• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.11.2012.tde-23102012-163809
Documento
Autor
Nome completo
Adriana Maria Marques da Silva
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2012
Orientador
Banca examinadora
Dias, Carlos Tadeu dos Santos (Presidente)
Piedade, Sonia Maria de Stefano
Miazaki, Edina Shisue
Título em português
Técnicas de Data Mining na aquisição de clientes para financiamento de Crédito Direto ao Consumidor - CDC
Palavras-chave em português
Árvore de decisão
Crédito direto ao consumidor
Financiamento
Mineração de dados
Redes neurais
Regressão logística
Resumo em português
O trabalho busca dissertar sobre as técnicas de data mining mais difundidas: regressão logística, árvore de decisão e rede neural, além de avaliar se tais técnicas oferecem ganhos financeiros para instituições privadas que contam com processos ativos de conquista de clientes. Uma empresa do setor financeiro será utilizada como objeto de estudo, especificamente nos seus processos de aquisição de novos clientes para adesão do Crédito Direto ao Consumidor (CDC). Serão mostrados os resultados da aplicação nas três técnicas mencionadas, para que seja possível verificar se o emprego de modelos estatísticos discriminam os clientes potenciais mais propensos dos menos propensos à adesão do CDC e, então, verificar se tal ação impulsiona na obtenção de ganhos financeiros. Esses ganhos poderão vir mediante redução dos custos de marketing abordando-se somente os clientes com maiores probabilidades de responderem positivamente à campanha. O trabalho apresentará o funcionamento de cada técnica teoricamente, e conforme os resultados indicam, data mining é uma grande oportunidade para ganhos financeiros em uma empresa.
Título em inglês
Data Mining Techniques to acquire new customers for financing of Consumer Credit
Palavras-chave em inglês
CDC
Data Mining
Decision Tree
Logistic Regression
Neural Network
Resumo em inglês
The paper intends to discourse about most widespread data mining techniques: logistic regression, decision tree and neural network, and assess whether these techniques provide financial gains for private institutions that have active processes for business development. A company of the financial sector is used as object of study, specifically in the processes of acquiring new customers for adhesion to consumer credit (in Brazil CDC). This research will show the results of the three above mentioned techniques, to check whether the statistical models point out relevant differences between prospects´ intentions to adhere to consumer credit. In the meantime, the techniques are checked whether they leverage financial gain. These gains are expected to came from better focused and directed marketing efforts. The paper presents the operation of each technique theoretically, and as the results indicate, data mining is a great opportunity for a company boost profits.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2012-11-09
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.