• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.11.2012.tde-29102012-085146
Documento
Autor
Nome completo
Patrícia Ferreira Paranaíba
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2012
Orientador
Banca examinadora
Ortega, Edwin Moises Marcos (Presidente)
Bolfarine, Heleno
Cordeiro, Gauss Moutinho
Davila, Victor Hugo Lachos
Demetrio, Clarice Garcia Borges
Título em português
Caracterização e extensões da distribuição Burr XII: propriedades e aplicações
Palavras-chave em português
Análise de regressão e correlação
Análise de sobrevivência
Dados censurados
Inferência bayesiana
Verossimilhança
Resumo em português
A distribuição Burr XII (BXII) possui, como casos particulares, as distribuições normal, log-normal, gama, logística, valor extremo tipo I, entre outras. Por essa razão, ela é considerada uma distribuição flexível no ajuste dos dados. As ideias de Eugene; Lee e Famoye (2002) e Cordeiro e Castro (2011) foram utilizadas para o desenvolvimento de duas novas distribuições de probabilidade a partir da distribuição BXII. Uma delas é denominada beta Burr XII (BBXII) e possui cinco parâmetros. Desenvolveu-se o modelo de regressão log-beta Burr XII (LBBXII). A outra distribuição é denominada de Kumaraswamy Burr XII (KwBXII) e possui cinco parâmetros. A vantagem desses novos modelos reside na capacidade de acomodar várias formas da função risco, além disso, eles também se mostraram úteis na discriminação de modelos. Para cada um dos modelos foram calculados os momentos, função geradora de momentos, os desvios médios, a confiabilidade e a função densidade de probabilidade da estatística de ordem. Foi realizado um estudo de simulação para avaliar o desempenho desses modelos. Para a estimação dos parâmetros, foram utilizados os métodos de máxima verossimilhança e bayesiano e, finalmente, para ilustrar a aplicação das novas distribuições foram analisados alguns conjuntos de dados reais.
Título em inglês
Characterization and extensions of the Burr XII distribution: Properties and Applications
Palavras-chave em inglês
Bayesian inference
Censored data
Likelihood
Regression analysis and correlation
Survival analysis
Resumo em inglês
The Burr XII (BXII) distribution has as particular cases the normal, lognormal, gamma, logistic and extreme-value type I distributions, among others. For this reason, it is considered a flexible distribution for fitting data. In this paper, the ideas of Eugene; Lee e Famoye (2002) and Cordeiro and Castro (2011) is used to develop two new probability distributions based on the BBXII distribution. The first is called beta Burr XII (BBXII) and has five parameters. Based in these, we develop the extended generalized log-beta Burr XII regression model. The other distribution is called Kumaraswamy Burr XII (KwBXII) and has five parameters. The advantage of these new models rests in their capacity to accommodate various risk function forms. They are also useful in model discrimination. We calculate the moments, moments generating function, mean deviations, reliability and probability density function of the order statistics. A simulation study was conducted to evaluate the performance of these models. To estimate the parameters we use the maximum likelihood and Bayesian methods. Finally, to illustrate the application of the new distributions, we analyze some real data sets.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2012-11-09
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.