• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.11.2008.tde-12032008-151057
Documento
Autor
Nome completo
Cristiane Mariana Rodrigues da Silva
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2007
Orientador
Banca examinadora
Barbin, Decio (Presidente)
Dias, Carlos Tadeu dos Santos
Lavorenti, Norberto Antonio
Título em português
Uso do teste de Scott-Knott e da análise de agrupamentos, na obtenção de grupos de locais para experimentos com cana-de-açúcar
Palavras-chave em português
Análise de conglomerados
Cana-de-açúcar.
Resumo em português
O Centro de Tecnologia Canavieira (CTC), situado na cidade de Piracicaba, é uma associação civil de direito privado, criada em agosto de 2004, com o objetivo de realizar pesquisa e desenvolvimento em novas tecnologias para aplicação nas atividades agrícolas, logísticas e industriais dos setores canavieiro e sucroalcooleiro e desenvolver novas variedades de cana-de-açúcar. Há 30 anos, são feitos experimentos, principalmente no estado de São Paulo onde se concentra a maior parte dessas unidades produtoras associadas. No ano de 2004 foram instalados ensaios em 11 destas Unidades Experimentais dentro do estado de São Paulo, e há a necessidade de se saber se é possível a redução deste número, visando aos aspectos econômicos. Se se detectarem grupos de Unidades com dados muito similares, pode-se reduzir o número destas, reduzindo-se, conseqüentemente, o custo dessas pesquisas, e é através do teste estatístico de Scott-Knott e da Análise de Agrupamento, que essa similaridade será comprovada. Este trabalho tem por objetivo, aplicar as técnicas da Análise de Agrupamento ("Cluster Analisys") e o teste de Scott-Knott na identificação da existência de grupos de Unidades Industriais, visando à diminuição do número de experimentos do Centro de Tecnologia Canavieira (CTC) e, por conseguinte, visando ao menor custo operacional. Os métodos de comparação múltipla baseados em análise de agrupamento univariada, têm por objetivo separar as médias de tratamentos que, para esse estudo foram médias de locais, em grupos homogêneos, pela minimização da variação dentro, e maximização entre grupos e um desses procedimentos é o teste de Scott-Knott. A análise de agrupamento permite classificar indivíduos ou objetos em subgrupos excludentes, em que se pretende, de uma forma geral, maximizar a homogeneidade de objetos ou indivíduos dentro de grupos e maximizar a heterogeneidade entre os grupos, sendo que a representação desses grupos é feita num gráfico com uma estrutura de árvore denominado dendrograma. O teste de Scott- Knott, é um teste para Análise Univariada, portanto, mais indicado quando se tem apenas uma variável em estudo, sendo que a variável usada foi TPH5C, por se tratar de uma variável calculada a partir das variáveis POL, TCH e FIB. A Análise de Agrupamento, através do Método de Ligação das Médias, mostrou-se mais confiável, pois possuía-se, nesse estudo, três variáveis para análise, que foram: TCH (tonelada de cana por hectare), POL (porcentagem de açúcar), e FIB (porcentagem de fibra). Comparando-se o teste de Scott-Knott com a Análise de Agrupamentos, confirmam-se os agrupamentos entre os locais L020 e L076 e os locais L045 e L006. Conclui-se, portanto, que podem ser eliminadas dos experimentos duas unidades experimentais, optando por L020 (Ribeirão Preto) ou L076 (Assis), e L045 (Ribeirão Preto) ou L006 (Região de Jaú), ficando essa escolha, a critério do pesquisador, podendo assim, reduzir seu custo operacional.
Título em inglês
Scott-Knott test and cluster analysis use in the obtainment of placement groups for sugar cane experiments
Palavras-chave em inglês
Cluster Analysis
Sugar Cane.
Resumo em inglês
The Centre of Sugar Cane Technology (CTC), placed at the city of Piracicaba, is a private right civilian association, created in August of 2004, aiming to research and develop new technologies with application in agricultural and logistic activities, as well as industrial activities related to sugar and alcohol sectors, such as the development of new sugar cane varieties. Experiments have been made for 30 years, mainly at the state of São Paulo, where most of the associated unities of production are located. At the year of 2004, experiments were installed in 11 of those Experimental Unities within the state of São Paulo, and there is the need to know if it is possible the reduction of this number, aiming at the economical aspects. If it were detected groups of Unities with very similar data, it would be possible to eliminate some of these Unities, diminishing, consequently, the researches cost, and it is through the Scott-Knott statistical test and the Cluster Analysis that this similarity may be corroborated. This work aims to apply the Cluster Analysis techniques and the Scott-Knott test to the identification of the existence of groups of Industrial Unities, aiming at the reduction of the CTC's experiments number and, consequently, aiming at the smaller operational cost. The methods of multiple comparison based on univariate cluster analysis aim to split the treatments means in homogenous groups, for this work were used the placement groups means, through the minimization of the variation within, and the maximization amongst groups; one of these methods is the Scott-Knott test. The cluster analysis allows the classification of individual or objects in excludent groups; again, the idea is to maximize the homogeneity of objects or individual within groups and to maximize the heterogeneity amongst groups, being that these groups are represented by a tree structured graphic by the name of dendogram. The Scott-Knott test is a Univariate Analysis test, therefore is appropriate for studies with only one variable of interest. The Cluster Analysis, through the Linkage of Means Method, proved to be more reliable, for, in this case, there were three variables of interest for analysis, and these were: TCH (weight, in tons, of sugar cane by hectare), POL (percentage of sugar) and FIB (percentage of fiber). By comparing the Scott-Knott test with the Cluster Analysis, two pairs of clustering are confirmed, these are: placements L020 and L076; and L045 and L006. Therefore it is concluded that two of the experimental unities may be removed, one can choose from L020 (Ribeirão Preto) or L076 (Assis), and L045 (Ribeirão Preto) or L006 (Região de Jaú), the choice lies with the researcher, and it can diminish the operational cost. Keywords: Cluster Analysis; Sugar Cane
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2008-04-04
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.