastings algorithm: α ∼ Γ(0.001, 0.001), β ∼ Γ(0.001, 0.001), k ∼ Γ(0.001, 0.001),
a ∼ Γ(0.001, 0.001), b ∼ Γ(0.001, 0.001) and c ∼ N(0, 1000), so that we have vague prior dis-
tributions. Considering these prior density functions, we generate two parallel independent runs
of the Metropolis-Hastings with size 300.000 for each parameter, disregarding the first 30.000
iterations to eliminate the effect of the initial values and, to avoid correlation problems, we
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Table 4.2 – MLEs of the model parameters for the three data sets and the corresponding AIC
and BIC statistics

Data Model α β k a b c AIC BIC

(i) KBGG 7.4489 1.8564 35.6798 0.1621 0.4310 -0.9485 2104.0 2125.8
(0.0099) (0.0099) (0.01003) (0.00106) (0.00106) (0.00107)

BGG 32.7248 1.9705 3.9984 0.9872 3.8361 0 2115.1 2133.2
(0.0209) (0.0019) (0.00210) (0.00238) (0.00565) (-)

EGG 33.8389 2.8185 3.1002 0.9056 1 0 2113.3 2127.9
(0.3373) (0.0177) (0.00007) (0.0034) (-) (-)

GG 34.1730 2.8048 2.8693 1 1 0 2111.3 2122.2
(0.10391) (0.00170) (0.00041) (-) (-) (-)

Model α τ k λ ϕ - AIC BIC

KwGG 33.5340 1.4296 2.6525 2.2376 9.2101 - 2114.8 2133.0
(0.23109) (0.00811) (0.00110) (0.00237) (0.00677) (-)

(ii) KBGG 3.0409 1.0760 20.2422 0.0807 0.1598 -0.2154 1067.1 1083.6
(0.0089) (0.0009) (0.01002) (0.0098) (0.01009) (0.0009)

BGG 4.0775 1.1376 17.5934 0.0923 0.1749 0 1087.7 1101.5
(0.05950) (0.00585) (0.0810) (0.00964) (0.00053) (-)

EGG 3.7038 0.6370 4.9592 0.7285 1 0 1090.2 1101.2
(0.00345) (0.00122) (0.0061) (0.00541) (-) (-)

GG 3.1291 0.5924 4.3440 1 1 0 1088.3 1096.6
(0.00104) (0.00070) (0.0076) (-) (-) (-)

Model α τ k λ ϕ - AIC BIC

KwGG 0.6009 0.5508 11.2001 0.4059 0.7496 - 1091.9 1105.7
(0.02150) (0.00175) (0.09112) (0.00263) (0.00148) (-)

(iii) KBGG 7.0954 8.1282 2.0878 0.3840 0.1030 2.7935 221.7 234.1
(0.00991) (0.0069) (0.01001) (0.00981) (0.01002) (0.0008)

BGG 4.720 2.0391 3.0389 1.3445 2.1157 0 232.6 243.0
(0.03850) (0.0165) (0.0110) (0.00842) (0.0083) (-)

EGG 0.0200 0.5933 28.3765 2.3890 1 0 234.0 242.3
(0.00005) (0.00346) (0.0461) (0.00247) (-) (-)

GG 4.1439 2.3300 3.6446 1 1 0 228.6 234.9
(0.00265) (0.00270) (0.00416) (-) (-) (-)

Model α τ k λ ϕ - AIC BIC

KwGG 4.1410 1.8808 3.4611 1.3199 2.1071 - 232.6 243.0
(0.02421) (0.00314) (0.09541) (0.00105) (0.00112) (-)

consider a spacing of size 10, obtaining a sample of size 27.000 from each chain. To monitor
the convergence of the Metropolis-Hastings algorithm, we perform the methods suggested by
(COWLES; CARLIN, 1996) using the between and within sequence information, following the
approach developed in (GELMAN; RUBIN, 1992) to obtain the potential scale reduction, R̂. In
all cases, these values were close to one, indicating the convergence of the chain.

The approximate posterior marginal density functions for the parameters are displayed in
Figures 4.5, 4.6 and 4.7 for the first, second and third data sets, respectively. In Table 4.4, we
report posterior summaries for the parameters of the KBGG model for the three data sets. We
note that the values for the a posterior means (Table 4.4) are quite close (as expected) to the
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Table 4.3 – LR statistics for the three data sets

Data Model Hypotheses Statistic w p-value
D1 KBGG vs BGG H0 : c = 0 vs H1 : H0 is false 13.10 0.00029

KBGG vs EGG H0 : c = 0 and b = 1 vs H1 : H0 is false 13.36 0.00124
KBGG vs GG H0 : a = b = 1 and c = 0 vs H1 : H0 is false 13.38 0.00387

D2 KBGG vs BGG H0 : c = 0 vs H1 : H0 is false 22.57 < 0.0001
KBGG vs EGG H0 : c = 0 and b = 1 vs H1 : H0 is false 27.03 < 0.0001
KBGG vs GG H0 : a = b = 1 and c = 0 vs H1 : H0 is false 27.17 < 0.0001

D3 KBGG vs BGG H0 : c = 0 vs H1 : H0 is false 12.92 0.00032
KBGG vs EGG H0 : c = 0 and b = 1 vs H1 : H0 is false 16.32 0.00028
KBGG vs GG H0 : a = b = 1 and c = 0 vs H1 : H0 is false 12.96 0.00471

MLEs obtained for the KBGG model given in Table 4.2. “SD” denotes the standard deviation
from the posterior distributions of the parameters and “HPD” denotes the 95% highest posterior
density intervals.

Table 4.4 – Posterior summaries for the parameters from the KBGG model for the three data
sets

D1
Parameter Mean SD HPD (95%) R̂
α 7.4399 0.0099 (7.4201; 7.4590) 1.0005
β 1.8499 0.0099 (1.8301; 1.8689) 1.0014
k 35.6701 0.01003 (35.6500; 35.6892) 1.0004
a 0.1594 0.0098 (0.1407; 0.1792) 1.0003
b 0.4301 0.01008 (0.4103; 0.4499) 0.9997
c -0.9401 0.0099 (-0.9594; -0.9204) 1.0002

D2
Parameter Mean SD HPD (95%) R̂
α 3.0399 0.0099 (3.0201; 3.0590) 1.0002
β 1.0599 0.0009 (1.0580; 1.0618) 1.0009
k 20.2401 0.01002 (20.2200; 20.2592) 1.0002
a 0.0798 0.0098 (0.0611; 0.0997) 1.0011
b 0.1502 0.01009 (0.1304; 0.1700) 0.9996
c -0.2100 0.0009 (-0.2119; -0.2080) 1.0005

D3
Parameter Mean SD HPD (95%) R̂
α 7.0599 0.0099 (7.0401; 7.0790) 1.0001
β 8.1499 0.0099 (8.1301; 8.1689) 1.0011
k 2.0694 0.0100 (2.0491; 2.0883) 1.0002
a 0.3697 0.0098 (0.3510; 0.3896) 0.9997
b 0.0998 0.0100 (0.0798; 0.1192) 0.9998
c 2.7998 0.0009 (2.7980; 2.8019) 1.0006



101
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Figure 4.4 – Histogram with estimated KBGG density function for the indicated data sets

4.11 Concluding Remarks

We introduce the Kummer beta generalized gamma (KBGG) distribution with three additional
shape parameters because of the wide usage of the GG distribution and the fact that the cur-
rent generalization provides extensions to its continuous extension to still more complex situ-
ations. The new distribution unifies more than 32 distributions and yields a general overview
of these distributions for theoretical studies. In fact, the KBGG distribution (4.5) generalizes
the Weibull, gamma, exponentiated Weibull, exponentiated gamma, beta Weibull, beta gamma,
Kummer beta Weibull and Kummer beta gamma distributions and other important lifetime mo-
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Figure 4.5 – Approximate posterior marginal densities for the parameters of the KBGG model
for the first data set

dels. The KBGG density function can be expressed as a linear combination of GG density
functions that allows us to derive some of its mathematical properties. The estimation of the
model parameters is approached by the method of maximum likelihood and the Bayesian ana-
lysis. We consider the likelihood ratio (LR) statistic and other criteria to compare the KBGG
model with its sub-models and other non-nested models. The potentiality of the KBGG dis-
tribution is illustrated in three applications to real data sets. The new model provides a rather
flexible mechanism for fitting a wide spectrum of real world lifetime data in reliability, biology,
environmental studies and other areas.
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Figure 4.6 – Approximate posterior marginal densities for the parameters of the KBGG model
for the second data set
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5 CONCLUSION

In this work, we proposed and studied a new family of distributions called the Kummer-beta
generalized (KB-G) family, which includes as special cases two classical generators of distri-
butions: the beta-generalized and exponentiated generators. For each parent G distribution,
we defined the corresponding KB-G distribution with three additional parameters using simple
formulas. Following this idea, we added three shape parameters to extend widely-known distri-
butions such as normal, gamma, Weibull, Gumbel, logistic and Pareto distributions. In fact, for
any baseline G distribution, we noted that the corresponding KB-G distribution provides more
flexibility, giving it greater applicability. Some characteristics of the KB-G class of distribu-
tions, such as ordinary and incomplete moments, moment generating function, mean deviation
and order statistics, have tractable mathematical properties. The main role of the generator pa-
rameters is related to the skewness and kurtosis of the new class. We adopted the maximum
likelihood method and Bayesian approach to estimate the model parameters and determine the
observed information matrix for the general family. Inference on the model parameters was
conducted based on likelihood ratio statistics for testing nested models and the Akaike infor-
mation criteria (AIC) and Bayesian information criteria (BIC) statistics for non-nested models.
Two applications of the Kummer-beta gamma (KBGa) and Kummer-beta normal (KBN) dis-
tributions to real data sets demonstrated that these distributions provide a more appropriate fit
than others models in the literature.

In the same way, we introduced and studied an important distribution based on the new fa-
mily of Kummer-beta generalized distributions: The Kummer-beta Birnbaum-Saunders (KBBS)
distribution which is widely applicable to represent failure times of fatiguing materials. The
KBBS density function was expressed as a linear combination of Birnbaum-Saunders (BS) den-
sity functions which allowed us to derive some of its mathematical properties, such as ordinary
and incomplete moments, moment generating function, mean deviations, entropy, reliability,
order statistics and their moments. We investigated the maximum likelihood estimation of the
model parameters. An application of the KBBS distribution to a real data set indicated that the
new distribution provides consistently better fits than its sub-models and other lifetime models.

Further, we also proposed a new six-parameter model called the Kummer beta generalized
gamma (KBGG) distribution which contains at least 32 special models such as the beta gene-
ralized gamma (BGG), beta Weibull (BW), beta exponential (BE), generalized gamma (GG),
Weibull (W) and gamma (Ga) distributions and thus could be a high flexible model for analy-
zing positive skewed data. The KBGG density function was expressed as a linear combination
of GG densities. The estimation of the model parameters was approached by the method of
maximum likelihood and the Bayesian analysis. We considered the likelihood ratio (LR) statis-
tic and other criteria to compare the KBGG model with its sub-models and other non-nested
model. The potentiality of the KBGG distribution was illustrated in three applications to real
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data sets. The new model provided a rather flexible mechanism for fitting a wide spectrum of
real world lifetime data in reliability and biological sciences.
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Appendix A - Elements of the information matrix for any KB-G distribution

The elements of this matrix can be worked out as
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for j = 1, . . . , p, where
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Appendix B - Elements of the observed information matrix for the KBBS distribution

The elements of the observed information matrix, J(θ), for the parameters α, β, a, b and c are:
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Appendix C - Elements of the observed information matrix for the KBGG distribution

The elements of the observed information matrix, J(θ), for the parameters α, β, k, a, b and c
are:

Uαα =
n

α2
+
n(β k − 1)

α2
− β(a− 1)

α2

n∑
i=1

vi
γ(k, ui)

+
β(a− 1)

α2

{
β k

α

n∑
i=1

vi
γ(k, ui)

+
β

α

n∑
i=1

ui vi
γ(k, ui)

+
n∑

i=1

[
vi

γ(k, ui)

]2}

− β(b− 1)

α2

n∑
i=1

vi
Γ(k)− γ(k, ui)

− β(b− 1)

α2

{
β k

α

n∑
i=1

vi
Γ(k)− γ(k, ui)

+
β

α

n∑
i=1

ui vi
Γ(k)− γ(k, ui)

−
n∑

i=1

[
vi

γ(k, ui)

]2}

− β c

α2 Γ(k)

n∑
i=1

vi −
β c

α

[
β k

α

n∑
i=1

vi +
β

α

n∑
i=1

ui vi

]
,

Uαβ = −nk
α

+
1

α

n∑
i=1

ui +
β

α

n∑
i=1

ui si −
(a− 1)

α

n∑
i=1

vi
γ(k, ui)

− β(a− 1)

α

{
k

n∑
i=1

vi si
γ(k, ui)

+
n∑

i=1

ui vi si
γ(k, ui)

−
n∑

i=1

v2i si

[γ(k, ui)]
2

}

+
β(b− 1)

α

{
k

n∑
i=1

vi si
Γ(k)− γ(k, ui)

+
n∑

i=1

ui vi si
Γ(k)− γ(k, ui)

+
n∑

i=1

v2i si

[Γ(k)− γ(k, ui)]
2

}
+

c

αΓ(k)

n∑
i=1

vi +
β c k

αΓ(k)

n∑
i=1

vi si,

Uαk = −nβ
α

− β(a− 1)

α

{
β

n∑
i=1

vi si
γ(k, ui)

−
n∑

i=1

vi γ
′(k, ui)|k

[γ(k, ui)]
2

}

+
β(b− 1)

α

{
β

n∑
i=1

vi si
Γ(k)− γ(k, ui)

−
n∑

i=1

Γ(k)ψ(k) vi

[Γ(k)− γ(k, ui)]
2 +

n∑
i=1

γ′(k, ui)|k
[Γ(k)− γ(k, ui)]

2

}

− β cψ(k)

αΓ(k)

n∑
i=1

vi +
β2c

αΓ(k)

n∑
i=1

vi si,
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Uββ = − n

β2
−

n∑
i=1

ui s
2
i + (1− a)

{
k

n∑
i=1

vi s
2
i

γ(k, ui)
−

n∑
i=1

ui vi s
2
i

γ(k, ui)
−

n∑
i=1

[
vi si

γ(k, ui)

]2}

+(1− b)

{
k

n∑
i=1

vi s
2
i

Γ(k)− γ(k, ui)
−

n∑
i=1

ui vi s
2
i

Γ(k)− γ(k, ui)
+

n∑
i=1

[
vi si

Γ(k)− γ(k, ui)

]2}

− c

Γ(k)

{
k

n∑
i=1

vi si −
n∑

i=1

ui vi s
2
i

}
,

Uβk = (a− 1)

{
β

n∑
i=1

vi s
2
i

γ(k, ui)
−

n∑
i=1

[
vi si

γ(k, ui)

]2}
+
c ψ(k)

Γ(k)

n∑
i=1

vi si −
β c

Γ(k)

n∑
i=1

vi s
2
i ,

Ukk = −ψ′(k)− n(a− 1)ψ′(k) + (a− 1)

{
n∑

i=1

γ′′(k, ui)|k
γ(k, ui)

−
n∑

i=1

[
γ′(k, ui)|k
γ(k, ui)

]2}

+(1− b)

{
n∑

i=1

γ′′(k, ui)|k
Γ(k)− γ(k, ui)

−
n∑

i=1

Γ(k)ψ(k) γ′(k, ui)|k
[Γ(k)− γ(k, ui)]

2

+
n∑

i=1

[
γ′(k, ui)|k

Γ(k)− γ(k, ui)

]2}
+ (b− 1)

n∑
i=1

ψ′(k) γ(k, ui)

Γ(k)− γ(k, ui)

+ψ(k) (1− b)

{
n∑

i=1

γ′(k, ui)|k
Γ(k)− γ(k, ui)

−
n∑

i=1

Γ(k)ψ(k) γ(k, ui)

[Γ(k)− γ(k, ui)]
2

+
n∑

i=1

γ(k, ui) γ
′(k, ui)|k

[Γ(k)− γ(k, ui)]
2

}
+ 2 c ψ(k)

n∑
i=1

γ′(k, ui)|k
Γ(k)

−
n∑

i=1

c γ′′(k, ui)|k
Γ(k)

+ c

[
ψ′(k) + ψ2(k)

Γ(k)

] n∑
i=1

γ(k, ui),

Uαa = −β
α

n∑
i=1

vi
γ(k, ui)

, Uαb =
β

α

n∑
i=1

vi
Γ(k)− γ(k, ui)

, Uαc =
β

αΓ(k)

n∑
i=1

vi, Uβa =
n∑

i=1

vi si
γ(k, ui)

,

Uβb = −
n∑

i=1

vi si
Γ(k)− γ(k, ui)

, Uβc =
1

Γ(k)

n∑
i=1

vi si, Uαc =
β

αΓ(k)

n∑
i=1

vi,

Uka = −nψ(k) +
n∑

i=1

γ′(k, ui)|k
γ(k, ui)

, Ukc = − 1

Γ(k)

n∑
i=1

γ′(k, ui)|k +
ψ(k)

Γ(k)

n∑
i=1

γ(k, ui),

Ukb = −
n∑

i=1

γ′(k, ui)|k
Γ(k)− γ(k, ui)

+ ψ(k)
n∑

i=1

γ(k, ui)

Γ(k)− γ(k, ui)
,

Uaa =
n

K

{
∂2K

∂a2
− 1

K

[
∂K

∂a

]2}
, Ubb =

n

K

{
∂2K

∂b2
− 1

K

[
∂K

∂b

]2}
,
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Ucc =
n

K

{
∂2K

∂c2
− 1

K

[
∂K

∂c

]2}
, Uab =

n

K

{
∂2K

∂a∂b
− 1

K

∂K

∂a

∂K

∂b

}
and

Uac =
n

K

{
∂2K

∂a∂c
− 1

K

∂K

∂a

∂K

∂c

}
, Ubc =

n

K

{
∂2K

∂b∂c
− 1

K

∂K

∂b

∂K

∂c

}
,

where

γ′(k, ui)|k =
∞∑
n=0

(−1)n

n!
J(ui, k + n− 1, 1)

and

γ′′(k, ui)|k =
∞∑
n=0

(−1)n

n!
J(ui, k + n− 1, 2).

The J(., ., .) function can be determined from the integral given by

J(a, p, 1) =

∫ a

0

xp log(x) dx =
ap+1

(p+ 1)
[(p+ 1) log(a)− 1]

and

J(a, p, 2) =

∫ a

0

xp log2(x) dx =
ap+1

(p+ 3)
{2− (p+ 1) log(a) [2− log(a) (p+ 1)]}.



120

Appendix D - Implemented functions used throughout the thesis in the statistical
software package R.

Appendix D.1 - Plots of the Kummer beta density function

rm(list=ls(all=TRUE))
Plot 1
x < −seq(0, 1, 0.001)
a1<-2
b1<-3
c1=-20
f < −function(x)((exp(−(c1 ∗ x))) ∗ (x(a1− 1)) ∗ ((1− x)(b1− 1)))

i1 < −integrate(f, 0, 1)
fuc = (gamma(a1 + b1)/(gamma(a1)) ∗ (gamma(b1))) ∗ (i1)
p < −((exp(−(c1 ∗ x))) ∗ (x(a1− 1)) ∗ ((1− x)(b1− 1)))/((beta(a1, b1)) ∗ (fuc))
a2<-1
b2<-3
c2=-10
f2 < −function(x)((exp(−(c2 ∗ x))) ∗ (x(a2− 1)) ∗ ((1− x)(b2− 1)))

i2 < −integrate(f2, 0, 1)
fuc2 = (gamma(a2 + b2)/(gamma(a2)) ∗ (gamma(b2))) ∗ (i2)
d < −((exp(−(c2 ∗ x))) ∗ (x(a2− 1)) ∗ ((1− x)(b2− 1)))/((beta(a2, b2)) ∗ (fuc2))
a3<-4
b3<-3
c3=30
f3 < −function(x)((exp(−(c3 ∗ x))) ∗ (x(a3− 1)) ∗ ((1− x)(b3− 1)))

i3 < −integrate(f3, 0, 1)
fuc3 = (gamma(a3 + b3)/(gamma(a3)) ∗ (gamma(b3)) ∗ (i3))
z < −((exp(−(c3 ∗ x))) ∗ (x(a3− 1)) ∗ ((1− x)(b3− 1)))/((beta(a3, b3)) ∗ (fuc3))
a4<-5
b4<-3.5
c4=15
f4 < −function(x)((exp(−(c4 ∗ x))) ∗ (x(a4− 1)) ∗ ((1− x)(b4− 1)))

i4 < −integrate(f4, 0, 1)
fuc4 = (gamma(a4 + b4)/(gamma(a4)) ∗ (gamma(b4)) ∗ (i4))
s < −((exp(−(c4 ∗ x))) ∗ (x(a4− 1)) ∗ ((1− x)(b4− 1)))/((beta(a4, b4)) ∗ (fuc4))
plot(c(0, 1), c(0, 2), type = ”n”, xlab = ”x”, ylab = ”f(x)”,main = ””)

lines(x,p,lty=1,lwd=2)
lines(x,d,lty=2,lwd=2)
lines(x,z,lty=3,lwd=2)
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lines(x,s,lty=4,lwd=2)
legend(locator(1),c("a=2,b=3,c=-20","a=1,b=3,c=-
10","a=4,b=3,c=30","a=5,b=3.5,c=15"),lty=1:4,bty="n",cex=1.3)
***************************************
rm(list=ls(all=TRUE))
Plot 2
x < −seq(0, 1, 0.001)
a1<-4
b1<-1.5
c1=-10
f < −function(x)((exp(−(c1 ∗ x))) ∗ (x(a1− 1)) ∗ ((1− x)(b1− 1)))

i1 < −integrate(f, 0, 1)
fuc = (gamma(a1 + b1)/(gamma(a1)) ∗ (gamma(b1))) ∗ (i1)
p < −((exp(−(c1 ∗ x))) ∗ (x(a1− 1)) ∗ ((1− x)(b1− 1)))/((beta(a1, b1)) ∗ (fuc))
a2<-4
b2<-1.5
c2=-5
f2 < −function(x)((exp(−(c2 ∗ x))) ∗ (x(a2− 1)) ∗ ((1− x)(b2− 1)))

i2 < −integrate(f2, 0, 1)
fuc2 = (gamma(a2 + b2)/(gamma(a2)) ∗ (gamma(b2))) ∗ (i2)
d < −((exp(−(c2 ∗ x))) ∗ (x(a2− 1)) ∗ ((1− x)(b2− 1)))/((beta(a2, b2)) ∗ (fuc2))
a3<-4
b3<-1.5
c3=-15
f3 < −function(x)((exp(−(c3 ∗ x))) ∗ (x(a3− 1)) ∗ ((1− x)(b3− 1)))

i3 < −integrate(f3, 0, 1)
fuc3 = (gamma(a3 + b3)/(gamma(a3)) ∗ (gamma(b3)) ∗ (i3))
z < −((exp(−(c3 ∗ x))) ∗ (x(a3− 1)) ∗ ((1− x)(b3− 1)))/((beta(a3, b3)) ∗ (fuc3))
a4<-4
b4<-1.5
c4=0
f4 < −function(x)((exp(−(c4 ∗ x))) ∗ (x(a4− 1)) ∗ ((1− x)(b4− 1)))

i4 < −integrate(f4, 0, 1)
fuc4 = (gamma(a4 + b4)/(gamma(a4)) ∗ (gamma(b4)) ∗ (i4))
s < −((exp(−(c4 ∗ x))) ∗ (x(a4− 1)) ∗ ((1− x)(b4− 1)))/((beta(a4, b4)) ∗ (fuc4))
plot(c(0, 1), c(0, 12), type = ”n”, xlab = ”x”, ylab = ”f(x)”,main = ””)

lines(x,p,lty=1,lwd=2)
lines(x,d,lty=2,lwd=2)
lines(x,z,lty=3,lwd=2)
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lines(x,s,lty=4,lwd=2)
legend(locator(1),c("a=4,b=1.5,c=-10","a=4,b=1.5,c=-5","a=4,b=1.5,c=-
15","a=4,b=1.5,c=0"),lty=1:4,bty="n",cex=1.3)
***************************************
rm(list=ls(all=TRUE))
Plot 3
x < −seq(0, 1, 0.001)
a1<-4
b1<-1.5
c1=5
f < −function(x)((exp(−(c1 ∗ x))) ∗ (x(a1− 1)) ∗ ((1− x)(b1− 1)))

i1 < −integrate(f, 0, 1)
fuc = (gamma(a1 + b1)/(gamma(a1)) ∗ (gamma(b1))) ∗ (i1)
p < −((exp(−(c1 ∗ x))) ∗ (x(a1− 1)) ∗ ((1− x)(b1− 1)))/((beta(a1, b1)) ∗ (fuc))
a2<-4
b2<-1.5
c2=10
f2 < −function(x)((exp(−(c2 ∗ x))) ∗ (x(a2− 1)) ∗ ((1− x)(b2− 1)))

i2 < −integrate(f2, 0, 1)
fuc2=(gamma(a2+b2)/(gamma(a2))*(gamma(b2)))*(i2)
d < −((exp(−(c2 ∗ x))) ∗ (x(a2− 1)) ∗ ((1− x)(b2− 1)))/((beta(a2, b2)) ∗ (fuc2))
a3<-4
b3<-1.5
c3=15
f3 < −function(x)((exp(−(c3 ∗ x))) ∗ (x(a3− 1)) ∗ ((1− x)(b3− 1)))

i3 < −integrate(f3, 0, 1)
fuc3 = (gamma(a3 + b3)/(gamma(a3)) ∗ (gamma(b3)) ∗ (i3))
z < −((exp(−(c3 ∗ x))) ∗ (x(a3− 1)) ∗ ((1− x)(b3− 1)))/((beta(a3, b3)) ∗ (fuc3))
a4<-4
b4<-1.5
c4=20
f4 < −function(x)((exp(−(c4 ∗ x))) ∗ (x(a4− 1)) ∗ ((1− x)(b4− 1)))

i4 < −integrate(f4, 0, 1)
fuc4 = (gamma(a4 + b4)/(gamma(a4)) ∗ (gamma(b4)) ∗ (i4))
s < −((exp(−(c4 ∗ x))) ∗ (x(a4− 1)) ∗ ((1− x)(b4− 1)))/((beta(a4, b4)) ∗ (fuc4))
plot(c(0, 1), c(0, 6.1), type = ”n”, xlab = ”x”, ylab = ”f(x)”,main = ””)

lines(x,p,lty=1,lwd=2)
lines(x,d,lty=2,lwd=2)
lines(x,z,lty=3,lwd=2)
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lines(x,s,lty=4,lwd=2)
legend(locator(1),c("a=4,b=1.5,c=10","a=4,b=1.5,c=5",
"a=4,b=1.5,c=15","a=4,b=1.5,c=0"),lty=1:4,bty="n",cex=1.3)

Appendix D.2 - Plots of the KBBS density function

rm(list=ls(all=TRUE))
x < −seq(0, 100, 0.001)
a1<-1
b1<-1
c1=0
alpha1=1
betha1=1
v1 < −((alpha1( − 1)) ∗ ((((x/betha1)(1/2))− ((x/betha1)( − 1/2)))))

integrand1 < −function(t)(t(a1− 1)) ∗ ((1− t)(b1− 1)) ∗ exp(−c1 ∗ t)
km1 < −integrate(integrand1, lower = 0, upper = 1)

p < −((exp(alpha1( − 2)))/(2 ∗ alpha1 ∗ (sqrt(2 ∗ pi ∗ betha1)) ∗ (km1))) ∗ (x( − 3/2)) ∗
(x+ betha1) ∗ (exp(−(((x/betha1) + (x/betha1)( − 1))/(2 ∗ alpha1(2))))) ∗
((pnorm(v1))(a1− 1)) ∗ ((1− pnorm(v1))(b1− 1)) ∗ (exp(−c1 ∗ ((pnorm(v1)))))

a2<-1
b2<-2.5
c2=-10
alpha2=1
betha2=1
v2 < −((alpha2( − 1)) ∗ ((((x/betha2)(1/2))− ((x/betha2)( − 1/2)))))

integrand2 < −function(t)(t(a2− 1)) ∗ ((1− t)(b2− 1)) ∗ exp(−c2 ∗ t)
km2 < −integrate(integrand2, lower = 0, upper = 1)

g < −((exp(alpha2( − 2)))/(2 ∗ alpha2 ∗ (sqrt(2 ∗ pi ∗ betha2)) ∗ (km2))) ∗ (x( − 3/2)) ∗
(x+ betha2) ∗ (exp(−(((x/betha2) + (x/betha2)( − 1))/(2 ∗ alpha2(2))))) ∗
((pnorm(v2))(a2− 1)) ∗ ((1− pnorm(v2))(b2− 1)) ∗ (exp(−c2 ∗ ((pnorm(v2)))))

a3<-1
b3<-1
c3=-20
alpha3=1
betha3=1
v3 < −((alpha3( − 1)) ∗ ((((x/betha3)(1/2))− ((x/betha3)( − 1/2)))))

integrand3 < −function(t)(t(a3− 1)) ∗ ((1− t)(b3− 1)) ∗ exp(−c3 ∗ t)
km3 < −integrate(integrand3, lower = 0, upper = 1)
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h < −((exp(alpha3( − 2)))/(2 ∗ alpha3 ∗ (sqrt(2 ∗ pi ∗ betha3)) ∗ (km3))) ∗ (x( − 3/2)) ∗
(x+ betha3) ∗ (exp(−(((x/betha3) + (x/betha3)( − 1))/(2 ∗ alpha3(2))))) ∗
((pnorm(v3))(a3− 1)) ∗ ((1− pnorm(v3))(b3− 1)) ∗ (exp(−c3 ∗ ((pnorm(v3)))))

a4<-0.5
b4<-0.5
c4=-5
alpha4=1
betha4=1
v4 < −((alpha4( − 1)) ∗ ((((x/betha4)(1/2))− ((x/betha4)( − 1/2)))))

integrand4 < −function(t)(t(a4− 1)) ∗ ((1− t)(b4− 1)) ∗ exp(−c4 ∗ t)
km4 < −integrate(integrand4, lower = 0, upper = 1)

j < −((exp(alpha4( − 2)))/(2 ∗ alpha4 ∗ (sqrt(2 ∗ pi ∗ betha4)) ∗ (km4))) ∗ (x( − 3/2)) ∗
(x+ betha4) ∗ (exp(−(((x/betha4) + (x/betha4)( − 1))/(2 ∗ alpha4(2))))) ∗
((pnorm(v4))(a4− 1)) ∗ ((1− pnorm(v4))(b4− 1)) ∗ (exp(−c4 ∗ ((pnorm(v4)))))

plot(c(0, 11.2), c(0, 0.72), type = ”n”, xlab = ”x”, ylab = ”f(x)”,main =

”KBBS(a, b, c, 1, 1)”, cex.lab = 1.3)

lines(x,p,col=’darkgreen’,lty=1,lwd=2)
lines(x,g,col=’green’,lty=1,lwd=2)
lines(x,h,col=’red’,lty=1,lwd=2)
lines(x,j,col=’blue’,lty=1,lwd=2)
legend(locator(1),c("BS","a = 1, b = 2.5, c = -10","a = 1, b = 1, c = -20","a = 0.5, b = 0.5, c = -
5"), lty=1,bty="n",col=c(’darkgreen’,’green’,’red’,’blue’),cex=1.3)

Appendix D.3 - Plots of the KBBS hazard rate function

rm(list=ls(all=TRUE))
x < −seq(0, 100, 0.1)
a1<-1.8
b1<-1.5
c1=16
alpha1=2.2
betha1=0.2
z < −pnorm((alpha1( − 1)) ∗ (((x/betha1)(1/2)− (x/betha1)( − 1/2)))) Z < −c()
for(iin1 : length(x)) a1 < −1.8 b1 < −1.5 c1 = 164 alpha1 = 2.2 betha1 = 0.2

integrand < −function(t)(t(a1− 1)) ∗ ((1− t)(b1− 1)) ∗ exp(−c1 ∗ t)
km < −integrate(integrand, lower = 0, upper = z[i]) km1 < −km Z < −cbind(Z, km1)

Z1 < −c(Z)
km2 < −integrate(integrand, lower = 0, upper = 1)

F < −Z1/km2

v1 < −((alpha1( − 1)) ∗ ((((x/betha1)(1/2))− ((x/betha1)( − 1/2)))))
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integrand1 < −function(t)(t(a1− 1)) ∗ ((1− t)(b1− 1)) ∗ exp(−c1 ∗ t)
k1 < −integrate(integrand1, lower = 0, upper = 1)

p < −((exp(alpha1( − 2)))/(2 ∗ alpha1 ∗ (sqrt(2 ∗ pi ∗ betha1)) ∗ (k1))) ∗ (x( − 3/2)) ∗
(x+ betha1) ∗ (exp(−(((x/betha1) + (x/betha1)( − 1))/(2 ∗ alpha1(2))))) ∗
((pnorm(v1))(a1− 1)) ∗ ((1− pnorm(v1))(b1− 1)) ∗ (exp(−c1 ∗ ((pnorm(v1)))))

p1 = p/(1− F )

a2<-1.6
b2<-1.5
c2=15
alpha2=2.5
betha2=0.19
z2 = pnorm((alpha2( − 1)) ∗ (((x/betha2)(1/2)− (x/betha2)( − 1/2))))

Z2 < −c() for(iin1 : length(x)) a2 < −1.6 b2 < −1.5 c2 = 15 alpha2 = 2.5

betha2 = 0.19 integrand22 < −function(t)(t(a2− 1)) ∗ ((1− t)(b2− 1)) ∗ exp(−c2 ∗ t)
km3 < −integrate(integrand22, lower = 0, upper = z2[i]) km4 < −km3

Z2 < −cbind(Z2, km4) Z3 < −c(Z2)
km5 < −integrate(integrand22, lower = 0, upper = 1)

F2 < −Z3/km5

v2 < −((alpha2( − 1)) ∗ ((((x/betha2)(1/2))− ((x/betha2)( − 1/2)))))

integrand2 < −function(t)(t(a2− 1)) ∗ ((1− t)(b2− 1)) ∗ exp(−c2 ∗ t)
k2 < −integrate(integrand2, lower = 0, upper = 1)

g < −((exp(alpha2( − 2)))/(2 ∗ alpha2 ∗ (sqrt(2 ∗ pi ∗ betha2)) ∗ (k2))) ∗ (x( − 3/2)) ∗
(x+ betha2) ∗ (exp(−(((x/betha2) + (x/betha2)( − 1))/(2 ∗ alpha2(2))))) ∗
((pnorm(v2))(a2− 1)) ∗ ((1− pnorm(v2))(b2− 1)) ∗ (exp(−c2 ∗ ((pnorm(v2)))))

g1 = g/(1− F2)

a3<-1.1
b3<-1
c3=-2
alpha3=0.35
betha3=15
z5 = pnorm((alpha3( − 1)) ∗ (((x/betha3)(1/2)− (x/betha3)( − 1/2))))

Z5 < −c() for(iin1 : length(x)) a3 < −1.1 b3 < −1 c3 = −2 alpha3 = 0.35 betha3 = 15

integrand33 < −function(t)(t(a3− 1)) ∗ ((1− t)(b3− 1)) ∗ exp(−c3 ∗ t)
km6 < −integrate(integrand33, lower = 0, upper = z5[i]) km7 < −km6

Z5 < −cbind(Z5, km7) Z6 < −c(Z5)
km8 < −integrate(integrand33, lower = 0, upper = 1)

F3 < −Z6/km8

v3 < −((alpha3( − 1)) ∗ ((((x/betha3)(1/2))− ((x/betha3)( − 1/2)))))

integrand3 < −function(t)(t(a3− 1)) ∗ ((1− t)(b3− 1)) ∗ exp(−c3 ∗ t)
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k3 < −integrate(integrand3, lower = 0, upper = 1)

h < −((exp(alpha3( − 2)))/(2 ∗ alpha3 ∗ (sqrt(2 ∗ pi ∗ betha3)) ∗ (k3))) ∗ (x( − 3/2)) ∗
(x+ betha3) ∗ (exp(−(((x/betha3) + (x/betha3)( − 1))/(2 ∗ alpha3(2))))) ∗
((pnorm(v3))(a3− 1)) ∗ ((1− pnorm(v3))(b3− 1)) ∗ (exp(−c3 ∗ ((pnorm(v3)))))

h1 = h/(1− F3)

a4<-1.2
b4<-1
c4=-2
alpha4=0.2
betha4=20
z7 = pnorm((alpha4( − 1)) ∗ (((x/betha4)(1/2)− (x/betha4)( − 1/2))))

Z7 < −c() for(iin1 : length(x)) a4 < −1.2 b4 < −1 c4 = −2 alpha4 = 0.2 betha4 = 20

integrand44 < −function(t)(t(a4− 1)) ∗ ((1− t)(b4− 1)) ∗ exp(−c4 ∗ t)
km9 < −integrate(integrand44, lower = 0, upper = z7[i]) km10 < −km9

Z7 < −cbind(Z7, km10) Z8 < −c(Z7)
km11 < −integrate(integrand44, lower = 0, upper = 1)

F4 < −Z8/km11

v4 < −((alpha4( − 1)) ∗ ((((x/betha4)(1/2))− ((x/betha4)( − 1/2)))))

integrand4 < −function(t)(t(a4− 1)) ∗ ((1− t)(b4− 1)) ∗ exp(−c4 ∗ t)
km4 < −integrate(integrand4, lower = 0, upper = 1)

j < −((exp(alpha4( − 2)))/(2 ∗ alpha4 ∗ (sqrt(2 ∗ pi ∗ betha4)) ∗ (km4))) ∗ (x( − 3/2)) ∗
(x+ betha4) ∗ (exp(−(((x/betha4) + (x/betha4)( − 1))/(2 ∗ alpha4(2))))) ∗
((pnorm(v4))(a4− 1)) ∗ ((1− pnorm(v4))(b4− 1)) ∗ (exp(−c4 ∗ ((pnorm(v4)))))

j1 = j/(1− F4)

plot(c(0, 52.0), c(0, 0.09), type = ”n”, xlab = ”x”, ylab = ”h(x)”,main = ””)

lines(x,p1,col=’darkgreen’,lty=1,lwd=2)
lines(x,g1,col=’green’,lty=1,lwd=2)
lines(x,h1,col=’red’,lty=1,lwd=2)
lines(x,j1,col=’blue’,lty=1,lwd=2)
legend(22,0.09, expression(paste(a,"=1.8; ",b,"=1.5; ",c,"=16; ",alpha,"=2.2;",beta,"=0.2"),
paste(a,"=1.6; ",b,"=1.5; ",c,"=15; ",alpha,"=2.5;",beta,"=0.19"), paste(a,"=1.1; ",b,"=1;
",c,"=-2; ",alpha,"=0.35;",beta,"=15"), paste(a,"=1.2; ",b,"=1; ",c,"=-2;
",alpha,"=0.2;",beta,"=20")), lty=c(1,1,1,1),
lwd=c(2,2,2,2),col=c(’darkgreen’,’green’,’red’,’blue’), bty="o", cex=1)
***************************************
rm(list=ls(all=TRUE))
x < −seq(0, 100, 0.1)
a1<-2
b1<-1.68
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c1=30
alpha1=1.5
betha1=1.4
z < −pnorm((alpha1( − 1)) ∗ (((x/betha1)(1/2)− (x/betha1)( − 1/2))))

Z < −c() for(iin1 : length(x)) a1 < −2 b1 < −1.68 c1 = 30 alpha1 = 1.5 betha1 = 1.4

integrand < −function(t)(t(a1− 1)) ∗ ((1− t)(b1− 1)) ∗ exp(−c1 ∗ t)
km < −integrate(integrand, lower = 0, upper = z[i]) km1 < −km Z < −cbind(Z, km1)

Z1 < −c(Z)
km2 < −integrate(integrand, lower = 0, upper = 1)

F < −Z1/km2

v1 < −((alpha1( − 1)) ∗ ((((x/betha1)(1/2))− ((x/betha1)( − 1/2)))))

integrand1 < −function(t)(t(a1− 1)) ∗ ((1− t)(b1− 1)) ∗ exp(−c1 ∗ t)
k1 < −integrate(integrand1, lower = 0, upper = 1)

p < −((exp(alpha1( − 2)))/(2 ∗ alpha1 ∗ (sqrt(2 ∗ pi ∗ betha1)) ∗ (k1))) ∗ (x( − 3/2)) ∗
(x+ betha1) ∗ (exp(−(((x/betha1) + (x/betha1)( − 1))/(2 ∗ alpha1(2))))) ∗
((pnorm(v1))(a1− 1)) ∗ ((1− pnorm(v1))(b1− 1)) ∗ (exp(−c1 ∗ ((pnorm(v1)))))

p1 = p/(1− F )

a2<-2
b2<-1.55
c2=30
alpha2=1.5
betha2=1.4
z2 = pnorm((alpha2( − 1)) ∗ (((x/betha2)(1/2)− (x/betha2)( − 1/2))))

Z2 < −c() for(iin1 : length(x)) a2 < −2 b2 < −1.55 c2 = 30 alpha2 = 1.5 betha2 = 1.4

integrand22 < −function(t)(t(a2− 1)) ∗ ((1− t)(b2− 1)) ∗ exp(−c2 ∗ t)
km3 < −integrate(integrand22, lower = 0, upper = z2[i]) km4 < −km3

Z2 < −cbind(Z2, km4) Z3 < −c(Z2)
km5 < −integrate(integrand22, lower = 0, upper = 1)

F2 < −Z3/km5

v2 < −((alpha2( − 1)) ∗ ((((x/betha2)(1/2))− ((x/betha2)( − 1/2)))))

integrand2 < −function(t)(t(a2− 1)) ∗ ((1− t)(b2− 1)) ∗ exp(−c2 ∗ t)
k2 < −integrate(integrand2, lower = 0, upper = 1)

g < −((exp(alpha2( − 2)))/(2 ∗ alpha2 ∗ (sqrt(2 ∗ pi ∗ betha2)) ∗ (k2))) ∗ (x( − 3/2)) ∗
(x+ betha2) ∗ (exp(−(((x/betha2) + (x/betha2)( − 1))/(2 ∗ alpha2(2))))) ∗
((pnorm(v2))(a2− 1)) ∗ ((1− pnorm(v2))(b2− 1)) ∗ (exp(−c2 ∗ ((pnorm(v2)))))

g1 = g/(1− F2)

a3<-2
b3<-1.6
c3=30
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alpha3=1.5
betha3=1.4
z5 = pnorm((alpha3( − 1)) ∗ (((x/betha3)(1/2)− (x/betha3)( − 1/2))))

Z5 < −c() for(iin1 : length(x)) a3 < −2 b3 < −1.6 c3 = 30 alpha3 = 1.5 betha3 = 1.4

integrand33 < −function(t)(t(a3− 1)) ∗ ((1− t)(b3− 1)) ∗ exp(−c3 ∗ t)
km6 < −integrate(integrand33, lower = 0, upper = z5[i]) km7 < −km6

Z5 < −cbind(Z5, km7) Z6 < −c(Z5)
km8 < −integrate(integrand33, lower = 0, upper = 1)

F3 < −Z6/km8

v3 < −((alpha3( − 1)) ∗ ((((x/betha3)(1/2))− ((x/betha3)( − 1/2)))))

integrand3 < −function(t)(t(a3− 1)) ∗ ((1− t)(b3− 1)) ∗ exp(−c3 ∗ t)
k3 < −integrate(integrand3, lower = 0, upper = 1)

h < −((exp(alpha3( − 2)))/(2 ∗ alpha3 ∗ (sqrt(2 ∗ pi ∗ betha3)) ∗ (k3))) ∗ (x( − 3/2)) ∗
(x+ betha3) ∗ (exp(−(((x/betha3) + (x/betha3)( − 1))/(2 ∗ alpha3(2))))) ∗
((pnorm(v3))(a3− 1)) ∗ ((1− pnorm(v3))(b3− 1)) ∗ (exp(−c3 ∗ ((pnorm(v3)))))

h1 = h/(1− F3)

a4<-2
b4<-1.65
c4=30
alpha4=1.5
betha4=1.4
z7 = pnorm((alpha4( − 1)) ∗ (((x/betha4)(1/2)− (x/betha4)( − 1/2))))

Z7 < −c() for(iin1 : length(x)) a4 < −2 b4 < −1.65 c4 = 30 alpha4 = 1.5 betha4 = 1.4

integrand44 < −function(t)(t(a4− 1)) ∗ ((1− t)(b4− 1)) ∗ exp(−c4 ∗ t)
km9 < −integrate(integrand44, lower = 0, upper = z7[i]) km10 < −km9

Z7 < −cbind(Z7, km10) Z8 < −c(Z7)
km11 < −integrate(integrand44, lower = 0, upper = 1)

F4 < −Z8/km11

v4 < −((alpha4( − 1)) ∗ ((((x/betha4)(1/2))− ((x/betha4)( − 1/2)))))

integrand4 < −function(t)(t(a4− 1)) ∗ ((1− t)(b4− 1)) ∗ exp(−c4 ∗ t)
km4 < −integrate(integrand4, lower = 0, upper = 1)

j < −((exp(alpha4( − 2)))/(2 ∗ alpha4 ∗ (sqrt(2 ∗ pi ∗ betha4)) ∗ (km4))) ∗ (x( − 3/2)) ∗
(x+ betha4) ∗ (exp(−(((x/betha4) + (x/betha4)( − 1))/(2 ∗ alpha4(2))))) ∗
((pnorm(v4))(a4− 1)) ∗ ((1− pnorm(v4))(b4− 1)) ∗ (exp(−c4 ∗ ((pnorm(v4)))))

j1 = j/(1− F4)

plot(c(6, 13.0), c(0.65, 0.85), type = ”n”, xlab = ”x”, ylab = ”h(x)”,main = ””)

lines(x,p1,col=’darkgreen’,lty=1,lwd=2)
lines(x,g1,col=’green’,lty=1,lwd=2)
lines(x,h1,col=’red’,lty=1,lwd=2)
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lines(x,j1,col=’blue’,lty=1,lwd=2)
legend(5.6,0.685, expression(paste(a,"=2; ",b,"=1.68; ",c,"=30; ",alpha,"=1.5;",beta,"=1.4"),
paste(a,"=2; ",b,"=1.55; ",c,"=30; ",alpha,"=1.5;",beta,"=1.4"), paste(a,"=2; ",b,"=1.6;
",c,"=30; ",alpha,"=1.5;",beta,"=1.4"), paste(a,"=2; ",b,"=1.65; ",c,"=30;
",alpha,"=1.5;",beta,"=1.4")), lty=c(1,1,1,1),
lwd=c(2,2,2,2),col=c(’darkgreen’,’green’,’red’,’blue’), bty="o", cex=1)

Appendix D.4 - Plots of the KBGG density function

rm(list=ls(all=TRUE))
x < −seq(0, 100, 0.001)
a1<-1.5
b1<-2
c1=2
alpha1=1
betha1=1
k1=2
integrand1 < −function(t)(t(a1− 1)) ∗ ((1− t)(b1− 1)) ∗ exp(−c1 ∗ t)
km1 < −integrate(integrand1, lower = 0, upper = 1)

p < −((betha1)/(alpha1 ∗ gamma(k1) ∗ km1)) ∗ ((x/alpha1)((betha1 ∗ k1)− 1)) ∗
(exp(−(x/alpha1)(betha1))) ∗ ((pgamma((x/alpha1)(betha1), k1))(a1− 1)) ∗ ((1−
pgamma((x/alpha1)(betha1), k1))(b1−1))∗exp(−c1∗(pgamma((x/alpha1)(betha1), k1)))
a2<-1
b2<-2.5
c2=-5
alpha2=1
betha2=1
k2=2
integrand2 < −function(t)(t(a2− 1)) ∗ ((1− t)(b2− 1)) ∗ exp(−c2 ∗ t)
km2 < −integrate(integrand2, lower = 0, upper = 1)

g < −((betha2)/(alpha2 ∗ gamma(k2) ∗ km2)) ∗ ((x/alpha2)((betha2 ∗ k2)− 1)) ∗
(exp(−(x/alpha2)(betha2))) ∗ ((pgamma((x/alpha2)(betha2), k2))(a2− 1)) ∗ ((1−
pgamma((x/alpha2)(betha2), k2))(b2−1))∗exp(−c2∗(pgamma((x/alpha2)(betha2), k2)))
a3<-1
b3<-1
c3=-15
alpha3=1
betha3=1
k3=2
integrand3 < −function(t)(t(a3− 1)) ∗ ((1− t)(b3− 1)) ∗ exp(−c3 ∗ t)
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km3 < −integrate(integrand3, lower = 0, upper = 1)

h < −((betha3)/(alpha3 ∗ gamma(k3) ∗ km3)) ∗ ((x/alpha3)((betha3 ∗ k3)− 1)) ∗
(exp(−(x/alpha3)(betha3))) ∗ ((pgamma((x/alpha3)(betha3), k3))(a3− 1)) ∗ ((1−
pgamma((x/alpha3)(betha3), k3))(b3−1))∗exp(−c3∗(pgamma((x/alpha3)(betha2), k3)))
a4<-2.5
b4<-0.5
c4=2.5
alpha4=1
betha4=1
k4=2
integrand4 < −function(t)(t(a4− 1)) ∗ ((1− t)(b4− 1)) ∗ exp(−c4 ∗ t)
km4 < −integrate(integrand4, lower = 0, upper = 1)

j < −((betha4)/(alpha4 ∗ gamma(k4) ∗ km4)) ∗ ((x/alpha4)((betha4 ∗ k4)− 1)) ∗
(exp(−(x/alpha4)(betha4))) ∗ ((pgamma((x/alpha4)(betha4), k4))(a4− 1)) ∗ ((1−
pgamma((x/alpha4)(betha4), k4))(b4−1))∗exp(−c4∗(pgamma((x/alpha4)(betha4), k4)))
plot(c(0, 11.2), c(0, 0.7), type = ”n”, xlab = ”x”, ylab = ”f(x)”,main =

”KBGG(a, b, c, 1, 1, 2)”, cex.lab = 1.3)

lines(x,p,col=’red’,lty=1,lwd=2)
lines(x,g,col=’blue’,lty=1,lwd=2)
lines(x,h,col=’green’,lty=1,lwd=2)
lines(x,j,col=’darkgreen’,lty=1,lwd=2)
legend(locator(1),c("a = 1.5, b = 2, c = 2","a = 1, b = 2.5, c = -5","a = 1, b = 1, c = -15","a =
2.5, b = 0.5, c = 2.5"), lty=1,bty="n",col=c(’red’,’blue’,’green’,’darkgreen’),cex=1.3)




