• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.11.2007.tde-19032007-152443
Documento
Autor
Nome completo
Fernanda Bührer Rizzato
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2006
Orientador
Banca examinadora
Ortega, Edwin Moises Marcos (Presidente)
Demetrio, Clarice Garcia Borges
Paula, Gilberto Alvarenga
Título em português
Modelos de regressão log-gama generalizado com fração de cura
Palavras-chave em português
Análise de regressão e de correlação
Análise de sobrevivência
Dados censurados
Verossimilhança
Resumo em português
Neste trabalho considera-se uma reparametrização no modelo log-gama generalizado para a inclusão de dados com sobreviventes de longa duração. Os modelos tentam estimar separadamente os efeitos das covariáveis na aceleração ou desaceleração no tempo e na fração de sobreviventes que é a proporção da população para o qual o evento não ocorre. A função logística é usada para o modelo de regressão com fração de cura. Os parâmetros do modelo, serão estimados através do método de máxima verossimilhança. Alguns métodos de influência, como a influência local e a influência local total de um indivíduo, serão introduzidos, calculados, analisados e discutidos. Finalmente, um conjunto de dados médicos será analisado sob o modelo log-gama generalizado com fração de cura. Uma análise de resíduos será executada para verificar a qualidade de ajuste do modelo.
Título em inglês
The generalized log-gama mixture model with covariates
Palavras-chave em inglês
Censored date
Likelihood
Regression and correlation analysis
Survival analysis
Resumo em inglês
In this work the generalized log-gama model is modified for possibility that long-term survivors are present in the data . The models attempt to estimate separately the effects of covariates on the accelaration/decelaration of the timing of a given event and surviving fraction; that is, the proportion of the population for which the event never occurs. The logistic function is used for the regression model of the surviving fraction. Inference for the model parameters is considered via maximum likelihood. Some influence methods, such as the local influence, total local influence of an individual are derived, analyzed and discussed. Finally, a data set from the medical area is analyzed under log-gama generalized mixture model. A residual analysis is performed in order to select an appropriate model.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
FernandaRizzato.pdf (568.48 Kbytes)
Data de Publicação
2007-03-24
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.