• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.11.2008.tde-11022009-074818
Documento
Autor
Nome completo
Mariana Ragassi Urbano
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2008
Orientador
Banca examinadora
Demetrio, Clarice Garcia Borges (Presidente)
Cordeiro, Gauss Moutinho
Ortega, Edwin Moises Marcos
Título em português
Melhoramento do resíduo de Wald em modelos lineares generalizados
Palavras-chave em português
Distribuição normal
Método de Monte Carlo
Modelos lineares generalizados
Teoria assintótica (Inferência estatística).
Resumo em português
A teoria dos modelos lineares generalizados é muito utilizada na estatística, para a modelagem de observações provenientes da distribuição Normal, mas, principalmente, na modelagem de observações cuja distribuição pertença à família exponencial de distribuições. Alguns exemplos são as distribuições binomial, gama, normal inversa, dentre outras. Ajustado um modelo, para vericar a adequação do ajuste, são aplicadas técnicas de diagnósticos e feita uma análise de resíduos. As propriedades dos resíduos para modelos lineares generalizados não são muito conhecidas e resultados assintóticos são o único recurso. Este trabalho teve como objetivo estudar as propriedades assintóticas do resíduo de Wald, e realizar correções para que sua distribuição se aproxime de uma distribuição normal padrão. Uma aplicação das correções para o resíduo de Wald foi feita para cinco conjuntos de dados. Em dois conjuntos, a variável resposta apresentava-se na forma de contagem, e para a modelagem utilizou-se a distribuição de Poisson. Dois outros conjuntos são provenientes de delineamentos experimentais inteiramente casualizados, com variável resposta contínua e para a modelagem utilizou-se a distribuição normal, e para o último conjunto, o interesse era modelar a proporção, e utilizou-se a distribuição binomial. Um estudo de simulação foi conduzido, utilizando-se o método de Monte Carlo, e concluiu-se, que com as correções realizadas no resíduo de Wald, houve uma melhora signicativa em sua distribuição, sendo que a versão melhorada do resíduo tem distribuição que aproxima mais de uma distribuição normal padrão.
Título em inglês
Improvement of Wald residual in generalized linear models
Palavras-chave em inglês
Asymptotic theory (statistical inference)
Generalized linear models
Normal distribution Monte Carlo method.
Resumo em inglês
The theory of generalized linear models is very used in statistics, not only for modeling data normally distributed, but in the modeling of data whose distribution belongs to the exponential family of distributions. Some examples are binomial, gamma and inverse Gaussian distribution, among others. After tting a model in order to check the adequacy of tting, diagnostic techniques are used. The properties of residuals in generalized linear models are not well known, and asymptotic results are the only recourse. This work aims to study the asymptotic properties of Wald residual, and to obtain corrections to make the distribution of the modied residuals closer to standard normal. An application of the corrections for Wald residuals was done to ve datasets. In two datasets the response variables were counts, and to model, was used the Poisson distribution. Other two datasets are provided from a completely randomized design with a continuous response, and to model, was used the normal distribution, and, in the last dataset the interest was to model the proportion and the binomial distribution was used. A Monte Carlo simulation, was performed showing that the distribution of the corrected Wald residuals, is more close to the standard normal distribution.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
errata.pdf (57.84 Kbytes)
Mariana_Urbano.pdf (994.98 Kbytes)
Data de Publicação
2009-03-04
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.