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RESUMO

O uso de modelos gráficos para investigar redes fenotípicas envolvendo características poligênicas

Compreender a arquitetura causal subjacente à sistemas biológicos complexos é de grande
valia na produção agrícola para o desenvolvimento de estratégias de manejo e seleção genética. Até o
momento, a maior parte dos estudos neste contexto utiliza apenas conhecimento prévio para propor
redes causais e/ou não considera fatores de confundimento genético na busca de estruturas, fato
que pode ocultar relações importantes entre os fenótipos e viesar inferências sobre a rede causal.
Nesta tese, exploramos alguns algoritmos de aprendizagem de estruturas e apresentamos um novo,
chamado PolyMaGNet (do inglês, Polygenic traits with Major Genes Network analysis), para buscar
estruturas causais recursivas entre características fenotípicas poligênicas complexas e permitindo,
também, a possibilidade de efeitos de genes maiores que as afetam. Resumidamente, um modelo
misto de múltiplas características é ajustado usando abordagem Bayesiana considerando os genes
maiores como covariáveis no modelo. Em seguida, amostras posteriores da matriz de covariância
residual são usadas como entrada para o algoritmo de causação indutiva para pesquisar estruturas
causais putativas, as quais são comparadas usando o critério de informação de Akaike. O desempenho
do PolyMaGNet foi avaliado e comparado com outra abordagem bastante utilizada por meio de um
estudo simulado considerando uma população de mapeamento de QTL. Os resultados mostraram
que, na presença de genes maiores, o método PolyMaGNet recuperou a verdadeira estrutura do
esqueleto, bem como as direções causais, com uma taxa de efetividade maior. O método é ilustrado
também utilizando-se um conjunto de dados reais de uma população de suínos F2 Duroc × Pietrain
para recuperar a estrutura causal subjacente à características fenotípicas relacionadas a qualidade da
carcaça, carne e composição química. Os resultados corroboraram com a literatura sobre as relações
de causa-efeito entre os fenótipos e também forneceram novos conhecimentos sobre a rede fenotípica
e sua arquitetura genética.

Palavras-chave: Redes causais; Modelos de equações estruturais; Redes Bayesianas



8

ABSTRACT

Using graphical models to investigate phenotypic networks involving polygenic traits

Understanding the causal architecture underlying complex systems biology has a great
value in agriculture production for the development of optimal management strategies and selective
breeding. So far, most studies in this area use only prior knowledge to propose causal networks
and/or do not consider the possible genetic confounding factors on the structure search, which may
hide important relationships among phenotypes and also bias the resulting inferred causal network.
In this dissertation, we explore many structural learning algorithms and present a new one, called
PolyMaGNet (Polygenic traits with Major Genes Network analysis), to search for recursive causal
structures involving complex phenotypic traits with polygenic inheritance and also allowing the pos-
sibility of major genes affecting the traits. Briefly, a multiple-trait animal mixed model is fitted using
a Bayesian approach considering major genes as covariates. Next, posterior samples of the residual
covariance matrix are used as input for the Inductive Causation algorithm to search for putative
causal structures, which are compared to each other using the Akaike information criterion. The
performance of PolyMaGNet was evaluated and compared with another widely used approach in a
simulated study considering a QTL mapping population. Results showed that, in the presence of
major genes, our method recovered the true skeleton structure as well as the causal directions with
a higher rate of true positives. The PolyMaGNet approach was also applied to a real dataset of an
F2 Duroc × Pietrain pig resource population to recover the causal structure underlying on carcass,
meat quality and chemical composition traits. Results corroborated with the literature regarding
the cause-effect relationships between these traits and also provided new insights about phenotypic
causal networks and its genetic architectures in complex systems biology.

Keywords: Causal networks; Structural equation models; Bayesian networks
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1 INTRODUCTION

In agriculture, relationships among phenotypic traits are commonly studied using the standard
Multiple Trait Model (MTM; Henderson and Quaas, 1976; Mrode, 2005). Although such models can be
used to infer how likely events are, they are not stable enough to predict how the probabilities could
vary as a result of external interventions (Pearl, 2000; Rosa et al., 2011; Shipley, 2016). For example, a
correlation detected between two traits T1 and T2 may be due to a direct effect of T1 on T2 (or vice
versa) or to a latent variables affecting both together. Knowledge of the underlying phenotypic causal
network is essential to predict the effect of management practices applied to both traits. That is, if T1
affects T2, but T2 has no effect on T1, an intervention on T1 would change T2, but the reverse would
not happen.

Similar scenarios occur in genetic improvement, where genetic correlation is defined as the
proportion of variance that two traits share due to genetic causes (Rosa et al., 2011). In classical genetics
many genes are known to have multiple effects, this action is called pleiotropy. For example, the vestigial
gene in Drosophila is responsible for affecting not only the bristles and the wings, but also the fecundity
(Mode and Robinson, 1959).

According to Schadt et al. (2005) there are three possible causal relationships (Figure 1.1)
involving a gene (G) and two phenotypic traits (T1 and T2), which are explored in details by Li et al.
(2006). In the first case (Figure 1.1a), the gene G affects phenotype T1, and the phenotypic change on
T1 affects T2; in the second (Figure 1.1b), the gene G acts on T2, and the phenotypic change on T2
changes T1; and, in the third (Figure 1.1c) the gene G changes both traits directly, which may or may
not have a causal effect between them.

(a) G

}}||
||
||
||

(b) G

��

(c) G

��}}||
||
||
||

T1 // T2 T1 T2oo T1 T2

Figure 1.1. Possible gene-phenotypic networks involving one gene (G) and two phenotypic traits (T1
and T2) - [adapted from Rosa et al., 2011]

The traditional MTM mentioned above might detect a correlation between two traits and
possibly the pleiotropic effect of the gene, but would not be able to distinguish the configuration of
the paths that connect them. As an alternative, graphical models can be used to study recursive and
simultaneous relationships among variables in multivariate systems, offering a different interpretation of
the relationships between traits, such that one trait can be considered as a predictor of another, providing
a causal path between them (Haavelmo, 1943; Wright, 1921; Rosa et al., 2011).

Graphical models provide a qualitative representation of biological systems along with the
quantitative analysis. The qualitative part is a graphical representation of dependences among variables,
expressed, for instance, by a directed acyclic graph (DAG), an undirected graph (UG) or a partially
directed acyclic graph (PDAG), that is, a graph which may have both directed and undirected edges.
Knowledge about the quantitative dependences between variables is added in the graph by means of path
coefficients (parameters). There are many kinds of graphical models in the literature, in this thesis we
will cover the most popular ones: structural equation models (SEM) and Bayesian networks (BN).

Gianola and Sorensen (2004) described SEMs in the context of mixed models in quantitative
genetics, and since then many authors have used such approach (De los Campos et al., 2006; de Maturana
et al., 2009), but usually causal structures are pre-selected using some kind of prior knowledge. Here,
we propose to use the notion of directional separation (d-separation; Spirtes et al., 2000; Pearl, 2000;
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Shipley, 2016) to explore the space of causal hypotheses and thus arrive at a causal structure (or a class
of equivalent structures) that is capable of generating the observed pattern of conditional probabilities
among variables.

Seeking to offer new methods to researchers who use only prior knowledge to propose causal
networks, in chapter 2 we merge structural learning algorithms along with prior knowledge to investigate
the causal networks underlying phenotypic traits of two fruit species belonging to the Sapotaceae family.
We use a constrain- and a score-based algorithm for structure learning of BNs and select a putative causal
network from the equivalence class of the score-based output, which are fitted using maximum likelihood
and evaluated through some fit indices of SEM.

When considering only phenotypic data in the structural search, as in Chapter 2, we are subject
to obtain networks biased by genetic confounding factors. For instance, if there is a genetic variable
not considered in the search that affects two traits simultaneously (Figure 1.1c), we may find a causal
path between the two traits that does not actually exist. Thus, if high density molecular marker data
is available, more reliable causal networks can be obtained through more efficient genetic prediction
approaches.

The use of high-density single nucleotide polymorphism (SNP) panels has increased significantly
the quantitative trait loci (QTL) mapping resolution and its applications have extended to outbred pop-
ulations. In Chapter 3, using 35 phenotypic traits measured in a F2 Duroc × Pietrain pig resource
population with genetic data available, we compare three different methodologies for genome-wide asso-
ciation studies (GWAS): a single-marker regression, a ridge regression BLUP, and a Bayes Cπ. Initially,
two specific chromosomes were chosen to compare these methods in terms of the highest SNP peaks
detected. In addition, we also included in Appendix B a more detailed analysis in which the three largest
SNPs peaks, and their respective chromosomes, were recorded for all phenotypic traits analyzed.

There are many structure learning algorithms for BN in the area of quantitative genetics (Logs-
don and Mezey, 2010; Neto et al., 2008, 2010; Valente et al., 2010; Wang and Van Eeuwijk, 2014), which
allow to explore the structure space compatible with the joint distribution function of the variables stud-
ied. Among those, Valente et al. (2010) proposed a constraint-based algorithm to search for recursive
causal structures among phenotypes conditionally to unobservable polygenic effects, which act as con-
founders. Basically, a standard Bayesian multiple-trait model is fitted using a Markov chain Monte Carlo
implementation to obtain samples from the posterior distribution of a residual covariance matrix, which
are then used as input for the inductive causation (IC) algorithm (Verma and Pearl, 1990; Pearl, 2009).
However, their method is based on an infinitesimal model and, as such, it does not take into account
the possibility of major genes affecting the traits. Often, their method produces a partially directed
network that represents a class of possible equivalent solutions, and the use of prior biological knowledge
is necessary to determine a final, fully directed graph.

Thus, in Chapter 4, we reach the main goal of this research, which was to develop a hybrid
method, called PolyMaGNet (Polygenic traits with Major Genes Network analysis), to search for recursive
causal structures among complex phenotypic traits with polygenic inheritance, but allowing also the
possibility of major genes affecting the traits. Major genes, previously detected via GWAS, are used as
instrumental variables in a final step of the algorithm, providing a fully oriented acyclic graph. This
method can be seen as an extension of the one proposed by Valente et al. (2010) and it is especially
useful for the analysis of QTL mapping population data involving crosses of outbred populations. We
also provide a detailed description of the proposed method and illustrate it with a simulation study, as
well as with the real dataset explored in Chapter 3, to recover the causal structure underlying carcass
and meat quality traits.

Finally, in Chapter 5 we present a summary of the methods proposed in this dissertation and
suggest extensions and refinements for them, which can be used as tools for improvement of economically
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important traits as well as to aid the development of breeding programs and optimal decision-making
strategies.
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2 MODELING CAUSAL PHENOTYPIC NETWORKS OF TWO FRUIT SPECIES OF
THE SAPOTACEAE FAMILY: POUTERIA SAPOTA (JACQ.) H.E. MOORE & STEARN
AND CHRYSOPHYLLUM CAINITO L.

Abstract: Understanding the causal architecture underlying complex biological systems,
such as in plants and fruits, has a great value in agriculture production for the development of
optimal management strategies and selective breeding. So far, most studies use only prior knowledge
to propose structural models, fact that may hide important relationships among phenotypes. In this
study, we merged structural learning algorithms and prior biological knowledge to investigate the
causal networks underlying phenotypic traits of two fruit species belonging to the Sapotaceae family:
mamey sapote (Pouteria sapota (Jacq.) H.E. Moore & Stearn) and star apple (Chrysophyllum cainito
L.). We used a constrain- and a score-based algorithm for structure learning of Bayesian networks and
selected a putative causal network from the equivalence class of the score-based output using prior
knowledge. The decision by the search method was based in the stability evaluation via Jackknife
resampling and sample size. The final causal networks for both fruits were fitted using maximum
likelihood and evaluated through some fit indices of structural equation models. Statistical tests
showed good fit of the models, and common paths in both fruits were similar regarding the intensity
of their causal effects. Despite being species from different genus, remarkable similarities can be
observed on the inferred causal structures. It is therefore likely that the presented findings here
are transferable to other species of the Sapotaceae family, but further investigations relating other
fruits are required. In addition, the methods used in this study have the potential to unravel causal
phenotypic networks in complex biological systems.
Keywords: Bayesian networks; Structural equation models; Causal networks; Mamey sapote; Star
apple; Structure learning.

2.1 Introduction

The Sapotaceae family belongs to the extended order Ericales, a clade of morphologically vari-
able angiosperm families, wherein relationships among species are not fully resolved (Anderberg and
Swenson, 2003). This family is subdivided into five tribes with 53 genera and approximately 1,250
species, mostly originating from tropical and subtropical regions of Asia and South America (Penning-
ton, 1991; Govaerts et al., 2001; Swenson and Anderberg, 2005). Two of these species were used in this
study, the Pouteria sapota (Jacq.) H.E. Moore and Stearn and Chrysophyllum cainito L.

Pouteria sapota (Jacq.) H.E. Moore and Stearn is a tropical fruit tree native to Mexico and
Central America (Popenoe, 1920; Martínez and Martínez, 1959), nowadays cultivated in several regions
of the world, due to its high economic value (Arias et al., 2015). It is commonly called mamey sapote,
although is also referred to with other names such as zapote (Gazel Filho et al., 1999) and zapote mamey
(Gómez-Jaimes et al., 2012). The fruit can be consumed directly or its pulp can be used to make candy,
ice cream and milkshakes. Its seed oil is explored by cosmetic industries for producing shampoos, hair
dyes, medicines, and other products. The wood of the tree is used in manufacturing fine furniture and its
latex to treat skin infections, while leaves provide fungicides and insecticides (Alia-Tejacal et al., 2007;
Pinto et al., 2016).

Chrysophyllum cainito L. is typically considered to be originally from Central America, although
many botanists suggest that it is actually native to the West Indies (Morton, 1987). The fruit is mainly
known as caimito, a local name (Gazel Filho, 1995; Parker et al., 2010), or star apple (Luo et al., 2002;
Pino et al., 2002). It is not explored for multiple purposes as the mamey sapote, but it is used in the
development of conventional and ayurvedic medicines (Li et al., 2015).
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Although these fruit trees are classified into different genera, they are similar in many phys-
iological aspects due to their common genetic origin. Here, we investigate the underlying phenotypic
architecture in their fruits, i.e., we explore the relationships among quantitative phenotypic traits using
algorithms to search for causal structures of Bayesian networks (BN) (Pearl, 2000; Spirtes, Glymour and
Scheines, 2000). Afterwards, we verify if a structural equation model (SEM) (Grace and Bollen, 2005)
with a causal structure based on the search algorithm’s output and on biological prior knowledge fits
well the data evidence. In addition, in the first part, we also compare results from a constraint- and
a score-based algorithm, assessing their stability via Jackknife resampling; and, in the second part, we
estimate and test the magnitude of path coefficients by maximum likelihood and Wald test, respectively.

2.2 Methods

2.2.1 Data

The Pouteria sapota (Jacq.) H. Moore and Stern and Chrysophyllum cainito L. datasets
considered in this study were provided by Gazel Filho (Gazel Filho, 1995). Data were collected from a
Sapotaceae family tree collection located in Cabiria 6 Botanical Garden of Centro Agronómico Tropical
de Investigación y Enseñanza (CATIE), Costa Rica. More specifically, the geographical location is on
north 9◦53’ and east 83◦39’, 602 meters above sea level. The average annual temperature is 22.3◦C.
Physical and chemical characteristics of the soil are presented in Table 2.1.

Table 2.1. Physical and chemical characteristics of the Cabiria 6 (CATIE) soil.

Depth (cm) 0-20 20-40
Sand1 (%) 39.1 45.0
Silt1 (%) 41.3 32.5
Clay1 (%) 19.6 22.5

Stoniness1 (%) 1-2 1-2
pH2 5.6 5.7

Ca2 (meq/100ml) 2.53 1.64
Mg2 (meq/100ml) 0.81 0.35
K2 (meq/100ml) 0.36 0.25

P2 (mg/l) 4.4 7.0
Cu2 (mg/l) 9.0 5.7
Zn2 (mg/l) 2.0 1.7
Mn2 (mg/l) 24.0 8.4

1physical characteristics 2chemical characteristics 3Table adapted from Gazel Filho (1995)

Seeds collected from Mexico to Panama were introduced into the CATIE genbank between 1977
and 1983. They were planted at a distance of 8 x 6.5m from each other. The trees with abundant fruits
or flowers were tagged to the study between November 1994 and January 1995. After harvesting the
fruits at the usual time, they were wrapped in paper and stored until they reached the appropriate point
of maturity to be evaluated. The fruits and their peel were weighed on an electronic scale. Fruits lengths
and diameters were also recorded. Subsequently, the fruits were cut, so that their pulp and seeds could
be extracted. Data were collected from fruits of 112 trees (63 of mamey sapote and 49 of star apple) for
the phenotypic traits listed in Table 2.2 – for more details, see (Gazel Filho, 1995).

2.2.2 Causal structure learning

The BN can be seen as a factorization of the joint (global) distribution P (X1, ..., Xp) of the
variables under study consisting on the product of all (local) distributions of the variables Xi, i ∈
{1,…, p} conditionally to their parents according to a directed acyclic graph (DAG). The possibility
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Table 2.2. Phenotypic traits

Variables Description (unit)
FRW Fruit weight (g)
FRL Fruit length (mm)
FRD Fuit diameter (mm)
PET Peel thickness (mm)
PEW Peel weight (g)
SEL Seed length (mm)
SED Seed diameter (mm)
SEW Seed weight (g)

of such factorization involves assuming the Markov property. A sequence of variables X1,…, Xn,… is
a Markov chain if X(n+1) is conditionally independent of X1,…, X(n−1) given Xn and can be written
mathematically as X(n+1) |= (X1,…, X(n−1))|Xn or X(n+1) |= p(X1,…, X(n−1))|Xn to emphasize that the
statement is relative to a given probability distribution P . If parents of the variable Xi are denoted by
pa(Xi), the BN can be represented by

P (X1, ..., Xp) =

p∏
i=1

P (Xi|pa(Xi)) (2.1)

The DAG G can be represented as G = (V,E) with V = (X1, X2, ..., Xp) as the set of all
nodes (variables) and E the set of arrows connecting all Xi to each element of pa(Xi). Arrows in E are
directed from parents to children. Given any two nodes Xi and Xj ⊂ V and a set of nodes Z ⊂ V , such
Xi and Xj ̸⊂ Z, the conditional independence between Xi and Xj given Z can be tested applying the
d-separation criterion. The set Z is said to d-separate Xi from Xj if and only if Z blocks every path
from Xi to Xj (Pearl, 2000).

Several algorithms have been proposed in the literature for BN structure learning (Nagarajan,
Scutari and Lèbre, 2013). They are typically classified into three broad categories: constraint-based,
score-based, and hybrid algorithms. Constraint-based algorithms are based on the concepts about causal
graphical models introduced by Judea Pearl (Pearl, 2000). His inductive causation (IC) algorithm (Verma
and Pearl, 1990) provides a framework for learning structures using conditional independence tests.
Score-based algorithms (commonly known as search-and-score algorithms) involve the application of
optimization techniques. Each candidate network is assigned a network score reflecting its goodness
of fit and the algorithm then attempts to find its maximum in a network space. Finally, the hybrid
structure learning algorithms combine features of both constraint- and score-based methods, mostly by
finding edges with a constraint-based approach and orienting them afterwards by a score-based approach.
Here, we search for causal structures among the studied traits with two different types of algorithms:
the incremental association Markov blanket (IAMB) (Tsamardinos et al., 2003) and the Tabu search
(Bouckaert, 2001), which are constraint- and score-based methods, respectively.

The stability of the selected structures was subsequently evaluated via Jackknife resampling
(Peñagaricano et al., 2015). For large samples, a bootstrap approach can yield more insight into the
stability of a network structure (Topner et al., 2017), but the Jackknife method is more suitable to
smaller samples as the one studied here. Considering that N is the number of observations in the dataset,
the Jackknife resampling consists on applying the search method N times and leaving one observation
out each time (i.e., on subsamples of size N − 1). This allows one to investigate the influence of each
experimental unit on the network learning.
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2.2.3 Incremental Association Markov Blanket

IAMB consists of two steps referred to as forward and backward phases (Tsamardinos et al.,
2003). The forward phase starts by searching the Markov blanket (MB) of each variable Xi (i.e.,
MB(Xi)). This concept corresponds to the minimal set of variables conditioned on which all other
variables are independent of Xi. The backward phase involves identifying and removing false positives.
Exploring MBs reduces the number of independence tests in the search. As a result, the algorithm
provides computationally and time-efficient search without compromising the accuracy.

The IAMB was not the first algorithm to explore the concept of MB, which was employed earlier
by Koller and Sahami (KS) (Koller and Sahami, 1996). Later, the grow-shrink (GS) algorithm (Margaritis
and Thrun, 2000) was proposed, already involving a forward and a backward phase as described here.
Based on GS, Tsamardinos et al. (2003) developed IAMB along with some variations. The main advantage
of IAMB compared to GS and KS is the use of an efficient heuristic function in the first phase.

All these algorithms perform series of conditional independence tests of some type. In this
study, we used the exact Student’s t test with a type I error rate of α = 0.05 and α = 0.20, which is
suitable for testing associations among normally distributed variables. The choice for this test was based
for its robustness in relation to the normality assumption, since we have small sample sizes.

2.2.4 Tabu search

The Tabu search is implemented by an optimization algorithm (Bouckaert, 2001) that starts
with an arbitrary point in the DAG space and recursively selects a new solution in the neighborhood
of the previous one, increasing the score for a pre-defined function in each step. For example, given a
structure G1 and the dataset D, the score is typically described by the probability of the structure given
the data, that is

Score(G1|D) = P (G1|D) =
P (D|G1)P (G1)

P (D)
. (2.2)

The algorithm stops after a pre-defined number of steps or when a stop criterion is satisfied –
for more details, see (Bouckaert, 2001).

Several metrics have been proposed as score functions, for example, (Morota et al., 2012) used
the Bayesian Dirichlet equivalent (BDe) (Heckerman, 1995), a suitable choice for a data set including
discrete variables. In this study, the Tabu search was combined with a score equivalent Gaussian posterior
density (BGe) (Geiger and Heckerman, 1994) that is a posterior probability of the graph’s structure given
the data for settings consisting of Gaussian variables.

2.2.5 Equivalent structures

In most cases, constraint-based algorithms return a partially directed acyclic graph (PDAG),
that only assign directions to edges whose d-separations are supported. PDAGs represent classes of
statistically equivalent BN structures (same joint probability distributions), with no cycle, containing
directed edges only for nodes participating in a v-structure (also called unshielded collider: two converging
arrows whose tails are not connected, e.g., an ordered triple of nodes X1 → X2 ← X3 such X1 and X3

are not adjacent).
Noteworthy, if the edges are directed in a PDAG, all the possible solutions in the equivalence

class agree with their orientation. Otherwise, for each undirected edge, there are at least two DAGs in
the equivalence class whose corresponding edges point into opposite directions. Although score-based
algorithms do not result in PDAGs, is straightforward to detect the equivalent class responsible for the
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DAG provided. DAGs are Markov equivalent if and only if they have the same skeletons and the same
set of v-structures (Verma and Pearl, 1990).

According to Cheng, Bell and Liu (1997), in small sample size and noisy data, score-based algo-
rithms are more accurate since they search the whole model space to find the optimal model. Therefore,
we recovered the equivalence class of the output provided by the score-based algorithm and used prior
knowledge to select the most likely architecture for the biological system within this class. Afterwards,
the resulting structures for both fruits were evaluated using SEM.

2.2.6 Structural Equation Models

A SEM can be seen as a multiple equation system where response variables of one equation
can be included as covariates in another one. The system may be used to express how each variable in
the left hand side is causally affected by their causal parents in the right hand side. The construction of
SEM can be guided by DAGs, as they can express how variables are causally related. These models can
be used to study recursive and simultaneous relationship among phenotypes in multivariate systems.

A general SEM, with p + q observed variables, such that q are exogenous (whose values are
completely influenced by factors ignored by the model) and p are endogenous (values influenced by
exogenous and other endogenous variables), can be expressed mathematically as

y = Λy + Γx + e, (2.3)

where y is a (px1) vector of endogenous observed variables; Λ is a square (pxp) matrix with zeros
in the diagonal and structural coefficients in the off-diagonals defining the relations among endogenous
variables; Γ is a (pxq) matrix defining the relations from exogenous to endogenous variables; x is a (qx1)
vector of exogenous observed variables; and, e is a (px1) vector of residuals. For more details on the
model and its applications in the context of quantitative genetic and biology, see (Rosa et al., 2011;
Shipley, 2002).

Fitting a SEM involves minimizing the difference between observed and predicted patterns of
covariation among variables (Shipley, 2002). In other words, conditionally on a given causal structure
among variables, the values for the free parameters should be chosen in a way that makes the predicted
and observed covariance matrices as similar as possible. This is usually performed by using maximum
likelihood (ML) estimation, which is equivalent to minimizing the following criterion (Grace and Bollen,
2005):

FML = ln|(Σ(Θ))|+ trace[SΣ−1(Θ)]− ln|S| − (p+ q), (2.4)

where Σ(Θ) and S are the predicted and observed covariance matrices, respectively, involving
p endogenous and q exogenous variables.

The ML estimation method assumes a multivariate normality distribution for the variables.
Considering a sample of N observations, the asymptotic distribution of (N − 1)FML is a χ2 with s − t
degrees of freedom, where s is the number of non-redundant elements in the symmetrical matrix S
and t is the number of parameters to be estimated, under the assumption that the model is correct
(Shipley, 2002). Therefore, this statistic is used to test if the model fits the data; i.e., the null hypothesis
H0 : S − Σ(Θ) = 0. Notice that the interpretation of the test result is the opposite of that normally
used in typical statistical tests as a consequence of the different meaning of the null hypothesis, i.e., here
it would be interesting not to reject the null hypothesis, since it would guarantee the proximity between
observed and predicted covariance matrices.

The χ2 statistical significance test is sensitive to sample size (Hooper, Coughlan and Mullen,
2003), such that the model tends to be rejected more when samples are large (Bentler and Bonett, 1980).
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On the other hand, when sample sizes are small, it is susceptible to type II error (incorrectly keeping a
false null hypothesis), leading to difficulty to distinguish good and poor models (Kenny and McCoach,
2003). To avoid this dilemma, sample size should be evaluated relative to the number of free parameters
to be estimated in the model (Shipley, 2002). One rule of thumb is that there should be at least five
times more experimental units than free parameters (Bentler, 1990).

Evaluating the fit of a SEM it is not a simple task, because there is no benchmark statistical test
that identifies whether a model is correctly adjusted. Therefore, it is necessary to consider several criteria
simultaneously to evaluate the quality of adjustment. According to Schermelleh-Engel, Moosbrugger and
Müller (2003), model evaluations can be assessed inferentially by the χ2 test or descriptively by other fit
indices as goodness-of-fit (GFI), adjusted goodness-of-fit (AGFI), root mean-squared error approximation
(RMSEA) and many others.

The RMSEA evaluates the fit of a studied non-saturated model relative to a saturated model,
i.e., a model that is complex enough to be compatible to any covariance pattern among variables. Small
values for this criterion indicate that the tested model fits nearly as well as a saturated model (Fox, 2002).
RMSEA values ≤ 0.05 can be considered as a good fit, values between 0.05 and 0.08 are deemed as an
adequate fit, and values between 0.08 and 0.10 correspond to a mediocre fit. Values superior to 0.10
are not acceptable (Browne and Cudeck, 1992). The GFI are an alternative to the χ2 test, calculating
the proportion of variance that is accounted by the model (Hooper, Coughlan and Mullen, 2003). The
AGFI adjusts the GFI based upon degrees of freedom. Several cutoffs for the GFI and AGFI have been
proposed, but consensus indicates it should be close to 1 (Fox, 2002).

In this study, path coefficients were estimated by ML and their magnitudes tested by Wald test,
which is based on the ratio of each regression coefficient estimate to its standard error, that is distributed
as a z statistic. This test potentially locates the path coefficients that can be considered zero without
impairing the fit of the model (Bentler, 1990). As recommended by Iriondo, Albert and Escudero (2003),
non-significant parameters can be eliminated from the model in order to improve it, especially if their
theoretical interpretation is weak. On the other hand, when the model is considered to be poor by the
criteria of goodness-of-fit, it is possible to use the modification indices proposed by Sorbom (1989) to
include as much as possible of what is known about the dataset. This method is a chi-square statistic, each
on one degree of freedom (Lagrange multiplier), and can be regarded as an estimate of the improvement
in the likelihood-ratio chi-square statistic for the model if one respective parameter is considered in the
model as a free parameter.

All analyzes were performed using the R statistical software (The R Core Team, 2013), including
the packages “bnlearn” (Scutari, 2009) and “sem” (Fox, Nie and Byrnes, 2012).

2.3 Results

2.3.1 Exploratory data analysis

A descriptive exploratory analysis was conducted (Table 2.3). Coefficients of variation (CV) of
the phenotypic traits of star apple [mamey sapote] varied from 8.21% [9.28%] for seed diameter (SED)
up to 43.85% [33.68%] for fruit weight (FRW). The phenotypic difference between these two species is
evident by the divergent averages. The mamey sapote is longer with ellipsoidal shape while star apple is
spherical, what reflects on fruit length (FRL) and fruit diameter (FRD). Seed length and diameter follow
the same trend as fruit shape in mamey sapote, and seed weight is ten times higher for mamey sapote
than for star apple. However, CVs of traits are relatively similar for both fruit types.

An important assumption associated with many structure learning algorithms and the use of
maximum likelihood estimation methods in SEM is the presence of multivariate normality among observed
variables. Royston’s multivariate normality test (Royston, 1983) indicated multivariate normality for the
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Table 2.3. Mean followed by standard error (in parentheses), min – max and coefficient of variation (%,
in square brackets) for all phenotypic traits.

Variable Sapotaceae family
Mamey sapote Star apple

FRW (g) 380.81 (16.16) 100.10 (6.27)
173.6 – 693.6 [33.68%] 42.80 – 244.7 [43.85%]

FRL (mm) 98.38 (2.02) 56.06 (1.16)
64.6 – 135.7 [16.30%] 40.41 – 74.3 [14.54%]

FRD (mm) 83.36 (1.28) 54.86 (1.14)
62.8 – 106.2 [12.19%] 42.51 – 78.8 [14.55%]

PET (mm) 1.93 (0.05) 2.71 (0.10)
1.0 – 2.9 [21.27%] 1.23 – 4.6 [25.42%]

PEW (g) 52.38 (2.11) 33.58 (1.99)
24.4 – 96.2 [31.96%] 14.90 – 81.0 [41.49%]

SEL (mm) 62.22 (0.90) 18.48 (0.29)
45.1 – 76.6 [11.55%] 12.92 – 22.7 [10.85%]

SED (mm) 33.17 (0.39) 12.24 (0.14)
23.0 – 41.5 [9.28%] 10.28 – 16.3 [8.21%]

SEW (g) 40.28 (1.17) 4.85 (0.20)
18.4 – 59.9 [23.03%] 2.01 – 8.9 [28.75%]

1FRW: Fruit weight; FRL: Fruit length; FRD: Fruit diameter; PET: Peel thickness; PEW: Peel weight;
SEL: Seed length; SED: Seed diameter; SEW: Seed weight.

mamey sapote (H = 11.65; p = 0, 096) and star apple (H = 9.28; p = 0, 079) dataset. Before this test,
as recommended by Box-Cox, a logarithmic transformation has been applied to the phenotypic values of
star apple, besides SEL and FRL.

2.3.2 Structure learning of Bayesian networks

Structures resulting from learning algorithms are shown in Figure 2.1 for both fruits. Each
row represents a different method: (I) IAMB with α = 0.05; (II) IAMB with α = 0.20; and, (III) Tabu
search. The stability of the structures was evaluated via Jackknife resampling, computing the frequency
of each edge and respective orientation during the process. These values are shown beside the edges
(percentage of occurrence of the connection/ percentage with same orientation). Black edges depict the
original output provided by the algorithms, while gray edges represent pathways that only appeared
during Jackknife process. Structures recovered by Tabu search were 100% stable.

Although the original connections have remained stable (> 80%) in the structures from the
IAMB algorithm (except the paths FRL → PEW [65.3%;α = 0.05] and FRW → PEW [53.1%;α =

0.20] in star apple), there was no evident agreement regarding the orientation in most cases, especially
when the type I error rate was fixed to 0.20. In addition, the Jackknife process revealed some extra
edges in the IAMB output, such that all of them were detected using Tabu search, except the pathway
FRW–FRL in mamey sapote.

Bold edges (Figure 2.1) highlight fixed edges in the equivalence class of the results provided by
Tabu search, i.e., of all possible solutions with the same joint probability distribution, these edges always
have fixed orientation. In mamey sapote, two v-structures were recovered by Tabu search: FRW →
FRD ← FRL and SEL → SEW ← SED. The latter one was only detected in the IAMB with
α = 0.20. The structure with a shielded collider, FRD → SEL ← FRL, is also a fixed path since
SEL → FRD is not possible because it would create a new v-structure (FRW → FRD ← SEL).
Consequently, we set FRL → SEL to avoid a cycle. In star apple, the v-structure PET → PEW ←
FRL, recovered by IAMB, would not be recovered if the path PET–FRL (detected by Jackknife) was
considered. Indeed, PET–FRL appears in the Tabu search output, which only showed the v-structure
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Figure 2.1. Structure learning by IAMB algorithm (α = 0.05 and α = 0.20) and Tabu search for
both fruits. Numerical values represent the results of Jackknife resampling (percentage of occurrence the
connection/ percentage with same orientation). Black edges depict the original output provided by the
algorithms, while gray edges represent pathways detected during Jackknife process. Bold edges highlights
fixed edges in the equivalence class of the structures provided by Tabu search.

FRL→ SEW ← SED, which was not detected by the IAMB algorithm.
Comparing the results of the two structure learning algorithms and taking into account the

pathways detected via Jackknife resampling, one can see similarities regarding the connections recov-
ered. All edges detected by IAMB with α = 0.20 were also detected by Tabu search (except the path
FRW–FRL), though not always with the same directions. Both methods showed clusters of traits re-
sponsible for similar roles in the fruits analyzed: seed traits (blue), peel traits (yellow) and fruit traits
(green). However, the pattern of connection among traits differ with respect to the fruit.

Regarding the phenotypic architecture of both fruits, one can observe remarkable similarities.
Table 2.4 presents counts of undirected and directed edges for the learning algorithms, and also the number
of common connections and directed edges for both fruits. From six connections recovered for star apple
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using IAMB with α = 0.05 , four were also recovered for mamey sapote: FRW–FRD, PET–PEW ,
FRL–PEW and SED–SEW . One more common connection (FRW–PEW ) was detected using IAMB
with α = 0.20. Tabu search recovered 11 directed edges for both fruits, six of them were in common:
FRW → PET , FRW → PEW , FRW → FRD, PEW → FRL, PEW → PET and SED → SEW .

Table 2.4. Number of undirected and directed edges for mamey sapote and star apple along with the
number of connections and directions in common.

Algorithms Mamey sapote Star apple Common edges
U (D) U (D) C (C+D)

IAMB (α = 0.05) 7 (2) 4 (2) 4 (0)
IAMB (α = 0.20) 1 (6) 4 (3) 5 (3)

Tabu search 0 (11) 0 (11) 6 (6)
1Note: U – undirected edges; D – directed edges; C – connections.

2.3.3 Networks selected from structure learning and prior knowledge

Following the structure learning study, we used the networks provided by Tabu search as a
starting point for fitting a SEM. This decision was taken after evaluate the stability of structures and,
principally, due to the sample size of our data set, as commented in Material and Methods Section. In
addition, the constraint-based methods did not assign a direction to every edge due to their reliability on
the d-separation criterion. For example, the seed triplet (SEL–SED–SEW ) in the star apple structure
(blue in Figure 2.1), recovered by IAMB, could be directed in three different ways, which correspond to
the same joint distribution:

(i) SEL→SED→SEW :

P (SEL, SED,SEW ) = P (SEW | SED)P (SED | SEL)P (SEL)

(ii) SEL←SED←SEW :

P (SEL, SED,SEW ) = P (SEL | SED)P (SED | SEW )P (SEW ) =
P (SEL,SED)
P (SED)

P (SED,SEW )
P (SEW ) P (SEW ) =

[P (SED | SEL) P (SEL)
P (SED) ][P (SEW | SED) P (SED)

P (SEW ) ]P (SEW ) =

P (SEW | SED)P (SED | SEL)P (SEL)

(iii) SEL←SED→SEW :

P (SEL, SED,SEW ) = P (SEL | SED)P (SEW | SED)P (SED) =
P (SEL,SED)
P (SED) P (SEW | SED)P (SED) =

[P (SED | SEL) P (SEL)
P (SED) ]P (SEW | SED)P (SED) =

P (SEW | SED)P (SED | SEL)P (SEL)

In contrast, using Tabu search, SED → SEW was part of a v-structure (FRL → SEW ←
SED) not revealed by IAMB.

In this way, we recovered the equivalence class of the resulting DAGs provided by Tabu search
and used prior knowledge to select the most likely architecture for the biological system within this
class. Bold edges in Figure 2.1 represent fixed edges belonging to the equivalence classes of the resulted
structures, i.e., all the possible solutions in the equivalence class are in accordance with their orientation.
The final graphs are depicted in Figure 2.2.
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2.3.4 Structural equation models

Both causal models depicted in Figure 2.2 consist of systems composed of eleven equations,
each representing an autonomous mechanism governing one variable. The error variables are not shown
explicitly in the graph, and by convention they are assumed to be mutually independent (Pearl, 2000).
Standardized path coefficients were estimated through maximum likelihood and are shown in Figure
2.2. In star apple structure, the path coefficients of FRL → FRW (λ(FRW,FRL) = 0.15; p = 0.109) and
FRL→ SEW (λ(SEW,FRL) = 0.26; p = 0.056) were not significant by Wald test. However, we have kept
these paths in the model due to their biological meaning.

Figure 2.2. Structures resulting from the use of prior knowledge in choosing the most likely architecture
for the biological system in the equivalence class provided by Tabu search. Numerical values represent
standardized path coefficients estimated by the maximum likelihood method. All of them were significant
(p<0.05), except those with an asterisk after the path coefficient.

Models’ χ2 tests indicated that the null hypothesis should not be rejected (Table 2.5), i.e.,
observed and predicted covariance matrices are statistically equivalent for both models. Goodness-of-fit
evaluations (Table 2.5), using the thresholds proposed in the literature (Hooper, Coughlan and Mullen,
2003; Fox, 2002; Browne and Cudeck, 1992; Miles and Shevlin, 1998), indicated that the models fit the
data well.

Table 2.5. Models’ chi-square statistic and goodness-of-fit criteria

Mamey sapote Star apple
χ2 χ2

17 = 12.81(p = 0.749) χ2
17 = 13.29(p = 0.716)

GFI 0.95 0.94
AGFI 0.89 0.88

RMSEA <0.001 <0.001

Although all path coefficients in mamey sapote have been significant by Wald test p < 0.05, the
paths FRD → SEL and PEW → SED, not detected with IAMB with α = 0.05, were not significant
considering p < 0.01. When removing these paths of the model, the goodness-of-fit measures (χ2

19 =

23.63(p = 0.749);GFI = 0.92;AGFI = 0.85;RMSEA = 0.063) indicated a reasonable fit to the data.
In star apple, removing the paths FRL→FRW and FRL→SEW, which were not significant by Wald test
p < 0.05, the goodness-of-fit measures (χ2

19 = 19.71(p = 0.413);GFI = 0.91;AGFI = 0.84;RMSEA =

0.028) indicated that model also fits well the data. Here, we decided to keep these paths in the models,
however, further studies are required since they can be false positives.

Path coefficients (Figure 2.2) were standardized to account for the different units used for the
different traits. In this way, the impact of one standard deviation difference in one variable can be
compared to a standard deviation difference in another (Grace and Bollen, 2005). Two path coefficients
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in mamey sapote (PEW → FRW and FRW → FRD) and one in star apple (PEW → PET ) were
estimated to be larger than one, such result is possible when there is multicollinearity in the data. The
common misconception that such result is not possible probably stems from classical exploratory factor
analysis where factors are standardized and orthogonal (Jöreskog, 1999). Here, however, the variables
are correlated and the loadings among them are regression coefficients, which can be greater than one.

There are six common directed edges in both structures (FRL → PEW , PEW → PET ,
PET → FRW , PEW → FRW , FRW → FRD and SED → SEW ) and FRL affects directly or
indirectly all the traits. In mamey sapote, FRL has a negative direct effect on FRD(−0.46) and an
indirect by the pathways FRL → PEW → PET → FRW → FRD(−0.18) and FRL → PEW →
FRW → FRD(1.01), which together have a total effect of 0.37 on FRD. In contrast, in star apple,
FRL only affects FRD indirectly by the pathways FRL → FRW → FRD(0.15), FRL → PEW →
PET → FRW → FRD(−0.34), FRL→ PEW → FRW → FRD(0.86) and FRL→ PET → FRW →
FRD(0.23), which together have a total effect of 0.90 on FRD. Thus, in mamey sapote, a change of
one standard deviation in FRL causes a change of 0.37 in FRD, revealing its ellipsoidal shape. In star
apple, however, a change of one standard deviation in FRL causes a change of 0.90 standard deviation
in FRD, displaying its spherical shape.

Regarding the effect of FRL on SEL in mamey sapote, FRL directly affects SEL(0.89) and
indirectly by the pathways FRL → FRD → SEL(0.06), FRL → PEW → PET → FRW → FRD →
SEL(0.02) and FRL → PEW → FRW → FRD → SEL(−0.14), which together have a total effect
of 0.83 on SEL. In star apple, FRL only affects SEL indirectly by the pathways FRL → PEW →
PET → FRW → SED → SEL(−0.14), FRL → PEW → FRW → SED → SEL(0.35), FRL →
PET → FRW → SED → SEL(0.09) and FRL → FRW → SED → SEL(0.06), which together have
a total effect of 0.36 on SEL. Thus, a change of one standard deviation in FRL causes a change of 0.83
on SEL in mamey sapote, revealing that seeds length is influenced by the fruit length. In star apple, a
change of one standard deviation in FRL causes a change of 0.36 on SEL, showing that FRL has not
such a large effect on SEL.

The causal pathways bring us a lot of information about these fruits, however, their absence
is even more important. For example, FRD does not affect any trait in star apple structure. So any
intervention on FRD would not affect the seed traits for this fruit, i.e., industries interested in seeds as
raw material cannot expect a positive effect for seed yield from changing FRD. On the other hand, a
change will probably also have no negative effect so one does not need to take care for keeping FRD
constant or improving it.

2.4 Discussion

It is known that the number of potential edges in a causal graph grows exponentially with
increasing the number of variables in study. Prior knowledge helps to accelerate the enormous search
task of the learning algorithms, since it puts some restrictions in the search space. Purely data-driven
analyses allow to explore and compare unintuitive structures additionally and rank them according to
goodness-of-fit indexes. Relying on prior knowledge alone to assess phenotypic structures, as in many
studies (Iriondo, Albert and Escudero, 2003; Albert, Escudero and Iriondo, 2001; Del Cacho, Peñuelas
and Lloret, 2013), might lead to missing interesting connections and to excessive distances between the
observed and predicted covariance matrices. Therefore, combining structure learning algorithms with
prior knowledge is important when recovering the underlying network of complex systems.

It is unfeasible to indicate which structure learning algorithm provided an output closer to
the true biological network, since it is unknown. Each study requires a reflection on which algorithm
best supports the data, e.g. based on goodness-of-fit or predictive ability. Constrain-based methods are
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more conservatives than score-based ones because they only identify the direction of an edge if there
is good support from the data. They can therefore be more efficient in studies with large sample sizes
(Peñagaricano et al., 2015; Morota et al., 2012; Valente et al., 2010). However, the detection of conditional
independencies is susceptible to failure in hypothesis tests, and they also may not assign a direction to
every edge due to their reliability on the d-separation criterion, which is unsatisfying and problematic
when it comes to translating the structure into a SEM. Thus, score-based approaches are generally
preferred in studies with small sample size and noisy data (Cheng, Bell and Liu, 1997; Su et al., 2013).

The downside of score-based algorithms is on the other hand that their directing of edges is
not as reliable as it is in constraint-based approaches. One therefore need to interpret the connections
carefully with regard to their causal nature. It is helpful here to recover the equivalence class of the
resulting DAG and use prior knowledge to select the most likely architecture for the biological system
within this class, as shown in this study.

It should be stressed the potential presence of genetic confounders that could change the result-
ing Bayesian network configuration. There are many structure learning algorithms that take into account
genetic data. Valente et al. (2010) proposed a constraint-based methodology that considers the total poly-
genic effect acting over the traits. They recovered the causal structure conditioned on the genetic effects.
Neto et al. (2010) proposed a hybrid algorithm that considers QTLs information as instrumental variables
to orient the pathways of the phenotypic network. Peñagaricano et al. (2015) described a methodology
for assessing causal networks involving latent variables and genetic confounders. Therefore, analyzing
the phenotypic networks provided by this study considering genetic effects or other confounders warrants
further investigation.

Here, the use of SEM enabled the comparison of competing models and provided a causal
interpretation of the biological system studied. In contrast to other approaches, such as multiple-trait
analysis, SEM do not only allow significance tests of individual path coefficients, but also provide some
goodness-of-fit of indices of the whole models. The models studied here could theoretically be analyzed
with fewer assumptions, which would make the model more complex (e.g. the assumption of independent
error terms), and also be extended to include additional variables such as marker/QTL genotypes and
even latent variables.

2.5 Conclusions

Using structure learning algorithms of BN along with biological knowledge and reasoning, it was
possible to understand the underlying causal phenotypic architecture of two fruit species of the Sapotaceae
family. This procedure explores thoroughly all important and potentially unknown relationships among
phenotypic traits. Despite being species from different genus, recovered structures were highly similar. It
is therefore likely that the presented findings are transferable to other species of the Sapotaceae family,
but further investigations relating other fruits are required. Specific knowledge of the networks can be
of great value in agriculture production for the development of optimal management interventions and
selective breeding.
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3 GENOME-WIDE ASSOCIATION STUDIES USING THREE DIFFERENT METHODS
FOR QTL DETECTION IN AN F2 DUROC X PIETRAIN RESOURCE POPULATION

Abstract: The use of high-density single nucleotide polymorphism (SNP) panels has
increased significantly the quantitative trait loci (QTL) mapping resolution and its applications have
extended to outbred populations. The main purpose of this study was to compare results obtained
from three different methodologies for genome-wide association studies (GWAS), using 35 traits
measured in an F2 Duroc x Pietrain pig population, a single-marker regression, a ridge regression
BLUP and a Bayes Cπ. Results showed that these methods were equally efficient in the detection of
QTL regions, however we suggest the use of more than one for GWAS. In addition, important genomic
regions on chromosomes 6 and 15 were detected associated with the expression of fat deposition and
meat quality traits. QTLs situated in this regions can be used to assist on the process of learning
phenotypic causal networks in the F2 pig population considered here, such that their absence in the
modeling can bias the structures searches.
Keywords: Single-marker regression; Ridge regression BLUP; Bayes Cπ; Pleiotropic genomic regions

3.1 Introduction

Duroc and Pietrain are breeds utilized worldwide that have experienced intensive selection.
These breeds have dominated the global pig industry. Duroc pigs grows faster and have more backfat
than Pietrain (Edwards, Tempelman and Bates, 2006; Edwards et al., 2008a; Choi et al., 2010; Qiao et al.,
2015). Several pig populations have been genotyped using microsatellite marker panels for quantitative
trait loci (QTL) identification, including the F2 Duroc x Pietrain (Edwards et al., 2008a,b). However,
fine mapping of these QTL is limited due to low mapping resolution. Thus, with the development of the
high-density single nucleotide polymorphisms (SNPs) panels for pig genotyping (Ramos et al., 2009), that
contains more than 60K SNPs (Porcine SNP60 Beadchip), QTL identification efforts have been intensified
followed by changes in the types of population structure used for research studies, from intercrosses to a
broad range of outbred and admixed populations (Ernst and Steibel, 2013).

Genome-wide association studies (GWAS) allow identifying genes that contribute to define
the expression of economically important traits in pig breeds. Compared to QTL mapping that use
microsatellite markers (e.g., Ai et al. (2012); Edwards et al. (2008a,b)), GWAS using high-density SNPs
is more capable of capture enough linkage disequilibrium (LD) to identify strongest causal variants. The
top SNPs are usually close to causal mutations, which allows pinpointing out the most likely candidate
genes (Qiao et al., 2015).

GWAS have been successfully applied in pig populations (Sahana et al., 2013; Okumura et
al., 2013; Qiao et al., 2015; Duarte et al., 2016; Casiró et al., 2017) and have been confirmed several
QTLs previously reported through QTL mapping using microsatellites. For example, Qiao et al. (2015)
performed a single-marker GWAS to analyze traits related to growth and fatness in two experimental
populations: White Duroc x Erhualian F2 intercross and a Chinese Sutai half-sib. Duarte et al. (2016)
implemented GWAS in an F2 Duroc x Pietrain population to identify genomic regions associated with
traits related to growth and fat deposition, they calculate SNP effects by linear transformation of the
genomic estimated breeding values (EBV) and, afterwards, selected and tested genomic segments of 2Mb
that were built considering the SNPs with smallest p-values.

In this context, this study was carried out to identify genomic regions, containing major genes
(genes that have markedly larger effects than the others), associated with the expression of multiple traits
(pleiotropy) in an F2 Duroc x Pietrain pig population. 35 traits related to growth, carcass and meat
quality were measured and submitted to analysis. Unlike the authors mentioned above, here we use three
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different methodologies for GWAS: a single-marker regression (SMR), a ridge regression BLUP (RR) and
a Bayes Cπ (BC). These methods were then compared regarding the SNP peaks detected in each of them.

3.2 Material and Methods

3.2.1 Data set

Animal protocols were approved by the All University Committee on Animal Use and Care at
Michigan State University (Animal use form number 09/03-114-00). A 3rd-generation population from
the Michigan State University Swine Teaching and Research Farm, East Lansing, MI, was used in this
study (Edwards et al., 2008a,b). The initial generation (F0) were 4 unrelated Duroc boars mated to
15 Pietrain sows by artificial insemination. From the F1 progenies, 50 females and 6 males (sons of 3
F0 sires) were selected, avoiding full or half sibling matings, to produce the 1,259 F2 piglets born alive
in 142 litters across 11 farrowing groups. Phenotypic data for growth, carcass and meat quality traits
(Table 3.1) were collected for approximately 950 F2 pigs (details about animal management procedures
and phenotyping can be consulted in Edwards et al. (2008a,b)).

Genotyping was performed using two SNP marker panels. 411 animals (including animals F0,
F1 and 336 F2) were genotyped using the Illumina PorcineSNP60 BeadChip (Ramos et al., 2009), and
the remaining F2 animals were genotyped using the GeneSeek Genomic Profiler for Porcine LD 9k SNP
panel (GGP-Porcine, GeneSeek a Neogen Company, Lincoln, NE), which were imputed to the Illumina
PorcineSNP60 Bead Chip (Duarte et al., 2013). The editing procedures performed, excluding SNPs with
minor allele frequency below 0.05 and also removing animals with more than 10% of SNP missing, resulted
in a data set with records from 940 pigs (F0, F1 and F2) having 42,234 SNP per animal.

3.2.2 Models and statistical analysis

In this section, we detail the methods considered in this study: single-marker regression, ridge
regression BLUP and Bayes Cπ. In all of them is possible to include the genomic and/or pedigree
relationship matrix to control for polygenic background effects. The main difference is that in SMR the
markers are independent of each other and fitted as a linear covariate; in RR, all SNPs were jointly
considered in the genomic relationship matrix; and, in BC, a prior distribution was assigned to the
proportion of markers included in the model.

3.2.2.1 Single-marker GWAS

Among the statistical methods for correcting confounders in GWAS are the linear mixed models
(LMM), that can capture confounding by population structure, family structure and hidden relatedness
simultaneously, without knowledge of which are present. LMMs use measures of genetic similarity to
capture the probabilities that pairs of individuals have causative alleles in common (Lippert et al., 2011).
This approach is based on a series of single-marker association analyses, such that the following model
was used for each SNP j (j = 1, 2, ...,M):

y = Xβ + mjgj+Zu + e (3.1)

where y is the vector of phenotypes; β, is a vector of fixed effects of sex and litter; mj is a
vector of genotypes for SNP j (j = 1, 2, ...,M), coded as -1, 0 and 1 for AA, AB and BB, respectively; gj
is the SNP effect, assumed fixed; u is a vector of polygenic effect, assumed u ∼ N(0,Gσ2

u), where G is
the genomic relationship matrix calculated from the molecular markers as proposed by VanRaden (2008);
e is a vector of residuals, assumed e ∼ N(0, Iσ2

e), where σ2
e represents non-genetic variance assumed to be

acting independently on individuals, and I is an identity matrix; X and Z are known incidence matrices.
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It should be noted that the polygenic effect u is included in the model to account for population
structure and hence reduce false positive results. A likelihood ratio test can be used for assessing the
significance of each SNP at a time.

These analyses were implemented using the factored spectrally transformed linear mixed models
(FaST-LMM - Lippert et al. (2011)). The FaST-LMM implementation reparametrizes the maximum
likelihood (ML), or the restricted maximum likelihood (REML), as a function of only a single parameter
δ = σ2

e/σ
2
u (the ratio of the residual variance to the genetic variance) and, thus, the identification of the

ML (or REML) parameters becomes an optimization over δ. In addition, FaST-LMM requires only a
single spectral decomposition to test all SNPs and, consequently, provides a decrease in computational
time (Lippert et al., 2011). Genome-wide significance threshold was defined according to Bonferroni
method as 0.05/N , where N is the number of informative SNPs.

3.2.2.2 Ridge Regression BLUP

According to Endelman (2011), the ridge regression was one of the first methods proposed
for genomic selection, which is equivalent to best linear unbiased prediction (BLUP) in the context of
mixed models. The RR-BLUP simultaneously estimates all marker effects, assuming they are random
effects with homogenous variance and normal distribution (Whittaker, Thompson and Denham, 2000;
Meuwissen, Hayes and Goddard, 2001).

The following model was used:

y = Xβ+Mg + e (3.2)

where y is the vector of phenotypes; βis a vector of fixed effects of sex and litter, and X its
incidence matrix; g ∼ N(0, Iσ2

g) is a vector of marker effects and M its genotype matrix, coded as -1, 0
and 1 for AA, AB and BB, respectively; and, e ∼ N(0, Iσ2

e) is a vector of residuals, where σ2
e represents

non-genetic variance and I an identity matrix.
Particular cases (e.g. Bayesian Ridge Regression, Bayesian Lasso, Bayes A, Bayes B, and Bayes

Cπ) can be specified from the general model above by assuming different distributions for the SNP effects
(Gianola et al., 2009).

The analysis was implemented using the “rrBLUP” package (Endelman, 2011). Variance com-
ponents were estimated by REML using the spectral decomposition algorithm of (Kang et al., 2008).

3.2.2.3 Bayes Cπ

Bayesian models allow that a huge number of markers can be analyzed simultaneously, such
that the data are modeled at two levels: at the level of the data and at the level of the variance of genetic
markers. Meuwissen, Hayes and Goddard (2001) presented two hierarchical Bayesian models, BayesA
and BayesB, and Habier et al. (2011) proposed the BayesCπ.

The statistical model for BayesCπ is similar to that considered in RR (model 3.2), however
here it is assumed that only a few genetic markers contribute with genetic variance and others have null
effect. The prior distribution of marker effects is:

p(gj | σ2
gj , π) =

0 with probability π

∼ N(0, σ2
gj ) with probability (1− π)

where π is the proportion of markers with null genetic effetcs (treated as unknown) and it is
assigned a Beta prior π ∼ Beta(p0, π0) with p0 > 0 and π0 ∈ [0, 1]. The priors of all SNP effects have
a common variance, σ2

gj = σ2
g , which has a scaled inverse chi-square prior with parameters vg and Sg,
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where Sg is derived from the expected value of a scale inverse chi-square distributed random variable.
Thus, the effect of a SNP fitted with probability (1-π) comes from a mixture of multivariate student’s
t-distributions, t(0, v, IS) (Habier et al., 2011).

The analysis was performed using the BGLR package (de los Campos and Pérez-Rodriguez,
2013). It was assigned flat priors for fixed effects, specifically a Gaussian prior with mean zero and
variance 1010. By default, the following hyper-parameters values was adopted vg = 5, p0 = 10 and
π0 = 0.5. The scale parameter Sg is solved for to match the desired variance partition (Pérez and de los
Campos, 2014). Inference of model parameters was done through Markov Chain Monte Carlo (MCMC)
algorithm, which consists of Gibbs sampler steps. In this study, we considered a burn-in of 20,000, thin
of 20 cycles out of 60,000.

3.3 Results and Discussion

Firstly, the 35 phenotypic traits measured in the F2 pig population were submitted to descriptive
analysis. Table 3.1 shows each trait and its label, followed by its mean, standard error and coefficient of
variation.

Using the three models described in the last section to search for pleiotropic genomic regions
of great influence on the 35 phenotypic traits, important genomic regions were detected in the porcine
chromosomes (SSC) 6 and 15, which appeared associated to a great number of traits. In this way, we
specifically explored these two chromosomes. However, in the Appendix B (Table B.2. and B.3.) it is
presented the three largest SNP peaks, and its position in the chromosome, for each of the 35 traits
considered in this study, as well as the Manhattan plots, resulted from the use of the three models
adopted: SMR, RR and BC.

Figure 3.1 shows one of the analyzes considering the three models for one of the phenotypic trait
related to fat deposition: 10-th rib backfat in the sixteenth week. One can observe the great similarity
among the models. In the first line of the Figure 3.1 are presented two Manhattan plots obtained from
the application of SMR, the first chart considering the p-value of each SNP, together with the Bonferroni
threshold, and the second, considering SNPs effects. In the second line of the figure, are the Manhattan
plots, considering SNPs effects, resulting from the application of RR and BC, respectively.

According to the Figure 3.1, a great association between a region located on SSC6 and the
analyzed trait was detected. Thus, we decided to explore the association of SSC6 with other phenotypic
traits using the three models. Table 3.2 shows the result, in which each trait is followed by the corre-
sponding SNP peak on SSC6 and its position in Megabase (Mb). It should be noted that in the SMR
method a Bonferroni threshold was considered and, thus, effects followed by an asterisk indicate that the
p-value of the association between trait and SNP was smaller than the critical Bonferroni threshold.

Considering the most recent studies (Casiró et al., 2017; Duarte et al., 2016), in which the same
dataset was used, we highlight here the detection of association between a greater number of traits with
genomic regions on SSC6. Casiró et al. (2017) identified association of three traits (tenth rib backfat
thickness, last-lumbar vertebrae backfat thickness and loin weight) with SNP genotypes on SSC6. The
95% confidence interval for those QTL peaks overlapped each other and defined a large QTL region
(between 127.6 and 140.8 Mb) on SSC6. They reported the previous identification of QTLs associated
with backfat and loin weight traits in low-resolution linkage analyses studies (Edwards et al., 2008a; Choi
et al., 2011), but emphasized that QTLs associated with last vertebrae lumbar backfat thickness has not
been reported before. Edwards et al. (2008a) and Choi et al. (2010) performed a QTL mapping using
microsatellite and showed putative QTLs on SSC 6 for fat deposition ranging from 134 to 143 cM and
164 to 174 cM, respectively.
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Table 3.1. Descriptive statistics (mean, standard error and coefficient of variation) of the phenotypic
traits measured in the F2 Duroc x Pietrain resource population

Label Trait Mean (SE) CV (%)
BF10 10wk 10th-rib backfat (mm) 7.964 (0.058) 22.26
LRF10 10wk last-rib backfat (mm) 6.109 (0.035) 17.45
BF13 13wk 10th-rib backfat (mm) 9.725 (0.087) 27.46
LRF13 13wk last-rib backfat (mm) 7.131 (0.045) 19.39
BF16 16wk 10th-rib backfat (mm) 12.345 (0.112) 27.90
LRF16 16wk last-rib backfat (mm) 9.565 (0.075) 23.90
BF19 19wk 10th-rib backfat (mm) 15.926 (0.164) 31.58
LRF19 19wk last-rib backfat (mm) 11.794 (0.108) 27.99
BF22 22wk 10th-rib backfat (mm) 19.912 (0.209) 32.15
LRF22 22wk last-rib backfat (mm) 14.377 (0.136) 29.00
TFAT 22wk total body fat tissue (kg) 11.332 (0.103) 27.89
EBP 22wk empty body protein (kg) 9.968 (0.063) 19.27
DP dressing percent (%) 73.000 (0.069) 2.90
CY cook yield (%) 77.268 (0.093) 3.68
WBS Warner-Bratzler shear force (kg) 3.208 (0.023) 21.41
JC juiciness (1 to 8) 5.231 (0.019) 11.25
TD tenderness (1 to 8) 5.552 (0.020) 11.08
OTD overall tenderness (1 to 8) 5.627 (0.018) 9.84
MB marbling (1 to 10) 2.824 (0.028) 30.00
FM firmness (1 to 5) 2.855 (0.026) 27.63
DL drip loss (%) 1.831 (0.038) 64.07
CT45 45min carcass temperature (ºC) 39.421 (0.071) 5.49
CT24 24h carcass temperature (ºC) 2.898 (0.039) 41.04
PH24 24h pH 5.513 (0.005) 2.53
CFBF carcass first-rib backfat (mm) 40.619 (0.243) 17.37
CLBF carcass last-rib backfat (mm) 28.656 (0.211) 22.48
CLLBF carcass last-lumbar vert. backfat (mm) 22.233 (0.205) 28.10
CBF10 carcass 10th-rib backfat (mm) 24.135 (0.240) 30.33
HW ham weight (kg) 9.633 (0.025) 8.02
LW loin weight (kg) 8.288 (0.027) 10.08
BSW boston shoulder weight (kg) 3.900 (0.018) 14.46
PSW picnic shoulder weight (kg) 3.720 (0.019) 15.43
BW belly weight (kg) 5.025 (0.022) 13.44
SW spareribs weight (kg) 1.527 (0.007) 13.02
PT protein (%) 23.440 (0.037) 4.84

Duarte et al. (2016) showed that a long segment of 6 Mb on SSC 6 (between 131.9 and 137.9 Mb),
that included markers positioned 2 Mb up- and downstream from the extreme SNPs to cover the linkage
disequilibrium (LD) of the flanking markers from the region, was associated with fat deposition traits
(tenth and last rib backfat thickness from 10 to 22 weeks). The SNP peaks were M1GA0008917 (133.8855
Mb), ASGA0029651 (133.9292 Mb), ALGA0122657 (136.078566 Mb) and ALGA0104402 (136.0844 Mb).
They also reported that, despite not being adjacent, SNP pairs M1GA0008917/ASGA0029651 and
ALGA0122657/ALGA0104402 had substantial LD.

In this study, we found some SNP peaks on chromosome 6 associated with 27 traits (Table 3.2).
The pair ALGA0122657 (136.078566 Mb) and ALGA0104402 (136.084448 Mb), consecutively located and
with LD of 1, it is associated with backfat traits, total body fat tissue and empty body protein. The SNP
peaks ALGA0036944 (128.386175 Mb) or ASGA0029597 (128.458999 Mb), despite not being adjacent,
they had substantial LD and were associated with carcass temperature, marbling, dressing percent and
primal cut weights. It can be seen that the first pair of SNPs, consecutively located, was also found
by Duarte et al. (2016), although they have not reported association with some traits listed here (Table
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Figure 3.1. Manhattan plot for 16wk 10-th rib backfat using SMR, RR and BC

3.2), such as TFAT, EBP, CFBF and CLBF. This fact may have occurred because they used Bonferroni’s
level of significance, which is an extremely stringent cut off, however, here we considered three different
methods for GWAS and a visual inspection to define regions of great influence.

Regarding the comparison of the three methods utilized for GWAS, one can observe that they
were quite similar in the detection of association between QTLs and phenotypic traits. In all cases, at
least two of the methods simultaneously found a SNP peak in the genomic region on SSC6 established
by some authors as responsible for large phenotypic variation. In addition, the SNP peaks were the same
in the three methods in more than 85% of the cases. The exceptions correspond to peaks included in the
importance region that slightly differ in position from the highlighted SNP, for example, in SMR it was
found the SNP peak ASGA0029651 (133.929215 Mb) associated to LRF10, which was also reported by
Duarte et al. (2016) as a SNP peak. Other SNP peaks using SMR were: ALGA0037046 (132.322578 Mb)
for CLBF, ALGA0036946 (128.444017 Mb) for DP and DL and ALGA0036046 (88.024202 Mb) for MB.

It should be reported that for some traits the RR detected two SNP peaks with similar ab-
solute effects and p-values, for instance for all tenth-rib backfat traits the method detected markers
ALGA0122657 and ALGA0104402 as SNP peaks with the same absolute effect values. However, BC
method showed the SNP peak ALGA0122657 (136.078566 Mb) for all of them. In all other cases the RR
and BC models appeared very similar, almost always detecting the same SNP peaks.

Next to the SNPs pair ALGA0122657 (136.078566 Mb) and ALGA0104402 (136.084448 Mb),
reported in Table 3.2, it is the Leptin Receptor Overlapping Transcript (LEPROT on SSC6: 135.37 to
135.38 Mb). Leptin hormone has important effect in feed intake, growth and backfat traits, some studies
reported that the serum concentrations of leptin are positively correlated with backfat thickness and
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Table 3.2. Summary of the SNP peaks on SSC6 and their position (in Megabase) for the phenotypic
traits listed below

Trait SMR RR BC
BF10 ALGA0122657* (136.1) ALGA0122657/ALGA0104402 (136.1) ALGA0122657 (136.1)
BF13 ALGA0122657* (136.1) ALGA0122657/ALGA0104402 (136.1) ALGA0122657 (136.1)
BF16 ALGA0122657* (136.1) ALGA0122657/ALGA0104402 (136.1) ALGA0122657 (136.1)
BF19 ALGA0122657* (136.1) ALGA0122657/ALGA0104402 (136.1) ALGA0122657 (136.1)
BF22 ALGA0122657* (136.1) ALGA0122657/ALGA0104402 (136.1) ALGA0122657 (136.1)
LRF10 ASGA0029651* (133.9) ALGA0122657/ALGA0104402 (136.1) ALGA0122657 (136.1)
LRF13 ALGA0122657* (136.1) ALGA0122657/ALGA0104402 (136.1) ALGA0122657 (136.1)
LRF16 ALGA0122657* (136.1) ALGA0122657/ALGA0104402 (136.1) ALGA0122657 (136.1)
LRF19 ALGA0122657* (136.1) ALGA0122657/ALGA0104402 (136.1) ALGA0122657 (136.1)
LRF22 ALGA0122657* (136.1) ALGA0122657/ALGA0104402 (136.1) ALGA0122657 (136.1)
TFAT ALGA0122657 (136.1) ALGA0122657/ALGA0104402 (136.1) ALGA0122657 (136.1)
EBP ALGA0122657 (136.1) ALGA0122657/ALGA0104402 (136.1) ALGA0104402 (136.1)
CFBF ALGA0037046 (132.3) M1GA0008917 (133.9) ALGA0104402 (136.1)
CLBF ALGA0122657 (136.1) ALGA0122657/ALGA0104402 (136.1) ALGA0104402 (136.1)
CLLBF ALGA0122657* (136.1) ALGA0122657/ALGA0104402 (136.1) ALGA0122657 (136.1)
CBF10 ALGA0122657* (136.1) ALGA0122657/ALGA0104402 (136.1) ALGA0104402 (136.1)
DP ALGA0036946* (128.4) ASGA0029597 (128.5) ASGA0029597 (128.5)
MB ALGA0036046 (88.0) ASGA0029597 (128.5) ALGA0036944 (128.4)
DL ALGA0036946 (128.4) ALGA0036944 (128.4) ASGA0029880 (142.3)
CT45 ALGA0036944* (128.4) ALGA0036944 (128.4) ALGA0036944 (128.4)
CT24 ASGA0029597* (128.5) ASGA0029597 (128.5) ALGA0036944 (128.4)
HW ALGA0036944 (128.4) ASGA0029597 (128.5) MARC0085467 (13.2)
LW ALGA0036944* (128.4) ALGA0036944 (128.4) ALGA0036944 (128.4)
BSW ALGA0036944* (128.4) ALGA0036944 (128.4) ALGA0036944 (128.4)
PSW ALGA0036944* (128.4) ALGA0036944 (128.4) ALGA0036944 (128.4)
BW ALGA0036944 (128.4) ALGA0036944 (128.4) ALGA0036944 (128.4)
SW ALGA0036944* (128.4) ALGA0036944 (128.4) ALGA0036944 (128.4)

1* P-values were smaller than the critical Bonferroni threshold in SMR

negatively correlated with carcass muscle content (Berg et al., 2012; Okumura et al., 2013; Casiró et al.,
2017).

Regarding the region on SSC15, also associated with a great number of traits, Figure 3.2 shows
one of the analyzes considering the three models for one of the phenotypic trait related to meat quality:
tenderness. In the same way, one can observe the great similarity among the models, such that all of
them detected large peaks on SSC2 and SSC15. In the first line of the Figure 3.2 are presented two
Manhattan plots obtained from the application of SMR, the first one considering the p-value of each
SNP, together with the Bonferroni threshold, and the second, considering SNPs effects. In the second
line of the figure, are the Manhattan plots, considering SNPs effects, resulting from the application of
RR and BC, respectively.

Exploring the association of SSC15 with other phenotypic traits using the three models, Table
3.3 shows the results, in which each trait is followed by the corresponding SNP peak on SSC15 and its
position in Megabase (Mb). Bonferroni threshold was considered in the SMR and, thus, effects followed
by an asterisk indicate that the p-value of the association between trait and SNP was smaller than the
critical Bonferroni threshold.

As we can see in Table 3.3, regarding fat deposition and primal cut weights, the SNP peaks
found on SSC15 was slightly different when comparing the SMR model with the RR and BC models.
However, the results found using RR and BC were quite similar. In contrast, for meat quality traits all
the three models detected similar regions.

Casiró et al. (2017) reported a QTL region on SSC15 that contains markers associated with
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Figure 3.2. Manhattan plot for meat tenderness using SMR, RR and BC

7 traits: juiciness, tenderness/overtenderness, Warner Bratzler shear force, 24-h pH, drip loss, protein
and cook yield. They reported that the SNP peaks varied across the 7 traits and, thus, they considered
a single genomic region spanning from 133.4 to 137.1 Mb, because the 95% confidence interval of the
QTL peaks overlapped each other. Some studies have proposed the Protein Kinase AMP-activated γ

3-subunit (PRKAG3; 133.8 Mb) as the likely candidate gene for this QTL (Choi et al., 2011; Nonneman
et al., 2013; Bernal Rubio et al., 2015; Zhang et al., 2015). Here, using SMR model we found the SNP
peak ALGA0087078 (133.108407 Mb) for all of these traits. RR and BC models found peaks ranging
from 135.1 to 136.8 Mb, except for juiciness and drip loss that had SNP peak at position 105.595495 Mb,
together with eight traits related to carcass temperature and primal cut weights.

The SSC15 has been studied in different swine populations due to its relation to meat quality
traits (Thomsen et al., 2004; Rohrer et al., 2006; Edwards et al., 2008a; Li et al., 2010; Choi et al., 2011;
Nonneman et al., 2013; Zhang et al., 2015), however, a very few authors reported association of this
chromosome with fat deposition traits. Here, in SMR, we found a precise association between the SNP
MARC0043543 (156.793131 Mb) with fat deposition traits (Table 3.3). Some backfat traits were also
associated with SNPs in the range of 136 to 138.5 Mb using BC model, for example BF16 and BF19 had
the SNP peak H3GA0045092 (136.981095 Mb), and LRF16 and LRF19 the SNP peaks DRGA0015530
(136.510681 Mb) and MARC0010057 (136.429511 Mb), respectively.

Finally, it should be noted that, although Sahana et al. (2010) have found best performance in
a Bayesian method compared to other association mapping methods (single-marker test, haplotype-based
analysis, and mixed model approach) using a simulation study with a complex pedigree structure, Legarra
et al. (2015) performed the first comparison of three QTL mapping methods that correct for relatedness
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Table 3.3. Summary of the SNP peaks on SSC15 and their position (in Megabase) for the phenotypic
traits listed below

Trait SMR RR BC
BF10 MARC0043543 (156.8) MARC0043543 (156.8) MARC0043543 (156.8)
BF13 MARC0043543* (156.8) MARC0043543 (156.8) MARC0043543 (156.8)
BF16 MARC0043543 (156.8) ALGA0086432 (105.6) H3GA0045092 (137.0)
BF19 MARC0043543 (156.8) H3GA0045092 (137.0) H3GA0045092 (137.0)
BF22 MARC0043543 (156.8) H3GA0043939 (22.5) H3GA0043939 (22.5)
LRF10 MARC0043543 (156.8) ALGA0084571 (31.9) ALGA0084571 (31.9)
LRF13 MARC0043543 (156.8) ALGA0086091 (89.1) MARC0043543 (156.8)
LRF16 MARC0043543 (156.8) MARC0043543 (156.8) DRGA0015530 (136.5)
LRF19 MARC0043543* (156.8) ASGA0070822 (136.5) MARC0010057 (136.4)
LRF22 MARC0043543 (156.8) ASGA0070712 (138.5) ASGA0070712 (138.5)
CLLBF MARC0043543 (156.8) MARC0043543 (156.8) MARC0043543 (156.8)
CBF10 MARC0043543 (156.8) MARC0043543 (156.8) H3GA0045092 (137.0)
CY ALGA0087078* (133.1) ASGA0070822 (136.5) ALGA0087317 (136.8)
WBS ALGA0087078* (133.1) DRGA0015526 (136.6) MARC0047188 (135.2)
JC ALGA0087078 (133.1) ALGA0086432 (105.6) ALGA0086432 (105.6)
TD ALGA0087078* (133.1) MARC0047188 (135.2) H3GA0052416 (135.2)
OTD ALGA0087078* (133.1) MARC0047188 (135.2) ASGA0070932 (135.1)
DL ALGA0087078* (133.1) ALGA0086432 (105.6) ALGA0084571 (31.9)
PH24 ALGA0087078* (133.1) MARC0027291 (135.2) H3GA0052416 (135.2)
PT ALGA0087078* (133.1) ASGA0070822 (136.5) ASGA0070822 (136.5)
FM H3GA0045092 (137.0) SIRI0000138 (136.2) SIRI0000138 (136.2)
CT45 ALGA0086432 (105.6) ALGA0086432 (105.6) ALGA0086432 (105.6)
CT24 ALGA0084571* (31.9) ALGA0086432 (105.6) ALGA0086432 (105.6)
HW ALGA0084571 (31.9) ALGA0086432 (105.6) ALGA0084571 (31.9)
LW ALGA0084571 (31.9) ALGA0086432 (105.6) ALGA0086432 (105.6)
BSW ALGA0084571 (31.9) ALGA0086432 (105.6) ALGA0086432 (105.6)
PSW ALGA0084571* (31.9) ALGA0086432 (105.6) ALGA0086432 (105.6)
BW ALGA0086538 (115.1) ALGA0086432 (105.6) ALGA0086432 (105.6)
SW ALGA0086432* (105.6) ALGA0086432 (105.6) ALGA0086432 (105.6)

1* P-values were smaller than the critical Bonferroni threshold in SMR

in animal genetics (a linkage disequilibrium and linkage analysis, an efficient mixed-model association,
and a Bayesian whole-genome regression) using real data and concluded that all the methods performed
similarly. Here, in the same way, the three methods compared were also very similar and efficient.

3.4 Conclusion

Single-marker regression, ridge regression BLUP and Bayes Cπ were equally efficient in detecting
genomic regions that contribute to economically important traits in the F2 Duroc x Pietrain resource
population. In addition, it was detected association between genomic regions of great importance on SSC6
and SSC15 with some traits not reported in previous studies with the same population. For example,
on SSC6 we found the SNP peaks ALGA0036944 (128.4 Mb) and ASGA0029597 (128.5 Mb) associated
with marbling, dressing percent, drip loss, carcass temperature and primal cut weights; and, on SSC15,
that is a chromosome widely reported due to its relation to meat quality traits, we found the SNP peak
MARC0043543 (156.8 Mb) associated with fat deposition traits.
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4 SEARCHING FOR CAUSAL PHENOTYPIC NETWORKS UNDERLYING POLYGENIC
TRAITS AFFECTED BY MAJOR GENES

Abstract: Graphical models such as Bayesian networks and structural equation mod-
els have been successfully used in many areas to investigate causal relationships between variables.
In quantitative genetics, a constraint-based algorithm was proposed to search for recursive causal
structures among phenotypes conditional to additive genetic effects. However, it does not take into
account effects from major genes on traits, but only polygenic effects. Thus, a hybrid method, called
PolyMaGNet (Polygenic traits with Major Genes Network analysis), is being proposed here, which
consider polygenic effects based on pedigree information and those related to quantitative trait loci
(QTL) that also contribute to assist on the determination of causal directions between phenotypic
traits. A multiple-trait animal mixed model was fitted using a Bayesian approach considering major
genes as covariates. Posterior samples of the residual covariance matrix were used as input for the
Inductive Causation (IC) algorithm to search for putative causal structures, which were compared
using the Akaike information criterion. Results from a simulated study considering a QTL mapping
population showed that, in the presence of major genes, the PolyMaGNet recovered the true skeleton
structure as well as the causal directions with a higher rate of true positives. Hence, we applied the
PolyMaGNet method on real dataset of an F2 Duroc × Pietrain pig resource population to recover
the causal structure underlying on carcass, meat quality and chemical composition traits.
Keywords: Bayesian networks; Phenotypic causal network; Graphical models

4.1 Introduction

Knowledge regarding causal networks underlying phenotypic traits is fundamental for the de-
velopment of efficient management and breeding strategies in agricultural production (Rosa et al., 2011;
Valente et al., 2013, 2015). In this context, graphical models such as Bayesian networks (BN) and struc-
tural equation models (SEM) have been successfully used in many areas to investigate causal relationships
between variables, and to estimate the magnitude of such effects (Ribeiro et al., 2016; Rosa, Felipe and
Pe�agaricano, 2016; Sinoquet, 2014). Inferring the structure of a causal network however is not a simple
task, given the large number of potential networks to be compared, even for a modest set of variables.
With high-dimensional data, for example in genetics and genomics applications in which a huge number
of variables are observed in each unit (animal or plant), things get even more complex (Sinoquet, 2014).

There are many structure learning algorithms for BN in the area of quantitative genetics (Logs-
don and Mezey, 2010; Neto et al., 2008, 2010; Valente et al., 2010; Wang and Van Eeuwijk, 2014), which
allow to explore the structure space compatible with the joint distribution function of the variables stud-
ied. Among those, Valente et al. (2010) proposed a constraint-based algorithm to search for recursive
causal structures among phenotypes conditionally to unobservable polygenic effects, which act as con-
founders. Basically, a standard Bayesian multiple-trait model is fitted using a Markov chain Monte Carlo
implementation to obtain samples from the posterior distribution of a residual covariance matrix, which
are then used as input for the inductive causation (IC) algorithm (Verma and Pearl, 1990; Pearl, 2009).
However, their method is based on an infinitesimal model and, as such, it does not take into account (or
leverage on) the possibility of major genes affecting the traits. Often, their method produces a partially
directed network that represents a class of possible equivalent solutions, and the use of prior biological
knowledge is necessary to determine a final, fully directed graph.

Some alternative methods have been proposed to investigate networks in the context of gene-
phenotype systems involving major genes or quantitative trait loci (QTL). For example, Schadt et al.
(2005) used QTL data to infer relationships between RNA levels and complex traits. They developed
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a likelihood-based causality model selection (LCMS) test that uses conditional correlation measures to
decide which model (causal, reactive or independent) is best supported by the data. Basically, likelihoods
associated with each of the models are constructed and maximized, and the model with the smallest
Akaike Information Criterion (AIC) value is identified as the best one. Li et al. (2006) presented an
extension of the work of Schadt et al. (2005) by investigating different possible causal relationships among
the traits studied and, thus, providing a better characterization of the overall genetic architecture. Neto
et al. (2008) proposed a hybrid algorithm, called QTL-directed dependency graph (QDG), which starts
by building an undirected graph inferring associations among phenotypes using a skeleton derived from
the PC (Peter-Clark) algorithm of Spirtes, Glymour and Scheines (2000). Next, a score-based step
is performed including information on QTL for each phenotype to help determining causal directions
in the phenotypic network using a LOD score conditional on genotypes at multiple QTL. Wang and
Van Eeuwijk (2014) proposed an alternative algorithm, called QTL+ phenotype supervised orientation
(QPSO), in which the main advantage is that it does not require assuming QTLs for each and every trait.

In this study, we propose a hybrid method called PolyMaGNet (Polygenic traits with Major
Genes Network analysis) by combining ideas of the aforementioned approaches. The method, similarly to
that proposed by Valente et al. (2010) implements a structure learning algorithm to search for recursive
causal structures among complex phenotypic traits with polygenic inheritance, but allowing also the
possibility of major genes affecting the traits. Such major genes are used also as instrumental variables
in a final step of the algorithm to orient remaining edges not directed by the IC algorithm.

Briefly, a standard multiple-trait model is fitted using Bayesian methods considering major
genes as covariates, in addition to an unobservable polygenic component. Next, posterior samples of
the residual covariance matrix are used as input for the Inductive Causation (IC) algorithm to search
for plausible causal network structures. In most cases, this step results in a partially oriented network.
Finally, goodness of fit indexes, such as the AIC or Bayesian information criterion (BIC), are used to
compare putative directed causal network within a class of structures provided by the IC algorithm.
The algorithm is especially useful for the analysis of QTL mapping population data involving crosses of
outbred populations. In the next few sections we provide a detailed description of the proposed method,
and illustrate it with a simulation study as well as the analysis of a dataset from a F2 Duroc × Pietrain
pig resource population to recover the causal structure underlying carcass and meat quality traits.

4.2 Material and Methods

4.2.1 PolyMaGNet method

The proposed PolyMaGNet method is composed by three main steps. In Step (1), a Bayesian
multiple trait model (MTM) is fitted to obtain posterior samples of the residual covariance matrix. In
Step (2), a partially directed acyclic graph is sought. Posterior samples of the residual covariance matrix
obtained in Step (1) are used as input for the IC algorithm to obtain the initial putative Bayesian network.
Lastly, in Step (3) a fully oriented causal structure is obtained. All possible networks belonging to the
equivalence class of the partially directed graph resulted from the IC algorithm are scored and compared.

4.2.1.1 Multiple-trait model (MTM)

The first step of the proposed method consists of fitting a multiple-trait animal model (MTM)
considering both polygenic and major gene effects:

yi = Xiβ + ui + ei, (4.1)
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where yi is a (tx1) vector of phenotypic records of the ith individual; Xiβ is a linear regression
on exogenous covariates, in which the incidence matrix Xi contains the covariates and major genes, and
β is a vector of fixed effects; ui and ei are (tx1) vectors of random additive genetic effects and residuals,
respectively, assumed to be distributed as:[

ui

ei

]
∼ N

{[
0

0

]
,

[
G0 0

0 Ψ0

]}

where G0 and Ψ0 are the additive genetic and residual covariance matrices, respectively.
Hence, the MTM model for n experimental units is described as:

y = Xβ + Zu + e, (4.2)

and the joint distribution of vectors u and e is:[
u
e

]
∼ N

{[
0

0

]
,

[
G0 ⊗A 0

0 Ψ0 ⊗ In

]}

where X and Z are incidence matrices relating the vectors β and u to y, respectively; A is the
additive genetic relationship matrix among all individuals; and In an identity matrix of order n.

The MTM is fitted using a Bayesian approach, with the following joint prior distribution as-
sumed for the parameters of model [4.2]:

p(β, u,G0,Ψ0) = p(β)p(G0)p(u|G0)

t∏
j=1

p(ψj) (4.3)

∝ IW (G0|vG, G◦
0)MN(u|0, G0 ⊗A)

t∏
j=1

Invχ2(ψj |vψ, s2) (4.4)

where IW (G0|vG,G◦
0) is an inverse Wishart density with vG degrees of freedom (d.f.) and scale

matrix G◦
0, MN(u|0,G0⊗A) is a multivariate normal density with mean vector 0 and covariance matrix

G0 ⊗A, Invχ2(ψj |vψ, s2) is a scaled inverse chi-square distribution with vψ d.f. and scale parameter s2,
and ψj is the variance of model residuals for trait j; a uniform distribution is assumed to β.

The joint posterior distribution is then:

p(β, u,G0,Ψ0|y) ∝ p(y|β, u,Ψ0)p(G0)p(u|G0)

t∏
j=1

p(ψj). (4.5)

A Gibbs sampling algorithm (Geman and Geman, 1984) can be employed to draw samples of the
posterior distribution using its fully conditional distributions - see Valente et al. (2010) for demonstrations.

4.2.1.2 Recovering a partially directed acyclic graph

MTMs can be expressed equivalently as a recursive causal structural model, since they generate
the same distribution for the response variables (Valente et al., 2010). In this way, model [4.1] can be
described as (Gianola and Sorensen, 2004):

yi = Λyi + Xiβ + ui + ei (4.6)

or for n experimental units as:

y = (Λ⊗ In)y + Xβ + Zu + e (4.7)
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where Λ is a (txt) matrix with zeros in the diagonal and structural coefficients in the off-
diagonal.

From [4.6], the reduced model is represented as:

yi = (It −Λ)−1Xiβ + (It −Λ)−1ui + (It −Λ)−1ei (4.8)

Which implies that:

V ar(yi) = (It −Λ)−1G0(It −Λ)′−1 + (It −Λ)−1Ψ0(It −Λ)′−1. (4.9)

One can note that (It−Λ)−1G0(It−Λ)′−1 and (It−Λ)−1Ψ0(It−Λ)′−1 are covariance matrices
of additive genetic effects (G∗

0) and residuals (R∗
0) obtained from an MTM that does not account for

causal relationships among phenotypes (Gianola and Sorensen, 2004; Varona, Sorensen and Thompson,
2007). The covariance matrix between traits conditionally on the additive genetic effects, considering
major genes as covariates in the model, can be expressed as:

V ar(yi|ui) = (It −Λ)−1Ψ0(It −Λ)′−1 = R∗
0. (4.10)

In this way, samples from the posterior distribution of the residual covariance matrix R∗
0 ob-

tained from a MTM can be used to search for a causal structure through the IC algorithm using Bayesian
methods, as proposed by Valente et al. (2010).

The IC algorithm (Verma and Pearl, 1990; Pearl, 2009) has been widely used to recover an
underlying acyclic structure (or a class of equivalent structures) from observed associations between
traits. The search is done based on conditional independencies between variables, assuming that such
independencies reflect d-separations in the underlying causal graph. Considering a set V of random
variables, the IC algorithm can be described by three main steps:

1. For each pair of variable {A,B} in V , search for a set of variables S − {A,B} that makes {A}
independent of {B} given S −{A,B}. If one cannot find any such set, connect both variables with
an undirected edge;

2. For each connected triple {A,B,C}, such that {A} and {C} are nonadjacent, search for a set
S−{A,C} that contains {B} and makes {A} and {C} independent given S−{A,C}. If one cannot
find any such set, add arrowheads pointing to {B}: A→ B ← C;

3. In the resulting partially oriented graph, orient as many undirected edges as possible, without
generating new colliders or any cycles.

In the context of linear mixed models, using a Bayesian framework, the following queries can
be used to decide about the independence between variables A and B giving a set of variables S−{A,B}
(Valente et al., 2010):

1. Compute the posterior distribution of residual partial correlation ρ(A,B|S−{A,B}), which are func-
tions of R∗

0.

2. Obtain the 95% highest posterior density (HPD) interval for the posterior distribution of ρ(A,B|S−{A,B}).

3. If the HPD interval contains 0, declare ρ(A,B|S−{A,B}) as null. Otherwise, declare {A} and {B} as
conditionally dependent.

This process provides a partially directed acyclic graph (PDAG), that only assign directions
to edges whose d-separations are supported. PDAGs represent classes of statistically equivalent BN
structures (same joint probability distributions), with no cycles, containing directed edges only for nodes
participating in a v-structure (Verma and Pearl, 1990).
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4.2.1.3 Selecting a fully oriented causal structure

After determining the PDAG, all possible fully oriented causal structures belonging to its equiv-
alence class are scored and compared using a model comparison criterion, such as the Akaike Information
Criterion (AIC), as in Schadt et al. (2005).

Let Υq(q = 1, . . . ,m) be the fully oriented causal structures belonging to the equivalence class
of the resulted PDAG of some data D, and tq be the number of estimated parameters of Υq. Let L̂q be
the maximum value of the likelihood function for Υq; i.e. L̂q = P (D | θ̂q,Υq), where θ̂q are the parameter
values that maximize the likelihood function of Υq. Then the AIC value for model q is:

AICq = 2tq − 2ln(L̂q) (4.11)

The causal structure with the smallest AIC score is then selected as the best representative
model. On the basis of the chosen causal structure retrieved, appropriate entries of Λ are treated as
unknown for fitting a SEM as in Models [4.6] and [4.7], using a Bayesian approach similar to that
presented in the first step.

4.2.2 Simulated data

Records from 1,600 individuals were generated by mimicking 50 families of full sibs with non-
related parents. Polygenic (infinitesimal) components were simulated for five correlated traits according
to the acyclic causal structure proposed by Valente et al. (2010) assuming independent residuals (Figure
4.1). In addition, seven QTLs, representing major genes, were simulated such that each trait had a single
QTL and the remaining two QTLs affected three traits simultaneously. The causal model from which
the data were generated can be graphically expressed as in Figure 4.1 or mathematically as a SEM:



yi1k = µ1 + ui1k + α11Q1 + ϵi1k

yi2k = µ2 + ui2k + λ21yi1k + α22Q2 + α26Q6 + α27Q7 + ϵi2k

yi3k = µ3 + ui3k + λ32yi2k + α33Q3 + α36Q6 + α37Q7 + ϵi3k

yi4k = µ4 + ui4k + λ42yi2k + α44Q4 + α47Q7 + ϵi4k

yi5k = µ5 + ui5k + λ53yi3k + λ54yi4k + α55Q5 + α56Q6 + ϵi5k

(4.12)

where yijk and ϵijk are the phenotype and residual effects for trait j(j = 1, ..., 5) on the ith
individual belonging to the kth family; µj is the overall mean of trait j; uijk is the additive genetic effect
of the ith animal in the kth family for trait j; Ql is the lth QTL (l = 1, ..., 7); λjj′ and αjl are the
intensity of the effect of trait j’ and QTL l on trait j, respectively. This system of equations can be
expressed by model [4.13].

y = µ+Λy +ΦQ + u + ϵ (4.13)

where,

Λ =


0 0 0 0 0

λ21 0 0 0 0

0 λ32 0 0 0

0 λ42 0 0 0

0 0 λ53 λ54 0

,
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Φ =


α11 0 0 0 0 0 0

0 α22 0 0 0 α26 α27

0 0 α33 0 0 α36 α37

0 0 0 α44 0 0 α47

0 0 0 0 α55 α56 0



Figure 4.1. Causal graph from which simulated data were obtained; y’s, u’s, Q’s and e’s are phenotypic
scores, additive genetic effects, major genes and residuals, respectively. Arcs connecting u’s represent
genetic correlations.

The genetic relationship matrix (A) was a block diagonal matrix in which the first block con-
sisted of a 100 × 100 identity square matrix, where the off-diagonal entries were 0 and diagonal entries
were 1 (representing the relationships among parents), and the remaining 50 blocks consisted of a 30×30

square matrices where the off-diagonal entries were 0.5 (additive relationship between full sibs) and diag-
onal entries were 1. Vectors of additive genetic effects and residuals were kept as in Valente et al. (2010),
where they were sampled from u ∼ N(0,G0 ⊗A) and e ∼ N(0, ψ0 ⊗ In), respectively, in which,

G0 =


100.00 47.373 20.283 −38.839 9.773

100.00 31.993 −46.357 −49.791
100.00 60.625 −14.557

sym 100.00 6.490

100.00

 and

ψ0 =


200 0 0 0 0

200 0 0 0

200 0 0

sym 200 0

200

.

The simulation was repeated 100 times with different values assigned for path coefficients. Major
gene effects, α’s, were obtained by multiplying sampled values of an uniform distribution U(0.1, 0.2) by
the square root of the additive genetic variance of each trait, and λ’s, representing the path coefficients
between phenotypes, were sampled from U(0.5, 1.0).
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The MTM of step 1 was implemented using BLUPF90 family programs (Misztal et al., 2014).
A single chain of 120,000 iterations was considered, discarding 20,000 as burn-in and using a thinning
interval of 10 to reduce serial correlation; the remaining 10,000 samples were used to approximate features
of the posterior distribution of the parameters. The remaining analyses of Step 2 and 3 were carried out
using R (R Team, 2014).

4.2.3 Real data set

A 3rd-generation population from the Michigan State University Swine Teaching and Research
Farm, East Lansing, MI, was used in this study (Edwards et al., 2008a,b). The initial generation (F0) were
4 unrelated Duroc boars mated to 15 Pietrain sows by artificial insemination. From the F1 progenies, 50
females and 6 males (sons of 3 F0 sires) were selected, avoiding full or half sibling matings, to produce the
1,259 F2 piglets born alive in 142 litters across 11 farrowing groups. Phenotypic data for growth, carcass
and meat quality traits were collected for approximately 950 F2 pigs (details about animal management
procedures and phenotyping can be obtained in Edwards et al. (2008a,b)).

Genotyping was performed using two SNP marker panels. 411 animals (including animals F0,
F1 and 336 F2) were genotyped using the Illumina PorcineSNP60 BeadChip (Ramos et al., 2009), and
the remaining F2 animals were genotyped using the GeneSeek Genomic Profiler for Porcine LD 9k SNP
panel (GGP-Porcine, GeneSeek a Neogen Company, Lincoln, NE), which were imputed to the Illumina
PorcineSNP60 Bead Chip (Duarte et al., 2013). The editing procedures performed, excluding SNPs
with minor allele frequency below 0.05, and also removing animals with more than 10% of SNP missing,
resulted in a data set with records from 940 pigs (F0, F1 and F2) having 42,234 SNPs per animal.

In this study, we selected two groups of phenotypic traits to recover the underlying causal
structures: (i) longitudinal back fat traits; and (ii) traits related to meat quality, fat and chemical
composition. Table 4.1 presents these two groups, followed by two single nucleotide polymorphism (SNP)
selected from the results provided by using three different models for genome-wide association studies: a
single-marker regression, a ridge regression BLUP and a Bayes Cπ.

Table 4.1. Major SNP peaks for some selected traits and their respective chromosome and position in
Megabase

Label Trait SNP SSC position (Mb)
BF10wk 10wk 10th-rib backfat (mm) 1. ALGA0122657 6 136.078566

2. MARC0025122 3 135.854270
BF13wk 13wk 10th-rib backfat (mm) 1. ALGA0122657 6 136.078566

2. ALGA0082172 14 139.293190
BF16wk 16wk 10th-rib backfat (mm) 1. ALGA0122657 6 136.078566

2. H3GA0005044 1 302.398792
BF19wk 19wk 10th-rib backfat (mm) 1. ALGA0122657 6 136.078566

2. H3GA0045092 15 136.981095
BF22wk 22wk 10th-rib backfat (mm) 1. ALGA0122657 6 136.078566

2. ALGA0022075 4 26.59522
WBS Warner-Bratzler shear force (kg) 1. M1GA0002229 2 2.921459

2. MARC0047188 15 135.199210
Marb marbling (1-10) 1. MARC0022716 10 2.581084

2. ALGA0043983 7 104.352654
pH45 45-min pH 1. H3GA0055161 1 304.843284

2. ALGA0020318 3 104.064335
BF10 carcass 10th-rib backfat (mm) 1. ALGA0104402 6 136.084448

2. H3GA0005023 1 301.969614
LMA LM area (cm2) 1. ASGA0029653 6 134.141272

2. ASGA0081175 19 48.722031
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The MTM in the first step of the PolyMaGNet method was fitted including “litter” and “sex”
as covariates, along with the effects of the major genes of Table 4.1 and the kinship matrix of the animals.
A chain of 3,000,000 iterations was considered in the Bayesian inference process, discarding 300,000 as
burn-in and using thinning of 30 to reduce autocorrelation. Convergence was checked by visual inspection.

4.3 Results and Discussion

4.3.1 Simulation study

The PolyMaGNet method was applied to the simulated data and results were compared to
those obtained using the Valente’s algorithm (Valente et al., 2010). After applying the IC algorithm to
the posterior samples of the residual covariance matrices, three possible causal structures were obtained
(Figure 4.2), whose occurrence rates are shown in Table 4.2.

Table 4.2. Occurrence rates of the causal networks of Figure 4.2, after applying the IC algorithm to
samples from the posterior distribution of the residual covariance matrix in 100 simulations

Valente’s method PolyMaGNet
Fig 4.2.A 12/100 (12%) 15/100 (15%)
Fig 4.2.B 78/100 (78%) 83/100 (83%)
Fig 4.2.C 10/100 (10%) 02/100 (02%)
Skeleton 90/100 (90%) 98/100 (98%)

Figure 4.2. Resulted causal networks obtained by the IC algorithm to samples from the posterior
distribution of R∗

0.

In the presence of major genes (Table 4.2), the PolyMaGNet method recovered the correct
skeleton structure with a higher rate compared to Valente et al. (2010) approach. This may have
happened because major genes act as confounders and when they are not considered in the model their
effects are (at least partially) captured by the model residual, which is used as input for the IC algorithm
to obtain the skeleton structure in both methods. In our simulation study, Valente’s method did not
recover an important edge in 10% of the simulated models, declaring Y2 and Y4 as independent (Figure
4.2C), which is a strong assumption in the context of causal models.

Valente’s approach quite often produces a PDAG after the application of the IC algorithm. A
PDAG represents a class of equivalent structures, where some edges are directed and some are undirected.
The directed edges represent arrows that are common to every member in the equivalence class, while the
undirected edges represent ambivalence (Pearl, 2009). Valente et al. (2010) recommended the use of prior
knowledge to orient the undirected edges, respecting the possible solutions within the equivalent class.
Here, however, we have measured distinct QTLs for different phenotypes and, thus, the possible solutions
in the equivalence class are not likelihood equivalent anymore, because the predictive densities disagree
(Neto et al., 2008). The proposed PolyMaGNet method scores all possible oriented graphs constructed
from the IC output using the AIC, as in Schadt et al. (2005).
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Figure 4.3 shows all possible putative graphs of the output depicted in Figure 4.2B. This model
was chosen to proceed the analysis for two main reasons: (i) the occurrence rate was 83% (Table 4.2),
and (ii) only 8 acyclic graphs can be constructed using this graph as starting point (Figure 4.3), which
contributes to the visual inspection of all possible putative causal network. Table 4.3 shows the joint
probability distribution of the 8 graphs (Figure 4.3), decomposed into a multiplication of conditional
probabilities, followed by the percentage that the respective model had the smallest AIC in the 83
simulations. Hence, the PolyMaGNet method recovered the correct fully oriented causal network in 94%
of the cases, without the use of any prior knowledge.

Figure 4.3. Possible graphs from the equivalent class produced by the IC output, depicetdin Figure
4.2B.

Table 4.3. Joint probability distribution of the selected partially causal graph and mean of the AIC
score followed by its standard error from 83 simulations

Graph P(Y1,Y2,Y3,Y4,Y5) Rate (%)
1. P (Y1)× P (Y2|Y1)× P (Y3|Y2)× P (Y4|Y2)× P (Y5|Y3, Y4) 78/83 (94)
2. P (Y1)× P (Y3)× P (Y4)× P (Y2|Y1, Y3, Y4)× P (Y5|Y3, Y4) 00/83 (0)
3. P (Y1)× P (Y4)× P (Y2|Y1, Y4)× P (Y3|Y2)× P (Y5|Y3, Y4) 00/83 (0)
4. P (Y1)× P (Y3)× P (Y2|Y1, Y3)× P (Y4|Y2)× P (Y5|Y3, Y4) 00/83 (0)
5. P (Y2)× P (Y1|Y2)× P (Y3|Y2)× P (Y4|Y2)× P (Y5|Y3, Y4) 05/83 (6)
6. P (Y3)× P (Y4)× P (Y2|Y3, Y4)× P (Y1|Y2)× P (Y5|Y3, Y4) 00/83 (0)
7. P (Y4)× P (Y2|Y4)× P (Y3|Y2)× P (Y1|Y2)× P (Y5|Y3, Y4) 00/83 (0)
8. P (Y3)× P (Y2|Y3)× P (Y4|Y2)× P (Y1|Y2)× P (Y5|Y3, Y4) 00/83 (0)

Figure 4.4 shows the behavior of the AIC values on the 83 simulations of the 8 possible putative
causal networks (Figure 4.3). Model 1 (light blue) presented the lowest AIC values, with a very low
standard error compared to other models. Model 5 (dark green) shows the lowest AIC values in only 6%
of the cases, such that the AIC values for model 1 were very close in these cases. In this way, to avoid
possible mistakes in studies with real datasets, we recommend to observe models with AIC values close
to the lowest one and select that with reasonable biological meaning.

The same analysis was also performed with the 15 skeleton structures (Figure 4.2A) provided by
the IC algorithm with PolyMaGNet method. For this purpose, the 28 possible acyclic models constructed
from the skeleton were scored. Results showed that model 1 (Figure 4.3.1) had the lowest AIC value
for 14 of 15 models scored (93.3%), and model 2 for only one of them (6.67%). In this way, even if
the unshielded collider (Y3 → Y5 ← Y 4) was not recovered by the IC algorithm, the second step of the
PolyMaGNet method was able to retrieve it.

Valente et al. (2010) also reported a simulation study with 50% reduced values for all structural
coefficients and their results showed that, although the skeleton structure was still retrieved, their algo-
rithm failed to recognize the unshielded collider Y3 → Y5 ← Y4. Here, 10 simulations were performed by



50

Figure 4.4. AIC values for the putative causal networks of Figure 4.3. Model 1 (light blue) presented
the smallest AIC values besides a very low standard error compared to other models.

reducing all structural coefficients by 50% and both models were compared. The PolyMaGNet method
recovered the correct skeleton in 100% of cases, finding the unshielded collider in 50% of them. Valente’s
method recovered the correct skeleton in only 30% of cases, claiming Y1 and Y2 as independent in the
remaining 70%, probably due to the major gene effects on Y2 not being considered in it.

The analyses were performed in a 64-bit Operating System with processor Intel(R) Core(TM)
i5-2410M CPU @ 2.30GHz and 6.00 GB memory (RAM), running on Windows 10 Enterprise. It took
40min to run the IC algorithm for each model using Valente’s method ( 67h for 100 simulations) and
45min using PolyMaGNet method ( 75h for 100 simulations). The second step of PolyMaGNet method,
in which each possible solution of the output provided were scored by the IC algorithm, took 2min to
score each of the 8 possible models totalizing 22h to obtain the results for the 83 simulations shown in
the Figure 4.3. However, in the case that only the skeleton structure was recovered by the IC algorithm
(Figure 4.2A), it took 3h to score the 28 possible acyclic solutions for each of the 15 models (totalizing
45h), such that the total run time varied considerably from one model to another.

4.3.2 Application to real data

In the following two subsections, the PolyMaGNet method was applied to two sets of variables
related to growth traits and meat quality from a F2 pig population. In the first case, it was studied the
causal structure underlying five back fat traits longitudinally measured. The purpose of this application
was to validate the PolyMaGNet method using real data. Since the timeline in which the variables were
collected, there is prior information on possible causal path that the system may have, as well as those
that cannot happen (i.e. causal effcets backwards in time). In the second case, the PolyMaGNet method
was applied to investigate the causal networks underlying five traits related to meat quality: marbling,
tenderness, back fat, longissimus muscle area and pH 45min.

4.3.2.1 Growth traits

Many regions of the pig genome contribute to fat tissue phenotypes at many ages of development
(Edwards et al., 2008a). Regarding back fat (BF) traits, Edwards et al. (2008a) performed a QTL-map
analysis and showed a major gene on the porcine chromosome (SSC) 6 that affects back fat in all time
points (10, 13, 16, 19, and 22 weeks of age), with all of them significant at the 1% of genome-wise level.
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Here, a genome-wide association study was previously performed, which identified the pleiotropic SNP
for all of these related traits, as well as other peaks SNPs that separately affect each one (Table 4.4).

Table 4.4. Growth traits followed by their mean, standard error and the major genes that affect them,
the marker positions are in base pairs (bp)

Trait Mean (se) SNP SSC Position (bp)
BF10wk 7.96 (0.06) MARC0025122 3 135854270
BF13wk 9.72 (0.09) ALGA0082172 14 139293190
BF16wk 12.35 (0.11) H3GA0005044 1 302398792
BF19wk 15.93 (0.16) H3GA0045092 15 136981095
BF22wk 19.91 (0.21) ALGA0022075 4 2659522

- - ALGA0122657 61 136078566
1SSC6*: affect all traits simultaneously

Measures of skewness and kurtosis indicated that the BF phenotypes (Table 4.4) moderately
follow the normal distribution.

By subjecting the posterior samples of the residual covariance matrix to the IC algorithm,
with 95% HPD, the phenotypic structure composed of black arrows in Figure 4.5 was obtained, i.e.
the unshielded collider BF13 → BF16 ← BF10 and the undirected path BF10 − BF19. Scoring
the two possible orientation of the undirected path BF10 − BF19, it was obtained BF10 → BF19

(AIC=12641.31) and BF19 → BF10 (AIC=12642.67). Following the PolyMaGNet method guidelines,
the one producing the lowest AIC, i.e. BF10 → BF19, was deemed the best path represented by the
data set.

Figure 4.5. Output from PolyMaGNet method of 5 back fat (BF) traits measured at five different weeks
(10ª, 13ª, 16ª, 19ª, 22ª week). u’s are additive genetic effect, Q’s are QTLs (major genes) and e’s are
residuals. Arcs connecting u’s represents genetic correlations. Black edges among traits were obtained
with 95% HPD and red edges with 55% HPD.

Relaxing the HPD interval to 65%, the shielded collider BF16→ BF19← BF10 was obtained,
and with 55% HPD the directed path BF19→ BF22 that are represented in red in Figure 4.5. The fact
previously known that these variables were measured in five consecutive times reinforces the efficiency
of the PolyMaGNet algorithm, since it provided a causal structure that makes biological sense regarding
the sequence of causality over time.
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Applying the Valente’s algorithm in the same dataset without considering the major gene effects,
two undirected paths were obtained using 95% HPD: BF10 − BF22 and BF16 − BF19. Relaxing the
HPD to 65% the algorithm oriented the path BF19→ BF16, which does not make biological sense, since
the trait BF16 was collected before BF19. This bias may have occurred because the pleiotropic major
gene on SSC 6 simultaneously affects all measured traits acting as confounder in the system.

Estimates for all path coefficients are presented in Table B.1 in the Appendix C. According to
the final putative causal network (Figure 4.5), BF10 does not have a direct effect on BF22, however it
is possible to calculate its total effect on BF22 by adding all indirect effects of BF10 on BF22 that were
mediated by BF19. Thus, the total effect of BF10 on BF22 is: (0.19 ∗ 0.81 ∗ 0.85)+ (0.36 ∗ 0.85) = 0.437.
Such value can be understood as an expectation that BF22 will increase by 0.437 mm as BF10 increases
by one.

The resulting causal model (Figure 4.5) provides important information that could be used in
animal breeding strategies. For instance, the knowledge of the total effect of each trait on the last back
fat measure (BF22) could assist deciding the best week to perform an intervention. Here, in addition,
this application involving back fat traits measured longitudinally helped us to test the effectiveness of
PolyMaGNet method, since as result we didn’t have edges with no temporal sense, i.e., the resulting
causal network corroborated our expectations.

4.3.2.2 Meat quality traits

The second analysis using real data considered five meat quality traits (Table 4.5) of a F2
population: marbling (Marb), Warner-Bratzler shear force (WBS), pH 45min (pH45), loin muscle area
(LMA) and tenth-rib back fat (BF10). Marbling is a measure that expresses the amount of intramuscular
fat, however, in the strict sense refers only to the fat that appears visible on cut meat surfaces (Blumer,
1963). WBS is the most widely used measure of meat tenderness, such that is the only method used for
raw meat and is suitable for commercial application (Culioli, 1995; Choe et al., 2016). Meat pH is an
indicator of eating quality and it is determinant for beef tenderness (Van Laack, Stevens and Stalder,
2001).

Table 4.5. Growth traits followed by their mean, standard error and the major genes that affect them,
the marker positions are in base pairs (bp)

Trait Mean (se) SNP SSC Position (bp)
Marb 2.82 (0.03) MARC0022716 10 2581084

ALGA0043983 7 104352654
WBS 3.21 (0.02) M1GA0002229 2 2921459

MARC0047188 15 135199210
pH45 6.37 (0.01) H3GA0055161 1 304843284

ALGA0020318 3 104064335
LMA 40.61 (0.16) ASGA0029653 6 134141272

ASGA0081175 19 48722031
BF10 24.14 (0.24) ALGA0104402 6 136084448

H3GA0005023 6 301969614

Considering 95% HPD, the phenotypic structure composed of black arrows in Figure 4.6 was
obtained, i.e. the unshielded collider Marb → WBS ← BF10. Relaxing the HPD interval to 70%, the
directed path LMA → WBS was obtained, and with 50% HPD the directed path pH45 → WBS that
are represented in red in Figure 4.6. Estimates for all path coefficients are presented in Table B.2 in the
Appendix C.

Wheeler et al. (1994) reported the effect of marbling degree on beef palatability in Bos Taurus
and Bos Indicus cattle and concluded that the meat decreased in shear force as marbling increased
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Figure 4.6. Output from PolyMaGNet method of 5 meat quality traits: marbling (Marb), Warner-
Bratzler shear force (WBS), pH 45 min (pH45), longissimus muscle area (LMA) and back fat carcass
(BF10). u’s are additive genetic effect, Q’s are QTLs (major genes) and e’s are residuals. Arcs connecting
u’s represents genetic correlations. Black edges among traits were obtained with 95% HPD and red edges
with 50% HPD.

from trace to small. However, approximately 10% of the variation in tenderness can be accounted for
by marbling degree (Blumer, 1993; Wheeler et al. 1994). Here, according to the final causal network
obtained, WBS will decrease in about 11% with the increase of marbling by one unit.

Regarding the relationship between pH and WBS, Laack et al. (2001) reported that, in meat
from Duroc pigs, WBS decreased as pH increased, however, the same was not found with meat from
Hampshire, in which WBS increased linearly as pH increased. Here, a weak causal relationship between
pH45 and WBS was observed, indicating that WBS will decrease in about 1% as pH45 increases by one
unit. However, great care must be taken in the interpretation of this causal path, since its standard
error (Table B.2 - Appendix C) may allow the occurrence of the two scenarios discussed. The results
provided in this application allow to state that when selection procedures favors production traits such
as marbling, back fat, loin muscle area and pH45, it also will favor meat tenderness.

Finally, it is worth mentioning that, although we have improved the causal structure recov-
ering method and reduced the assumptions, some of those are still required, as the causal sufficiency,
which states that there are no hidden confounders and the error are jointly independent; causal Markov
condition, implying that the causal structures satisfies the Markov condition; causal faithfulness, all con-
ditional independence relations in the graph are consequences of the Markov condition applied to the
true causal structure; and, major genes previously detected, since we assumed at least one distinct QTL
for each phenotype, which came from earlier gene mapping of phenotypes, to ensure that the last step of
the algorithm is able to differentiate all possible structures belonging to the equivalence class retrieved.

4.4 Conclusions

The hybrid method proposed, called PolyMaGNet, allows inferring Bayesian networks under-
lying phenotypic traits conditional to major genes and unobservable additive (polygenic) genetic effects.
Such networks describe how phenotypic traits are related to each other, information of which might aid
the establishment of efficient management and breeding strategies in agricuture.
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Results of a simulated study considering a QTL mapping population showed that, in the pres-
ence of major genes, the PolyMaGNet was effective in recovering the correct skeleton structure and causal
direction with a higher rate of true positive. PolyMaGNet was also applied to a real dataset of a F2
Duroc × Pietrain pig resource population to recover the causal structure underlying: (i) longitudinal
back fat traits; and (ii) traits related to meat quality, fat and chemical composition. Regarding the first
application, the final causal network was compatible with the longitudinal biological profile. In the sec-
ond, the resulted causal network provided an interesting scenario showing the causal effect of marbling,
back fat, longissimus muscle area and ph45 to the meat tenderness index.

Thus, if high density molecular marker data is available along with the phenotypic traits under
study, more reliable causal networks can be obtained through more efficient genetic learning structures
approaches, such as the PolyMaGNet. Causal methods outperform MTMs, which only describe the
probabilistic relationship among traits, since they allow us to predict the effect of external interventions
and, consequently, the improvement of economic important traits.
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5 CONCLUSION

Graphical models, such as Bayesian networks (BN) and structural equation models, are useful
tools to express causality among phenotypic traits in complex systems biology. However, the task of fitting
a causal model requires that the relationships of cause-effect among variables be pre-established. When
these relationships are not known, the proposed structure using prior knowledge may not express the
actual biological network, fact that result in erroneous inference of causal parameters and, consequently,
biased interpretation of cause intensity between variables.

In this thesis, we proposed some ways of learning causal networks using search algorithms
that require accepting specific assumptions, from which the causal sufficiency seems to be the strongest
one. In Chapter 2, we explored constraint- and score-based algorithms of BN to recover the underlying
phenotypic networks of two fruit species of the Sapotaceae family and concluded that these fruits have
highly similar biological mechanisms. However, further studies using genetic data in the search for the
causal structures of these fruits could improve the results and perhaps provide different paths among
traits that would allow the fusion of the two proposed causal network into only one.

In Chapter 3, we used a real data set (F2 Duroc × Pietrain pig population) to compare three
different methodologies for genome-wide association studies: a single-marker regression, a ridge regression
BLUP and a Bayes Cπ. Methods were equally efficient in the detection of QTL regions, however we
suggest the use of more than one method for GWAS. This study also allowed us to identify genomic
regions, not reported in previous studies with the same pig population, associated with the expression of
fat deposition and meat quality traits.

Finally, in Chapter 4 the main goal of this research was reached, in which we proposed a
hybrid algorithm, called PolyMaGNet (Polygenic traits with Major Genes Network analysis), which
allows inferring BN underlying phenotypic traits conditional to major genes and unobservable additive
(polygenic) genetic effects. Results of a simulated study considering a QTL mapping population showed
that, in the presence of major genes, the PolyMaGNet was effective in recovering the correct skeleton
structure and causal direction with a higher rate of true positive. PolyMaGNet was also applied to a
real dataset of a F2 Duroc × Pietrain pig resource population to recover the causal structure underlying
longitudinal back fat traits and traits related to meat quality, fat and chemical composition. Regarding
the first application, the final causal network was compatible with the longitudinal biological profile.
In the second, the resulted causal network provided an interesting scenario showing the causal effect of
marbling, back fat, longissimus muscle area and ph45 to the meat tenderness index.

In this way, if high density molecular marker data is available, more reliable causal networks
can be obtained through more efficient genetic learning structures approaches, such as the PolyMaGNet
method. It is noteworthy that the proposed method could be improved in many ways, such as allowing
to deal with non-Gaussian traits, as well as to handle huge number of variables. Both suggestions require
more complex methodologies and, consequently, computational time.

In summary, graphical models provide a flixible and insightful approach which allow the char-
acterization of causal phenotypic networks and its genetic architectures in complex systems biology. Such
information can be used then to predict the effect of external interventions and, consequently, the im-
provement of economically important traits. As such, it might promote the development of breeding
programs and optimal decision-making strategies.
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APPENDICES

Appendix A: Supplementary Material for Chapter 2

R Code of the analysis

setwd("C:/Users/Badger/Desktop/PAPER - FRUTAS")
# Packages required
require("bnlearn")
require("MVN")
require("sem")
require("psych")

# Datasets
### Star Apple dataset ###
dataC <- read.table("caimito.txt",h=T)
dataC <- data.frame(dataC[-c(1,7,11:14)])
head(dataC)

### Mamey Sapote dataset ###
dataS0 <- read.table("sapote.txt",h=T)
colnames(dataS0) <- c("ID","FRW","FRL","FRD","PUT","PET","PEW",
"PUP","NSE","SEL","SED","SEW","LEL","LEW","TRH","TTD","TCD",
"PRO","SAC","GLU","FRU")
dataS <- data.frame(dataS0[-c(1,5,8,9,13:21)])
head(dataC); head(dataS)
dim(dataC); dim(dataS)

### Descriptive analysis ###
descS <- describe(dataS)
descS <- data.frame("VARIABLES"=names(dataS),"MIN"=descS$min,
"MAX"=round(descS$max,1),"MEAN"=round(descS$mean,2),
"SE"=round(descS$se,2), "CV"=round((descS$sd/descS$mean)*100,2))
descC <- describe(dataC)
descC <- data.frame("VARIABLES"=names(dataC),"MIN"=descC$min,
"MAX"=round(descC$max,1),"MEAN"=round(descC$mean,2),
"SE"=round(descC$se,2), "CV"=round((descC$sd/descC$mean)*100,2))

# Normality tests
uniNorm(dataS, type = "SW", desc = TRUE)
uniNorm(dataC, type = "SW", desc = TRUE)
# Transformation of dataC
dataC <- data.frame("FRW"=log(dataC$FRW),"FRL"=dataC$FRL,"FRD"=log(dataC$FRD),
"PET"=log(dataC$PET),"PEW"=log(dataC$PEW),"SEL"=dataC$SEL,
"SED"=log(dataC$SED), "SEW"=log(dataC$SEW))

# Multivariate normality test
par(mfrow=c(1,2))
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roystonTest(dataS, qqplot=T)
roystonTest(dataC, qqplot=T)

# Structure search
bnS <- iamb(dataS, test = "cor", alpha =0.05)
bnC <- iamb(dataC, test = "cor", alpha =0.05)
par(mfrow=c(1,2))
plot(bnS, main= expression(paste("Mamey sapote - IAMB algorithm (", alpha, "=0.2)")))
plot(bnC, main= expression(paste("Star apple - IAMB algorithm (", alpha, "=0.2)")))

bnS2 <- tabu(dataS, score="bge")
bnC2 <- tabu(dataC, score="bge")
plot(bnS2, main= "Mamey sapote - Tabu search")
plot(bnC2, main= "Star apple - Tabu search")

# Jackknife - Mamey sapote - IAMB
m <- matrix(0,8,8)
t <- matrix(0,8,8)
for(i in 1:nrow(dataS)){
f = dataS[-i,]
bnS <- iamb(f, test = "cor", alpha =0.2)
f1 <- amat(bnS)
m = m + f1
f2 <- f1-t(f1)
f3 <- f2>0
t = t + f3 }
print(m);print(t)

# Jackknife - Mamey sapote - Tabu
m <- matrix(0,8,8)
t <- matrix(0,8,8)
for(i in 1:nrow(dataS)){
f = dataS[-i,]
bnS <- tabu(dataS, score="bge")
f1 <- amat(bnS)
m = m + f1
f2 <- f1-t(f1)
f3 <- f2>0
t = t + f3 }
print(m);print(t)

# Jackknife - Star apple - IAMB
m <- matrix(0,8,8)
t <- matrix(0,8,8)
for(i in 1:nrow(dataC)){
f = dataC[-i,]
bnC <- iamb(f, test = "cor", alpha =0.2)
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f1 <- amat(bnC)
m = m + f1
f2 <- f1-t(f1)
f3 <- f2>0
t = t + f3 }
print(m);print(t)

# Jackknife - Star Apple - Tabu
m <- matrix(0,8,8)
t <- matrix(0,8,8)
for(i in 1:nrow(dataC)){
f = dataC[-i,]
bnC <- tabu(dataC, score="bge")
f1 <- amat(bnC)
m = m + f1
f2 <- f1-t(f1)
f3 <- f2>0
t = t + f3 }
print(m);print(t)

# Model adjustment with SEM package
# Star Apple
modelC <- specifyModel()
FRW -> PET, lam1, NA
FRW -> PEW, lam2, NA
FRW -> FRD, lam3, NA
FRW -> FRL, lam4, NA
FRW -> SED, lam5, NA
PEW -> PET, lam6, NA
PEW -> FRL, lam7, NA
FRL -> PET, lam8, NA
FRL -> SEW, lam9, NA
SED -> SEL, lam10, NA
SED -> SEW, lam11, NA
SED <-> SED, alp1, NA
SEL <-> SEL, alp2, NA
SEW <-> SEW, alp3, NA
FRW <-> FRW, alp4, NA
FRL <-> FRL, alp5, NA
FRD <-> FRD, alp6, NA
PET <-> PET, alp7, NA
PEW <-> PEW, alp8, NA
sem2 <- sem(modelC, cor(dataC), N=nrow(dataC))
summary(sem2,fit.indices=c("GFI","AGFI","RMSEA"))
modIndices(sem2)

# Mamey Sapote
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modelS <- specifyModel()
FRW -> PET, lam11, NA
FRW -> PEW, lam12, NA
FRW -> FRD, lam13, NA
FRL -> FRD, lam14, NA
FRL -> SEL, lam15, NA
FRD -> SEL, lam16, NA
SEL -> SEW, lam17, NA
SED -> SEW, lam18, NA
PEW -> PET, lam19, NA
PEW -> FRL, lam20, NA
PEW -> SED, lam21, NA
SED <-> SED, alp1, NA
SEL <-> SEL, alp2, NA
SEW <-> SEW, alp3, NA
FRW <-> FRW, alp4, NA
FRL <-> FRL, alp5, NA
FRD <-> FRD, alp6, NA
PET <-> PET, alp7, NA
PEW <-> PEW, alp8, NA
sem <- sem(modelS, cor(dataS), N=nrow(dataS))
summary(sem,fit.indices=c("GFI","AGFI","RMSEA"))
modIndices(sem)

# Diagrama de caminhos
pathDiagram(sem,style="ram",edge.labels="values",
edge.colors = c("black", "red"), output.type = c("html"),
rank.direction = c("TB"), edge.weight = c("proportional")
,standardize = T,ignore.self=T,error.nodes = TRUE,
main="Mamey Sapote")
pathDiagram(sem2,style="ram",edge.labels="values",
edge.colors = c("black", "red"), output.type = c("html"),
rank.direction = c("TB"), edge.weight = c("proportional")
,standardize = T,ignore.self=T,error.nodes = TRUE,
main="Star apple")

require("semPlot")
par(mfrow=c(2,1))
semPaths(sem, what="paths", whatLabels="est", residuals = F,
color = c("lightgreen", "lightgreen", "lightgreen", "khaki1", "khaki1",
"lightblue", "lightblue", "lightblue"),
style="ram", layout="tree2",
edge.color = c("dimgray"), edge.label.cex = 0.9)
title("Mamey sapote", line = 3)
semPaths(sem2, what="paths", whatLabels="est", residuals = F,
color = c("lightgreen", "lightgreen", "lightgreen", "khaki1", "khaki1",
"lightblue", "lightblue", "lightblue"),
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style="ram", layout="tree2",
edge.color = c("dimgray"), edge.label.cex = 0.9)
title("Star apple", line = 3)

# Plots
par(mfrow=c(2,2))
plot(bnS, main= expression(paste("Mamey sapote - IAMB algorithm (", alpha, "=0.05)")))
plot(bnC, main= expression(paste("Star apple - IAMB algorithm (", alpha, "=0.05)")))
plot(bnS2, main= "Mamey sapote - Tabu search")
plot(bnC2, main= "Star apple - Tabu search")

# Equivalence classes
bnS2 <- tabu(dataS, score="bge")
bnC2 <- tabu(dataC, score="bge")
plot(bnS2, main= "Mamey sapote - Tabu search")
plot(bnC2, main= "Star apple - Tabu search")
test <- cpdag(bnS2, moral = TRUE, wlbl = FALSE, debug = FALSE)
test2 <- cpdag(bnC2, moral = TRUE, wlbl = FALSE, debug = FALSE)
plot(test)
plot(test2)
par(mfrow=c(2,2))

# After restabilish new directions in the CPDAG
# Model adjustment with SEM package
# Star Apple
modelC <- specifyModel()
FRW <- PET, lam1, NA
FRW <- PEW, lam2, NA
FRW -> FRD, lam3, NA
FRW <- FRL, lam4, NA
FRW -> SED, lam5, NA
PEW -> PET, lam6, NA
PEW <- FRL, lam7, NA
FRL -> PET, lam8, NA
FRL -> SEW, lam9, NA
SED -> SEL, lam10, NA
SED -> SEW, lam11, NA
SED <-> SED, alp1, NA
SEL <-> SEL, alp2, NA
SEW <-> SEW, alp3, NA
FRW <-> FRW, alp4, NA
FRL <-> FRL, alp5, NA
FRD <-> FRD, alp6, NA
PET <-> PET, alp7, NA
PEW <-> PEW, alp8, NA
sem2 <- sem(modelC, cor(dataC), N=nrow(dataC))
summary(sem2,fit.indices=c("GFI","AGFI","RMSEA"))
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modIndices(sem2)

# Mamey Sapote
modelS <- specifyModel()
FRW <- PET, lam11, NA
FRW <- PEW, lam12, NA
FRW -> FRD, lam13, NA
FRL -> FRD, lam14, NA
FRL -> SEL, lam15, NA
FRD -> SEL, lam16, NA
SEL -> SEW, lam17, NA
SED -> SEW, lam18, NA
PEW -> PET, lam19, NA
PEW <- FRL, lam20, NA
PEW -> SED, lam21, NA
SED <-> SED, alp1, NA
SEL <-> SEL, alp2, NA
SEW <-> SEW, alp3, NA
FRW <-> FRW, alp4, NA
FRL <-> FRL, alp5, NA
FRD <-> FRD, alp6, NA
PET <-> PET, alp7, NA
PEW <-> PEW, alp8, NA
sem <- sem(modelS, cor(dataS), N=nrow(dataS))
summary(sem,fit.indices=c("GFI","AGFI","RMSEA"))
modIndices(sem)

# Diagrama de caminhos
require("semPlot")
par(mfrow=c(1,1))
semPaths(sem, what="paths", whatLabels="est", residuals = F,
color = c("lightgreen", "lightgreen", "lightgreen", "khaki1", "khaki1",
"lightblue", "lightblue", "lightblue"),
style="ram", layout= matrix, rotation = 1,
edge.color = c("dimgray"), edge.label.cex = 0.9)
title("Mamey sapote", line = 3)
semPaths(sem2, what="paths", whatLabels="est", residuals = F,
color = c("lightgreen", "lightgreen", "lightgreen", "khaki1", "khaki1",
"lightblue", "lightblue", "lightblue"),
style="ram", layout= matrix, rotation = 1,
edge.color = c("dimgray"), edge.label.cex = 0.9)
title("Star apple", line = 3)
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Appendix B: Supplementary Material for Chapter 3

Supplementary tables and figures

Table B.1. Name of the traits analyzed followed by their respective abbreviations

Trait name Trait abbreviation
10wk 10th-rib backfat (mm) BF10
13wk 10th-rib backfat (mm) BF13
16wk 10th-rib backfat (mm) BF16
19wk 10th-rib backfat (mm) BF19
22wk 10th-rib backfat (mm) BF22
10wk last-rib backfat (mm) LRF10
13wk last-rib backfat (mm) LRF13
16wk last-rib backfat (mm) LRF16
19wk last-rib backfat (mm) LRF19
22wk last-rib backfat (mm) LRF22
22wk total body fat tissue (kg) TFAT
22wk empty body protein (kg) EBP
carcass first-rib backfat (mm) CFBF
carcass last-rib backfat (mm) CLBF
carcass last-lumbar vert. backfat (mm) CLLBF
carcass 10th-rib backfat (mm) CBF10
dressing percent (%) DP
cook yield (%) CY
Warner-Bratzler shear force (kg) WBS
juiciness (1 to 8) JC
tenderness (1 to 8) TD
overall tenderness (1 to 8) OTD
marbling (1-10) MB
firmness (1 to 5) FM
drip loss (%) DL
45min carcass temperature (ºC) CT45
24h carcass temperature (ºC) CT24
24h pH PH24
ham weight (kg) HW
loin weight (kg) LW
boston shoulder weight (kg) BSW
picnic shoulder weight (kg) PSW
belly weight (kg) BW
spareribs weight (kg) SW
protein (%) PT
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Table B.2. The three largest SNP peaks detected in each of the listed backfat traits, followed by their
chromosomes (SSC) and positions in Megabase (in parentheses)

Trait SMR RR BC

BF10
ALGA0122657* (6-136.1) ALGA0122657/ALGA0104402 ALGA0122657 (6-136.1)
MARC0043543 (15-156.8) MARC0046321 (19-74.7) MARC0025122 (3-135.8)
ALGA0107397 (13-194.1) MARC0043543 (15-156.8) MARC0046321 (19-74.7)

BF13
ALGA0122657* (6-136.1) ALGA0122657/ALGA0104402 ALGA0122657 (6-136.1)
H3GA0010564* (3-119.3) ASGA0022527 (4-129.8) ALGA0082172 (14-139.3)
MARC0043543* (15-156.8) ALGA0082172 (14-139.3) ASGA0018328 (4-12.2)

BF16
ALGA0122657* (6-136.1) ALGA0122657/ALGA0104402 ALGA0122657 (6-136.1)
H3GA0005192 (1-304.3) H3GA0005044 (1-302.4) H3GA0005044 (1-302.4)
MARC0087200 (2-146.7) ALGA0086432 (15-105.6) H3GA0045092 (15-137.0)

BF19
ALGA0122657* (6-136.1) ALGA0122657/ALGA0104402 ALGA0122657 (6-136.1)
MARC0043543 (15-156.8) H3GA0045092 (15-137.0) H3GA0045092 (15-137.0)
ASGA0080745 (19-8.6) ASGA0080745 (19-8.6) ASGA0018328 (4-12.2)

BF22
ALGA0122657* (6-136.1) ALGA0122657/ALGA0104402 ALGA0122657 (6-136.1)
ALGA0024802 (4-43.6) ALGA0022075 (4-2.7) ASGA0007789 (1-302.3)
MARC0043543 (15-156.8) ALGA0020170 (3-100.3) ALGA0022075 (4-2.7)

LRF10
ASGA0029651* (6-133.9) ALGA0122657/ALGA0104402 ALGA0122657 (6-136.1)
MARC0043543 (15-156.8) ASGA0068060 (14-150.5) ASGA0068060 (14-150.5)
ASGA0054658 (12-43.4) ASGA0051711 (11-77.0) ALGA0114192 (11-26.5)

LRF13
ALGA0122657* (6-136.1) ALGA0122657/ALGA0104402 ALGA0122657 (6-136.1)
MARC0043543 (15-156.8) ALGA0022075 (4-2.7) ALGA0046186 (8-7.7)
ASGA0074238 (16-77.7) ALGA0046186 (8-7.7) ASGA0018328 (4-12.2)

LRF16
ALGA0122657* (6-136.1) ALGA0122657/ALGA0104402 ALGA0122657 (6-136.1)
MARC0043543 (15-156.8) ASGA0018328 (4-12.2) ASGA0018328 (4-12.2)
ALGA0031974 (5-56.5) ALGA0074276 (14-1.8) ALGA0074276 (14-1.8)

LRF19
ALGA0122657* (6-136.1) ALGA0122657/ALGA0104402 ALGA0122657 (6-136.1)
MARC0043543* (15-156.8) ALGA0074276 (14-1.8) ASGA0060319 (14-0.2)
MARC0087200 (2-146.7) H3GA0005192 (1-304.3) ASGA0082996 (1-304.8)

LRF22
ALGA0122657* (6-136.1) ALGA0122657/ALGA0104402 ALGA0122657 (6-136.1)
MARC0043543 (15-156.8) ALGA0074276 (14-1.8) ASGA0070712 (15-138.5)
MARC0043291 (4-109.4) ALGA0022075 (4-2.7) ALGA0022075 (4-2.7)

TFAT
DIAS0001383 (4-109.8) ALGA0122657/ALGA0104402 ALGA0122657 (6-136.1)
ALGA0122657 (6-136.1) ASGA0018328 (4-12.2) ASGA0018328 (4-12.2)
DRGA0000505 (1-36.5) MARC0063610 (13-164.0) MARC0063610 (13-164.0)

EBP
ALGA0046300 (8-6.4) ALGA0022075 (4-2.7) ALGA0022075 (4-2.7)
ALGA0122657 (6-136.1) ASGA0051711 (11-77.0) ALGA0104402 (6-136.1)
ALGA0027303 (4-109.6) ALGA0122657 (6-136.1) ASGA0051711 (11-77.0)

CFBF
ASGA0025575 (5-59.7) ASGA0051711 (11-77.0) ASGA0051711 (11-77.0)
ALGA0037046 (6-132.3) ASGA0103989 (19-140.3) ALGA0050238 (8-146.4)
ALGA0024536 (4-36.8) M1GA0008917 (6-133.9) MARC0001310 (19-140.1)

CLBF
ALGA0122657 (6-136.1) ALGA0122657/ALGA0104402 ALGA0104402 (6-136.1)
MARC0032012 (5-67.3) ALGA0031940 (5-53.9) CASI0009949 (10-53.9)
ALGA0019868 (3-83.6) CASI0009949 (10-53.9) H3GA0031331 (11-11.9)

CLLBF
ALGA0122657* (6-136.1) ALGA0122657/ALGA0104402 ALGA0122657 (6-136.1)
ASGA0020769 (4-97.6) ALGA0100124 (19-126.0) ASGA0008038 (1-304.6)
MARC0043543 (15-156.8) H3GA0026371 (9-10.8) ALGA0100124 (19-126.0)

CBF10
ALGA0122657* (6-136.1) ALGA0122657/ALGA0104402 ALGA0104402 (6-136.1)
MARC0043543 (15-156.8) H3GA0005192 (1-304.3) H3GA0005023 (1-302.0)
H3GA0005192 (1-304.3) MARC0043543 (15-156.8) H3GA0045092 (15-137.0)

MB
ALGA0036046 (6-88.0) MARC0022716 (10-2.6) MARC0022716 (10-2.6)
ALGA0092930 (17-7.3) ALGA0108658 (7-104.5) ALGA0043983 (7-104.3)
ASGA0019822 (4-65.6) ASGA0052010 (11-81.6) ALGA0036944 (6-128.4)

DP
MARC0063610* (13-164.0) ASGA0051711 (11-77.0) ASGA0051711 (11-77.0)
ASGA0025539* (5-54.3) MARC0063610 (13-164.0) MARC0063610 (13-164.0)
ALGA0036946* (6-128.4) ALGA0086432 (15-105.6) ALGA0024536 (4-36.8)
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Table B.3. The three largest SNP peaks detected in each of the listed traits, followed by their chromo-
somes (SSC) and positions in Megabase (in parentheses)

Trait SMR RR BC

CY
ALGA0087078* (15-133.1) ASGA0070822 (15-136.5) ALGA0087317 (15-136.8)
ALGA0087273 (4-75.0) ALGA0087273 (4-75.0) ALGA0087273 (4-75.0)
MARC0036560 (5-68.3) MARC0036560 (5-68.3) INRA0056638 (19-38.2)

WBS
M1GA0025499* (2-5.5) M1GA0025499 (2-5.5) M1GA0002229 (2-2.9)
ALGA0087078* (15-133.1) ALGA0036313 (6-101.3) ALGA0036313 (6-101.3)
MARC0050164 (10-43.5) DRGA0015526 (15-136.6) MARC0047188 (15-135.2)

JC
ALGA0087078 (15-133.1) ASGA0051711 (11-77.0) ASGA0051711 (11-77.0)
ASGA0010464 (2-62.1) ALGA0024536 (4-36.8) ALGA0050238 (8-146.4)
ALGA0117175 (12-61.6) ALGA0086432 (15-105.6) MARC0063610 (13-164.0)

TD
H3GA0005676* (2-5.9) H3GA0005676 (2-5.9) H3GA0005676 (2-5.9)
ALGA0087078* (15-133.1) MARC0047188 (15-135.2) H3GA0052416 (15-135.2)
H3GA0011028 (3-136.7) ASGA0081500 (19-129.9) ALGA0100249 (19-137.0)

OTD
H3GA0005676* (2-5.9) H3GA0005676 (2-5.9) H3GA0005676 (2-5.9)
ALGA0087078* (15-133.1) MARC0047188 (15-135.2) ALGA0007028 (1-193.3)
H3GA0011028 (3-136.7) ALGA0007028 (1-193.3) ASGA0070932 (15-135.1)

FM
H3GA0045092 (15-137.0) MARC0031918 (6-80.6) SIRI0000138 (15-136.2)
ALGA0045048 (7-120.7) SIRI0000138 (15-136.2) ASGA0081560 (19-138.5)
MARC0031918 (6-80.6) ASGA0081560 (19-138.5) SIRI0001406 (14-134.7)

DL
ALGA0087078* (15-133.1) ASGA0051711 (11-77.0) ASGA0051711 (11-77.0)
ALGA0050238* (8-146.4) ALGA0050238 (8-146.4) ALGA0050238 (8-146.4)
ALGA0058270* (10-34.8) ALGA0024536 (4-36.8) MARC0063610 (13-164.0)

CT45
ASGA0051711* (11-77.0) ASGA0051711 (11-77.0) ASGA0051711 (11-77.0)
MARC0063610* (13-164.0) MARC0063610 (13-164.0) MARC0063610 (13-164.0)
ALGA0058270* (10-34.8) ALGA0086432 (15-105.6) ALGA0086432 (15-105.6)

CT24
ASGA0051711* (11-77.0) ASGA0051711 (11-77.0) ASGA0051711 (11-77.0)
ALGA0084571* (15-31.9) ALGA0086432 (15-105.6) MARC0063610 (13-164.0)
MARC0063610* (13-164.0) MARC0063610 (13-164.0) ALGA0086432 (15-105.6)

PH24
ALGA0087078* (15-133.1) MARC0027291 (15-135.2) H3GA0052416 (15-135.2)
MARC0036096 (16-19.7) ALGA0099582 (19-38.2) INRA0056800 (19-71.5)
MARC0010481 (7-98.6) H3GA0034274 (12-37.5) ALGA0030427 (5-10.3)

HW
MARC0063610* (13-164.0) ASGA0051711 (11-77.0) ASGA0051711 (11-77.0)
ALGA0050238* (8-146.4) MARC0063610 (13-164.0) MARC0063610 (13-164.0)
ASGA0051711* (11-77.0) ALGA0024536 (4-36.8) ALGA0024536 (4-36.8)

LW
ASGA0051711* (11-77.0) ASGA0051711 (11-77.0) ASGA0051711 (11-77.0)
ALGA0050238* (8-146.4) MARC0063610 (13-164.0) MARC0063610 (13-164.0)
MARC0063610* (13-164.0) ALGA0086432 (15-105.6) ALGA0086432 (15-105.6)

BSW
ASGA0051711* (11-77.0) ASGA0051711 (11-77.0) ASGA0051711 (11-77.0)
MARC0063610* (13-164.0) MARC0063610 (13-164.0) MARC0063610 (13-164.0)
ALGA0050238* (8-146.4) ALGA0086432 (15-105.6) ALGA0086432 (15-105.6)

PSW
MARC0063610* (13-164.0) ASGA0051711 (11-77.0) ASGA0051711 (11-77.0)
ASGA0051711* (11-77.0) MARC0063610 (13-164.0) MARC0063610 (13-164.0)
ALGA0084571* (15-31.9) ALGA0086432 (15-105.6) ALGA0086432 (15-105.6)

BW
ASGA0029597 (6-128.5) ASGA0051711 (11-77.0) ASGA0051711 (11-77.0)
ALGA0086538 (15-115.1) MARC0063610 (13-164.0) MARC0063610 (13-164.0)
MARC0063610 (13-164.0) ALGA0050238 (8-146.4) ALGA0024536 (4-36.8)

SW
MARC0063610* (13-164.0) ASGA0051711 (11-77.0) ASGA0051711 (11-77.0)
ASGA0051711* (11-77.0) MARC0063610 (13-164.0) MARC0063610 (13-164.0)
ALGA0086432* (15-105.6) ALGA0086432 (15-105.6) ALGA0086432 (15-105.6)

PT
ALGA0087078* (15-133.1) ASGA0070822 (15-136.5) ASGA0070822 (15-136.5)
ALGA0087273 (4-75.0) ALGA0087273 (4-75.0) ALGA0087273 (4-75.0)
MARC0070351 (5-71.1) ALGA0056636 (10-7.9) ALGA0116957 (9-148.6)
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Figure B.1. Manhattan plots for 10wk 10th-rib backfat

Figure B.2. Manhattan plots for 10wk last-rib backfat
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Figure B.3. Manhattan plots for 13wk 10th-rib backfat

Figure B.4. Manhattan plots for 13wk last-rib backfat
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Figure B.5. Manhattan plots for 16wk 10th-rib backfat

Figure B.6. Manhattan plots for 16wk last-rib backfat
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Figure B.7. Manhattan plots for 19wk 10th-rib backfat

Figure B.8. Manhattan plots for 19wk last-rib backfat
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Figure B.9. Manhattan plots for 22wk 10th-rib backfat

Figure B.10. Manhattan plots for 22wk last-rib backfat
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Figure B.11. Manhattan plots for 22wk total body fat tissue

Figure B.12. Manhattan plots for 22wk empty body protein
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Figure B.13. Manhattan plots for dressing percent

Figure B.14. Manhattan plots for cook yield
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Figure B.15. Manhattan plots for Warner-Bratzler shear force

Figure B.16. Manhattan plots for juiciness
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Figure B.17. Manhattan plots for tenderness

Figure B.18. Manhattan plots for overall tenderness
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Figure B.19. Manhattan plots for marbling

Figure B.20. Manhattan plots for firmness
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Figure B.21. Manhattan plots for drip loss

Figure B.22. Manhattan plots for 45min carcass temperature (ºC)
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Figure B.23. Manhattan plots for 24h carcass temperature (ªC)

Figure B.24. Manhattan plots for 24h pH
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Figure B.25. Manhattan plots for first-rib backfat

Figure B.26. Manhattan plots for last-rib backfat
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Figure B.27. Manhattan plots for last-lumbar vertebra backfat

Figure B.28. Manhattan plots for 10th-rib backfat
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Figure B.29. Manhattan plots for ham weight

Figure B.30. Manhattan plots for loin weight
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Figure B.31. Manhattan plots for boston shoulder weight

Figure B.32. Manhattan plots for picnic shoulder weight
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Figure B.33. Manhattan plots for belly weight

Figure B.34. Manhattan plots for spareribs weight



85

Figure B.35. Manhattan plots for protein (%)
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R Code of the analysis

Single-marker regression (SMR)

setwd("C:/Users/Badger/Desktop/TESE/GWAS analysis")
load("thesis.RData")
library("lattice")
library("LDcorSV")
library("car")
library("qqman")

# Compute G Matrix (Genomic)
X <- scale(t(Markers), center = TRUE, scale = TRUE)
G <- tcrossprod(X)/ncol(X)
G <- data.frame(var=paste(1:nrow(phen), phen$Animal, sep=" "), G)
colnames(G) <- c("var", paste(1:nrow(phen), phen$Animal, sep=" "))

geno <- Recode(Markers, "0='AA';1='AB';2='BB'")
geno <- data.frame(geno)
geno <- matrix(unlist(strsplit(do.call(paste, c(geno, sep="")), "")),
nrow = nrow(geno), byrow = TRUE) # separar em duas colunas cada marcador

project.tfam <- data.frame(FamilyID=1:nrow(phen),
IndividualID=phen$Animal,
FatherID=0,
MotherID=0,
Sex=0,
Phenotype=-9) # -9 missing
head(project.tfam)

project.tped <- data.frame(chromosome= map$chr,
SNP= map$mrk_id,
distance=0,
position= round(map$pos,digits=0), geno)
project.tped[1:5,1:5]

phenotype <- data.frame(FamilyID= 1:nrow(phen),
Animal= phen$Animal,
BW = phen[,2:68]) # 1:67
phenotype[is.na(phenotype)] = -9
head(phenotype)

covfix <- data.frame(FamilyID=1:nrow(phen),
Animal=phen$Animal,
sex = ifelse(phen$sex=="M",1, 2),
litter = phen$litter)

write.table(phenotype, "phen.txt", row.names=F,col.names=F, quote=F)
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write.table(covfix, "covfix.txt", row.names=F,col.names=F, quote=F)
write.table(project.tfam, "project.tfam", row.names=F,col.names=F, quote=F)
write.table(project.tped, "project.tped", row.names=F,col.names=F, quote=F)
write.table(G, "G.txt", row.names=F, col.names=T, quote=F, sep="\t")

# Running GWAS analyses
for(i in 1:67){
trait <- paste0("FastLmmC.exe -mpheno ",i," -tfile project -sim G.txt -MaxChromosomeValue
19 -pheno phen.txt -simLearnType Full -covar covfix.txt -out gwas.txt")
analysis <- capture.output(system(trait, intern=T))

gwas <- read.table("gwas.txt", header=T)
gwas$SNPeff <- abs(gwas$SNPWeight)

trellis.device(device="png",
filename=paste0("QQPlot-GWAS",i,".png"),
width=617,
height=397)
qq(gwas$Pvalue)
dev.off()

trellis.device(device="png",
filename=paste0("Pvalue-GWAS",i,".png"),
width=617,
height=397)
manhattan(gwas, chr="Chromosome", bp="Position", p="Pvalue", snp="SNP",
cex=0.5, cex.axis=0.7, col=c("blue4","orange2"),
suggestiveline=F, genomewideline=F, logp=T)
dev.off()

trellis.device(device="png",
filename=paste0("SNPeff-GWAS",i,".png"),
width=617,
height=397)
manhattan(gwas, chr="Chromosome", bp="Position", p="SNPeff", snp="SNP",
cex=0.5, cex.axis=0.7, col=c("blue4","orange2"),
ylim=c(0, max(gwas$SNPeff)+0.05*max(gwas$SNPeff)),
ylab="SNP effect",
suggestiveline=F, genomewideline=F, logp=F)
dev.off()
cat("GWAS n.", i, "\n")}

Ridge Regression BLUP (RR)

setwd("C:/Users/Badger/Desktop/RRBLUP")
load("thesis.RData")
library("rrBLUP")
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library("car")
library("qqman")
library("pastecs")
library("lattice")

#Descriptive Analysis
stat <- na.omit(data.frame(t(stat.desc(phen))))
Markers <- Recode(Markers,"0=1;1=0;2=-1")
Markers <- t(Markers)
SNPeff <- matrix(NA,ncol=67,nrow=ncol(Markers))

for (i in 1:67) {
#predict marker effects
y <- na.omit(phen[,i+1])
sex <- phen[!is.na(phen[,i+1]), "sex"]
litter <- phen[!is.na(phen[,i+1]), "litter"]
fixef <- model.matrix(y ~ factor(sex) + factor(litter))
snps <- Markers[!is.na(phen[,i+1]), ]

ans <- mixed.solve(y=y,X=fixef, Z=snps )
SNPeff[,i] <- ans$u
gwas <- data.frame(map,SNPeff=ans$u)
trellis.device(device="png",
filename=paste0("SNPeff-rrBLUP",i,".png"),
width=617,
height=397)
manhattan(gwas, chr="chr", bp="pos", p="SNPeff", snp="mrk_id",
cex=0.5, cex.axis=0.7, col=c("blue4","orange2"),
ylim=c(0, max(gwas$SNPeff)+0.05*max(gwas$SNPeff)),
ylab="SNP effect",
suggestiveline=F, genomewideline=F, logp=F)
dev.off()
cat("rrBLUP n.", i, "\n")}
save(SNPeff, file="SNPeff_rrBLUP.RData")

Bayes Cπ (BC)

setwd("C:/Users/Badger/Desktop/TESE/BAYESC analysis")
library("methods")
library("BGLR")
library("lattice")
load("thesis.RData")

## MCMC Specifications
nIter=60000
burnIn=20000
thin=20
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## Bayes C
M <- t(Markers)
traitName <- c(as.matrix(read.table("id.txt", head=F, colClass="character")))
ETA=list(list(~factor(sex)+factor(litter), data=phen, model='FIXED'),
list(X=M, model='BayesC'))
fitBL=BGLR(phen[, traitName], ## phenotypic vector
ETA=ETA, ## Model prioris
nIter=nIter, ## iterations
burnIn=burnIn, ## BurnIn
thin=thin, ## sample intervall
verbose=TRUE)$ETA[[2]]$b ## marker effects

fitBL <- data.frame(fitBL)
MAP_SOL <- merge(map[,-1], fitBL, by=intersect("row.names","row.names"))
colnames(MAP_SOL)=c("SNP","CHR","BP","P")

trellis.device(device="png",
filename="SNPeff-BayesC.png",
width=617,
height=397)
manhattan(MAP_SOL, ylim=c(0, (max(MAP_SOL$P)+(max(MAP_SOL$P)*0.05))),
main="", ylab="\nSNP Effect\n", xlab="\nChromosome",
col=c("blue4","orange3"), family="serif",cex=0.5, cex.axis=0.7,
suggestiveline=FALSE, genomewideline=FALSE, logp=FALSE)
dev.off()

Structure learning using the bnlearn package

setwd("C:/Users/Badger/Desktop/PAPER - THESIS_VF")
load("thesis.RData")
library("bnlearn")

data <- phen[,c(6,10,14,18,22)]
head(data)
colnames(data) <- c("BF10","BF13","BF16","BF19","BF22")

iamb <- iamb(data, test = "cor")
plot(iamb)
iamb2 <- iamb(data, test = "zf")
plot(iamb2)
par(mfrow=c(1,1))

hc <- tabu(data, score = "loglik-g")
hc2 <- tabu(data, score = "aic-g")
hc3 <- tabu(data, score = "bic-g")
plot(hc)
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plot(hc2)
plot(hc3)

data2 <- phen[,c(37,45,50,58,59)]
head(data2)
colnames(data2) <- c("wbs","marb","ph45","cbf10","clma")
data2 <- na.omit(data2)

iamb <- iamb(data2, test = "cor")
plot(iamb)
iamb2 <- iamb(data2, test = "zf")
plot(iamb2)
par(mfrow=c(1,1))
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Appendix C: Supplementary Material for Chapter 4

Supplementary tables

Table B.1. Path coefficients of model presented in Figure 4.5 followed by standard error

Causal effect Path coefficient
BF10 → BF16 0.190 (0.019)
BF10 → BF19 0.364 (0.018)
BF13 → BF16 0.726 (0.014)
BF16 → BF19 0.815 (0.010)
BF19 → BF22 0.855 (0.007)
QCh3

→ BF10 -0.287 (0.043)
QCh14

→ BF13 0.337 (0.038)
QCh1

→ BF16 0.251 (0.036)
QCh15 → BF19 0.753 (0.050)
QCh4 → BF22 -0.557 (0.045)
QCh6

→ BF10 0.621 (0.033)
QCh6

→ BF13 0.904 (0.033)
QCh6

→ BF16 0.498 (0.035)
QCh6

→ BF19 0.349 (0.036)
QCh6 → BF22 0.748 (0.036)

Matrix of additive genetic effects:

G0 =


2.0919 1.6012 −0.18599 −0.40828 0.81256

1.6012 3.6992 2.6823 4.2167 3.2647

−0.18599 2.6823 6.9397 5.9783 7.8885

−0.40828 4.2167 5.9783 11.369 11.559

0.81256 3.2647 7.8885 11.559 22.145


Table B.2. Path coefficients of model presented in Figure 4.6 followed by standard error

Causal effect Path coefficient
Marb → WBS -0.111 (0.031)
BF10 → WBS -0.017 (0.004)
pH45 → WBS -0.015 (0.032)
LMA → WBS 0.007 (0.005)
QCh7

→ Marb 0.256 (0.040)
QCh10 → Marb 0.182 (0.041)
QCh6 → BF10 2.565 (0.045)
QCh1

→ BF10 0.890 (0.036)
QCh2

→ pH45 -0.056 (0.043)
QCh1

→ pH45 0.023 (0.035)
QCh6

→ LMA -1.632 (0.044)
QCh19

→ LMA -0.693 (0.037)
QCh15 → WBS -0.363 (0.060)
QCh2 → WBS -0.173 (0.038)

Matrix of additive genetic effects:

G0 =


0.2370 0.2229 −0.0100 1.1827 −0.6903
0.2229 0.2453 0.0104 1.2117 −0.2778
−0.0100 0.0104 0.0444 0.1839 −0.0780
1.1827 1.2117 0.1839 39.0750 −8.4031
−0.6903 −0.2778 −0.0780 −8.4031 16.6020
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Generating simulated data

setwd("C:/Users/Badger/Desktop/Simulation")
# Starting parameters
nIDinFam <- 30 # N. of individuals in each nFam
nFam <- 1500/nIDinFam # Number of family's groups
traits <- 5 # N. of traits
R0 = diag(c(200,200,200,200,200)) # Residual (co)variance matrix
G0 = cbind(c(100.000, 47.373, 20.283, -38.839, 9.773), # Genetic (co)variance matrix
c( 47.373, 100.000, 31.993, -46.357, -49.791),
c( 20.283, 31.993, 100.000, 60.625, -14.557),
c(-38.839, -46.357, 60.625, 100.000, 6.490),
c( 9.773, -49.791, -14.557, 6.490, 100.000))
cat("Heritability:", round(diag(G0)/(diag(G0)+diag(R0)),2))

# Creating a pedigree
n = nFam*nIDinFam
library("MASS")
library("pedigree")
ped <- add.Inds(data.frame(id=as.factor(sort(c(1:n)+(nFam*2))),
dadid=as.factor(sort(rep(1:nFam, nIDinFam))),
momid=as.factor(sort(rep((1:nFam)+nFam, nIDinFam)))))
library("GeneticsPed")
A <- suppressWarnings(relationshipAdditive(Pedigree(x=ped,subject="id",
ascendant=c("dadid","momid"))))
#A <- A[(nrow(A)-n+1):nrow(A),(nrow(A)-n+1):nrow(A)]
ped[is.na(ped)] <- 0
ped <- as.matrix(ped)
mode(ped) <- "numeric"
dim(ped); head(ped)

# Simulate true breeding values and make an observation for all traits for all animals
tbv <- matrix(nrow=nrow(A), ncol=traits, rnorm(nrow(A)*traits)) %*% chol(G0)
tbv = crossprod(chol(A), tbv)
res <- matrix(nrow=nrow(A), ncol=traits, rnorm(nrow(A)*traits))%*%chol(R0)
R0 <- cov(res)
Ynf = tbv + res

alpha <- matrix(NA, ncol = 16, nrow = 100)
head(alpha)
for (i in 1:100) {
alpha1 <- runif(5, 0.1, 0.5)
alpha2 <- runif(11, 0.10, 0.20)
samp <- c(round(abs(alpha2[1]*sd(tbv[,1])),2), round(abs(alpha2[2]*sd(tbv[,2])),2),
round(abs(alpha2[3]*sd(tbv[,3])),2), round(abs(alpha2[4]*sd(tbv[,4])),2),
round(abs(alpha2[5]*sd(tbv[,5])),2), round(abs(alpha2[6]*sd(tbv[,2])),2),
round(abs(alpha2[7]*sd(tbv[,3])),2), round(abs(alpha2[8]*sd(tbv[,5])),2),
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round(abs(alpha2[9]*sd(tbv[,1])),2), round(abs(alpha2[10]*sd(tbv[,2])),2),
round(abs(alpha2[11]*sd(tbv[,4])),2), round(alpha1[1:5],2) )
alpha[i,] <- samp }

fit1 <- kmeans(tbv[,1], 3); fit2 <- kmeans(tbv[,2], 3)
fit3 <- kmeans(tbv[,3], 3); fit4 <- kmeans(tbv[,4], 3)
fit5 <- kmeans(tbv[,5], 3); fit6 <- kmeans(tbv[,c(2,3,5)], 3); fit7 <- kmeans(tbv[,c(1,2,4)], 3)

fit <- data.frame("Y1"=tbv[,1],"Y2"=tbv[,2],"Y3"=tbv[,3],"Y4"=tbv[,4],"Y5"=tbv[,5],
"QTL1"=fit1$cluster,"QTL2"=fit2$cluster,"QTL3"=fit3$cluster,
"QTL4"=fit4$cluster,"QTL5"=fit5$cluster,"QTL6"=fit6$cluster,
"QTL7"=fit7$cluster)
head(fit)

setwd("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS2")
for (i in 1:100){
Y1= Ynf[,1]+ (alpha[i,1]*(fit$QTL1-mean(fit$QTL1))/sd(fit$QTL1))
Y2= Ynf[,2]+ alpha[i,12]*Y1+ (alpha[i,2]*(fit$QTL2-mean(fit$QTL2))/sd(fit$QTL2))+
(alpha[i,6]*(fit$QTL6-mean(fit$QTL6))/sd(fit$QTL6))+
(alpha[i,9]*(fit$QTL7-mean(fit$QTL7))/sd(fit$QTL7))
Y3= Ynf[,3]+ alpha[i,13]*Y2+ (alpha[i,3]*(fit$QTL3-mean(fit$QTL3))/sd(fit$QTL3))+
(alpha[i,7]*(fit$QTL6-mean(fit$QTL6))/sd(fit$QTL6))+
(alpha[i,10]*(fit$QTL7-mean(fit$QTL7))/sd(fit$QTL7))
Y4= Ynf[,4]+ alpha[i,14]*Y2+ (alpha[i,4]*(fit$QTL4-mean(fit$QTL4))/sd(fit$QTL4))+
(alpha[i,11]*(fit$QTL7-mean(fit$QTL7))/sd(fit$QTL7))
Y5= Ynf[,5]+ alpha[i,15]*Y3+ alpha[i,16]*Y4+
(alpha[i,5]*(fit$QTL5-mean(fit$QTL5))/sd(fit$QTL5))+
(alpha[i,8]*(fit$QTL6-mean(fit$QTL6))/sd(fit$QTL6))

Y <- data.frame(ID=ped[,1], Y1, Y2, Y3, Y4, Y5,
"QTL1"=(fit$QTL1-mean(fit$QTL1))/sd(fit$QTL1), "QTL2"=(fit$QTL2-mean(fit$QTL2))/sd(fit$QTL2),
"QTL3"=(fit$QTL3-mean(fit$QTL3))/sd(fit$QTL3), "QTL4"=(fit$QTL4-mean(fit$QTL4))/sd(fit$QTL4),
"QTL5"=(fit$QTL5-mean(fit$QTL5))/sd(fit$QTL5), "QTL6"=(fit$QTL6-mean(fit$QTL6))/sd(fit$QTL6),
"QTL7"=(fit$QTL7-mean(fit$QTL7))/sd(fit$QTL7) )
write.csv(Y, paste0("model",i,".csv"))}

Searching for causal networks using the simulated dataset

# Loading a personal library
library("easyGEN")
for (i in 1:100) {
Y <- read.csv(file=paste0("model",i,".csv"), header=TRUE)
Y <- Y[-c(1)]
dir.create(paste0("model",i))

##### Valente's method #####
# identify the folders
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current.folder <- "C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS2"
new.folder <- paste0("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS2/model",i)

# find the files that you want
list.of.files <- list.files(current.folder, "gibbs2f90.exe")
list.of.files2 <- list.files(current.folder, "postgibbsf90.exe")
list.of.files3 <- list.files(current.folder, "renumf90.exe")

# copy the files to the new folder
file.copy(list.of.files, new.folder)
file.copy(list.of.files2, new.folder)
file.copy(list.of.files3, new.folder)

setwd(paste0("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS2/model",i))
gibbsf90(Y1|Y2|Y3|Y4|Y5 ~ 1, phen=Y, idName="ID", ped=ped, Gcov = G0, Rcov=R0,
execute=T, PED_DEPTH=0, nIter=120000, burnIn=20000, thin=10)
PostGibbs(HPD=0.95, Names= c("Y1","Y2","Y3","Y4","Y5"), ICgraph=TRUE, Summary=T,
burnIn=0, thin=1)
PostGibbs(HPD=0.80, Names= c("Y1","Y2","Y3","Y4","Y5"), ICgraph=TRUE, Summary=F,
burnIn=0, thin=1)
setwd("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS2")}

##### PolymagNet method #####
for (i in 1:100) {
Y <- read.csv(file=paste0("model",i,".csv"), header=TRUE)
Y <- Y[-c(1)]
dir.create(paste0("model",i))

setwd("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS")
# identify the folders
current.folder <- "C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS"
new.folder <- paste0("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS/model",i)

# find the files that you want
list.of.files <- list.files(current.folder, "gibbs2f90.exe")
list.of.files2 <- list.files(current.folder, "postgibbsf90.exe")
list.of.files3 <- list.files(current.folder, "renumf90.exe")

# copy the files to the new folder
file.copy(list.of.files, new.folder)
file.copy(list.of.files2, new.folder)
file.copy(list.of.files3, new.folder)

setwd(paste0("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS/model",i))
gibbsf90(Y1|Y2|Y3|Y4|Y5 ~ QTL1 + QTL2 + QTL3 + QTL4 + QTL5 + QTL6 + QTL7, phen=Y, idName="ID",
ped=ped, diffVAR=list(Y1="QTL1", Y2="QTL2", Y3="QTL3", Y4="QTL4", Y5="QTL5", Y2="QTL6",
Y3="QTL6", Y5="QTL6", Y2="QTL7", Y3="QTL7", Y4="QTL7"),
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execute=T, PED_DEPTH=0, nIter=120000, burnIn=20000, thin=10)
PostGibbs(HPD=0.95, Names= c("Y1","Y2","Y3","Y4","Y5"), ICgraph=TRUE, Summary=T,
burnIn=0, thin=1)
setwd("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS")}

# Investigating all possible directions
library("easyGEN")
setwd("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS")
# Creating flec file - defining directions between phenotypes
data <- read.table("flec.txt",h=T)
data <- as.matrix(data)
permut <- expand.grid(0:1, 0:1, 0:1, 0:1, 0:1)

for (j in 1:100) {
for (i in 1:32) { #for (i in 1:nrow(permut)) {
setwd(paste0("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS/HPDwithQTL/model",j))
dir.create(paste0("MOD",i))

setwd("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS")
# identify the folders
current.folder <- "C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS"
new.folder <- paste0("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS/HPDwithQTL/model",j,"/MOD",i)

# find the files that you want
list.of.files <- list.files(current.folder, "renumf90.exe")
list.of.files2 <- list.files(current.folder, "remlf90.exe")
list.of.files3 <- list.files(current.folder, "blupf90.exe")
list.of.files4 <- list.files(current.folder, "inbupgf90.exe")
# copy the files to the new folder
file.copy(list.of.files, new.folder)
file.copy(list.of.files2, new.folder)
file.copy(list.of.files3, new.folder)
file.copy(list.of.files4, new.folder)

setwd(paste0("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS/HPDwithQTL/model",j,"/MOD",i))
covar <- data.frame(covar=c(rep(NA,5)))
ifelse(permut[i,1]==0, covar[1,1] <- data[1,1], covar[1,1] <- data[1,2])
ifelse(permut[i,2]==0, covar[2,1] <- data[2,1], covar[2,1] <- data[2,2])
ifelse(permut[i,3]==0, covar[3,1] <- data[3,1], covar[3,1] <- data[3,2])
ifelse(permut[i,4]==0, covar[4,1] <- data[4,1], covar[4,1] <- data[4,2])
ifelse(permut[i,5]==0, covar[5,1] <- data[5,1], covar[5,1] <- data[5,2])

covar2 <- data.frame(covar2=c(rep(NA,5)))
ifelse(permut[i,1]==1, covar2[1,1] <- data[1,1], covar2[1,1] <- data[1,2])
ifelse(permut[i,2]==1, covar2[2,1] <- data[2,1], covar2[2,1] <- data[2,2])
ifelse(permut[i,3]==1, covar2[3,1] <- data[3,1], covar2[3,1] <- data[3,2])
ifelse(permut[i,4]==1, covar2[4,1] <- data[4,1], covar2[4,1] <- data[4,2])
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ifelse(permut[i,5]==1, covar2[5,1] <- data[5,1], covar2[5,1] <- data[5,2])

covarFi <- covar[!duplicated(covar),]; covarFi <- data.frame(covarFi)
covarF <- c(covar[!duplicated(covar),], data[c(6:nrow(data)),1])
covarF <- covarF[!duplicated(covarF)]

COV <- paste(covarF, collapse = " + ")
COV2 <- list(Y1="QTL1", Y2="QTL2", Y3="QTL3", Y4="QTL4", Y5="QTL5",
Y2="QTL6", Y3="QTL6", Y5="QTL6", Y2="QTL7", Y3="QTL7", Y4="QTL7")
COV3 <- list()
COV3[[ c(covar2[1,1]) ]] <- c(covar[1,1])
COV4 <- list()
COV4[[ c(covar2[2,1]) ]] <- c(covar[2,1])
COV5 <- list()
COV5[[ c(covar2[3,1]) ]] <- c(covar[3,1])
COV6 <- list()
COV6[[ c(covar2[4,1]) ]] <- c(covar[4,1])
COV7 <- list()
COV7[[ c(covar2[5,1]) ]] <- c(covar[5,1])
COVLIST <- c(COV2,COV3,COV4,COV5,COV6,COV7)

setwd("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS")
Y <- read.csv(file=paste0("model",j,".csv"), header=TRUE)
Y <- Y[-c(1)]

setwd(paste0("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS/HPDwithQTL/model",j))
ped <- read.table("pedigree.dat")
colnames(ped) <- c("id","dadid","momid")

setwd(paste0("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS/HPDwithQTL/model",j,"/MOD",i))
#MODEL
remlf90(as.formula(paste0("Y1|Y2|Y3|Y4|Y5 ~", COV)),
phen=Y, idName="ID", ped=ped, execute=T, PED_DEPTH=0, Inb = F,
diffVAR=COVLIST, covariate = covarF,
OPTlist=list("OPTION sol se", "OPTION residual", "OPTION maxrounds 10000",
"OPTION conv_crit 1d-9")) }}

# Comparing models via AIC
ALL <- matrix(NA,8,100)
for (j in 1:100) {
for (i in 1:8) {
setwd(paste0("C:/Users/Badger/Desktop/SIMULATION_FINAL/MODELS/HPDwithQTL/model",j,"/MOD",i))
MOD <- readLines("remlf90.log")
MODL <- strsplit(MOD[44], split=" ", fixed=TRUE)
ALL[i,j] <- as.numeric(MODL[[1]][c(26)]) }}
ALL <- data.frame(ALL)
ALL <- t(ALL)
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ALLs <- ALL[-c(8,71,13,18,21,26,27,36,38,42,53,75,81,83,85,89,96),]
colnames(ALLs) <- c("MOD1","MOD2","MOD3","MOD4","MOD5","MOD6","MOD7","MOD8")

Searching for causal networks using the real dataset

#####################################
########## Back fat traits ##########
#####################################
setwd("C:/Users/Badger/Desktop/PAPERS/PAPER 3 - METHOD/BF")
load("thesis.RData")
library("easyGEN")

# Pedigree anda data files
Ped <- ped
colnames(Ped) <- c("ID","Sire","Dam")
Ped$ID <- factor(Ped$ID)
Ped$Sire <- factor(Ped$Sire)
Ped$Dam <- factor(Ped$Dam)
ID <- factor(Ped$ID)
Phen <- phen[,c(6,10,14,18,22)]; head(Phen)#; cor(Phen)
Cova <- phen[,c(73,74)]; head(Cova)
Data <- data.frame(phen[,1], Phen, Cova )
colnames(Data) <- c("ID","BF10wk","BF13wk","BF16wk","BF19wk","BF22wk","SEX","LIT")

Data$ID <- as.factor(Data$ID)
Data <- merge(Ped[,c(1,3)], Data, by=intersect("ID", "ID"))
Data$BF10wk <- as.numeric(Data$BF10wk)
Data$BF13wk <- as.numeric(Data$BF13wk)
Data$BF16wk <- as.numeric(Data$BF16wk)
Data$BF19wk <- as.numeric(Data$BF19wk)
Data$BF22wk <- as.numeric(Data$BF22wk)
Data$SEX <- as.numeric(Data$SEX)
Data$LIT <- as.numeric(Data$LIT)

##### QTL #####
QTLbf <- map[map$mrk_id %in% c(17108, 9925, #BF10wk
17108, 35365, #BF13wk
17108, 4891, #BF16wk
17108, 37566, #BF19wk
17108, 10326), ] #BF22wk

QTLBF <- list(BF10wk="ALGA0122657", BF10wk="MARC0025122",
BF13wk="ALGA0122657", BF13wk="ALGA0082172",
BF16wk="ALGA0122657", BF16wk="ASGA0007789",
BF19wk="ALGA0122657", BF19wk="H3GA0045092",
BF22wk="ALGA0122657", BF22wk="ASGA0018328")
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Data2 <- data.frame( Data, t(Markers[rownames(Markers) %in% rownames(QTLbf),]))
head(Data2)

##### Valente's method #####
# To run GIBBS2f90
gibbsf90(BF10wk|BF13wk|BF16wk|BF19wk|BF22wk ~ 1, phen=Data2, idName="ID",
ped=Ped, execute=F, PED_DEPTH=0, nIter=1000000, burnIn=500000, thin=20)

##### PolymagNet method #####
# To run GIBBS2f90
gibbsf90(BF10wk|BF13wk|BF16wk|BF19wk|BF22wk ~ SEX + LIT + ALGA0122657 + MARC0025122 +
ALGA0082172 + ASGA0007789 + H3GA0045092 + ASGA0018328,phen=Data2,
idName="ID", ped=Ped, diffVAR= QTLBF, execute=F, PED_DEPTH=0,
nIter=2000000, burnIn=1500000, thin=20)

# Summarazing bayesian results and creating ICgraph
PostGibbs(HPD=0.95, Names= c("BF10wk","BF13wk","BF16wk","BF19wk","BF22wk"),
ICgraph=TRUE, Summary=F, burnIn=0, thin=1)

#####################################
########## Selected traits ##########
#####################################
setwd("C:/Users/Badger/Desktop/PAPER 3 - METHOD/SELECTED")
load("thesis.RData")
library("psych")
library("easyGEN")

# Pedigree anda data files
Ped <- ped
colnames(Ped) <- c("ID","Sire","Dam")
Ped$ID <- factor(Ped$ID)
Ped$Sire <- factor(Ped$Sire)
Ped$Dam <- factor(Ped$Dam)
ID <- factor(Ped$ID)
Phen <- phen[,c(37,45,50,58,59)]; head(Phen)
Cova <- phen[,c(73,74)]
Data <- data.frame(phen[,1], Phen, Cova )
colnames(Data) <- c("ID","WBS","Marb","Ph45","BF10","LMA","SEX","LIT")
describe(Phen)

Data$ID <- as.factor(Data$ID)
Data <- merge(Ped[,c(1,3)], Data, by=intersect("ID", "ID"))
Data$WBS <- as.numeric(Data$WBS)
Data$Marb <- as.numeric(Data$Marb)
Data$Ph45 <- as.numeric(Data$Ph45)
Data$BF10 <- as.numeric(Data$BF10)
Data$LMA <- as.numeric(Data$LMA)
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Data$SEX <- as.numeric(Data$SEX)
Data$LIT <- as.numeric(Data$LIT)

##### QTL #####
QTLbf <- map[map$mrk_id %in% c(5115, 37511, #WBS
24857, 19508, #Marb
4947, 9413, #Ph45
17078, 4947, #BF10
17078, 42026),] #LMA

QTLBF <- list(WBS="M1GA0002229", WBS="MARC0047188", #WBS
Marb="MARC0022716", Marb="ALGA0043983", #Marb
Ph45="H3GA0055161", Ph45="ALGA0020318", #Ph45
BF10="ASGA0029653",BF10="H3GA0055161", #BF10
LMA="ASGA0029653", LMA="ASGA0081175") #LMA

R0 = diag(c(200,200,200,200,200))
G0 = cbind(c(0.23700, 0.22290, -0.010015, 1.1827, -0.69034), #Genetic (co)variance matrix
c( 0.22290, 0.24534, 0.010363, 1.2117, -0.27782),
c( -0.010015, 0.010363, 0.044438, 0.18394, -0.077953),
c(1.1827, 1.2117, 0.18394, 39.075, -8.4031),
c( -0.69034, -0.27782, -0.077953, -8.4031, 16.602))

head(Data)
Data2 <- data.frame( Data, t(Markers[rownames(Markers) %in% rownames(QTLbf),]))
head(Data2)

##### Valente's method #####
# To run GIBBS2f90
gibbsf90(WTb|WT6wk|LMA10wk|LMA22wk|CarWT ~ 1, phen=Data2, idName="ID",
ped=Ped, execute=F, PED_DEPTH=0, nIter=1000000, burnIn=500000, thin=20)

##### PolymagNet method #####
# To run GIBBS2f90
gibbsf90(WBS|Marb|Ph45|BF10|LMA ~ SEX + LIT + H3GA0055161 + M1GA0002229 + ALGA0020318 +
ASGA0029653 + ALGA0043983 + MARC0022716 + MARC0047188 + ASGA0081175,
phen=Data2, idName="ID", ped=Ped,
diffVAR= QTLBF, execute=F, PED_DEPTH=0, nIter=3000000, burnIn=300000, thin=30)

# Summarazing bayesian results and creating ICgraph
PostGibbs(HPD=0.95, Names= c("WBS","Marb","Ph45","BF10","LMA"),
ICgraph=TRUE, Summary=F, burnIn=0, thin=1)


