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“If you have a positive attitude and strive to give your best,
eventually, you will overcome problems and find you are ready

for greater challenges.”

Pat Riley

“Let us rise up and be thankful, for if we didn’t learn a lot today,
at least we learned a little, and if we didn’t learn a little,

at least we didn’t get sick, and if we got sick, at least we didn’t die;
so let us all be thankful.”

Buddha

“What I thought possible, made my path difficult.

What could be a miracle showed me that I bleed.
Nothing, during this time, made me invincible but,

from now on, I can keep my way searching happiness.
And now I’'m done of sleepless nights worrying about who,

or what, tried to steal the colors of my paradise.”

Marcus Vinicius S. G. do Amaral
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RESUMO
Modelagem estatistica para dados zero-inflacionados usando GAMs

Dados de contagem sdao comuns em estudos biolégicos, como em entomologia, em que sao observados
numeros de individuos ou proporgoes. Geralmente esses experimentos ou processos de amostragem apre-
sentam superdispersao e excesso de zeros. O emprego de modelos zero-inflacionados auxilia o processo de
estudo para conjuntos de dados com esses comportamentos. O primeiro trabalho aqui apresentado trata
de um experimento conduzido com uma praga de algoddo. O objetivo principal é comparar os modelos
para dados de contagem superdispersos zero-inflacionados. Os modelos lineares generalizados e os mod-
elos aditivos generalizados sdo comparados em termos de ajuste de acordo com a inclusao de fungoes de
suavizacdo. Apéds a selecao do modelo, foram incluidos covaridveis de inimigos naturais. Modelos que
utilizaram fungées de suavizagao permitiram uma melhor avaliacdo das intera¢des bioldgicas ao longo do
tempo entre a praga e os seus inimigos naturais. O segundo trabalho trata de um estudo de simulagoes
que visa comparar a eficiéncia da inclusao de fungbes de suavizacao para conjuntos de dados simulados
zero-inflacionados longitudinais. A inclusdo de funcoes de suavizagdo ndo apresentou melhora no ajuste

dos modelos para os cenarios de simulagao criados.

Palavras-chave: Modelos lineares generalizados; Modelos aditivos generalizados; Simulagdo de dados;

Softare R; Modelagem ecoldgica



ABSTRACT
Statistical modeling for zero-inflated data using GAMs

Count data are common in biological studies, such as in entomology, where numbers of individuals or
proportions are observed. Generally, these experiments or sampling processes have overdispersion and
excess of zeros. The use of zero-inflated models supports the study process for data sets with these
behaviors. The first paper presented here deals with an experiment conducted with a cotton pest.
The main objective is to compare the models for zero-inflated overdispersed count data. Generalized
linear models and generalized additive models are compared in terms of fit according to the inclusion
of smoothing functions. After the selection of the model, covariates of natural enemies were included.
Models that used smoothing functions allowed a better evaluation of the biological interactions over time
between the pest and its natural enemies. The second work deals with a simulation study that aims
to compare the efficiency of the inclusion of smoothing functions for simulated data sets of zero-inflated
longitudinal data. The inclusion of smoothing functions did not show improvement in the fit of the

models for the created simulation scenarios.

Keywords: Generalized linear models, Generalized additive models, Data simulation, R Software, Eco-

logical modelling
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1 INTRODUCTION

There are many factors that can contribute to the production of a given crop. The presence
of large numbers of pests, such as insects, is one of the main variables that can lower productivity. To
maximize productivity we must learn about the biological relationships of the pest species with the crop
before carrying out appropriate management practices (KIDD and AMARASEKARE, 2012). This may
comprise not only characteristics inherent to the population but also trophic relationships with other
species, such as predation and parasitism, which must be considered when developing biological control
strategies.

Different forms of statistical modeling can be employed for the evaluation of ecological processes
considering characteristics of the data. When working with generalized linear models (GLMs) (NELDER
and WEDDERBURN, 1972), different types of distributions that belong to the exponential family of dis-
tributions can be used. We may also include smoothing functions for the covariates present in the linear
predictor the model resulting in a generalized additive model (GAM) or a generalized additive mixed
model (GAMM) (HASTIE and TIBSHIRANI, 1986).

Normally for count data, the relationship between observations and explanatory variables are
treated using models involving Poisson or negative binomial distributions. Once the Poisson model
assumes equality of the mean and variance, negative binomial models have greater flexibility modeling
the relationships between the mean and the variance (COLIN and PRAVIN, 2013). Although they are
present in many packages of statistical software, negative binomial models are limited to modeling over-
dispersed data, and unable to deal with under-dispersed data (MCCULLAGH and NELDER, 1989). But
it is not uncommon to find zero-inflation in count data in addition to overdispersion. Zero inflated
Poisson models (ZIP) (LAMBERT, 1992) and Zero inflated negative binomial models (ZINB) (GREENE,
1994) are alternatives used to deal with these characteristics. Although used in many areas such as
psychology (ATKINS and GALLOP, 2007) and computer science (SOUZA et al., 2016), if the non-zero part
of data is over-dispersed, the parameter estimates of a ZIP can be biased just as standard errors may
be underestimated. It is also possible to use smoothing functions in these models for prediction of the
nonparametric regression or longitudinal effect, estimating a nonparametric function that minimizes the
penalized least squares criterion (AYDIN et al., 2013).

Here we have the GAM theory applied initially to explain the biological dynamics of a species
of agricultural pest, in which smoothing theory is applied to improve model fit. In the second case, a

simulation study is made to compare the efficiency of model fit with the inclusion of smoothing functions.
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2 STATISTICAL MODELING OF ZERO-INFLATED LONGITUDINAL COUNT DATA
IN ENTOMOLOGY

Abstract

Count data are common in biological studies, such as in entomology, in which numbers of individuals
or proportions are observed. In these experiments the occurrence of overdispersed and zero-inflated
data is common. This work studies longitudinal data of a cotton plague with the purpose of fitting
and comparing models for counting data. The generalized linear models and generalized additive
models are compared in goodnes of fit according to the inclusion of smoothing functions. After the
model selection, covariates of natural enemies were included. Models that used smoothing functions
allowed a better evaluation of biological interactions over time between the pest and its main natural

enemies.

Keywords: Count data; entomology; generalized linear models; generalized additive models; smoth-

ing functions.

2.1 Introduction

There are many factors that can contribute to the production of a given crop. The presence
of large numbers of pests, such as insects, is one of the main variables that can lower productivity. To
maximize productivity we must learn about the biological relationships of the pest species with the crop
before carrying out appropriate management practices (KIDD and AMARASEKARE, 2012). This may
comprise not only characteristics inherent to the population but also trophic relationships with other
species, such as predation and parasitism, which must be considered when developing biological control
strategies.

There are many specific deterministic models in the area of entomology for the explanation of
interactions among species whose main purpose is to describe the essence of biological processes (KoT,
2001). Models that include interactions between predator and prey, competitors and hosts, as well as
parasitoids are common in the context of biological control (BATTEL et al., 2012).

Different forms of statistical modeling can be employed for the evaluation of ecological pro-
cesses considering characteristics of the data. When working with generalized linear models (GLMs)
(NELDER and WEDDERBURN, 1972), different types of distributions that belong to the exponetial fam-
ily of distributions can be used. They have statistical properties that aid in modeling, and the main
objective is to establish a relationship between the response variable and the explanatory variable. To
evaluate the population dynamics of a given individual, the population size should be observed over time,
which characterizes a longitudinal study whose main characteristic is the correlation between observations
throughout the study period. An alternative to model the correlation structure between observations is
the use of the generalized estimation equations (GEE) approach that allows for the modeling of the
correlation between observations (LIANG and ZEGER, 1986). We can also account for the correlation
between repeated measures by including random effects, characterizing a generalized linear mixed model
(GLMM).

We may also include smoothing functions for the covariates present in the linear predictor the
model resulting in a generalized additive model (GAM) or a generalized additive mixed model (GAMM)
(HASTIE and TIBSHIRANI, 1986).

The data set that will be explored in this paper refers to an entomological study that aims to

study the population development of an insect pest from the cotton crop with the objective of biological
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control. The data from these experiments consist of discrete variables, numbers of aphids and their main
natural enemies, observed throughout time in cotton.

By carrying out exploratory analyses, we expect to obtain insight on how to model the data
properly. Starting from the exploratory analysis we have the elaboration of simple models to more

complex models that involve overdispersion, zero-inflation and the use of smoothing functions.

2.2 Case Study

Considering the context of entomological experiments, which are carried out for different pur-
poses, the case study here is an experiment set up in a randomized complete block design. It was carried
out to test the influence of diferent spacings between plants in the same planting line, on the popula-
tion dynamics is a pest of cotton, the aphid Aphis gossypii conducted at EMBRAPA Algodao, Campina
Grande - PB - Brazil. Three diferent levels of spacing (0,4 m, 0,8 m e 1,6m) were randomized into four
blocks, totaling 12 plots (Fig. 2.1). Using simple random sampling, five plants within each plot were
marked and observed in regular intervals of seven days over sixteen weeks, each one in three diferent
regions of the plant: basal, median and apical region. The observed variables were the number of wing-
less aphids and the number of winged aphids. Six different natural enemies were also observed, namely,
Lysipheblus testaceips, Chrysopidae (Green Lacewings), Scymnus (Ladybug), Cycloneda (Ladybug), Syr-
phidae (flies) and spiders.

L L A
.:::?:::::: . :050: _:_::::f:.};o.m”":::
i Block 04

L L L L=t

D Representation of one 0.2 x 0.2 area
. Representation of one plant that was not sampled in one area unit of 0.2 x 0.2 m
. Plants verified by simple sampling for Aphis gossypi

. Plants sampled per linear meter for natural enemies

- Plants possibly exhibited by both methods

Figure 2.1. Representation of the randomization scheme of the experiment with the definition of the
distinct sampling processes used to observe Aphis gossypii and natural enemies.

To see the behavior of the data, a graph of average trends was elaborated.
The exploratory analysis reveals indications that the means of observed variables are not con-
stant over time Figure 2.2 and 2.3. The same type of graphical evaluation was performed for natural

enemies with the objective of observing the behavior of each one during the experiment. Figure 2.4
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Figure 2.2. Graph of average trends for the different spacings considering winged aphids throughout
the observation weeks for the three spacings (0.4m, 0.8m, 1.6m) and the three Sections (1,2,3).

Block

Wingless aphids

12 16 4 8 12 16

4 8 2 1 4 8
Week

Figure 2.3. Graph of average trends for the different spacings considering wingless aphids throughout
the observation weeks for the three spacings (0.4m, 0.8m, 1.6m) and the three Sections (1,2,3).

presents the values of the variable natural enemies observed throughout the experiment that, apparently,
vary over time.

Because this is an experiment whose observed variables are counts, that is, discrete variables,
the most appropriate approach is the use of generalized linear models (NELDER and WEDDERBURN,

1972), and the initial models may comprise distributions such as the Poisson for counts.
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Figure 2.4. Graphic representation for the mean values of the main natural enemies in each spacings,
along 16 observation weeks.
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Figure 2.5. Mean Vs Variance for: (a) wingless and (b) winged.

As part of the exploratory analysis we can verify indicatives of overdispertion by using mean
versus variance plots. We can evaluate indications of overdispersion by using mean vs variance plots. As

for counting data, the behavior of the data is initially compared, for mean and variance, with Poisson
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and binomial distributions, if the variation is much larger than the mean, we have evidence that there is
overdispersion. Here there is evidence that the data are overdispersed (Figure 2.5), because the variances
are much larger than the means. The behavior of the variances in relation to the means is apparently
quadratic, suggesting the use of a negative binomial model, for example, to accommodate the overdisper-

sion of the data.

However, part of the overdispersion can be due to the zero inflation as verified in Figure 2.6.
Considering the verification of the proportion of zeros in relation to the spacings (Figure 2.6), the periods
of smaller occurrences of zeros coincide with the periods of greatest number of observations where both

wingless and winged aphids were recorded.

Wingless aphids
Winged aphids

5 10 15
| | | | | | | | |
0.4 0.8 1.6
1.0 H e
()]
o 0.8 -
8
‘G
=
o 0.6 - I~
=
2
o
8 04 4 o
L T T T | T T | T —
5 10 15 5 10 15
Week

Figure 2.6. Proportion of zeros presented in the observations during the weeks of conduction of the
experiment considering spacing between plants of the same planting line.

By observing the dynamics of the occurrence of zeros considering both spacing between plants
(applied treatment) and section of the plants, there is a decrease in the number of zeros near the beginning
of the observations for wingless aphids whereas, for winged individuals, apparently the occurrence of zeros

is closer to the end of the experimental period.

2.3 Statistical methods

The main variable observed in this experiment is the number of aphids, both winged and
wingless, represented by the random variable Y;;x; with, 1 =1,2,3,4;5 =1,2,3;k=1,2,3;t=1,...,16 If
we assume each observational unit has a random number os aphids, it’s reasonable to assume a Poisson
model and a Negative Binomial as the starting points to analyze the data, Y ~ PO(n) and Y g ~
NB(u,0), and their extentions, such as the ones discussed in later sections. These particular ones are

examples of generalized linear models (NELDER and WEDDERBURN, 1972).
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2.3.1 Introduction to generalized linear models (GLMs)

The class of models known as generalized linear models (GLMSs) is defined by three distinct
components: The first one, called the random component, corresponds to the random variables Y7,...,Y,
that belong to the exponential family of distributions each in terms of a distinct parameter 6;. The

exponential family in the canonical form has a density or probability density function (pdf) expressed as:

f(yi05,0) = exp{o™ yif; — b(6;)] + c(yi; )}, (2.1)

where b(-) and ¢(-) are known functions, ¢ > 0 is a dispersion parameter and 6; is called canonical
parameter. As members of the exponential family, the normal, Poisson, binomial, gamma, inverse normal
and binomial negative distributions (each with its appropriate dispersion parameters) can be expressed
in the canonical form (2.1).

Another characteristic as exponential family members is the definition of the expectation given
by E(Y;) = u; = V' (0;) and Var(Y;) = ¢b"(0;) = ¢V;, where V; = V(p;) = dp;/db; is called the variance
function and depends only on the mean u;.

The second component is linear predictor related to the explanatory variables defined as
n=pB"x,

where 3 is a vector of p unknown parameters and x = [z1,...,z,]" is the i-th column of the n x p
design matrix. The last component is a link function g(u;) = n;, relating the systematic to the random
component (HINDE and DEMETRIO, 1998).

To assess the significance of the effects in the linear predictor (NELDER and WEDDERBURN,
1972) proposed the analysis of deviance, a measure that compares a fitted model to the saturated model
(i.e. a complete model with one parameter per observation). For a known ¢, it can be used as a

measurement of goodness-of-fit for the fitted models. For the Poisson model, the residual deviance can

be written as

Dp = 22”: [yi log (if) = (i — Mi)}

7

where (i; = exp(BAo + /X1 4.+ 3po) with ¢ =1,2,...,n, on the fitted values for the current model.
Asymptotically (i.e. for a large sample size), Dp has an approximate x? distribution with n—p degrees of
freedom (df). To compare nested models, that are models containing the same terms and one has at least
one additional term, by writing D,, for the residual deviance of the full model and D, for the reduced

model, the statistic D, — D), ~ X?pr can be used to test the hypothesis that true coefficient values of
2

q—p;(1—-a)’
the upper 100 x « percentile of the X(21—p distribution, we reject the null hypothesis that the additional

omitted terms are zero. This test corresponds to a likelihood ratio test, and if D, — D, > x

parameter is zero at a significance level of «, which means that the parameters tested are important to
describe the data and should remain in the model (DEMETRIO, C. G. B., HINDE, J., & MORAL, 2014).

As a possible diagnostic tool, we can use plots to detect failure on the model fitting, comparing
observed and fitted values using a chosen residual, the deviance residuals. It is also possible to check the
goodness-of-fit of a model by contructing a half-normal plot of the residuals (ATKINSON, 1985). The R
package “hnp” (MORAL et al., 2017) produces half-normal plots with a simulades envelope that should
include where most residuals if the observed data were a plausible realisation of the fitted model, making
it possible to detect overdispersion in the data. A satisfactory fit should show a maximum 5% of the

points outside the envelope, usually.
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2.3.1.1 Poisson model

Assuming Y a random variable with a Poisson distribution, that is, ¥ ~ PO(u), where u > 0,

its probability function may be written as

ef.uﬂ‘y
y!

flylp) = for y=0,1,2,..

The Poisson distribution has an important role in modeling the behavior of count data. It pro-
vides a good representation for experimental data whose variance is equal to the mean, a phenomenon
known as equidispersion. In entomology, however, it is very rare to have a good fit of the Poisson model
to data from counts of insects, eggs, among others. The canonical link function for the Poisson model is

the logarithmic function, i.e. n = log(u).

2.3.1.2 Overdispersion

Overdispersion is a phenomenon in which the variability is greater than expected by the Poisson
and binomial models. In the Poisson model, for example, it is assumed that the variance is equal to the
mean, a characteristic that rarely occurs in entomology. In addition to inherent characteristics of the
distributions, experimental conditions can generate overdispersion, among them we can mention: natural
variability of the experimental material, the correlation between individual responses, hierarchical or
aggregated data structure and omission of covariates in the linear predictor (HINDE and DEMETRIO,
1998).

Assuming a model with correct linear predictor and link function fitted to a data set whose
variability is greater than expected, consistent, converging in probability to the true value of the param-
eters, the standard errors are underestimated. Therefore, the selection of models and hypothesis tests in
relation to the parameters can be compromised, leading to the selection of more complex models and,
consequently, incorrect conclusions about the scientific hypotheses.

A simple check of the occurrence of overdispersion in a set of counts or proportions data can
be done by comparing the residual deviance with the number of residual degrees of freedom. Since,
asymptotically, the residual deviance has a chi-square distribution with degrees of freedom equal to the
number of residual degrees of freedom, it is expected that these quantities will be approximately equal
for a Poisson or Binomial model, if they are a good fit. When the residual deviance is much greater,
there is evidence of overdispersion. In cases like this, finding a distribution that can accommodate the

variability is a better choice. The negative binomial distribution (NB) is an alternative.

2.3.1.3 Negative Binomial model

The probability function of Negative Binomial type-I distribution Y ~ NB(u, o) can be written

as

1
-

P(Y =ylp,0) = Ly +3) ( ou )y(l-%—lm)

T(Ory+1) \1+op

fory=0,1,2,..., n > 0 and o > 0 (ANSCOMBE, 1949).
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The Negative Binomial type-II distribution can be defined as it follows,

Iy + £)o?
ATy + 1)L +o)rte

P(Y =y|p,0) =

fory=0,1,2,..., u > 0 and o > 0 (EvaNs, 1953; JOHNSON, N. L.; KoTz, S.; KEMP, 1993).

2.3.1.4 Zero Inflation

In some cases the overdispersion can be caused by the occurence of excess zeros. If there is a
much higher number of zeros than expected for the Poisson or Negative Binomial distributions, it is said
that there is zero inflation (ZUUR et al., 2009). Not considering zero inflation can either lead to biased
estimates of parameters and standard errors.

In view of the issues associated with zero inflation, the subject of interest concerns, initially, the
process of generating zeros in sample data sets. Several authors have described zero-generating processes
and proposed ways to characterize them such as in bird abundance contexts (KUHNERT et al., 2005;
MARTIN et al., 2005), population dynamics of marine fauna (HEMMINGSEN et al., 2005) and also in areas
outside of ecology.

Zeros-inflated data can be analyzed through the use of mixed models (Zero-inflated Poisson or
"ZIP” and Zero-inflated negative binomail or "ZINB”).

2.3.1.5 Zero Inflated Poisson model (ZIP)

The zero inflated Poisson (ZIP), with Y ~ ZIP(u, o), is a discrete mixture of a component of
value 0 with probability o and a Poisson distribution with mean p and probability 1 — o, where o is the
associated parameted of the zero inflation overdispersion.

The probability density function is given as

P(Y =0|p,0) = o+ (1—o0)e*, and
y
PY =ylu,0) = (1- o)%e-ﬂ, ity >0,

with 4 >0and 0 <o < 1.

The mean and the variance are, respectively E[Y] = (1 —o)ue V[Y] = (1 —o)u+o(1 — o)u?.

2.3.1.6 Zero Inflated Negative Binomial model (ZINB)

The zero-inflated negative binomial distribution (ZINB) with parameters u, o, v, corresponds
to the mixture of 0 with probability v , where v is the non-struturaded zero probability (ZUUR et al.,
2009), and the negative binomial distribution NB(u, o) with probability (1 — ). The probability density

function is given as

P(Y =0|p,0,v) = v+ (1—v)P(Yr =0|u,0)
PY =y|p,o,v) = (1—v)PY1=ylp,0), ify>0,



23

for Y1 ~ NB(u,0), so,

P(Yi = 0lp,0) = (1+ o)~

and
Ly +3) on \"(_1 \"°
PY1 =ylp,0) = 7
()T (y+1) \1+op 1+op
where y1 = 0,1,2,3,..., u,0 > 0 and 0 < v < 1. The mean and the variance are, respectively,

EY]=1-v)pand V[Y] = (1 —v)u[l + (o +v)yl.

2.3.2 Introduction to generalized additive mixed models (GAMs)

In cases where there is some structure of correlation between observations, such as the case of
longitudinal data, additional functions can be included to improve the fit, as is the case of Generalized
Additive Models.

Generalized additive models defined by (HASTIE and TIBSHIRANI, 1986), can be compared with
the generalized linear models with the difference related to the linear predictors that involve a sum of
smoothing functions of explanatory variables. The generalized additive model has the linear predictor
described as

mi =%, 0+ fi(en) + falws) + ...,

where x! is the i — th design matrix row (i = 1,2,...,n), 8 = 01,0s,... corresponds to the associated
parameter vector to the x! matrix and fj(-) are the j smoothing functions of the covariates z; that can
assume different bases (i.e. cubic splines, regression splines, B-splines). Such models can be specified in
terms of smoothing functions making them flexible, and theoretically more complex, since there is a need
for the representation of the smoothing function and choice of degree of smoothing (Woob, 2006).
Once they are semi-parametric regression models, GAMs add a greater flexibility in modeling
once they don’t require assuming much about the structure and behavior of the data and are also used

to model erratic behavior observed in data.

2.3.2.1 Smoothing methods using splines

The smoothing function fj(x) can be a spline of a particular type, such as smoothing splines
and natural splines.

For smoothing splines , we introduce a penalty term when estimating f;(x), in order to balance
over-fitting and smoothness. For a simple model with normal errors, f;(z) can be estimated by minimising
the objective function S(f), subject to the penalty A > 0

n b

S() =3 (s — Fa))? + A / (" ()2 de, (2.2)

i=1 a

where f(z) is generated from a spline basis with A being the smoothing parameter.

2.3.2.2 Cubic splines

Let z1,...,z, belong to the interval [a,b] where a < 1 < ... < x,, < b. The function f(z)
defined in the [a, b] interval is a cubic spline (GREEN and SILVERMAN, 1994) only if :
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e in each interval (a,z1),...,(2n,b), f(z) is a third-degree polynomial,
e the polynomial segments to each x; have continuous first and second derivatives.

So, a cubic spline, under these two principles, can be described as

f(x) =di(x —2)® + ci(w — 2)® + bi(x — x5) + a; for ; < & < w449 (2.3)

with a;, b;, ¢;,d;, i =0, ..., n coeficients of the third-degree polynomial function and we define iy = a and

'L.n+1 == b

The goodness of fit can be evaluated using the generalized Akaike information criterion (GAIC)
(StasINOPOULOS and RIGBY, 2007) defined as follows:

GAIC(k) = D + k.df (2.4)

where D = —214, is the global fitted deviance l4 is the fitted log-likelihood, k = 2(14-1/df)[1—(df +2)/n]~*
is the model penalty of the corrected AIC. model (CLIFFORD M . HURVICH and Tsar, 1998) with df
(effective) degrees of freedom of the likelihood function for a fitted model. The selected model is the one
wich presents the minimum AIC value.

It is also possible to use the worm plot as a general diagnostic tool for analysis of residuals,
visualizing differences between two conditional distributions (VAN BUUREN and FREDRIKS, 2001). The
worm plot, GAIC and also fitting a GAM, can be done using the package gamlss() (STASINOPOULOS
and RIGBY, 2007) present in R software.

2.4 Case study analysis

2.4.1 Fitting Poisson models with polynomial functions

To begin the process of selecting models it is better to choose simpler models and later more
complex models. Since we are working with count data, a first obvious choice is to fit Poisson mod-
els. When selecting the linear predictor that will be used, we first include all the main factors, the
main parameters of experiment (Block, Spacing, Section and Week). As an initial alternative, we chose
polynomial functions in an attempt to improve the fit. Later we use smoothing functions. Assuming
Yiike ~ PO(1ijie), log pijee = 772;)%;, the first fitted models for wingless aphids and winged aphids can be

described with the linear predictor as it follows

771(111)“ = Bo + Block; + Spacing; + Sectiony, + Z Bi(Week,)!, (2.5)
1=1

where f3j is the intercept, i = 1,2,3,4;j = 1.2,3;k = 1,2,3;t = 1,...,16 and the polynom of
z-th degree with z = 5 for the counts of aphids.

According to the likelihood ratio test for nested models (Tables 2.1 and 2.2), the degree of
polynomial selected for the models in question is the polynomial of the fifth degree, and with this we can
follow the process with the evaluation of the next step, testing the interaction.

The graphical verification of the fit can also be performed with the help of the half-normal plot
as shown in Figure 2.7, and it’s possible to observe that increasing the polynomial degree does not lead

to a better fit, neither for wingless nor for winged aphids.



25

Table 2.1. Likelihood ratio test for nested models to choose the polynomial degree of the Poisson model
for winged aphids.

Polynomial degree  Likelihood ratio (LR) d.f.  p-value
3rd Vs 4th 91.40 1 < 0.0001
4th Vs 5th 95.12 1 < 0.0001

Table 2.2. Likelihood ratio test for nested models to choose the polynomial degree of the model for
wingless aphids.

Polynomial degree  Likelihood ratio (LR) d.f.  p-value
3rd Vs 4th 6192.24 1 < 0.0001
4th Vs 5th 5157.87 1 < 0.0001

After selecting the degree of the polynomial function that most assists with the accommodation
of temporal variation, it is interesting to verify the existence of an interaction between the fixed effects
on our models. To do so, the next fitted models seek to evaluate the inclusion of the interaction between

the Spacing and Section effects of the plants, and the linear predictor can now be described as

z
nl(;,)ct = fo + Block; + Spacing; + Sectiony, + (Spacing x Section) ), + Z Bi(Week,)". (2.6)
1=1

For both winged aphids and wingless aphids the interaction was not significant, therefore, we

can continue to find a model that better fits the data once there is overdispersion generated by the excess
of zeros.

The next step is to establish a model that considers the zero inflation, and since we are following

the order starting from a Poisson distribution, the only change in the model will be the definition of a

ZIP (Zero inflated Poisson), Y ke ~ ZIP(fijit, 0), 10g fijie = ng;,lt;, model with constant inflation for the

random part of the model as follows:

z
771(;/2:15 = Bo + Block; + Spacing; + Sectiony, + Z By (Weeky)!, (2.7)
1=1

where g is the location parameter or mean and o is the additional parameter of scale or vari-
ability.

The addition of the variability parameter to accommodate the overdispersion generated by the
zero inflation is significant for winged aphids LR = 258.98 and wingless aphids LR = 23191.49, indicated
by the improvement in the fit of the model.

Finally, for Yijxe ~ ZIP(pijie, 0¢), log pijee = ngit, logit(o:) = 70 + f(Week;);, we need to
evaluated if the fit will improve with a regression for the weekly time effect by including it in the part of

the zero-inflation model as described by linear predictor

nz(;]zt = fo + Block; + Spacing; + Sectiony, + Z Bl(Weekt)l, (2.8)

1=1
This is the chosen model (winged aphids LR = 17.01 and wingless aphids LR = 432.20) The
regression model presents better fit and the comparison of the fit between the different models can be

observed with the half normal plots Figure 2.8 for winged and 2.9 for wingless.
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(a) Wingless — 3rd degree pol.

(d) Winged - 3rd degree pol.
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Figure 2.7. Half-normal plot for the different degrees of polynomial functions for winged and wingless
aphids.

With the selected model, finally we are able to include the covariates. One by one, we test
inclusion of a natural enemy by comparing the goodness of fit with the model 2.8.

For all significant values of the inclusion of the parameters of natural enemies we have to, in
practical terms, they influence the population dynamics of aphids. If a natural enemy is significant for
improving the fit of the model it means that, in nature, it is responsible for controlling the decrease in
the number of pest population, in this case, responsible for controlling the aphid population.

Now, with the selected model for a Poisson distribution, the same process is made for the

Negative binomial distribution.
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Figure 2.8. Half-normal plot to compare the different models for winged aphids and 5-th degree of the
polynom.

Table 2.3. Likelihood ratio test for nested models to evaluate the inclusion of natural enemies for
wingless aphids with the ZIP 5-th degree polynomial model.

Natural enemie Likelihood ratio (LR) d.f. p-value

Lysipheblus 4.67 1 0.0307
Chrysopidae 1.04 1 0.3077
Scymnus 4.25 1 0.0394
Cycloneda 1.32 1 0.2505
Syrphidae 1.19 1 0.2746
Spiders 35.92 1 < 0.0001
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Figure 2.9. Half-normal plot to compare the different models for wingless aphids (a) 5-th degree of the
polynom, (b) interaction, (c) ZIP (constant) and ZIP (regression).

Table 2.4. Likelihood ratio test for nested models to evaluate the inclusion of natural enemies for

wingled aphidswith the ZIP 5-th degree polynomial model.

Natural enemie Likelihood ratio (LR) d.f. p-value
Lysipheblus 5.53 1 0.0187
Chrysopidae 0.40 1 0.5291

Scymnus 6.23 1 0.0126

Cycloneda 6.90 1 0.0086

Syrphidae 19.58 1 < 0.0001
Spiders 4.59 1 0.0321
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Figure 2.10. Residuals versus dependent variables for wingless aphids (a) and winged aphids (b).
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Figure 2.11. Residuals versus predicted variables for wingless aphids (a) and winged aphids (b).

2.4.2 Fitting negative binomial models

Assuming Yijne ~ NB(pijre, o), log pijee = 771(;1115? the sequence of fitted models for wingless

aphids and winged aphids can be first described by the linear pretictors described bellow

777(;]1]‘ = Bo + Block; + Spacing; + Sectiony, + Z 51(W€6kt)l,

=1

(2.9)

where [y is the intercept, i = 1,2,3,4;j = 1.2,3;k = 1,2,3;t = 1,...,16 and the choosen
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polynom of z-th degree with z = 5 for the counts of aphids, u is the location parameter or mean and o
is the additional parameter of scale or variability for the zero inflated negative binomial distribution.

Then, we test Y p ~ NB(uijkt, o), log pijre = ngllt;, assuming the second linear predictor

ngl)ct = fo + Block; + Spacing; + Section, + (Spacing x Section) ;x + Zﬂl(Weekt)l. (2.10)
=1

The third model Yy g ~ ZINB(p;jkt, 01, V), 10g thijie = ng,it, logoy = 8o + f(Week,); is fit for a
constant variation over time. The last model here includes a regression for the time effect described as
Yijke ~ ZINB(tijie, 0t v4), log fijee = m(ﬁf,, logo; = 6o + f(Week,),
logit(v) = vo + f(Weeky).

Tt is possible to see the difference between all the models by using the half-normal plot (Figure
2.12 and 2.13).

Using the likehood ratio we can choose the ZINB with 5-th degree polynomial and, after the

residual analysis, test the goodness of fit including the covariates Tables 2.5 and 2.6.

Table 2.5. Likelihood ratio test for nested models to evaluate the inclusion of natural enemies for winged
aphids with the ZINB 5-th degree polynomial model.

Natural enemies Likelihood ratio (LR) d.f. p-value

Lysipheblus 14.33 3 0.0025
Chrysopidae 12.46 3 0.0059
Scymnus 15.15 3 0.0017
Cycloneda 9.91 3 0.0192
Syrphidae 26.81 3 < 0.0001
Spiders 10.22 3 0.0167

Table 2.6. Likelihood ratio test for nested models to evaluate the inclusion of natural enemies for
wingless aphids with the ZINB 5-th degree polynomial model.

Natural enemie Likelihood ratio (LR) d.f. p-value

Lysipheblus 67.62 3 < 0.0001
Chrysopidae 67.64 3 < 0.0001
Scymnus 70.38 3 < 0.0001
Cycloneda 68.44 3 < 0.0001
Syrphidae 67.40 3 < 0.0001
Spiders 67.41 3 < 0.0001

The same can be evaluated for the negative binomial model. Here, more swings of natural

enemies are significant, leading to the consideration of better fit over the Poisson model.

2.4.3 Including splines in the linear predictor

As the main objective is to compare the fit of models that use polynomial function with that
acommodate temporal variability by means of smoothing functions, the next step is repeat the whole
previous model selection process replacing the polynomial function by splines. The first thing is to
choose the effective degrees of freedom, nodes of the function, without the independent variables by using

AIC, so we can define
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Figure 2.12. Half-normal plot to compare the different models for winged aphids and 5-th degree of the
polynom.

ng’zt = fo + Block; + Spacing; + Sectiony, + f(Week:), (2.11)

where [y is the intercept, : = 1,2,3,4;j =1.2,3;k =1,2,3;t =1,...,16 and f(.) is a smoothing
function based on cubic splines with eight nodes over time. The models are described below according

to the previous linear predictor:
P1 Yijre ~ P(tijue), 108 pijue = 0ol
ijkt (Mz;kt)7 Og [ijkt mjkt,
4
P2 Yijke ~ Ppijre), log pijre = ngj])gt;

P3 Yijre ~ ZIP(pijne, 0), 10g phijne = 775;15
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Figure 2.13. Half-normal plot to compare the different models for wingless aphids and 5-th degree of
the polynom.

P4 Yijie ~ ZIP(ptijie, 0¢), 10g phijie = nff;lt, logit(oy) = vo + f(Weeky);
NB1 Yijue ~ NB(mijue, 0), 10g ftijie = 1ony:
NB2 Yijit ~ NB(uijue, 0), 10g tije = 1y
NB3 Yijrt ~ ZINB(pijie, 0¢, V), 10g prijre = 771(?;1“ log oy = dg + f(Weeky);

NB4 Yijir ~ ZINB(pijue, 01, 1), 10g rijue = 1l log or = 8o + f(Weeky),
logit(vy) = o + f(Weeky).

Testing the interaction Spacing/Section using AIC we select for wingless aphids the model

including interaction and winthout interaction for winged aphids (equation 2.12).
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ngﬁt = fo + Block; + Spacing; + Sectiony, + (Spacing x Section);x + f(Week,), (2.12)

According to the values of AIC for the following table, we can choose the best model.

Table 2.7. Values of AIC for model selection using splines.

Wingless
Model d.f AIC (k=2) AIC (k=3.84) AIC (k=7.97)
NB1  16.99863  62968.84 63000.11 63070.32
NB2  20.99863  62539.35 62577.99 62664.71
NB3  29.99909  42116.97 42172.16 42296.06
NB4  39.00027 41578.97 41650.73 41811.80
Winged
Model d.f AIC (k=2) AIC (k=3.84) AIC (k=7.97)
NB1 17.00136  1877.488 1908.771 1978.986
NB2 21.00136  1881.630 1920.272 2007.008
NB3 29.99923 1609.483 1664.682 1788.578
NB4  38.99849  1614.651 1686.409 1847.472

The goodness-of-fit of the model can be observed with the worm plot Figure 2.14.
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Figure 2.14. Wormplot of the selected models for wingless aphids and winged aphids respectively.

So, it is time to include the covariates, one by one, and compare with selected model in the

previous step.

According to this, the model is better including natural enemies except Lysipheblus and Chrysop-
idae, for wingless aphids, and only Chrysopidae is not significative for winged aphids as seen in Table
2.8.

Now, the last distribution is the Negative binomial. We start fitting a simple model (NB1) with
the linear predictor ??, than a model with interaction (NB2), a zero inflated model with constant zero
inflation (NB3) and a zero inflated model with smooothing funtion aplied to the zero inflation parameter
(NB4). After comparing using AIC we can finaly choose the NB1 model with the linear predictor described
in 77.

The fitness of the model can be observed with the quantile plot Figure 2.15.

After comparing using AIC we can finaly choose the NB1 model as it shows Table 2.9 bellow.
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Table 2.8. Values of AIC for model selection using splines including each natural enemy.

Wingless
Model d.f AIC (k=2) AIC (k=3.84) AIC (k=7.97)
P4 39.00027  41578.97 41650.73 41811.80
P4 + Lysipheblus  40.00030  41584.43 41658.03 41823.23
P4 + Chrysopidae 40.00028  41580.59 41654.19 41819.39
P4 + Scymnus 40.00028  41573.86 41647.46 41812.66
P4 + Cycloneda  40.00209  41573.69 41647.30 41812.50
P4 + Syrphidae  40.00018  41571.44 41645.04 41810.24
P4 + Spiders 40.00028  41549.87 41623.47 41788.67
Winged
Model d.f AIC (k=2) AIC (k=3.84) AIC (k=7.97)
P3 29.99923  1609.483 1664.682 1788.578
P3 + Lysipheblus  30.99924  1604.320 1661.358 1789.385
P3 4 Chrysopidae 30.99923  1610.357 1667.396 1795.423
P3 + Scymnus 30.99922 1604.028 1661.066 1789.093
P3 + Cycloneda  30.99922  1605.511 1662.549 1790.576
P3 4 Syrphidae  30.99917  1591.518 1648.557 1776.583
P3 + Spiders 30.99924  1607.030 1664.068 1792.095

0.0 01 0.2
0.0 01 0.2

Deviation
Deviation

-0.2
|
-0.2
|

Unit normal quantile Unit normal quantile

Figure 2.15. Wormplot of the selected models for wingless aphids and winged aphids respectively.

Table 2.9. Values of AIC for model selection using splines .

Wingless
Model d.f AIC (k=2) AIC (k=3.84) AIC (k=7.97)
NB1 18.00116  10094.05 10127.17 10201.51
NB2 22.00116  10098.18 10138.67 10229.53
NB3  19.00081  33865.12 33900.08 33978.55
NB4  28.00196  33883.12 33934.65 34050.29
Winged
Model d.f AIC (k=2) AIC (k=3.84) AIC (k=7.97)
NB1  17.99881  1511.401 1544.519 1618.854
NB2 21.99882  1517.397 1557.875 1648.730
NB3  18.99899  1512.030 1546.988 1625.454
NB4  27.99829  1518.511 1570.028 1685.661

And the same way as for the Poisson, we now add the covariates and compare each one with
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the model selected before.

Table 2.10. Values of AIC for model selection using splines including each natural enemy.

Wingless
Model d.f AIC (k=2) AIC (k=3.84) AIC (k=7.97)
NB1 18.00116  10094.05 10127.17 10201.51
NB1 + Lysipheblus 27.99711  9795.604 9847.118 9962.746
NB1 + Chrysopidae 27.99711  9795.752 9847.266 9962.895
NB1 + Scymnus 2799711 9792.820 9844.335 9959.963
NB1 + Cycloneda  27.99711  9796.094 9847.609 9963.237
NB1 + Syrphidae  27.99711  9795.875 9847.390 9963.018
NB1 + Spiders 27.99711  9796.263 9847.778 9963.406
Winged
Model d.f AIC (k=2) AIC (k=3.84) AIC (k=7.97)
NB1 17.99881  1511.401 1544.519 1618.854
NB1 + Lysipheblus  18.99855  1504.550 1539.507 1617.971
NB1 + Chrysopidae 18.99881  1511.825 1546.783 1625.248
NB1 + Scymnus 18.99884  1506.397 1541.355 1619.820
NB1 + Cycloneda  18.99882  1511.732 1546.690 1625.155
NB1 + Syrphidae  18.99887  1492.828 1527.786 1606.251
NBI1 + Spiders 18.99882  1510.848 1545.806 1624.271

Here, Table 2.10, we can see that all the covariates are significant for wingless aphids but only

Lysipheblus and Syrphidae are significant for winged aphids.

2.5 Discussion

The aim of this paper was to propose a tutorial, on how to fit and to assess goodness-of-fit for
a range of different models for overdispersed and zero inflated count data. We described and showed,
step by step, how to fit and interpret the simplest, Poisson and Negative Binomial models, as well as
the more complex model. More than this, it was important to see the diference between using different
function to accomodate variabilty along the time. Considering the selection between the two types of
models proposed so far (polynomial and splines), one can conclude that the model that includes the
smoothing function in the explanatory variable time, is the one that best describes the behavior of the
response variable. By incorporating variability associated with the excess of zeros and, also, the great
variation between observations related to covariables, or the negative inflated Binomial model of zeros
with cubic spline fits better. Thus, such models, are the most indicated, since it captures more sutile

biological interactions.
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3 SIMULATION STUDY FOR COUNT DATA USING GAMS

Abstract

Count data are commonly observed in several areas of knowledge, whether by numbers of individu-
als or proportions. Two common features of counting studies are overdispersion and zero-inflation,
characteristics treated using zero-inflated counting models. However, modeling the data variability
and zero-inflation alone may not be enough for a good fit when dealing with longitudinal counting
data. In such cases, the use of models including smoothing functions are appropriate. In this simula-
tion study, we compared the efficiency of zero-inflated models with the simulation of three different
scenarios to test the inclusion of smoothing functions using cubic splines. For these simulated data

with temporal effect, the inclusion of splines did not improve the googdness fit.

Keywords: Count data; simulation study; generalized additive models; zero-inflated models; smoth-

ing functions.

3.1 Introduction

It is common in several fields of science to observe counting data, which generally have great
variability and large occurrence of zeros. Whether in evolutionary biology or ecology (HARRISON, 2014),
in genetics and medicine (PLAGNOL et al., 2012) or psychology (LOEYS et al., 2012), count data often
presents overdispersion or zero-inflation that cannot be optimally modelled with normal distribution.
Normally in these cases, the relationship between observations and explanatory variables are performed
using models involving Poisson or negative binomial distributions. Once the Poisson model assumes
equality of the mean and variance, negative binomial models have greater flexibility modeling the rela-
tionships between the mean and the variance (COLIN and PRAVIN, 2013). Although they are present in
many packages of statistical software, negative binomial models are limited to modeling over-dispersed
data, and unable to deal with under-dispersed data (MCcCULLAGH and NELDER, 1989).

Zero inflated models are alternatives when there is great variability related with the zero oc-
curences. Zero inflated Poisson models (ZIP) (LAMBERT, 1992) and Zero inflated negative binomial
models (ZINB) (GREENE, 1994) are used to deal with these characteristics. Although used in many areas
such as psychology (ATKINS and GALLOP, 2007), computer science (SOUZA et al., 2016) and several other
applied fields (FARHADI HASSANKIADEH et al., 2018; NJAMBI WANJAU, 2019), if the non-zero part of
data is over-dispersed, the parameter estimates of a ZIP can be biased just as standard errors may be
underestimated. Zero-inflated models are also used in the analisys of longitudinal data (NEELON et al.,
2010; ROSE et al., 2006). Eventually, models for count data are not as flexible because they assume
the linearity of covariates on the log-transformed expectation. To deal with this problem, spline based
approaches became quite common. Introduced by HASTIE and ROBERT (1990), the Generalized Additive
Models (GAM) tend to be more flexible, using smoothing functions to accommodate the extra variability.
Smoothing splines are one of the most popular methods for prediction of the nonparametric regression,
estimating a nonparametric function that minimizes the penalized least squares criterion (AYDIN et al.,
2013).

The aim of this work is to evaluate the fit improvement of zero-inflated models with the inclusion
of smoothing functions under different variability and proportion of zeros for simulated data. Changing
dispersion parameters and proportion of zeros, we compare Poisson, Negative binomial, ZIP and ZINB

models, with and without a nonparametric regression for simulated data.
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3.2 Count data models

Count data models are included in the class of Generalized linear models (GLM) (NELDER
and WEDDERBURN, 1972) that deals with a larger distributions family, the exponecial family, making
it possible to analyze datasets with different characteristics (continuous and discrete). The GLMs are

defined by three distinct components:

e A random component, corresponding to the random variables Y7,...,Y,, that belong to the expo-

nential family of distributions each in terms of a distinct parameter 6;.

« The linear predictor related, to the explanatory variables defined as n = 3Tx, where 3 is a vector

of p unknown parameters and x = [z1,...,x,]" is the i-th column of the n x p design matrix.

e A link function g(u;) = mn;, relating the systematic and the random component (HINDE and
DEMETRIO, 1998)

All counting models used are members of the exponential distributions family and will be

described in the following sections.

3.2.1 Poisson and Negative binomial models

The basic model used for count data is the Poisson model. The Poisson probability density

function (pdf) is

e_uuy

P(Y =ylu) = )l

for y=0,1,2,...
where the expected value of Y is p..e., E(y) = p and Var(y) = p, and link function defined as g(u) =
log(X ) for B vector of the estimated model coefficients. Because count data are often overdispersed, the
Poisson model is generally considered inappropriate (COLIN and PRAVIN, 2013).

Since inherent characteristics to the sampling processes can generate overdispersed data, the
Poisson distribuiton is not a good option anymore, so the negative binomial distribution is an alternative
(HINDE and DEMETRIO, 1998). The probability function of Negative Binomial type-I distribution Y ~
NB(u, ¢) can be written as

1
o

P(Y =ylp,0) =

Ly +2) ( on ><>
F(%)F(y—&—l) 1+op

fory=0,1,2,..., x> 0 and ¢ > 0 (ANSCOMBE, 1949).

The Negative Binomial type-II distribution can be defined as it follows

Iy + 5)o?
T(D(y+1)(1+0)vts

o

P(Y =y|p,0) =

fory=0,1,2,..., u > 0 and o > 0 (EvaNs, 1953; JoHNSON, N. L.; KoTz, S.; KEMP, 1993).
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3.2.2 Zero-inflated models: ZIP and ZINB

Since the number of zeros can be impressive in model fit, the need for zero-inflated models is
even greater to accommodate the high variability not associated with the experimental structure.
The zero-inflated Poisson (LAMBERT, 1992) and zero-inflated negative binomial (STASINOPOU-
Los and RIGBY, 2007) are alternatives to increase the goodness of fit.
The probability density function of ZIP model is given as
P(Y =0|p,0) = o+ (1—o0)e*, and
Y
(1 — 0')7'6_“7 lf Yy > 0,
Y

P(Y =ylu,0)

with g >0and 0 <o < 1.
The mean and the variance are, respectively E[Y] = (1 —o)ue V[Y] = (1 —o)u+o(1 —o)u?.

The probability density function of a ZINB model is given as

PY =0|p,0,v) = v+ (1—-v)PY1=0p,0)
PY =ylp,o,v) = (L-v)P(Y1=ylu o), ify >0,
for Y1 ~ NB(u, o), so,
P(Yi = Oljt,0) = (1+0p)

and

rov == it () ()

where y1 = 0,1,2,3,..., u,0 > 0 and 0 < v < 1. The mean and the variance are, respectively,
EY]=1-v)pand V[Y] = (1 —v)u[l + (o + v)yl.

All these distributions can be applied through the theory of generalized additive models (GAM)
(HasTIE and T1BSHIRANI, 1986). Such models can be specified in terms of smoothing functions making
them flexible, and theoretically more complex, since there is a need for the representation of the smoothing
function and choice of degree of smoothing (WooD, 2006).

It is possible to use a semi-parametric function to acommodate variability and here we will use
cubic splines (GREEN and SILVERMAN, 1994), implemented in the package gamlss() (STASINOPOULOS
and RIGBY, 2007) present in R software. Let x1, ..., z, belong to the interval [a,b] where a < 21 < ... <
Zn < b. The function f(x) defined in the [a, b] interval is a cubic spline only if :

e in each interval (a,z1),...,(2n,b), f(z) is a third-degree polynomial,
e the polynomial segments to each x; have continuous first and second derivatives.

So, a cubic spline, under these two principles, can be described as

fx) =di(x —2)® + ci(x — 2)® + bi(x — x5) +a; for x; < x < w449 (3.1)

with a;, b;, ¢;,d;, i =0, ..., n coeficients of the third-degree polynomial function and we define iy = a and

Z'n+]_ = b
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3.3 Simulation design

To test the effects of variability and proportions of zeros in the Poisson, Negative binomial
(NB), Zero inflated Poisson (ZIP) and Zero inflated negative binomial (ZINB) models, different datasets
were simulated. In an attempt to evaluate counting data models in different ways, and be able to compare
with the spline application, three conditions were adopted to elaborate three scenarios of simulations with
different parameter definitions. The first simulation was performed using a ZINB model with a defined
mean p = 1.0, and the other parameters varied in two levels each, ¢ = 0.5,1 and v = 0.3, 0.7, generating
four combinations in which all models were fitted, with a total of 16 models tested, being M1 to M4
replicated in each of the four combinations of parameters. The second scenario was simulated using a
ZIP model with a defined p = 1.0 and two different o levels, ¢ = 0.1, 0.3 and then, all models were fitted,
with a total of 8 models, M1 to M4 replicated in the two combinations.

The third one considered a nonlinear zero-inflated simulation. We initially defined two factors,
time and individuals, whose main objective is to reproduce the relation of individual observations, factor
I =1,...,20, sampled over Time, factor T' = 1,...,50. The simulated data considered p = exp(n,)
for n, = Bo + 1 T, and o0 = Plny] where P is the probability of a logistic distribution and n, =
Yo + 1 *sin(2 x 7w/ Period * Time) + 72 * cos(2 x 7w/ Period * Time), with Period = 20, fy = —1, #; = 0.1,
o
four models without a function in the parameter ¢ and four with the function, for comparison in the

Y9 = 0.2, 71 = 0.5 and v = —0.5. Then seven models were fitted with the link-function n;;” = Time,

sequence N1 to N7. The 31 models are described bellow considering «, the model intercept, o, and a,,

the constant o, v respectively:

e M1Y; ~ZINB(u,o,v), logu = a,,logo = a,,logit(v) = a,

o M2Y; ~ZIP(u,0), log = ay, logit(o) = ae;

o« M3Y; ~NB(u,o0),logp=ay;

o M4Y; ~P(p), logp = ay;

o N1Y;; ~ ZINB(uij,0,v), logp; = ng)Jogat = g, logit(v) = ay;

o N2V, ~ ZINB(u;j,0,v), log pij = 771(;), logo; = f(Timey), logit(v) = ay;
o N3 Yy ~ ZIP(1ij,0), log ju = 1}, logit(c1) =

o N4Y;; ~ ZIP(pij,04), logp = ng;),logit(ot) = f(Time;);

o N5 Y ~ NB(uij,0), logui; = ng),loga = ay;

o N6 Yj; ~ NB(uij,0), log pij = ﬂz(;)alogﬂt = f(Time;);

o N7Yi; ~P(uij), logpui; = 772);

The three simulation scenarios were elaborated considering the same execution pattern that

follows the steps described below:

o sample size defined as n = 1000 observation,

o number of simulated data sets m = 1000,
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o definition of the distribution parameters as shown in the Table 3.1, where we see four diferent
combinations of parameters for the ZINB scenario (4 x 1000 datasets), two combinations for the

Poisson scenario (2x 1000 datasets) and one combination for the non-linear scenario (1000 datasets),
o fitting all models for each scenario (ZINB, ZIP, Negative binomial and Poisson),
o calculation the mean estimates of the parameters,

« calculation of the selection frequency of a specific model.

In practical terms, the model selection frequency calculation was done manually for each of the
m = 1000 dataset with n = 1000 observations. For each combination of a specific simulation scenario,
the Poisson, NB, ZIP, ZINB models were fitted and the value of AIC was extracted from each one. A
table was created where in each column there were the AIC values of a specific model (eg column01 =
Poisson AIC, column02 = NB AIC, ...) and, consequently, each row would contain the AIC values of
all models fitted for the same dataset. Finally, for each line, the best model among the four proposed
would be chosen, thus proposing the calculation of the selection frequencies for each of the parameter

combinations within a given scenario.

Table 3.1. Parameters of the respective distributions used in the simulation scenarios.

Distribution 1 o v
ZINB (1) 1 05 | 0.3
ZINB (2) 1 05 | 0.7
ZINB (3) 1 1.0 |03
ZINB (4) 1 1.0 | 0.7
ZIP (1) 1 01 | -
ZIP (2) 1 03 | -

Non-linear ZINB | exp(n,) | Plns) | 0.3

The selection frequency was made evaluating the goodness of fit of the four models, for each
one of the m = 1000 data sets of a same simulation scenario, using the Akaike’s information criterion
(AIC), defined as follows:

AIC = —2logL + 2p (3.2)

where logL is the maximum likelihood function for a fitted model and p is the number of parameters in this
model. According to BURNHAM and ANDERSON (2004), the selected model is the one wich presents the
minimum AIC value. All model and simulations were made using the package gamlss() (STASINOPOULOS
and RIGBY, 2007) present in R software.

3.4 Results

The results of the proportion of selected models for each scenario are presented in Tables 3.2,
3.3, 3.4.
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Table 3.2. Proportion of selected models for ZINB simulation with respective values of the parameters.

Model | 6 =0.5,vr=03 | 0 =05,vr=07| 0 =10,y=03 | c =1.0,vr=0.7
ZINB 69.9% 44.8% 56.4% 48.0%

71P 2.5% 38.2% - 10.6%
N.B. 27.6% 17.0% 43.6% 41.4%

PO - - - -

In Table 3.2, the model ZINB was the best for the four different simulations of the first scenario.
Considering the four simulations, the only one which the ZIP model was selected more often than the
negative binomial model was for o = 0.5, = 0.7 (38.2% of the datasets). Poisson models were not

selected in any case, because of the absence of the parameters.

Almost the totality of the selected models were the zero-inflated negative binomial models, for
the three different scenarios, ZINB(pu, o,v), ZIP(u, o), non-linear ZINB(u, o,v), as defined in Table 3.1.
For ZIP simulations with o = 0.3 (Table 3.3), the best models were the zero-inflated Poisson (selected
in 943 simulated datasets, 94.3% of the cases). The Poisson models were selected for 90 datasets in this

scenario.

Special attention should be given to the non-linear simulation scenario (Table 3.4), where for
all simulated datasets, the ZIP, N.B. and Poisson models were not selected in any case. Here is possible
to observe that the zero-inflated negative binomial with the spline was selected for 429 datasets, agains

571 datasets where the inclusion of the cubic spline was not better.

Table 3.3. Proportion of selected models for ZIP simulation with respective values of the parameters.

Model | 6 =0.1 | ¢ =0.3

ZINB | 50.3% 4.6%
ZIP 33.5% 94.3%
N.B. 8.2% 2.1%
PO 9.0% -

Table 3.4. Proportion of selected models for ZINB simulation with respective values of the parameters.

Model | Proportion
ZINB 57.1%
ZINB(f) 42.9%
ALY -
ZIP(f) -
N.B. -
N.B.(f) -
PO -
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Table 3.5. Mean estimates of the parameters for the ZINB simulation and respective values of the
parameters.

ZINB 0 =0.5,v=10.3
Model o o v
ZINB | 1.009 | 0.504 | 0.298

VALY 1.319 | 0.886 -
N.B. | 0.700 | 1.284 -

PO 0.700 - -
ZINB 0 =0.5,vr=0.7
Model u o v

ZINB | 0.703 | 1.351 | 0.565
VAl 1.319 | 3.408 -
N.B. | 0.300 | 4.967 -

PO 0.300 - -
ZINB 0 =1.0,r=0.3
Model /1, o v

ZINB | 1.026 | 0.965 | 0.309
71P 1.590 | 1.280 -
N.B. | 0.698 | 2.040 -

PO 0.698 - -
ZINB 0 =1.0,v =0.7
Model W o v

ZINB | 0.649 | 2.372 | 0.532
71P 1.584 | 4.310 -
N.B. | 0.299 | 6.779 -
PO 0.299 - -

In Table 3.5 it is possible to see the influence of the parameter, used to simulate the data, in

the model estimation.

For v = 0.3, the ZINB models presents mean estimates similar to the parameter values used to
simulate the data. Considering the first case with © = 1.0, = 0.5, and v = 0.3, we have approximate
mean estimates for the ZINB model with values of y = 1.0091696, 0 = 0.5046620, v = 0.2983536.

For a large proportion of zeros v = 0.7, the mean estimates for the ZINB models underestimate
w1 and overestimate o, while the ZIP models overestimate both. Considering for example the simulated
parameter for the second case, y = 1.0,0 = 0.5, and v = 0.7, the ZINB mean estimates are u =
0.7038998, 0 = 1.3510002, v = 0.56513276 and the ZIP mean estimates p = 1.319720, 0 = 3.408092.
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Table 3.6. Mean estimates of the parameters for the ZIP simulation and respective values of the
parameters.

ZIP 0 =0.1
Model L o v
ZINB | 1.007 | 2.288e+163 | 0.094
Z1P | 1.003 0.113 -

N.B. | 0.901 0.118 -

PO 0.901 - -
ZIP 0 =03

Model L o v

ZINB | 0.966 | 6.513e+296 | 0.259
Z1P 0.989 0.416 -
N.B. | 0.699 0.484 -
PO 0.699 - -

Table 3.7. Mean estimates of the parameters for the non-linear ZINB simulation and respective values
of the parameters.

Model | Intercept " Intercept o v
ZINB 0.368 1.105 - 0.575 | 0.298
ZINB(f) 0.367 1.105 0.562 1.003 | 0.298
ALY 0.448 1.100 - 0.549 -
ZIP(f) 0.472 1.099 0.353 1.010 -
N.B. 0.257 1.105 - 2.140 -
N.B.(f) 0.257 1.105 1.096 1.020 -
PO 0.266 1.104 - - -

The Table 3.6 when the greater the o the smaller the p estimates. The mean estimates of o
for the ZINB models presented extreme values due to the difference of parameterization between the ZIP
distribution that considers a different variance function from that used by the ZINB model.

In Table 3.7 there is the comparison between models with and without the use of cubic splines
for the ZINB, ZIP and N.B. models. The mean estimates of u are all very similar considering a same
distribution. According to the selected models using AIC, the inclusion of a cubic spline, which leads to

the inclusion of the o intercept, does not influence in the model fit.

3.5 Discussion

In this work it was considered to establish different scenarios of variability and zero-inflation
to test the fit of parametric and semiparametric models. As expected, in the simulations where the
associated variability was due to the variation of the parameters of the distributions used, the ZINB
models presented not only higher frequency of selection but also better estimates of the parameters.

According to FENG and ZHU (2011), a combination of a model with a non-parametric part
can improve model selection and change the non-linear effect on the covariates. However, although
the nonparametric simulation scenario created variables with correlated observations, the inclusion of
smoothing functions did not improve the fit.

It is clear that for a large proportion of zeros, models like ZIP end up associating the great

variability by inflating o estimates, since all inflation of zero is being estimated as variability generated by
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the structural condition of the experiment (HINDE and DEMETRIO, 1998), as seen in the first simulation
scenario.

When we have simulated data from a zero-inflated Poisson distribution, described in the second
scenario, the proportion of zeros and the variability associated with the data structure are not composed
of distinct parameters, so the difference of parameterization between ZINB and ZIP generate completely
different estimates for the fitted models.

The use of the smoothing function for the third scenario of non-linear simulation, did not lead
to a better fit for the used models in any of the cases. So, for the simulation created here, there was
no difference using splines to fit the choosen models because there was no correlation according with the

non-linear function used for the p and o.
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APPENDIX
Appendix A

Computation script for chapter 2

Requiring the data

dados <— read.csv(”contotal2013.csv”, h=TRUE)
dados$Bloco <— as.factor (dados$Bloco)
dados$Espacamento <— as.factor (dados$Espacamento)
dados$Planta <— as.factor (dados$Planta)
dados$Seccao <— as.factor (dados$Seccao)

Choosing the polynomial degree - Poisson model - ZIP - (Analog for Negative binomial - ZINB)

modap0l <— glm(Apteros ~ poly(Semana, 3) + Bloco + Espacamento +
Seccao, family=poisson, data=dados)
modap02 <— glm( Apteros ~ poly(Semana, 4) + Bloco + Espacamento +
Seccao, family=poisson, data=dados)
modap03 <— glm( Apteros ~ poly(Semana, 5) + Bloco + Espacamento +

Seccao, family=poisson, data=dados)

modal0l <— glm(Alados ~ poly(Semana, 3) + Bloco + Espacamento +
Seccao, family=poisson, data=dados)
modal02 <— glm(Alados ~ poly(Semana, 4) + Bloco + Espacamento +
Seccao, family=poisson, data=dados)
modal03 <— glm(Alados ~ poly(Semana, 5) + Bloco + Espacamento +
Seccao, family=poisson, data=dados)

Likehood ratio test

Irtest <— function(x1l, x2) {
11 < logLik (x1)

12 <— logLik (x2)

dl <— df.residual(x1)

d2 <— df.residual (x2)

Ir <— 2%abs(11 — 12)

nu <— abs(dl — d2)

p <~ 1 — pchisq(lr, nu)

return(data.frame(lr , nu, p))}
Irtest (modap0l, modap02

Irtest (modal0l, modal02

( )
Irtest (modap02, modap03) # 5 degree choosen
( )
Irtest (modal02, modal03)

# 5 degree choosen
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Interaction model

modap05 <— glm( Apteros ~ poly(Semana, 5) + EspacamentoxSeccao
+ Bloco, family=poisson, data=dados)
modal05 <— glm(Alados ~ poly(Semana, 5) + Espacamento*Seccao

+ Bloco, family=poisson, data=dados)

Zero inflated Poisson - Constant zero inflation

modap07 <— zeroinfl (Apteros ~ poly(Semana, 5) + Espacamento
+ Seccao + Bloco | 1, dist="poisson”, data=dados)
modal07 <— zeroinfl (Alados ~ poly(Semana, 5) + Espacamento
+ Seccao + Bloco | 1, dist="poisson”, data=dados)

Zero inflated Poisson - Regression for zero inflation

modap09 <— zeroinfl (Apteros ~ poly(Semana, 5) + Espacamento
+ Seccao + Bloco | poly(Semana, 5), dist="poisson”, data=dados)
modal09 <— zeroinfl (Alados ~ poly(Semana, 5) + Espacamento
+ Seccao + Bloco | poly(Semana, 5), dist="poisson”, data=dados)

Inclusion of the covariates - Natural enemies

# wingless aphids model

modaplla <— zeroinfl (Apteros ~ poly(Semana, 5) + Espacamento
+ Seccao + Bloco + Lysipheblus | poly(Semana, 5),
dist="poisson”, data=dados)

modapllb <— zeroinfl (Apteros ~ poly(Semana, 5) + Espacamento
+ Seccao + Bloco + Lixeiro | poly(Semana, 5),
dist="poisson”, data=dados)

modapllc <— zeroinfl (Apteros ~ poly(Semana, 5) + Espacamento
+ Seccao + Bloco + Scymmus | poly(Semana, 5),
dist="poisson”, data=dados)

modaplld <— zeroinfl (Apteros ~ poly(Semana, 5) + Espacamento
+ Seccao + Bloco + Cycloneda | poly(Semana, 5),
dist="poisson”, data=dados)

modaplle <— zeroinfl (Apteros ~ poly(Semana, 5) + Espacamento
+ Seccao + Bloco + Sirfideo | poly(Semana, 5),
dist="poisson”, data=dados)

modapllf <— zeroinfl (Apteros ~ poly(Semana, 5) + Espacamento
+ Seccao + Bloco + Aranha | poly(Semana, 5),

dist="poisson”, data=dados)

# winged aphids model

modallla <— zeroinfl (Alados ~ poly(Semana, 5) + Espacamento
+ Seccao + Bloco + Lysipheblus | poly(Semana, 5),
dist="poisson”, data=dados)

modalllb <— zeroinfl (Alados ~ poly(Semana, 5) + Espacamento
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+ Seccao + Bloco + Lixeiro | poly(Semana, 5),
dist="poisson”, data=dados)

modalllec <— zeroinfl (Alados ~ poly(Semana, 5) + Espacamento
+ Seccao + Bloco + Scymmus | poly(Semana, 5),
dist="poisson”, data=dados)

modallld <— zeroinfl (Alados ~ poly(Semana, 5) + Espacamento
+ Seccao + Bloco + Cycloneda | poly(Semana, 5),
dist="poisson”, data=dados)

modallle <— zeroinfl (Alados ~ poly(Semana, 5) + Espacamento
+ Seccao + Bloco + Sirfideo | poly(Semana, 5),
dist="poisson”, data=dados)

modalllf <— zeroinfl (Alados ~ poly(Semana, 5) + Espacamento
+ Seccao + Bloco + Aranha | poly(Semana, 5),

dist="poisson”, data=dados)

Irtest (modap09, modaplla) # 4.671542 1 0.03066638
Irtest (modap09, modapllb) # 1.040407 1 0.3077268 — NAO
Irtest (modap09, modapllc) # 4.245019 1 0.03936562
Irtest (modap09, modaplld) # 1.320536 1 0.2504959 — NAO
Irtest (modap09, modaplle) # 1.198657 1 0.274/5931 — NAO
Irtest (modap09, modapllf) # 35.92167 1 2.054116e—09
Irtest (modal09, modallla) # 5.533813 1 0.01865242
Irtest (modal09, modalllb) # 0.396090 1 0.5291156 — NAO
Irtest (modal09, modalllc) # 6.228525 1 0.01257084 — NAO
Irtest (modal09, modallld) # 6.901628 1 0.008611728
Irtest (modal09, modallle) # 19.57989 1 9.647959e—06
Irtest (modal09, modalllf) # 4.589454 1 0.03216926
Example of hnp

ph9ap <— hnp(modap09, verb=T, print.on = T)

ph9al <— hnp(modal09, verb=T, print.on = T)

Fitting models with smoothing function (GAMLSS splines) - Poisson - ZIP - Negative binomial -
ZINB)

Choosing the right degrees of freedom

gampoapOla <— gamlss(formula = Apteros ~ cs(Semana, df = 3),
family = PO, data = dados)
gampoap0lb <— gamlss(formula = Apteros ~ cs(Semana, df = 4),
family = PO, data = dados)
gampoap0lc <— gamlss(formula = Apteros ~ cs(Semana, df = 5),
family = PO, data = dados)
gampoap0ld <— gamlss(formula = Apteros ~ cs(Semana, df = 6),
family = PO, data = dados)

gampoapOle <— gamlss(formula = Apteros ~ cs(Semana, df = 7),
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family = PO, data = dados)
gampoap01lf <— gamlss (formula
family = PO, data = dados)
gampoap0lg <— gamlss(formula
family = PO, data = dados)
gampoap0lh <— gamlss (formula
family = PO, data = dados)
gampoap0li <— gamlss(formula
family = PO, data = dados)
gampoap0lj <— gamlss (formula
family = PO, data = dados)
gampoap0lk <— gamlss(formula
family = PO, data = dados)

GAIC. table (gampoap0la , gampoap0lb , gampoap0Olc , gampoap01d
gampoapOle ,gampoap01f, gampoap0lg , gampoapOlh , gampoapO0li,

gampoap01j , gampoap01k)

Apteros

Apteros

Apteros

Apteros

Apteros

Apteros

cs (Semana,
cs (Semana ,
cs (Semana ,
cs (Semana ,
cs (Semana,

cs (Semana ,

df

df

df

df

df

df

11),
12),

13),

gampoap01lf <— gamlss(formula = Apteros ~ cs(Semana, df = )

+ Bloco + Espacamento + Seccao, family = PO, data = dados)

gampoal0la <— gamlss (formula
family = PO, data = dados)
gampoal0lb <— gamlss(formula
family = PO, data = dados)
gampoalOlec <— gamlss (formula
family = PO, data = dados)
gampoal0ld <— gamlss(formula
family = PO, data = dados)
gampoalOle <— gamlss(formula
family = PO, data = dados)
gampoal0lf <— gamlss(formula
family = PO, data = dados)
gampoal0lg <— gamlss(formula
family = PO, data = dados)
gampoal0lh <— gamlss (formula
family = PO, data = dados)
gampoal0li <— gamlss(formula
family = PO, data = dados)
gampoal0lj <— gamlss (formula
family = PO, data = dados)

gampoal0lk <— gamlss(formula

Alados

Alados

Alados

Alados

Alados

Alados

Alados

Alados

Alados

Alados

Alados

c¢s (Semana,
cs (Semana,
cs (Semana,
cs (Semana,
cs (Semana,
cs (Semana,
cs (Semana,
c¢s (Semana,
cs (Semana,
cs (Semana ,

cs (Semana,

df =

df =

df =

df =

df =

df =

df =

df =

df =

df =

df =

10),

11),

12),

13),
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family = PO, data = dados)

GAIC. table (gampoalOla , gampoal0lb , gampoalOlc , gampoalOld
gampoalOle ,gampoal01f , gampoalOlg , gampoal0lh , gampoalOli,
gampoal01lj , gampoal0lk)

gampoal0lf <— gamlss(formula = Alados ~ cs(Semana, df = 8)
+ Bloco + Espacamento + Seccao, family = PO, data = dados)

Interaction model

gampoap02f <— gamlss(formula = Apteros ~ cs(Semana, df = 8)
+ Bloco + Espacamento*Seccao, family = PO, data = dados)
gampoal02f <— gamlss(formula = Alados ~ cs(Semana, df = 8)
+ Bloco + EspacamentoxSeccao, family = PO, data = dados)

f(Week, by=Spacing); f(Week, by=Section); f(Week, by=Spacing*Section)

gampoap03f <— gamlss (formula = Apteros ~ cs(Semana, df = 8)xEspacamento
+ Bloco + Espacamento*Seccao, family = PO, data = dados)
gampoal03f <— gamlss (formula = Alados ~ cs(Semana, df = 8)*Espacamento

+ Bloco + Espacamento + Seccao, family = PO, data = dados)

gampoap04f <— gamlss(formula = Apteros ~ cs(Semana, df = 8)*Seccao
+ Bloco + EspacamentoxSeccao, family = PO, data = dados)
gampoal04f <— gamlss (formula = Alados ~ cs(Semana, df = 8)*Seccao

+ Bloco + Espacamento + Seccao, family = PO, data = dados)

gampoap05bf <— gamlss(formula = Apteros ~

cs (Semana, df = 8)xEspacamentoxSeccao

+ Bloco + Espacamentox*Seccao, family = PO, data = dados)
gampoal05f <— gamlss (formula = Alados ~

cs (Semana, df = 8)xEspacamentoxSeccao

+ Bloco + Espacamento + Seccao, family = PO, data = dados)
Zero inflated Poisson - Constant zero inflation
gampoap06f <— gamlss(formula = Apteros ~

cs (Semana, df = 8)xEspacamento*Seccao + Bloco +

Espacamento*Seccao, sigma.formula = ~1, family = ZIP, data = dados)

gampoal06f <— gamlss(formula = Alados ~
cs (Semana, df = 8)xEspacamento*Seccao + Bloco +

Espacamento + Seccao, sigma.formula = ~1, family = ZIP, data = dados)

Zero inflated Poisson - Regression for zero inflation

gampoap07f <— gamlss(formula = Apteros ~
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cs (Semana, df = 8)xEspacamentoxSeccao + Bloco +
EspacamentoxSeccao , sigma.formula = ~ c¢s(Semana, df=8),
family = ZIP, data = dados)

gampoal07f <— gamlss(formula = Alados ~

cs (Semana, df = 8)xEspacamentoxSeccao + Bloco +
Espacamento 4+ Seccao, sigma.formula = ~ cs(Semana, df=8),
family = ZIP, data = dados)

Inclusion of the covariates - Natural enemies

gampoap07fl <— gamlss(formula = Apteros ~

cs (Semana, df = 8)xEspacamento*Seccao + Bloco +
Espacamento*Seccao+ Lysipheblus, sigma.formula = ~ cs(Semana, df=8),
family = ZIP, data = dados)

gampoap07f2 <— gamlss (formula = Apteros ~

cs (Semana, df = 8)xEspacamentox*Seccao + Bloco +
Espacamento*Seccao+ Lixeiro , sigma.formula = ~ cs(Semana, df=8),
family = ZIP, data = dados)

gampoap07f3 <— gamlss(formula = Apteros ~

cs (Semana, df = 8)xEspacamentox*Seccao + Bloco +
EspacamentoxSeccao+ Scymmus, sigma.formula = ~ cs(Semana, df=8),
family = ZIP, data = dados)

gampoap07f4 <— gamlss(formula = Apteros ~

cs (Semana, df = 8)xEspacamentox*Seccao + Bloco +
Espacamentox*Seccao + Cycloneda, sigma.formula = ~ cs(Semana, df=8),
family = ZIP, data = dados)

gampoap07f5 <— gamlss(formula = Apteros ~

cs (Semana, df = 8)xEspacamentoxSeccao + Bloco +
EspacamentoxSeccao+ Sirfideo , sigma.formula = ~ c¢s(Semana, df=8),
family = ZIP, data = dados)

gampoap07f6 <— gamlss(formula = Apteros ~

cs (Semana, df = 8)xEspacamentoxSeccao + Bloco +
EspacamentoxSeccao + Aranha, sigma.formula = ~ c¢s(Semana, df=8),
family = ZIP, data = dados)

gampoal06fl <— gamlss(formula = Alados ~

cs (Semana, df = 8)xEspacamentoxSeccao + Bloco +
Espacamento + Seccao+ Lysipheblus, sigma.formula = ~1,
family = ZIP, data = dados)

gampoal06f2 <— gamlss(formula = Alados ~

cs (Semana, df = 8)xEspacamentoxSeccao + Bloco +
Espacamento + Seccao+ Lixeiro, sigma.formula = ~1,
family = ZIP, data = dados)

gampoal06f3 <— gamlss(formula = Alados ~

cs (Semana, df = 8)xEspacamentoxSeccao + Bloco +

Espacamento + Seccao+ Scymmus, sigma.formula = ~1,



family = ZIP, data = dados)

gampoal06f4 <— gamlss(formula = Alados ~

cs (Semana, df = 8)xEspacamentoxSeccao + Bloco +
Espacamento + Seccao+ Cycloneda, sigma.formula = ~1,
family = ZIP, data = dados)

gampoal06f5 <— gamlss(formula = Alados ~

cs (Semana, df = 8)xEspacamentoxSeccao + Bloco +
Espacamento + Seccao+ Sirfideo , sigma.formula = ~1,
family = ZIP, data = dados)

gampoal06f6 <— gamlss(formula = Alados ~

cs (Semana, df = 8)xEspacamento*Seccao + Bloco +
Espacamento 4+ Seccao+ Aranha, sigma.formula = ~1,
family = ZIP, data = dados)

Example AIC with GAIC.table

GAIC. table (gampoap07f , gampoap07{l , gampoap07{2 , gampoap07{3 ,
gampoap07f4 , gampoap07f5 , gampoap07{6)
GAIC. table (gampoal06f , gampoal06f1 , gampoal06f2 , gampoal06{3 ,
gampoal06f4 , gampoal06f5 , gampoal06£6)
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Appendix B

Computation script for chapter 3

Simulating the data

require (gamlss)

n <— 1000

m <— 1000

y0 <— matrix (0,nrow=n, ncol=m)

for (i in 1:m){

y0[,i] <= rZINBI(n, mu = 1, sigma = 0.5, nu = 0.3)

}

Fitting the m models for the simulated data

estimates0l <— matrix(0, nrow = 6, ncol = m)
for (i in 1:m) {

fit <— gamlss(y0[,i] ~ 1,

sigma .formula = ~ 1,

nu.formula = ~ 1
family = ZINBI)
coefs <— c(fit$mu. coefficients, fit$sigma.coefficients,

fit$nu. coefficients ,Ipred (fit ,se. {it=TRUE)8$se. fit [1],logLik (fit),
AIC(fit))

estimatesOl [,i] <— coefs

}

Extracting estimates of the parametes and bias

)

rownames( estimates01l) <— c¢(”mu”,”sigma”,”’nu”,”St.Error”,”LogLike” ,”AIC”)
estimates01 [1:2,] <— exp(estimates01[1:2,])
estimates01 [3,] <— plogis(estimates01[3,])

estimates0l <— as.data.frame(t(estimates0l))

estimatesOla <— estimates01[,1:3]
estimatesOlb <— estimates01[,4:6]

require (reshape)
estimatesO0la <— melt(estimatesOla)
names( estimates0la) <— c(”parameter”, ”estimate”)

estimatesO0la$bias <— estimatesOla$estimate — c(rep(l, m), rep(0.5, m), rep(.3, m))

with (estimatesOla , tapply(estimate, parameter, mean)) # mean estimate
with (estimatesOla , tapply(bias, parameter, mean)) # mean bias

with (estimatesOla , tapply(bias™2, parameter, mean)) # mean squared error



Simulating the nonlinear scenario

require (gamlss)

n_ind <— 20
Time <— 1:50

betal <— —1
betal <— .1

gammal <— .2
gammal <— .5
gamma2 <— —.d
period <— 20

log .mu <— betal0 + betal x Time

mu <— exp(log.mu)

logit .omega <— gammal + gammal*sin (2%pi/period*Time) +
gamma2*cos (2#pi/period*Time)

omega <— plogis(logit .omega)
set.seed (32871)

m <— 1000

y0 <— matrix (0 ,nrow=n_ind*length (Time) ,ncol=m)

for(i in 1:m){

yO[,i] <= rZINBI(n_ind * length(Time), mu = rep(mu, n_ind),
sigma = rep(omega, n_ind))

}

yl <— data.frame(ID = gl(n_ind, length(Time)), Time = Time, y0)

Fitting the m models for the nonlinear scenraio

estimates0l <— matrix (0, nrow = 7, ncol = m)

for (i in 3:m+2) {

try (fit <— gamlss(yl[,i] ~ Time,

sigma . formula = ~ 1, #sigma. formula = cs(Time) to include cubic spline
nu.formula = ~ 1,

family = ZINBI, data = yl))

coefs <— c¢(fit8mu.coefficients, fit$sigma.coefficients,

fit$nu. coefficients ,Ipred (fit ,se. {it=TRUE)$se. fit [1],logLik (fit),
AIC(fit))

estimatesOl [,i] <— coefs

}

Function to extract AIC and select the best model

99
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AICS01 <— data.frame(estimatesOlb[,3],estimates02b[,3],
estimates03b [,3],estimates04b [,3])
colnames (AICS01) <— c(”ZINB” ,”ZIP” ,”"N.B.” ,”POIS”)

sentido <— c¢(”linha”,”coluna”)

minimoAIC <— function(x,sentido ,fung¢do){

#sentido: "linha” ou “coluna”
resultado <— c()
fec<—funcao

if (sentido=="1linha”){
for (i in l:nrow(x)){
resultado [i]<— fc(x[i,])
}

}

else(

for (i in l:ncol(x)){
resultado[i] <— fc(x[,i])
}

}

return(resultado)

}
minimoAIC (AICS01,”linha” ;min)

funcanzinha <— function(x,y){
resultado <— c()

for (i in 1:1000){

resultado [i]<— identical (x[i],y[i])
}

return(resultado)}

AICS01 <— data.frame(estimatesOlb[,3],estimates02b[,3],estimates03b[,3],
estimates04b [,3])

colnames (AICS01) <— c(”ZINB” ,”ZIP” ,”N.B.” ,”POIS”)

AICS01$Minimum <— minimoAIC (AICS01,”linha” ;min)

sum( funcanzinha (AICS01[,1],AICS01[,5]) ,na.rm = TRUE)



