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RESUMO

Modelos mistos não lineares aplicados a dados de desempenho de frangos de

corte

Devido à grande demanda de mercado da carne de frango, existe grande
interesse em pesquisas que visam melhorar ainda mais a eficiência na produção desse pro-
duto. Neste contexto, o estudo do desempenho de frangos de corte auxilia no processo de
otimização da produção de carne e facilita a compreensão das necessidades de cada fase de
crescimento até a idade de abate das aves. Embora seja comum a utilização de modelos não
lineares para descrever o padrão de crescimento das aves, não é comum a inclusão de efeitos
aleatórios nesses modelos e muito menos a modelagem conjunta das variáveis observadas no
experimento. Neste trabalho forma ajustados os modelos de crescimento Gompertz, loǵıs-
tico de quatro parâmetros, von Bertalanffy e Richards com efeitos fixos e aleatórios em seus
parâmetros para descrever a curva de crescimento de 1080 frangos da linhagem Ross. Além
disso, foi realizada a modelagem conjunta das variáveis peso corporal e consumo de ração
utilizando modelos mistos. Adicionalmente, comparou-se os modelos ajustados utilizando
os critérios de informação AICc e BIC. Os resultados indicaram o modelo misto loǵıstico
de quatro parâmetros como o mais adequado aos dados de desempenho de frangos de corte,
tanto para o modelo univariado como para o modelo bivariado.

Palavras-chave: Frango de corte; Modelos mistos não lineares bivariados; Componentes de
variância; Modelos de crescimento; Medidas repetidas
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ABSTRACT

Nonlinear mixed models applied to broiler chickens performance data

Due to the large market demand for chicken meat, there is great interest
in research aimed at further improving the production efficiency of this product. In this
context, the study of broiler performance assists in the process of optimizing meat production
and facilitates the understanding of the needs of each growth phase until the poultry
slaughtering age. Although it is common to use nonlinear models to describe the growth
pattern of birds, it is not common to include random effects in these models, much less
the combined modeling of the variables observed in the experiment. In this work, we
adjusted the Gompertz, four-parameter logistic, von Bertalanffy, and Richards growth
models with fixed and random effects in their parameters to describe the growth curve
of 1080 Ross broilers. Additionally, we performed the joint modeling of body weight and
feed consumption variables using mixed models. Additionally, we compared the adjusted
models using the AICc and BIC information criteria. The results indicated that the four-
parameter mixed logistic model was the most suitable for broiler performance data for both
univariate and bivariate models.

Keywords: Broiler chicken; Bivariate nonlinear mixed models; Variance components; Growing
Model; Repeated measurements
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1 INTRODUCTION

Chicken meat plays an important role in the world animal protein market, and

it is as among the fastest growing sources of animal protein in Brazil and the world (ABPA

- Associação Brasileira de Protéına Animal). There is great interest in further optimizing

the production process of broiler meat, one of the aspects explored for this purpose is the

study of the performance variables of poultry. In this context, knowledge of the growth

pattern of birds provides significant information to assist in the production process and to

facilitate understanding of the needs of each growth phase until the age of slaughter.

Nonlinear growth models such as Gompertz (GOMPERTZ, 1825; WINSOR,

1932), von Bertalanffy (VON BERTALANFFY, 1957), Richards (RICHARDS, 1959) and

logistic (NELDER, 1961) are commonly used in these studies. Despite the frequent use of

these models, it is not common to include random effects in their parameters, and thus, the

consequences of using such effects in these models are little explored.

Data observed in performance studies repeatedly evaluated in the same ex-

perimental units have inherent characteristics that contradict assumptions of error indepen-

dence and homogeneity of variance, which are common in fixed nonlinear regression models.

For example, when we study the body weight of broilers, it is natural to increase the vari-

ability between weights over time. Besides, we expect that measurements taken sequentially

on the same birds in near times will be more highly correlated than measurements farther

in time (LITTELL et al., 2000). Thus, to model performance data, it is necessary a model

that includes the different variations over time with the possibility of including correlations

between the measures taken in the same individual. Mixed models have great flexibility in

data modeling and allow the inclusion of different structures of variances and correlations.

Additionally, mixed models allow the joint modeling of multiple response variables.

The data used in this work come from a performance experiment of broiler

chickens (FZEA/USP), with 1080 Ross broiler chickens, in a randomized block design with

a factorial treatment structure with three nutritional densities and two sexes. In chapter 2,

we worked with the Gompertz model, which is one of the most used to model growth data

(NARINÇ et al., 2017). We compared Gompertz models with fixed effects and Gompertz

with random effects on their parameters in the study of body weight of broiler chickens. In

Chapter 3, we adjusted and compared the Gompertz, four-parameter logistic, von Berta-

lanffy, and Richards mixed-effect models applied to body weight data. In Chapter 4, we

perform the joint modeling of body weight and feed consumption using the Gompertz

and four-parameter logistic mixed models. For comparisons made in chapters 2, 3, and 4,

we used the likelihood ratio test for nested models, and the Akaike corrected information

criterion - AICc (HURVICH; TSAI, 1989) and the Bayesian information criterion - BIC

(SCHWARZ, 1978). For statistical modelling, we use the free software R (CORE TEAM,

2019).
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2 MIXEDGOMPERTZMODEL IN STUDYOF BROILER CHICKENSWEIGHT

PERFORMANCE

Abstract

Brazil plays a prominent role in world poultry farming, according to the

Brazilian Association of Animal Protein, as the largest exporter and second-largest pro-

ducer of chicken meat. There is great interest in research aimed at further improving the

efficiency of chicken meat production. In this context, the study performance from broiler

chickens, as well as the knowledge of the growth curve, helps in the process of optimizing

meat production and facilitates the understanding of the needs of each growth phase un-

til the age of slaughter. Among the most used models to describe the growth pattern of

broiler chickens is the Gompertz model, however, in this model is not common to include

random effects. In this work, the Gompertz models with fixed effects and random effects

in the model parameters were compared to describe the growth curve of 1080 Ross broiler

chickens, which were weighed from 3 to 56 days of age. The data come from an experiment

(FZEA/USP) in a randomized block design with a factorial treatment structure with three

nutritional densities and two sexes. Comparisons were made between the two models using

the corrected Akaike information criterion (AICc), the Bayesian information criterion (BIC),

and the likelihood ratio test. The results indicated the Gompertz mixed model as the most

appropriate to performance data from broiler chickens.

Keywords: Nonlinear model; Variance components; Growth models; Variance heterogeneity.

2.1 Introduction

Chicken meat is the fastest-growing source of animal protein in Brazil and

worldwide, with Brazil currently the largest exporter and second-largest producer, standing

out as a reference in the world poultry sector (ABPA - Associação Brasileira de Protéına

Animal).

Models to study broiler performance have been developed to assist the process

of optimizing meat production and to facilitate the understanding of the needs of each

growth phase until the age of poultry slaughter. Growth models use nonlinear functions,

and most of them have a sigmoidal structure, although the course of the growth curve may

vary from model to model. Historical reviews of growth models used in bird species have

been published by Darmani Kuhi et al. (2003) and Narinç et al. (2017).

In a survey of Thomson Reuters in the “Web of Science” databases covering

the years 1970 to 2016, it was reported that the Gompertz growth model was the most

widely used in publications in four different study categories (agriculture dairy animal

science, veterinary science, agriculture multidisciplinary, and computational mathematical
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biology), followed by Logistic, Richards and von Bertalanffy models (NARINÇ et al., 2017).

Topal and Bolukbasi (2008), Mendeş (2009), Masoudi and Azarfar (2017)

compared several models to describe the growth pattern of Ross broiler chickens and

concluded that the Gompertz growth model was the most suitable to describe the body

weight growth of broilers. Despite the preference for the Gompertz model to describe the

growth pattern of birds, it is not common to include random effects in the model. In the

development of broiler chickens, it is natural to increase the variability of some charac-

teristics between experimental units over time, for example, in the early days, the weight

of broilers has a small variability, but over time this variability between weights tends to

increase. Besides, measurements taken sequentially on the same birds in near times are

expected to be more highly correlated than measurements further away in time (LITTELL

et al., 2000). These characteristics inherent in growth data repeatedly evaluated in the

same experimental units over time contradict the assumptions of error independence and

homogeneity of variances common in fixed nonlinear regression models. Data with these

aspects present at least two sources of variation in observations, one between individuals

and one within individuals (WANG; ZUIDHOF, 2004), which can be modeled using mixed

nonlinear models with random effects included in the curve parameters, that allow great

flexibility in the construction of variance and covariance structures and an adequate expla-

nation of the mean response. In this work, body weight data of Ross broiler chickens were

modeled using two Gompertz growth models, the first with fixed effects and the second

with random effects on their parameters. In the search for the model that best fits the

data, we used the likelihood ratio test, the Akaike corrected information criterion - AICc

(HURVICH; TSAI, 1989) and the Bayesian information criterion (SCHWARZ, 1978).

2.2 Material and Methods

The dataset that motivated this work is from a study by Silva (2018) to

evaluate the productive performance of broiler chickens. The procedures performed in the

experiment were approved by the Animal Use Ethics Committee (Protocol No. 1484110915)

of the School of Zootechnics and Food Engineering of the University of São Paulo (FZEA /

USP), Pirassununga, Brazil. We used 1080 Ross broilers, with an initial weight of 45.69 ±
0.33 grams, distributed in 36 boxes, with 30 birds each, using a randomized block design to

control the temperature differences in the shed. Six treatments were studied in a factorial

scheme (3 × 2), being three nutritional densities (Low, Moderate, and High) and two sexes

(Male and Female), with the following combination of levels: Males with High (HighM),

Moderate (ModM) and Low (LowM), Females with High (HighF), Moderate (ModF) and

Low (LowF), with six repetitions (blocks). The experimental diets were formulated based

on corn and soybean meal in a three-phase feeding program: initial (1 to 10 days), growth

(11 to 22 days), and final (23 to 56 days). The experiment followed the growth of birds
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from 3 to 56 days of age, and the average body weight (in grams) of each box was collected

in 19 measurements at times: 3, 7, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 41, 44, 47, 51,

54 and 56 days.

In the literature, different mixed nonlinear models have been proposed, as in

Lindstrom and Bates (1990), Vonesh and Carter (1992), Wakefield et al. (1994), Vonesh and

Chinchilli (1997) among others. For data analysis, the mixed nonlinear model (NLMM) was

used, as described in Lindstrom and Bates (1990). In its first stage NLMM can be written

as:

𝑦𝑖𝑗 = 𝑓(𝜑𝑖𝑗,𝑥𝑖𝑗) + 𝜀𝑖𝑗, 𝑖 = 1, . . . ,𝑀 ; 𝑗 = 1, . . . , 𝑛𝑖 (2.1)

where 𝑦𝑖𝑗 is the 𝑗th observation in individual 𝑖, 𝑀 is the number of samples in the group, 𝑛𝑖

is the number of observations in the individual 𝑖, 𝑓 is a nonlinear function of the parameter

vector 𝜑𝑖𝑗 with a covariate vector 𝑥𝑖𝑗 and 𝜀𝑖𝑗 is a commonly distributed error term.

In the second stage the parameters of specific groups are modeled as

𝜑𝑖𝑗 = 𝐴𝑖𝑗𝛽 + 𝐵𝑖𝑗𝑏𝑖 (2.2)

where 𝛽 is a vector of unknown fixed parameters and common to all individuals, 𝑏𝑖 is a

unknown random effects vector for the 𝑖th individual, 𝐴𝑖𝑗 and 𝐵𝑖𝑗 are design matrices for

the fixed and random effects, respectively, that may depend on the values of some covariates

in the 𝑗th observation.

A general expression for NLMM can be written to individual i as

𝑦𝑖 = 𝑓(𝛽, 𝑏𝑖,𝑋𝑖) + 𝜀𝑖 (2.3)

where 𝑦𝑖 = [𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝑛𝑖
]𝑇 is a vector of measurements on the individual 𝑖, 𝑋𝑖 is a known

matrix of covariates and 𝜀𝑖 = [𝜀𝑖1, 𝜀𝑖2, . . . , 𝜀𝑖𝑛𝑖
, ]𝑇 is a vector of intra-individual errors, 𝑏𝑖

and 𝜀𝑖 are usually assumed to be independent and normally distributed with zero mean

and matrix of variance 𝐺 and 𝑅, respectively, that is 𝑏𝑖 ∼ 𝑁(0,𝐺) and 𝜀𝑖 ∼ 𝑁(0,𝑅).

Two models were used for broiler body weight data:

(1) Gompertz Fixed Model

𝑦𝑖𝑗𝑘 = 𝛽1𝑘exp[−𝛽2𝑘exp(−𝛽3𝑘𝑡𝑖𝑗)] + 𝜀𝑖𝑗𝑘 (2.4)

with 𝑖 = 1, . . . , 6, 𝑗 = 1, . . . , 19 and 𝑘 = 1, . . . , 6 where 𝑦𝑖𝑗𝑘 is the body weight observed at

time 𝑡𝑖𝑗 in the 𝑖th box, that received the 𝑘th treatment on the 𝑗th day of the experimental

period. The coefficient 𝛽1𝑘 represents the maximum body weight of broiler that received

treatment 𝑘 (superior asymptote), 𝛽2𝑘 is a scale parameter related to the initial weight of

broiler that received treatment 𝑘, 𝛽3𝑘 represents the maturity index expressed as a propor-
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tion of maximum growth percentage in relation to the adult weight of broiler and 𝜀𝑖𝑗𝑘 is

the experimental error associated with the observation 𝑦𝑖𝑗𝑘. We assume that 𝜀𝑖𝑗𝑘 errors are

normally distributed with mean 0 and constant variance 𝜎2
𝜀 .

(2) Gompertz Mixed Model

𝑦𝑖𝑗𝑘 = (𝛽1𝑘 + 𝑏1𝑖)exp[−𝛽2𝑘exp((−𝛽3𝑘 + 𝑏3𝑖)𝑡𝑖𝑗)] + 𝜀𝑖𝑗𝑘 (2.5)

where 𝛽1𝑘, 𝛽2𝑘 and 𝛽3𝑘 have the same interpretations of model (2.4) and 𝑏1𝑖 and 𝑏3𝑖 are

random effects associated with the model coefficients, 𝛽1𝑘 and 𝛽3𝑘, respectively. We assume

that, [︃
𝑏1𝑖

𝑏3𝑖

]︃
∼𝑁(0,𝐺) and 𝜀𝑖𝑗𝑘 ∼ 𝑁(0,𝑅)

where 𝐺 =

[︃
𝜎2
𝑏1

𝜎𝑏1𝑏3

𝜎𝑏3𝑏1 𝜎2
𝑏3

]︃
and 𝑅 =

⎡⎢⎢⎢⎢⎣
𝐷1 036 . . . 036

036 𝐷2 . . . 036

...
...

. . .
...

036 036 . . . 𝐷19

⎤⎥⎥⎥⎥⎦,

𝐷𝑗 = 𝐼3 ⊗ diag
(︁
𝜎2
𝑀𝑗

, 𝜎2
𝐹𝑗

)︁
⊗ 𝐼6 with 𝑗 = 1, 2, . . . , 19, 𝐼3 and 𝐼6 are 3 × 3 and 6 × 6

order identity matrices, respectively, and 036 is a 36 × 36 null matrix. The component 𝜎2
𝜀

corresponds to the residual variance, 𝜎2
𝑀1

, 𝜎2
𝑀2

, . . ., 𝜎2
𝑀19

are the variance components for

male broilers in each of the 19 time measurements and 𝜎2
𝐹1

, 𝜎2
𝐹2

, . . ., 𝜎2
𝐹19

are the components

of variance for female broilers in each of the 19 time measurements. This Gompertz mixed

model was chosen in a preliminary model selection study.

Different methods have been proposed to estimate NLMM parameters, see

Vonesh and Carter (1992), Ramos and Pantula (1995), Davidian and Giltinam (1995). In

this work, we use the maximum likelihood method that requires, in the case of NLMM,

numerical optimization procedures. The numerical procedure used was the algorithm

described by Lindstrom and Bates (1990), which alternates between two steps, one step

that uses penalized nonlinear least squares (PNLS) and the other step that uses the linear

mixed model.

The models were adjusted using the R (R CORE TEAM, 2019) software and

compared using the likelihood ratio test and the AICc and BIC information criteria. The

block effect was not considered in this work, but the study for its inclusion is in progress.

The quality of fit was assessed based on observation of residual versus adjusted value (fixed

model) or conditional residual versus adjusted value (mixed model) plots, as well as the

half-normal plot with simulation envelope using the hnp() function (MORAL et al., 2017)

of the free statistical software R. The models were adjusted by the maximum likelihood

method using the functions gnls() for the fixed effects model and nlme() (PINHEIRO et

al., 2019) for the random-effects model.
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2.3 Results and Discussion

The graph of individual body weight profiles over time (Figure 2.1) shows a

similarity in the growth pattern of broiler chickens per box. It is also noted that weight

variability among individuals increases over time and that this variability is greater among

males than females. For all nutritional densities, from the broiler growth stage (11 to 22

days), the weight of males was higher than females.
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Figure 2.1 – Individual profiles (a) and average profiles (b) of broiler chickens body weight by treatment

Table 2.1 shows that the average weights per treatment of male chickens are

numerically higher than the average weights of females for all nutritional densities, from day

15 of the experimental period. This distinction observed between male and female weights

is in line with the work done by Havenstein et al. (2003), Sakomura et al. (2005), and

Marcato et al. (2008), who evaluated the growth potential of males and females from Ross

broiler chickens and concluded that males have a higher growth potential than females.

According to Salim et al. (2012), the performance of each sex is related to chicken genetics:

males consume more ration, use nutrients better, and grow faster than females. It is also

observed in Table 2.1 that the standard error, in general, followed the increase that occurred

in the average weight of the chickens over time. The mean standard error is calculated by

𝑆𝐷/
√
𝑛, where 𝑆𝐷 is the standard deviation, and 𝑛 is the number of different samples from

each treatment at a specific time (𝑛 = 6 blocks). Since 𝑛 is a fixed number, in this case,

the increase in standard error is due to the increase in standard deviation, which suggests

variances heterogeneity within the individual, because as the age of the broiler chickens

increases the variance of body weights also increases. This feature points to the need for a

model that supports the increase of this variability over time.
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Table 2.1 – Means and standard errors (s.e.) of broiler chickens body weight (g) by treatment over time

Age ModM ModF LowM LowF HighM HighF

(Days) Means s.e. Means s.e. Means s.e. Means s.e. Means s.e. Means s.e.

3 69.1 1.1 72.1 0.5 70.3 0.8 72.4 0.7 69.1 0.8 72.1 0.9

7 144.4 2.7 152.5 1.6 146.3 2.6 148.3 1.8 144.1 2.1 150.0 1.6

9 211.4 3.4 220.5 2.0 212.0 4.5 213.3 2.3 212.2 2.9 219.7 2.6

12 339.7 5.0 344.4 2.8 333.8 6.4 329.2 3.3 342.9 4.0 347.5 3.1

15 521.6 7.9 512.5 3.9 504.6 7.8 486.6 3.5 512.7 5.5 510.6 4.8

18 730.2 6.5 701.7 3.8 696.4 8.6 660.3 4.6 722.9 10.2 708.9 9.1

21 970.5 5.4 908.7 4.3 917.5 7.7 851.1 8.3 958.8 12.8 920.7 14.0

24 1257.5 5.9 1161.7 10.0 1197.7 11.7 1089.5 13.4 1238.6 16.7 1162.0 16.6

27 1542.8 8.5 1418.3 6.4 1479.3 12.7 1327.4 16.7 1499.8 34.9 1412.3 20.5

30 1890.8 21.4 1717.1 5.9 1834.9 24.0 1612.1 15.3 1904.6 29.0 1691.8 22.3

33 2154.6 19.4 1952.4 7.0 2089.5 26.3 1859.6 10.6 2154.0 20.4 1922.2 23.4

36 2465.5 25.9 2179.8 14.9 2368.8 30.7 2087.6 10.0 2473.0 21.7 2175.8 22.6

39 2729.0 47.1 2430.3 12.4 2656.7 39.0 2332.6 7.4 2794.6 26.9 2421.7 22.4

41 3097.4 58.9 2653.2 32.9 2896.0 41.6 2536.7 18.8 3093.0 35.9 2673.8 25.7

44 3305.2 55.0 2884.2 42.9 3221.5 49.8 2789.5 16.6 3313.6 54.7 2865.3 19.2

47 3673.0 62.0 3172.0 41.2 3562.6 65.8 3078.0 20.9 3706.6 46.0 3150.9 33.2

51 3959.2 61.4 3377.4 71.3 3827.4 69.5 3312.6 28.1 3861.5 20.0 3465.5 111.6

54 4290.8 63.2 3631.4 69.0 4382.3 130.7 3570.5 36.6 4231.1 124.4 3601.7 50.0

56 4396.2 73.4 3683.0 51.7 4237.3 88.0 3642.0 66.8 4339.0 83.8 3734.9 87.0

ModM and ModF: Moderate nutritional density for Male and Female; LowM and LowF: Low nutritional density for Male
and Female; HighM and HighF: High nutritional density for Male and Female.

Table 2.2 presents the results of the comparison between the fixed effect

Gompertz model (FG) and the random effect Gompertz (MG) model in the coefficients

related to the upper asymptote (𝛽1) and the bird maturity index (𝛽3). Note that the MG

model presented the lowest AICc and BIC values compared to the FG model, which indi-

cates a better agreement of the MG model to the data. Additionally, the likelihood ratio

test also favored the MG model (𝑝 < 0.0001). The matrix of variance and covariance of

the random effects (𝐺) of the MG model has a structure with different variances for the

random effects, 𝑏1 and 𝑏3, with the correlation between them.

Table 2.2 – Selection criteria (AICc and BIC) and likelihood ratio test for the Gompertz model with fixed
(FG) and mixed (MG) effects

Mod. RE 𝐺 𝑅 npar −2𝑙𝑜𝑔𝐿 AICc BIC 𝑝-value

FG - - VC 19 8116.60 8155.74 8240.62 -

MG 𝑏1,𝑏3 UN VCH(Age*Sex) 59 6668.48 6797.82 7053.62 < .0001

RE: Random effect; 𝐺: Variance-covariance matrix for the random effects; 𝑅: Variance-covariance matrix intra-individual;
npar: number of model parameters; −2𝑙𝑜𝑔𝐿: −2(logarithm of the likelihood); UN: Unstructured; VC: variance component;
VCH(Age*Sex): Heterogeneous variance components for interaction age and sex.

The matrix of variances and covariance intra-individual (𝑅) has a structure

with null correlations and different variances for the interaction Time and Sex. Although
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the matrix 𝑅 is diagonal (assuming the assumption of independent errors), the variance

and covariance matrix of the response variable, 𝑦 = [𝑦1, 𝑦2, . . . , 𝑦684]
𝑇 has nonzero elements

outside the main diagonal because matrix 𝐺, which allows the modeling of the correlation

between repeated measurements made on the same individual. According to Zuur et al.

(2009), this feature is called induced correlation and is a consequence of the inclusion of

random effects in the model.

The quality of the adjustments of the FG and MG models can be evaluated

in Figure 2.2.
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Figure 2.2 – Graph of standardized residuals versus adjusted values and half-normal simulated envelope
graphs for the models Gomperz with fixed effects (FG), items (a) and (b), and Gompertz with
random effects (MG) items (c) and (d)

In Figure 2.2 (c and d), we observe that the mixed Gompertz model (MG)

was better fitted to body weight data of broiler chickens than the fixed Gompertz model

(FG).

Table 2.3 shows that the estimates of the coefficients 𝛽1, 𝛽2 and 𝛽3 were

different in the FG and MG models.
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Table 2.3 – Coefficients estimates of the fixed and mixed Gompertz models with the respective standard
errors for each treatment and residual variance estimates for each model

Fixed model (FG) Mixed model (MG)

Treatment 𝛽11 𝛽21 𝛽31 𝛽12 𝛽22 𝛽32

HighM 6006± 397 5.19± 0.34 0.049± 0.0042 5853± 380 5.19± 0.04 0.0503± 0.0024

ModM 6363± 430 5.04± 0.32 0.047± 0.0042 5805± 379 5.21± 0.04 0.0511± 0.0024

LowM 6601± 477 4.98± 0.31 0.044± 0.0042 5884± 383 5.15± 0.04 0.0488± 0.0024

HighF 5234± 286 4.72± 0.23 0.047± 0.0031 4842± 262 4.89± 0.02 0.0515± 0.0017

ModF 5057± 387 4.78± 0.33 0.049± 0.0045 4879± 371 4.91± 0.03 0.0512± 0.0024

LowF 5290± 429 4.77± 0.33 0.046± 0.0045 5061± 375 4.88± 0.03 0.0481± 0.0024

𝜎̂2
𝜖 8562.55 15.17

ModM and ModF: Moderate nutritional density for Male and Female; LowM and LowF: Low nutritional density for Male
and Female; HighM and HighF: High nutritional density for Male and Female.

Estimates of the MG model presented lower standard errors than the FG

model, thus, there is greater precision in the estimates of Gompertz mixed model than in

the fixed Gompertz model. In the MG model, there was also a considerable reduction in

residual variance, a result also reported by Wang and Zuidhof (2004), who used the mixed-

effect Gompertz model to analyze data from six commercial broiler strains and concluded

that the use of the mixed model reduced the residual variance by more than 55%.

The estimated of the random effects variances-covariances matrix 𝑏1 and 𝑏3

is given by:

𝐺 =

[︃
96590.42 −0.58

−0.58 0.000004

]︃
Table 2.4 presents the estimates of the variance components of the intra-

individual matrix, 𝑅.

Table 2.4 – Intra-individual matrix variance component estimates (𝑅) of the model MG

Variance components

Sex 𝜎̂2
1 𝜎̂2

2 𝜎̂2
3 𝜎̂2

4 𝜎̂2
5 𝜎̂2

6 𝜎̂2
7 𝜎̂2

8 𝜎̂2
9 𝜎̂2

10

Male 1.0 4.4 3.0 4.3 9.9 5.7 4.9 3.8 86.0 210.4

Female 1.0 4.7 1.4 2.1 12.3 17.6 4.3 16.8 34.3 47.1

𝜎̂2
11 𝜎̂2

12 𝜎̂2
13 𝜎̂2

14 𝜎̂2
15 𝜎̂2

16 𝜎̂2
17 𝜎̂2

18 𝜎̂2
19

Male 138.2 276.2 738.1 655.5 354.8 881.3 376.8 5516.8 954.7

Female 72.8 238.7 365.0 129.4 106.0 182.3 1547.4 388.2 685.8

Note that the mixed model (MG) satisfactorily captured the fact that intra-

individual variance increased over time and the distinction between male and female vari-

ations.



25

2.4 Conclusions

The mixed Gompertz model fitted best to data of body weight of broiler

chickens than the fixed Gompertz model. The coefficient estimates were more accurate

for the mixed model because there was a reduction in the residual variance and standard

error of each estimate. The use of the mixed model allowed us to satisfactorily model the

increase in intra-individual variation over time and the distinction between male and female

variations, and also allowed the modeling of correlations in measurements made on the same

individual over time.
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3 NONLINEAR MIXED MODELS FOR GROWTH CURVES OF BROILER

CHICKENS

Abstract

In the performance study of broiler chickens, it is common to use nonlinear

models to describe the growth patterns of birds. Among the most commonly used nonlinear

models to describe growth curves in birds are sigmoidal models such as Gompertz, Logis-

tic, von Bertalanffy, and Richards. Among the various sigmoidal models that can describe

growth patterns, choosing an appropriate model is often a challenge to the researcher. In

addition to modeling the data, the researcher needs accurate estimates for decision mak-

ing. Although the use of mixed models can reduce residual variance and provide accurate

estimates, it is not common to use random effects in bird growth models. In this work, we

made a selection of the Gompertz, four-parameter logistic, von Bertalanffy, and Richards

models, with mixed effects, for body weight data of 1080 Ross broiler chickens from a ran-

domized block design in the factorial scheme with three nutritional densities and two sexes.

We observed that the inclusion of random effects considerably reduced the residual vari-

ance in all models studied compared to the fixed effect model. According to the selection

criteria used (correlation between the values observed and predicted by the model, residual

variance, AICc, and BIC), we came to the following ranking of the models that best fit

the broiler chicken data: 1st four-parameter logistic, 2nd von Bertalanffy, 3rd Gompertz,

and 4th Richards. For the four growth models studied, we observed differences between the

growth potential of males and females. Regarding the diets, we found that diets with high

and moderate nutritional density provided a higher weight of broiler chickens than the diet

with low nutritional density within each sex, considering the entire experimental period.

Keywords: Nonlinear model; Variance components; growth models; mixed models; Gompertz;

von Bertalanffy; Richards; four-parameter logistic.

3.1 Introduction

Chicken meat is the animal protein source that grows the most in Brazil and

the world. Brazil is currently the largest exporter and second-largest producer, standing

out as a reference in the world poultry sector (ABPA - Associação Brasileira de Protéına

Animal). The excellent performance of broiler chicken depends on several requirements that

need to be adequately satisfied, such as facilities (shed), equipment, handling, sanitation,

and nutrition. Feeding of broiler chickens accounts for about two-thirds of the cost of

production (RIZZO, 2008), so many efforts are made to improve dietary effectiveness.

Models for broiler chickens growth data have been developed over time, among the pro-
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cedures used to estimate the growth curve of the animals is the use of nonlinear models

such as Gompertz (GOMPERTZ, 1825; WINSOR, 1932), von Bertalanffy (VON BERTA-

LANFFY, 1957), Richards (RICHARDS, 1959) and Logistic (NELDER, 1961).

In many types of growth data, the growth rate is not steadily decreasing but

increases to the maximum before declining and reaching zero. Models that can accommo-

date this feature are nonlinear sigmoidal models. Such models include parameters with

biological interpretations that add recognizable characteristics to the curve, for example,

initial body weight, growth velocity, and adult weight. The point of inflection of this type

of model is precisely the point at which the growth rate is maximum. It is common to use

these models to describe the growth pattern of broiler chickens (see TZENG; BECKER,

1981; ROUSH et al., 2006; MARCATO et al., 2008; DEMUNER et al., 2017). However, it

is not common to include random effects in these models.

In broiler chickens development data, it is natural the growing variability

between the experimental units over time. For example, when studying the weight variable,

in the initial days, the broiler chickens weights have a small variability, but over time

this variability among the weights tends to grow, which indicates, in modeling, the need

to include a covariance structure that supports the heterogeneity of variances over time.

Moreover, the correlations between measurements made in time should not be ignored in the

modeling, since measurements in the same experimental unit in the near time are expected

to be more correlated than measures taken in more distant times. Both the heterogeneity

of variances and the correlations in the time can be modeled using the mixed models, which

allow great flexibility in the construction of the variance and covariance structures and an

adequate explanation of the mean response. The Gompertz, four-parameter logistic, von

Bertalanffy, and Richards models with mixed effects were adjusted to the data of body

weight, of 1080 broiler chickens of the strain Ross, to investigate and to choose the model

that best fits the data.

3.2 Case-study

The data that motivated this work is from a study conducted by Silva (2018)

to evaluate the productive performance of broiler chickens, at the School of Animal Science

and Food Engineering of the University of São Paulo (FZEA/USP) Brazil. A total of 1080

Ross broiler chickens were used, with a initial body weight of 45.69± 0.33 grams, allocated

in 36 boxes, with 30 birds each. The broiler chickens were distributed in a randomized block

design to control temperature differences throughout the shed. Six treatments were studied

in the factorial scheme (3 × 2) being three nutritional densities (low, moderate, and high)

and two sexes (male and female) (Table 3.1) with six replicates (Blocks). The experimental

diets were formulated based on corn and soybean meal in a three-phase feeding program:

initial (1 to 10 days), growth (11 to 22 days), and final (23 to 56 days). The experiment
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was carried out in the period from 3 to 56 days, was collected in grams the body weight,

totaling 19 measures at the times: 3, 7, 9, 12, 15, 18, 21 , 24, 27, 30, 33, 36, 39, 41, 44, 47,

51, 54 and 56 days.

Table 3.1 – Description of treatments

Treatment Nutrition Sex
ModM Moderate Male
ModF Moderate Female
LowM Low Male
LowF Low Female
HighM High Male
HighF High Female

The mean values by treatment, in grams, of the body weight and their sample

standard errors (s.e.) are shown in Table 3.2. In Appendix A1, we present the variances,

covariances, and sample correlations over time for broiler chicken body weight.

Table 3.2 – Means and standard errors (s.e.) of body weight (g) of broiler chickens by treatment over time

Age ModM ModF LowM LowF HighM HighF
(Days) Means s.e. Means s.e. Means s.e. Means s.e. Means s.e. Means s.e.

3 69.1 1.1 72.1 0.5 70.3 0.8 72.4 0.7 69.1 0.8 72.1 0.9
7 144.4 2.7 152.5 1.6 146.3 2.6 148.3 1.8 144.1 2.1 150.0 1.6
9 211.4 3.4 220.5 2.0 212.0 4.5 213.3 2.3 212.2 2.9 219.7 2.6
12 339.7 5.0 344.4 2.8 333.8 6.4 329.2 3.3 342.9 4.0 347.5 3.1
15 521.6 7.9 512.5 3.9 504.6 7.8 486.6 3.5 512.7 5.5 510.6 4.8
18 730.2 6.5 701.7 3.8 696.4 8.6 660.3 4.6 722.9 10.2 708.9 9.1
21 970.5 5.4 908.7 4.3 917.5 7.7 851.1 8.3 958.8 12.8 920.7 14.0
24 1257.5 5.9 1161.7 10.0 1197.7 11.7 1089.5 13.4 1238.6 16.7 1162.0 16.6
27 1542.8 8.5 1418.3 6.4 1479.3 12.7 1327.4 16.7 1499.8 34.9 1412.3 20.5
30 1890.8 21.4 1717.1 5.9 1834.9 24.0 1612.1 15.3 1904.6 29.0 1691.8 22.3
33 2154.6 19.4 1952.4 7.0 2089.5 26.3 1859.6 10.6 2154.0 20.4 1922.2 23.4
36 2465.5 25.9 2179.8 14.9 2368.8 30.7 2087.6 10.0 2473.0 21.7 2175.8 22.6
39 2729.0 47.1 2430.3 12.4 2656.7 39.0 2332.6 7.4 2794.6 26.9 2421.7 22.4
41 3097.4 58.9 2653.2 32.9 2896.0 41.6 2536.7 18.8 3093.0 35.9 2673.8 25.7
44 3305.2 55.0 2884.2 42.9 3221.5 49.8 2789.5 16.6 3313.6 54.7 2865.3 19.2
47 3673.0 62.0 3172.0 41.2 3562.6 65.8 3078.0 20.9 3706.6 46.0 3150.9 33.2
51 3959.2 61.4 3377.4 71.3 3827.4 69.5 3312.6 28.1 3861.5 20.0 3465.5 111.6
54 4290.8 63.2 3631.4 69.0 4382.3 130.7 3570.5 36.6 4231.1 124.4 3601.7 50.0
56 4396.2 73.4 3683.0 51.7 4237.3 88.0 3642.0 66.8 4339.0 83.8 3734.9 87.0

ModM and ModF: Moderate nutritional density for Male and Female; LowM and LowF: Low nutritional density for Male
and Female; HighM and HighF: High nutritional density for Male and Female.

The individual profiles and mean profiles by treatments, of the body weight

variable, depending on the age of the broiler chickens, are shown in Figure 3.1. In Appendix

A2 we present the individual profiles separated by treatments.
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Figure 3.1 – Individual profiles (a) and average profiles (b) of broiler chickens body weight by treatment

3.3 Modelling

3.3.1 Nonlinear mixed-effects model

The nonlinear mixed models are used to describe the nonlinear relationship of

the response variable with the parameters and covariates. It allows an interpretation of its

parameters and an explanation of the possible variations according to a classification factor.

In the literature, different nonlinear mixed models have been proposed, see Lindstrom and

Bates (1990), Vonesh and Carter (1992), Wakefield et al. (1994), among others.

As described in Lindstrom and Bates (1990), in the 1st stage, the 𝑗th obser-

vation in the 𝑖th group is given by

𝑦𝑖𝑗 = 𝑓(𝜑𝑖𝑗,𝑥𝑖𝑗) + 𝜀𝑖𝑗, 𝑖 = 1, . . . ,𝑀, 𝑗 = 1, . . . , 𝑛𝑖

where 𝑓 is a nonlinear function of the vector of parameters 𝜑𝑖𝑗 with a vector of covariates

𝑥𝑖𝑗, 𝜀𝑖𝑗 is a normally distributed error term, 𝑀 is the total number of groups, and 𝑛𝑖 is the

number of observations in the 𝑖th group.

In the 2nd stage the parameters of specific groups are modeled as

𝜑𝑖𝑗 = 𝐴𝑖𝑗𝛽 + 𝐵𝑖𝑗𝑏𝑖

where 𝛽 is a fixed effects vector; 𝑏𝑖 is a random effects vector (varying with 𝑖 but not with

𝑗), which are assumed to be independently distributed as 𝑁(0,𝐺). 𝐴𝑖𝑗 and 𝐵𝑖𝑗 are design

matrices for the fixed and random effects, respectively, which may depend of the values of

some covariates in the 𝑗th observation. Furthermore, it is assumed that 𝑏𝑖 are independent

of 𝜀𝑖𝑗.

The assumptions about random effects and error terms within the group can
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be summarized in the following expressions, 𝑏𝑖∼𝑁(0,𝐺) and 𝜀𝑖∼𝑁(0,𝑅), respectively.

3.3.1.1 Modelling the variance heterogeneity

The assumption of homogeneous variances is often violated in practice. Da-

vidian and Giltinan (1995) mention that growth data often exhibit a constant coefficient of

variation instead of constant variance, that is, variance proportional to the square of the

mean response. In this case, as mentioned by the authors, a more appropriate assumption

would be

E(Y𝑖) = 𝑓(𝑥𝑖,𝛽), Var(Y𝑖) = 𝜎2[𝑓(𝑥𝑖,𝛽)]2, (3.1)

where the scale parameter 𝜎 is the coefficient of variation.

Davidian and Giltinan (1995) propose to model heteroscedasticity using the

variance function, whose general formulation of the model for errors within the group (in-

dividual), also presented by Pinheiro and Bates (2000), is defined as

Var(𝜖𝑖𝑗|b𝑖) = 𝜎2𝑔2(𝜇𝑖𝑗,𝜈𝑖𝑗, 𝛿), 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑛𝑖, (3.2)

where 𝜇𝑖𝑗 = E[𝑌𝑖𝑗|b𝑖], 𝜈𝑖𝑗 is a covariates vector for variance, 𝛿 is a parameter vector for

variance and 𝑔(.) is the variance function, assumed to be continuous in 𝛿.

3.3.2 Growth Models

Models for growth data have been developed over time. According to Draper

and Smith (1998), in general, growth models are mechanistic instead of empirical. The

mechanistic model arises as a result of assumptions made from differential equations, related

to the type of growth studied. The empirical model is an approximation of an unknown

mechanistic model, and, distinctly, it is a polynomial model of some proper order.

In many types of growth data, the growth rate is not steadily decreasing but

increases to the maximum before declining and reaching zero. Models that can accommo-

date this feature are nonlinear sigmoidal models. Such models add another recognizable

characteristic to the curve, with the inflection point that is precisely the point at which the

growth rate is maximal. Many studies have been conducted to determine the best growth

models in different bird species. For example, Şengül and Kiraz (2005) concluded that

the Gompertz, three-parameter logistic, and Richards models are adequate to explain the

growth of large white turkeys. Nahashon et al. (2006) found that the Gompertz model

was better than the three-parameter logistic to describe the growth patterns of French

guinea fowl. Balcioğlu et al. (2009) used the models Gompertz, von Bertalanffy, and three-

parameter logistic to estimate the growth curve of the chukar partridges and reported that

the Gompertz model was the most appropriate to describe the growth pattern of birds.
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Narinc et al. (2010) compared ten nonlinear models for Japanese quail growth data, among

these models they used the Gompertz, Richards and von Bertalanffy and reported that

the Gompertz model is the most appropriate, followed by Richards. Rizzi et al. (2013)

used linear and nonlinear models (Gompertz, three-parameter logistic, and Richards) to

describe broiler chicken growth patterns. Mohammed (2015) used the models Gompertz,

von Bertalanffy, and three-parameter logistic to estimate the growth curve of Ross broiler

chickens.

Finke et al. (1987), Finke et al. (1989), and Gahl et al. (1991) used the

four-parameter logistic curve to describe the growth pattern in rats. According to Magis

(2013), the four-parameter logistic model has been reconsidered in the literature due to the

improvement in computational power and resources, together with the development of more

accurate statistical modeling software. The expressions of the models used to describe the

growth of broiler chickens in this work are presented in Table 3.3.

Table 3.3 – Growth curve model expressions

Model Expression Source
Gompertz 𝑦 = 𝜑1exp [−𝜑2exp (−𝜑3𝑡)] Draper and Smith (1998)
Four-parameter

𝑦 = 𝜑5 +
𝜑1 − 𝜑5

{1 + exp [𝜑4 (𝜑3 − log𝑡)]} Ratkowsky and Reedy (1986)
logistic

von Bertalanffy 𝑦 =
[︁
𝜑
(1−𝜑6)
1 − 𝜑2exp (−𝜑3𝑡)

]︁1/(1−𝜑6)

Draper and Smith (1998)

Richards 𝑦 = 𝜑1/ [1 + 𝜑2exp (−𝜑3𝑡)]
1/𝜑6 Bates and Watts (1988)

𝑦 is the response variable; 𝑡 is the age of the broiler chickens; 𝜑1 is the maximum response of growth; 𝜑2 is a scale parameter
related to initial response; 𝜑3 is a intrinsic growth rate; 𝜑4 is the predicted value at the response halfway between the two
asymptotes (upper and lower); 𝜑5 is the lower asymptote; 𝜑6 is the parameter related to shape of the curve; exp:
exponential function; log: natural logarithm.

For a better understanding of the interpretation of the coefficients, were

plotted curves for each growth model studied, assigning different values for each of the

coefficients referring to the fixed part of the models. These curves were presented in Ap-

pendix A3.

3.3.3 Estimation

There are different methods of estimation of the parameters of the nonlinear

mixed-effects models, see Vonesh and Carter (1992), Ramos and Pantula (1995), Davidian

and Giltinan (1995). In this work, we use the maximum likelihood method. Since ran-

dom effects are unobserved quantities, the maximum likelihood estimation is based on the

marginal density of the responses 𝑦, which is calculated as follows

𝑝(𝑦|𝛽, 𝜎2,𝐺) =

∫︁
𝑝(𝑦|𝑏,𝛽, 𝜎2)𝑝(𝑏|𝐺)𝑑𝑏, (3.3)
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where 𝑝(𝑦|𝛽, 𝜎2,𝐺) is the marginal density of 𝑦, 𝑝(𝑦|𝑏,𝛽, 𝜎2) is the conditional density of 𝑦

given the random effects, 𝑏, and 𝑝(𝑏|𝐺) is the marginal distribution of 𝑏. In nonlinear mixed

models, the random effects can enter the model in a nonlinear way, then the integral of the

expression (3.3) is usually does not closed-form. Thus numerical optimization procedures

are required to obtain the parameter estimates. Different methods to approximate the

integral of the expression (3.3) have been proposed, some of these methods are based on the

first-order Taylor expansion (SHEINER; BEAL, 1980; LINDSTROM; BATES, 1990). Other

methods use the Gaussian quadrature rules (DAVIDIAN; GALLANT, 1992) or the Laplace

approximation. The latter is often used in Bayesian inference (TIERNEY; KADANE,

1986; LEONARD et al., 1989), but it can be used to approximate the likelihood function

of nonlinear mixed models. We also have the adaptive Gaussian quadrature rule method,

which improves the Laplace approximation method (PINHEIRO; BATES, 2000).

We use in this work the algorithm described by Lindstrom and Bates (1990),

that algorithm alternates between two steps, one step consisting of penalized nonlinear least

squares (PNLS) and the other using mixed linear effects (LME).

In the PNLS step, conditional estimates of 𝛽 fixed effects are obtained by

minimizing the penalized nonlinear least-squares objective function

𝑀∑︁
𝑖=1

[‖y − 𝑓𝑖(𝛽, 𝑏𝑖)‖2 + ‖Δ𝑏𝑖‖2].

where Δ is used for computational convenience and corresponds to the precision factor

related to the variance and covariance matrix that satisfies

G−1

1/𝜎2
= Δ𝑇Δ.

If G is positively-defined, then Δ will exist, but may not be unique. The step

where we use the linear random effects (LME) is based on Taylor’s first-order expansion of

the 𝑓 function around the corresponding 𝛽 value and the conditional form of the random

effects 𝑏𝑖 to update the Δ estimate. The algorithm alternates between PNLS and LME

steps until a convergence criterion is met. According to Pinheiro and Bates (2000), higher

efficiency of the algorithm is achieved when variance component estimates (Δ) are not

strongly correlated with fixed effects estimates 𝛽.

3.3.4 Initial value

To fit the models, we need the initial values for each parameter that will be

estimated. The specification of the initial values is one of the most challenging problems

found in the process of estimating the parameters of nonlinear models (DRAPER; SMITH,

1998). Incorrect initial values result in many iterations, longer convergence time, or even

non-convergence of iterations (FEKEDULEGN et al., 1999). The proper understanding of
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the definition of each parameter in the context of the data that will be modeled facilitates

the specification of the initial values.

There is no general method for obtaining the initial values, but some pro-

cedures may be useful to get them. A graphic procedure was used to obtain the initial

values for each of the models studied. As the parameters of the growth models used have a

practical interpretation, the graphic exploration of the dispersion of observations over time

gives us indications for possible initial estimates of the parameters. Figure 3.2 shows the

dispersion of the weights of the broiler chickens throughout the experimental period with

a curve plotted on the mean values at each point in the time, called the average profile.

The possible values of the horizontal asymptotes inferior and superior are easily visualized

in Figure 3.2. The dashed lines in the figure, related to the values 50 and 5000, represent

the initial values considered for the lower (𝜑5) and upper (𝜑1) asymptotes, respectively, in

the models studied. After obtaining the initial values for the asymptotes, the procedure

consisted of assigning values for the other parameters (𝜑2, 𝜑3, 𝜑4, or 𝜑6) and observe the

approximation of the curve of the model to the average profile. Then different values were

successively assigned to the coefficients of the curve, and the proximity of the curve to the

average profile was visualized. When the curve of the model was close to the mean values

at each experimental time, then we assume these values of the coefficients of the curve as

initial values for the iterative process.
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Figure 3.2 – Scatter plot of weight observations over time with the mean curve

3.3.5 Selection of models

In the selection stage of the appropriate model, we try to choose a model that

is rich enough to explain the behavior and variation of the response variable. But it must

also be a parsimonious model concerning the number of parameters, that is, it must be a

model simple enough to interpret, understand, explain to others, and use. The selection of
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models is used when there is no particular clear choice between the many possible different

models. In the search process is necessary to take into account information about what is

planned to be done or what is expected of the research, the type of sampling or experimental

design used, the prior knowledge about the explanatory variables relevant and the variability

of the sample units. In selecting one model, we must keep in mind that in most situations we

will not be able to determine the“correct”or“true”model because the model that generated

the collected data can be very complex or unknown. Several methods of model selection

depart from the perspective that all models are wrong, but some are useful (CLAESKENS;

HJORT, 2008). Several criteria for selecting models are presented in the literature, in this

work we will use the Likelihood Ratio Test (LRT), the Akaike Information Criterion - AIC

(AKAIKE, 1974; SAKAMOTO et al., 1986), the Akaike’s Information Corrected Criterion

- AICc (HURVICH; TSAI, 1989), and Bayesian information criterion - BIC (SCHWARZ,

1978).

3.3.5.1 Likelihood Ratio Test

The likelihood ratio test (LRT) is a general method used to compare nested

models adjusted for maximum likelihood (ML) or restricted maximum likelihood (REML).

The alternative hypothesis of the test, 𝐻1, represents the reference model with the highest

number of parameters, while the null hypothesis, 𝐻0, represents the restricted model with

the lowest number of parameters. The test statistic is given by:

Λ = 2log

(︂
𝐿2

𝐿1

)︂
= 2 [log(𝐿2) − log(𝐿1)]

where 𝐿2 is the likelihood of the reference model and 𝐿1 is the likelihood of the restricted

model. If 𝑘𝑖 is the number of parameters to be estimated in the model 𝑖, then the asymptotic

distribution of the LRT statistic under the null hypothesis follows a distribution 𝜒2 with

𝑘2 − 𝑘1 degrees of freedom, on what 𝑘2 is the number of parameters of the reference model

and 𝑘1 is the number of parameters of the restricted model. Then, to test 𝐻0 versus 𝐻1,

with significance level 𝛼, we compare Λ to a 𝜒2
𝑘2−𝑘1

. When Λ ≥ 𝜒2
(𝑘2−𝑘1,𝛼)

we reject 𝐻0 in

favor of 𝐻1.

3.3.5.2 Information criteria

Information criteria are rules made to comparing models adjusted by maximum

likelihood methods. The AIC and BIC information criteria have played a significant role

in model selection in many areas of study. These criteria are used to compare two or more

models for the same dataset, and these models can be nested or non-nested. The fundamen-

tal idea of these criteria is to penalize the maximum value of log-likelihood as the number
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of parameters increases. The expressions for the calculation of AIC and BIC are:

𝐴𝐼𝐶 = −2𝑙(𝛽,𝜃, 𝜎̂) + 2𝑘 (3.4)

𝐵𝐼𝐶 = −2𝑙(𝛽,𝜃, 𝜎̂) + 𝑘log(𝑛) (3.5)

where 𝑙(𝛽,𝜃, 𝜎̂) is the value of the logarithm of the likelihood function of the calculated

model with the estimates obtained in the maximization process, 𝑘 represents the total

number of model parameters, considering the parameters of the fixed part together with

the parameters of the covariance structure, and 𝑛 is the number of observations used in

the estimation of the model under study. The model with the lowest AIC or BIC value is

selected as the most appropriate.

In the calculation of the AIC, as more parameters are added in the model,

the first term on the right side of the expression (3.4) (−2𝑙(𝛽,𝜃, 𝜎̂)) tends to decrease,

while the second term (2𝑘) always increases with the number of parameters, this causes

a balance between super-parametrized and sub-parametrized models (BURNHAM; AN-

DERSON, 2002). When the number of parameters (𝑘) is high relative to the sample size

(say, 𝑛/𝑘 < 40) a correction is recommended in the AIC (BURNHAM; ANDERSON, 2002;

POSADA; BUCKLEY, 2004), then the expression for the calculation of the corrected AIC

is given by:

𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛− 𝑘 − 1

Verbeke and Molenberghs (2000) emphasize that the information criteria provide only prac-

tical rules to discriminate some model among several statistical models, and should never

be used or interpreted as formal statistical tests of significance.

3.3.6 Diagnostic

Performing model diagnostics makes it possible to verify the distribution as-

sumptions for the residuals and the model’s sensitivity to unusual observations. Diagnostic

tools for classical linear models are well established in the literature, details of development

and applications can be seen in Cook (1977), Hoglin and Welsch (1978), Welsch and Kuh

(1977), Belsley et al. (1980), Atkinson (1985) among others. In mixed models, the work-

load in this area is relatively smaller because of complexity, generally mixed models re-

quire iterative optimization, have more components, different types of residues, conditional

and marginal distributions and are most often applied to data with grouped structures

(LITTELL et al., 2006).

Hilden-Minton (1995) and Nobre and Singer (2007) defined three types of

residuals in mixed linear models,

(i) Marginal residuals: 𝜉 = y −X𝛽;
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(ii) Conditional residuals: 𝜖 = y −X𝛽 − Zb̂;

(iii) EBLUP: Zb̂, which predicts the random effects Zb = E[Y|b] − E[Y].

The authors make recommendations regarding the use of each type of residue

to evaluate some assumptions of the mixed model. For example, Hilden-Minton (1995)

suggests using the marginal residuals (𝜉) to assess the assumption of linearity of the rela-

tionship between E[Y] and the X covariates, and their use in evaluating the validity of the

covariance structure. Pinheiro and Bates (2000) suggest the use of conditional residuals

to verify the hypothesis of normality and homoscedasticity of the conditional error. This

type of residue can also be used to identify discrepant observations. EBLUP can be used

to detect possible discrepant experimental units, to assess the assumption of normality of

random effects, as well as to verify their structure of variance and covariance.

According to Pinheiro and Bates (2000), construction strategies and diagnos-

tics of mixed linear models can be applied to mixed nonlinear models.

3.3.7 Adjustment of models

The Gompertz, four-parameter logistic, von Bertalanffy, and Richards models

were adjusted for broiler chicken body weight data. We selected the variance and covariance

structure that best described the data for each of the growth models. Initially, we used

simpler structures to reduce convergence problems. We were sequentially adding random

effects to the model parameters, following the suggestion of the 95% confidence intervals

graphs presented in Appendix A4. In this selection, we used the likelihood ratio test and the

information criteria, AIC, AICc, and BIC. The block effect was not considered in this work,

but the study for its inclusion is in progress. The quality of the fit was verified by observing

the chart of the standardized conditional residuals versus the adjusted values, we also saw

the half-normal plot with simulated envelope using the hnp() function of the hnp package

(MORAL et al., 2017) of the R statistical software (R CORE TEAM, 2019). The models

were adjusted by the maximum likelihood method using the nlme() function of the nlme

package (PINHEIRO et al., 2019). After the model selection step, a comparison between

the growth models was made using, besides the information criteria, the residual variance

estimate and the correlation between the observed values and values adjusted by the model.

The selection of the models consisted, firstly, in choosing random effects for the coefficients

and, later, in selecting the variance-covariance structure. Part of the programming used in

this work is in Appendix A5.

3.4 Results

In this section, we present the results of the selection procedures of the

Gompertz, four-parameter logistic, von Bertalanffy, and Richards growth models. After
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the selection of growth models, comparisons were made between the four selected models.

The number of curves that best describe the growth of broiler chickens in relation to treat-

ments was also selected.

3.4.1 Mixed Gompertz growth model

Results corresponding to the model selection procedure for the Gompertz

mixed-effects growth model are presented in this section. Table 3.4 shows the results of the

model selection step indicating the parameters with random effects (RE), the respective

variance and covariance structures (𝐺 and 𝑅) of the compared models, the information

criteria values (AICc and BIC) and the likelihood ratio test result (𝑝-value). The number

of parameters in the model is indicated in the npar column, where the GF model has

18 parameters corresponding to the coefficients of the Gompertz curve for each of the

six treatments plus the residual variance parameter. From the G1 model, there are 18

parameters referring to the three coefficients of the Gompertz growth curve for each of

the six treatments in the fixed part, plus the parameters corresponding to the variance

components. The GF model corresponds to the Gompertz model without random effects

with homogeneous covariance structure. From model G1 to G9, random effects were selected

by changing the structure of matrix 𝐺. After selecting random effects, we modified the

structure of the covariance matrix, 𝑅, in this step we worked with models G10, G11, and

G12.

Table 3.4 – Selection of Gompertz models with mixed effects

Mod. RE 𝐺 𝑅 npar −2𝑙𝑜𝑔𝐿 AICc BIC Comp. 𝑝-value

GF - - VC 19 8116.60 8155.74 8240.62 - -

G1 𝜑1 - VC 20 7839.32 7880.58 7969.87 GF vs G1 < .0001

G2 𝜑1, 𝜑2 UN VC 22 7782.42 7827.96 7926.04 G1 vs G2 < .0001

G3 𝜑2 - VC 20 8019.22 8060.49 8149.79 G2 vs G3 < .0001

G4 𝜑1, 𝜑2, 𝜑3 UN VC 25 7773.16 7825.13 7936.35 G2 vs G4 0.0258

G5 𝜑1, 𝜑3 UN VC 22 7773.16 7818.68 7916.77 G4 vs G5 1

G6 𝜑2, 𝜑3 UN VC 22 7834.70 7880.23 7978.32 G5 vs G6 -

G7 𝜑3 - VC 20 7916.10 7957.36 8046.65 G5 vs G7 < .0001

G8 𝜑1,𝜑3 VC VC 20 7916.10 7957.36 8046.65 G5 vs G8 < .0001

G9 𝜑1,𝜑3 VCH VC 21 7839.32 7882.71 7976.40 G5 vs G9 < .0001

G10 𝜑1,𝜑3 UN VCH(Sex) 23 7703.18 7750.85 7853.32 G5 vs G10 < .0001

G11 𝜑1,𝜑3 UN VCH(Age) 40 6762.16 6847.26 7023.28 G10 vs G11 < .0001

G12 𝜑1,𝜑3 UN VCH(Age*Sex) 59 6668.48 6797.82 7053.62 G11 vs G12 < .0001

RE: Random effect; 𝐺: Variance-covariance matrix for the random effects; 𝑅: Variance-covariance matrix intra-individual;
npar: number of model parameters; −2𝑙𝑜𝑔𝐿: −2(logarithm of the likelihood); UN: Unstructured; VC: Variance Components;
VCH(Age): Heterogeneous variance components for age ; VCH(Sex): Heterogeneous variance components for sex;
VCH(Age*Sex): Heterogeneous variance components for interaction age and sex.
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According to the information criteria and the likelihood ratio test, the most

appropriate model for the data was the G12. This model has random effects on the

parameters 𝜑1 and 𝜑3 with a correlation between them and a heterogeneous intra-individual

covariance structure with different variance components for the Age and Sex interaction.

We can observe the quality of fit of model G12 in Figure 3.3 in items (c) and (d), where

are the graphs of standardized residuals versus adjusted values and the half-normal plot

with simulation envelope, respectively. In this same figure are the charts of the residuals of

the fixed model, GF, in items (a) and (b). We observed in Figure 3.3 the need to include

random effects in the Gompertz model for a better description of broiler chicken weight

data.
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Figure 3.3 – Graph of standardized residuals versus adjusted values and half-normal simulated envelope
graphs for the models Gomperz with fixed effects (GF), items (a) and (b), and Gompertz with
random effects (G12) items (c) and (d)
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3.4.2 Mixed four-parameter logistic growth model

In the procedure for the selection of the four-parameter logistic model, the

𝜑5 coefficient was not statistically significant concerning the treatment effect. Thus the

treatment factor effect of this coefficient was removed (see Appendix A6). Table 3.5 presents

the results of the steps for model selection. The LF model corresponds to the four-parameter

logistic model without random effects, with a homogeneous covariance structure. Thus, the

LF model has 19 parameters corresponding to the logistic curve coefficients for each of the

six treatments plus the residual variance parameter. From the L1 model, the fixed part

contains 19 parameters referring to the four growth curve coefficients, being 𝜑1, 𝜑3, and 𝜑4

for each of the six treatments and 𝜑5 only in the intercept. Already in the random part, we

have the parameters corresponding to the variance components according to the covariance

structure evaluated. From model L1 to L9, random effects were selected by changing the

structure of matrix 𝐺. After selecting random effects, we modified the structure of the

covariance matrix, 𝑅, in this step we worked with models L10, L11, and L12.

Table 3.5 – Selection of four-parameter logistic models with mixed effects

Mod. RE 𝐺 𝑅 npar −2𝑙𝑜𝑔𝐿 AICc BIC Comp. 𝑝-value

LF - - VC 20 8111.10 8152.37 8241.66 - -

L1 𝜑1 - VC 21 7826.78 7870.17 7963.86 LF vs L1 < .0001

L2 𝜑1, 𝜑3 UN VC 23 7766.80 7814.48 7916.95 L1 vs L2 < .0001

L3 𝜑3 - VC 21 7894.78 7938.18 8031.87 L2 vs L3 < .0001

L4 𝜑1, 𝜑4 UN VC 23 7767.50 7815.17 7917.64 L2 vs L4 -

L5 𝜑1, 𝜑5 UN VC 23 7808.58 7856.25 7958.72 L2 vs L5 -

L6 𝜑1, 𝜑3, 𝜑4 UN VC 26 7766.80 7820.94 7936.53 L2 vs L6 0,9999

L7 𝜑1, 𝜑3, 𝜑5 VCH VC 23 7826.76 7874.44 7976.91 L2 vs L7 -

L8 𝜑1, 𝜑3, 𝜑4, 𝜑5 VCH VC 24 7798.08 7847.90 7954.75 L2 vs L8 < .0001

L9 𝜑1, 𝜑3, 𝜑4, 𝜑5 VC VC 21 7872.76 7916.16 8009.85 L8 vs L9 < .0001

L10 𝜑1, 𝜑3, 𝜑4, 𝜑5 VCH VCH(Sex) 25 7745.54 7797.52 7908.74 L8 vs L10 < .0001

L11 𝜑1, 𝜑3, 𝜑4, 𝜑5 VCH VCH(age) 42 6461.80 6551.44 6735.98 L10 vs L11 < .0001

L12 𝜑1, 𝜑3, 𝜑4, 𝜑5 VCH VCH(Sex*Age) 61 6411.38 6545.53 6809.58 L11 vs L12 < .0001

RE: Random effect; 𝐺: Variance-covariance matrix for the random effects; 𝑅: Variance-covariance matrix intra-individual;
npar: number of model parameters; −2𝑙𝑜𝑔𝐿: −2(logarithm of the likelihood); UN: Unstructured; VC: Variance Components;
VCH(Age): Heterogeneous variance components for age ; VCH(Sex): Heterogeneous variance components for sex;
VCH(Age*Sex): Heterogeneous variance components for interaction age and sex.

The most appropriate model for the data was the L12, with a random effect

on the four growth model coefficients and null correlations, and a heterogeneous intra-

individual covariance structure with different variance components for the Age and Sex

interaction. We can observe the quality of fit of model L12 in Figure 3.4 in items (c) and

(d), where are the graphs of standardized residuals versus adjusted values and the half-

normal plot with simulation envelope, respectively. In this same figure are the charts of the

residuals of the fixed model, LF, in items (a) and (b). We observed in Figure 3.4 the need
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to include random effects in the four-parameter logistic model for a better description of

broiler chicken weight data.
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Figure 3.4 – Graph of standardized residuals versus adjusted values and half-normal simulated envelope
graphs for the models four-parameter logistic with fixed effects (LF), items (a) and (b), and
four-parameter logistic with random effects (L12) items (c) and (d)

3.4.3 Mixed von Bertalanffy growth model

Results corresponding to the selection steps for the von Bertalanffy mixed-

effect growth model are presented in Table 3.6. There was no statistical significance of

treatments in coefficient 𝜑6, so was disregarded the treatment factor for this coefficient (see

Appendix A6). The VF model corresponds to the fixed model with homogeneous covariance

structure. This model has 19 parameters corresponding to the coefficients of the von Berta-

lanffy curve for each of the six treatments plus the residual variance parameter. From the

V1 model, the fixed part has 19 parameters referring to the four growth curve coefficients,

being 𝜑1, 𝜑2, and 𝜑3 for each of the six treatments and 𝜑6 only in the intercept. Already

in the random part, we have the parameters corresponding to the variance components

according to the covariance structure evaluated. From model V1 to V8, random effects
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were selected by changing the structure of matrix 𝐺. After selecting random effects, we

modified the structure of the covariance matrix, 𝑅, in this step we worked with models V9,

V10, and V11.

Table 3.6 – Selection of von Bertalanffy models with mixed effects

Mod. RE 𝐺 𝑅 npar −2𝑙𝑜𝑔𝐿 AICc BIC Comp. 𝑝-value

VF - - VC 20 8110.62 8151.88 8241.17 - -

V1 𝜑1 - VC 21 7838.22 7881.61 7975.30 VF vs V1 < .0001

V2 𝜑1, 𝜑3 UN VC 23 7770.18 7817.85 7920.32 V1 vs V2 < .0001

V3 𝜑3 - VC 21 7901.04 7944.44 8038.13 V2 vs V3 < .0001

V4 𝜑1, 𝜑6 UN VC 23 7838.22 7885.89 7988.36 V2 vs V4 -

V5 𝜑1, 𝜑2, 𝜑3 UN VC 26 7770.18 7824.32 7939.91 V2 vs V5 0.999

V6 𝜑1, 𝜑3, 𝜑6 VCH VC 23 7838.22 7885.89 7988.36 V2 vs V6 -

V7 𝜑1, 𝜑3 VC VC 21 7901.04 7944.44 8038.13 V2 vs V7 < .0001

V8 𝜑1, 𝜑3 VCH VC 22 7838.22 7883.75 7981.83 V2 vs V8 < .0001

V9 𝜑1, 𝜑3 UN VCH(Sex) 24 7698.18 7748.00 7854.85 V2 vs V9 < .0001

V10 𝜑1, 𝜑3 UN VCH(Age) 24 6915.50 6965.31 7072.16 V9 vs V10 -

V11 𝜑1, 𝜑3 UN VCH(Sex*Age) 60 6657.56 6789.31 7049.23 V10 vs V11 < .0001

RE: Random effect; 𝐺: Variance-covariance matrix for the random effects; 𝑅: Variance-covariance matrix intra-individual;
npar: number of model parameters; −2𝑙𝑜𝑔𝐿: −2(logarithm of the likelihood); UN: Unstructured; VC: Variance Components;
VCH(Age): Heterogeneous variance components for age; VCH(Sex): Heterogeneous variance components for sex;
VCH(Age*Sex): Heterogeneous variance components for interaction age and sex.

Based on the information criteria and the likelihood ratio test, the selected

model was the V11. This model has a random effect on parameters 𝜑1 and 𝜑3, with correla-

tions between them and covariance structure intra-individual heterogeneous with different

variance components for the interaction Age and Sex. We can observe the quality of fit of

model V11 in Figure 3.5 in items (c) and (d), where are the graphs of standardized residuals

versus adjusted values and the half-normal plot with simulation envelope, respectively. In

this same figure are the charts of the residuals of the fixed model, VF, in items (a) and (b).

We observed in Figure 3.5 the need to include random effects in the von Bertalanffy model

for a better description of broiler chicken weight data.



45

0 1000 2000 3000 4000

−4

−2

0

2

4

Fitted values (g)

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

(a)

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4
6

Theoretical quantiles

R
es

id
ua

ls

Total points: 684

Points out of envelope: 596 ( 87.13 %)

(b)

0 1000 2000 3000 4000

−4

−2

0

2

4

Fitted values (g)

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

(c)

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4

Theoretical quantiles

R
es

id
ua

ls

Total points: 684

Points out of envelope: 0 ( 0 %)

(d)

Figure 3.5 – Graph of standardized residuals versus adjusted values and half-normal simulated envelope
graphs for the models von Bertalanffy with fixed effects (VF), items (a) and (b), and von
Bertalanffy with random effects (V11) items (c) and (d)

3.4.4 Mixed Richards growth model

Results corresponding to the selection steps for the Richards mixed-effects

growth model are presented in Table 3.7. The RF model corresponds to the model without

random effects, with a homogeneous covariance structure. This model has 24 parameters

corresponding to the Richards curve coefficients for each of the six treatments plus the

residual variance parameter. From the R1 model, the fixed part has 24 parameters refer-

ring to the four growth curve coefficients for each of the six treatments. Already in the

random part, we have the parameters corresponding to the variance components according

to the covariance structure evaluated. From model R1 to R6, random effects were selected

by changing the structure of matrix 𝐺. After selecting random effects, we modified the

structure of the covariance matrix, 𝑅, in this step we worked with models R7, R8, and R9.
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Table 3.7 – Selection of Richards models with mixed effects

Mod. RE 𝐺 𝑅 npar −2𝑙𝑜𝑔𝐿 AICc BIC Comp. 𝑝-value

RF - - VC 25 8108.42 8160.41 8271.63 - -

R1 𝜑1 - VC 26 7826.32 7880.45 7996.04 RF vs R1 < .0001

R2 𝜑1, 𝜑3 VCH VC 27 7826.32 7882.62 8002.57 R1 vs R2 0.9802

R3 𝜑2, 𝜑3 VCH VC 27 7897.46 7953.77 8073.72 R1 vs R3 < .0001

R4 𝜑2, 𝜑3, 𝜑6 VCH VC 28 7897.50 7955.97 8080.28 R3 vs R4 0.8629

R5 𝜑1, 𝜑2, 𝜑3, 𝜑6 VC VC 26 7924.00 7978.13 8093.72 R3 vs R5 < .0001

R6 𝜑2, 𝜑3 VC VC 26 7897.48 7951.63 8067.22 R3 vs R6 0.8740

R7 𝜑2, 𝜑3 VC VCH(Sex) 27 7878.04 7934.35 8054.30 R3 vs R7 < .0001

R8 𝜑2, 𝜑3 VC VCH(age) 44 6722.46 6816.66 7009.69 R7 vs R8 < .0001

R9 𝜑2, 𝜑3 VC VCH(Sex*Age) 63 6662.78 6801.78 7074.03 R8 vs R9 < .0001

RE: Random effect; 𝐺: Variance-covariance matrix for the random effects; 𝑅: Variance-covariance matrix intra-individual;
npar: number of model parameters; −2𝑙𝑜𝑔𝐿: −2(logarithm of the likelihood); UN: Unstructured; VC: Variance Components;
VCH(Age): Heterogeneous variance components for age; VCH(Sex): Heterogeneous variance components for sex;
VCH(Age*Sex): Heterogeneous variance components for interaction age and sex.

Through the information criteria and the likelihood ratio test the most ap-

propriate model for the data was the R9, with random effect on the 𝜑2 and 𝜑3 with ho-

mogeneous variances and null correlations and a heterogeneous intra-individual covariance

structure with different variance components for the Age and Sex interaction. We can ob-

serve the quality of fit of model R9 in Figure 3.6 in items (c) and (d), where are the graphs

of standardized residuals versus adjusted values and the half-normal plot with simulation

envelope, respectively. In this same figure are the graphs of the residuals of the fixed model,

RF, in items (a) and (b). We observed in Figure 3.6 the need to include random effects in

the Richards model for a better description of broiler chicken weight data.
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Figure 3.6 – Graph of standardized residuals versus adjusted values and half-normal simulated envelope
graphs for the models Richard with fixed effects (RF), items (a) and (b), and Richard with
random effects (R9) items (c) and (d)

3.4.5 Comparison between growth models

In this section, we compare some characteristics of the growth models (G12,

L12, V11, and R9) selected in the previous sections. Figure 3.7 shows the graphs of the

adjusted mean curves of the different growth models for each of the treatments. In this

figure, it is possible to see that the adjustment of the curves of the four models was similar

for the initial phase (1 to 10 days) and growth phase (11 to 22 days) of broiler chickens, but

in the final phase (23 to 56 days) there was a divergence between the curves of the adjusted

models. Individual adjusted curves for the different growth models are in Appendix A7.
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Figure 3.7 – Adjusted mean curves of the different growth models for each treatment

Table 3.8 presents the estimates of the coefficients with the respective con-

fidence interval for each of the models studied. The logistic model showed asymptote

estimates values more elevated than the asymptote values of the other models, but as we

saw in Figure 3.7, the logistic curve had a similar adjustment to the other models within
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the study period. The estimates of the coefficients 𝛽5 of the logistic model and 𝛽6 of the

von Bertalanffy model were obtained considering only the intercept in the model, that is,

the same value for all treatments.

Table 3.8 – Estimates of the coefficients with the respective 95% confidence interval for the models studied

Gompertz (G12)

Treatment 𝛽1 𝛽2 𝛽3

ModM 5805.00± 379.01 5.21± 0.04 0.0511± 0.0024

ModF 4879.27± 371.14 4.91± 0.03 0.0512± 0.0024

LowM 5883.74± 382.86 5.15± 0.04 0.0488± 0.0024

LowF 5061.24± 374.74 4.88± 0.03 0.0481± 0.0024

HighM 5853.44± 380.29 5.19± 0.04 0.0503± 0.0024

HighF 4841.94± 262.35 4.89± 0.02 0.0515± 0.0017

Four-parameter logistic (L12)

Treatment 𝛽1 𝛽3 𝛽4 𝛽5

ModM 8270.16± 473.33 3.97± 0.04 2.23± 0.04 55.47± 0.5

ModF 7105.65± 477.58 3.98± 0.05 2.1± 0.04 55.47± 0.5

LowM 9644.49± 600.81 4.12± 0.05 2.14± 0.04 55.47± 0.5

LowF 7977.83± 585.29 4.1± 0.06 2.05± 0.04 55.47± 0.5

HighM 8619.16± 497.1 4.01± 0.04 2.21± 0.04 55.47± 0.5

HighF 6843.03± 329.11 3.96± 0.03 2.11± 0.03 55.47± 0.5

von Bertalanffy (V11)

Treatment 𝛽1 𝛽2 𝛽3 𝛽6

ModM 5955.92± 411.25 0.2290± 0.0086 0.0486± 0.0025 0.97± 0.02

ModF 5039.14± 400.75 0.2145± 0.0015 0.0485± 0.0025 0.97± 0.02

LowM 6072.26± 417.11 0.2261± 0.0072 0.0462± 0.0025 0.97± 0.02

LowF 5252.92± 404.99 0.2136± 0.0014 0.0454± 0.0025 0.97± 0.02

HighM 6025.06± 413.24 0.2281± 0.0082 0.0478± 0.0025 0.97± 0.02

HighF 5014.16± 291.18 0.2138± 0.1166 0.0486± 0.0021 0.97± 0.02

Richards (R9)

Treatment 𝛽1 𝛽2 𝛽3 𝛽6

ModM 6553.29± 645.33 −0.5150± 0.1590 0.0414± 0.0053 −0.1277± 0.061

ModF 5335.24± 566.80 −0.4964± 0.1574 0.0423± 0.0052 −0.1298± 0.0617

LowM 6701.70± 700.03 −0.4548± 0.1764 0.0402± 0.0055 −0.1102± 0.0636

LowF 5859.24± 667.10 −0.5780± 0.1495 0.0371± 0.0053 −0.1609± 0.0636

HighM 6581.03± 650.39 −0.4829± 0.1651 0.0415± 0.0053 −0.1176± 0.0614

HighF 5743.31± 439.65 −0.6690± 0.0914 0.0374± 0.0036 −0.199± 0.0429

ModM and ModF: Moderate nutritional density for Male and Female; LowM and LowF: Low nutritional density for Male
and Female; HighM and HighF: High nutritional density for Male and Female.

Table 3.9 shows the number of parameters for fixed effects factors (npf) and

the number of parameters for variance components (npr). The correlation between the

observed and predicted values (corr), the residual variance estimate for the fixed effect

model (𝜎̂2
𝑓 ), the residual variance estimate for the mixed model (𝜎̂2

𝑟), the AICc and BIC

information criteria, and the logarithm of the likelihood for each of the models studied are

also presented. According to the comparison criteria shown in Table 3.9, the four-parameter
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logistic model was considered the most appropriate for the chicken data, as compared to

the other models it presented the lowest values for 𝜎̂2 (0.51), AICc (6545.53), BIC (6809.58)

and −2𝑙𝑜𝑔𝐿 (6411.37).

Table 3.9 – Results of information criterion and statistics of the growth models for broiler chicken weight
data.

Model npf npr 𝜎̂2
𝑓 𝜎̂2

𝑟 Corr AICc BIC −2𝑙𝑜𝑔𝐿

Gompertz (G12) 18 41 8562.55 15.17 0.9986 6786.47 7053.62 6668.47

4-par logistic (L12) 19 42 8506.88 0.51 0.9982 6545.53 6809.58 6411.37

von Bertalanffy (V11) 19 41 8500.76 20.43 0.9986 6789.31 7049.23 6657.56

Richards (R9) 24 39 8537.90 110.18 0.9979 6801.78 7074.03 6662.77

npf: number of parameters related to fixed-effect factors; npr: number of parameters corresponding to variance components;
corr: correlation between observed values and predicted values; 𝜎̂2

𝑓 : residual variance estimate for the fixed effect model;

𝜎̂2
𝑟 : residual variance estimate for the mixed model; −2𝑙𝑜𝑔𝐿: −2(logarithm of the likelihood).

Figure 3.8 shows the graphs of the adjusted mean curves of growth models

with the dispersion of observations. For each of the treatments, an average growth curve

was adjusted.
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Figure 3.8 – Mean curves adjusted for each treatment for the different models studied
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We observed that there is a greater distance between the curves of males and

females. For diets, within each sex, we observed that the behavior of the adjusted average

curves of the Moderate and High diets were close to each other, while the Low diet curve

was slightly lower than the other two diets. Thus, considering the same random structure

of the previously selected models (G12, L12, V11, R9), based on the observation of the

curves of the Figure 3.8 the following models were proposed:

- G12.4, L12.4, V11.4 and R9.4: Models with four distinct curves, one for males on Moder-

ate and High (ModHighM) diets, one for females on Moderate and High (ModHighF)

diets, one for males on Low (LowM), and one for females on the Low (LowF) diet.

- G12.3M, L12.3M, V11.3M and R9.3M: Models with three distinct curves, one for males

with Moderate, High, and Low (ModHighLowM) diets, another for females with Mod-

erate and High (ModHighF) diets, and one for females with Low (LowF) diets.

- G12.3F, L12.3F, V11.3F and R9.3F: Models with three distinct curves, one for males with

the Moderate and High (ModHighM) diets, another for males with the Low (LowM)

diet, and one for females with the Moderate, High, and Low (ModHighLowF) diets.

- G12.2, L12.2, V11.2 and R9.2: Models with two distinct curves, one for males with

Moderate, High, and Low (ModHighLowM) diets and one for females with Moderate,

High, and Low (ModHighLowF) diets.

The adjusted mean curves of the four-parameter logistic models L12.4, L12.3M,

L12.3F, and L12.2 can be seen in Figure 3.9 items (a), (b), (c), and (d), respectively. The

graphs with the adjusted mean curves for the Gompertz, Von Bertalanffy, and Richards

models with four curves, three curves, and two curves are similar to those of the four-

parameter logistic model.
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Figure 3.9 – Adjusted curves for models L12.4 (a), L12.3M (b), L12.3F (c), and L12.2 (d)

Table 3.10 presents the results of the selection of models with six, four, three,

and two curves for treatments of different growth models. By the likelihood ratio test and

AICc, the four curve model (G12.4, L12.4, V11.4, and R9.4) was selected for all growth

models (Gompertz, four-parameter logistic, von Bertalanffy, and Richards).
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Table 3.10 – Results of selecting models with different curve numbers

Gompertz

Model npar −2𝑙𝑜𝑔𝐿 AICc BIC Comparison 𝑝-value

G12 59 6668.48 6797.82 7053.62 - -

G12.4 53 6670.40 6785.49 7016.39 G12 vs G12.4 0.9259

G12.3M 50 6686.50 6794.56 7012.91 G12.4 vs G12.3M 0.0011

G12.3F 50 6692.78 6800.84 7019.18 G12.4 vs G12.3F < .0001

G12.2 47 6705.62 6806.71 7012.42 G12.4 vs G12.2 < .0001

Four-parameter logistic

Model npar −2𝑙𝑜𝑔𝐿 AICc BIC Comparison 𝑝-value

L12 61 6411.38 6545.53 6809.58 - -

L12.4 55 6415.44 6535.25 6774.48 L12 vs L12.4 0.6666

L12.3M 52 6461.26 6573.99 6800.71 L12.4 vs L12.3M < .0001

L12.3F 52 6454.56 6567.30 6794.02 L12.4 vs L12.3F < .0001

L12.2 49 6489.46 6595.18 6809.33 L12.4 vs L12.2 < .0001

von Bertalanffy

Model npar −2𝑙𝑜𝑔𝐿 AICc BIC Comparison 𝑝-value

V11 60 6657.56 6789.31 7049.23 - -

V11.4 54 6659.76 6777.20 7012.27 V11 vs V11.4 0.9002

V11.3M 51 6699.42 6809.81 7032.34 V11.4 vs V11.3M < .0001

V11.3F 51 6680.36 6790.76 7013.30 V11.4 vs V11.3F < .0001

V11.2 48 6693.32 6796.72 7006.66 V11.4 vs V11.2 < .0001

Richards

Model npar −2𝑙𝑜𝑔𝐿 AICc BIC Comparison 𝑝-value

R9 63 6662.78 6801.78 7074.03 - -

R9.4 55 6671.18 6790.98 7030.21 R9 vs R9.4 0.3954

R9.3M 51 6699.86 6810.25 7032.79 R9.4 vs R9.3M < .0001

R9.3F 51 6699.86 6810.25 7032.79 R9.4 vs R9.3F < .0001

R9.2 47 6759.36 6860.46 7066.18 R9.4 vs R9.2 < .0001

npar: number of model parameters; −2𝑙𝑜𝑔𝐿: −2(logarithm of the likelihood).

Estimates of the coefficients of selected models with four curves and the re-

spective intervals with 95% confidence are on the Table 3.11.
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Table 3.11 – Estimates of the coefficients with the respective 95% confidence interval for four-curve models
(G12.4, L12.4, V11.4, and R9.4)

Gompertz (G12.4)

Treatment 𝛽1 𝛽2 𝛽3

LowM 5889.14± 385.77 5.15± 0.04 0.048781± 0.002414

LowF 5059.89± 266.64 4.88± 0.02 0.048154± 0.001705

ModHighM 5834.04± 329.67 5.20± 0.03 0.050657± 0.002088

ModHighF 4859.97± 324.48 4.90± 0.03 0.051385± 0.002087

Four-parameter logistic (L12.4)

Treatment 𝛽1 𝛽3 𝛽4 𝛽5

LowM 9577.37± 697.58 4.11± 0.06 2.14± 0.04 55.48± 0.5

LowF 7993.25± 495.00 4.10± 0.04 2.05± 0.03 55.48± 0.5

ModHighM 8418.13± 551.74 3.99± 0.05 2.22± 0.03 55.48± 0.5

ModHighF 6999.64± 545.82 3.97± 0.05 2.10± 0.03 55.48± 0.5

von Bertalanffy (V11.4)

Treatment 𝛽1 𝛽2 𝛽3 𝛽6

LowM 6077.63± 419.50 0.2248± 0.0071 0.0462± 0.0025 0.97± 0.02

LowF 5249.43± 299.10 0.2124± 0.1164 0.0455± 0.0021 0.97± 0.02

ModHighM 5994.86± 357.20 0.2272± 0.0083 0.0482± 0.0022 0.97± 0.02

ModHighF 5024.02± 350.72 0.2129± 0.0012 0.0486± 0.0022 0.97± 0.02

Richards (R9.4)

Treatment 𝛽1 𝛽2 𝛽3 𝛽6

LowM 6698.20± 753.31 −0.4543± 0.1902 0.0402± 0.0057 −0.1100±0.0668

LowF 5918.03± 522.29 −0.5971± 0.1158 0.0366± 0.0040 −0.1687±0.0476

ModHighM 6562.89± 620.51 −0.4981± 0.1496 0.0415± 0.0048 −0.1223±0.0567

ModHighF 5549.72± 595.47 −0.5974± 0.1390 0.0396± 0.0048 −0.1678±0.0570

LowM and LowF: Low nutritional density for Male and Female; ModHighM and ModHighF: Moderate and high nutritional
density for Male and Female.

In Table 3.12, we present the information criteria (AICc and BIC) and some

statistics (Corr and R) for the four-curve models. Note that the four-parameter logistic

model presented the lowest values of AICc, BIC, and residual variance, this model is the

most appropriate model to data compared to other growth models.

Table 3.12 – Results of information criterion and statistics of the growth models for broiler chicken weight
data.

Model npf npr 𝜎̂2
𝑓 𝜎̂2

𝑟 Corr AICc BIC −2𝑙𝑜𝑔𝐿

Gompertz (G12.4) 12 41 8546.36 15.05 0.9986 6785.49 7016.39 6670.40

4-par logistic (L12.4) 13 42 8497.50 0.47 0.9983 6535.25 6774.48 6415.45

von Bertalanffy (V11.4) 13 41 8483.87 20.23 0.9986 6777.20 7012.27 6659.76

Richard (R9.4) 16 39 8510.58 109.37 0.9979 6790.98 7030.21 6671.17

npf: number of parameters related to fixed-effect factors; npr: number of parameters corresponding to variance components;
corr: correlation between observed values and predicted values; 𝜎̂2

𝑓 : residual variance estimate for the fixed effect model;

𝜎̂2
𝑟 : residual variance estimate for the mixed model; −2𝑙𝑜𝑔𝐿: −2(logarithm of the likelihood).
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3.5 Discussion

Gompertz, Logistic, von Bertalanffy, and Richards models are widely used to

describe the growth pattern of different bird species. Narinç et al. (2017) reviewed existing

approaches to modeling growth curves. Tzeng and Becker (1981) analyzed growth data of

male chickens using the Gompertz, three-parameter logistic, and von Bertalanffy functions

and reported that the Gompertz was the most appropriate model. Yakupoglu and Atil

(2001) compared Gompertz and von Bertalanffy models adjusted for broiler chicken data

and stated that the Gompertz model provides a better description of the growth curve,

which differs from our results, where the von Bertalanffy model had a better fit to the data

than the Gompertz model, although we have used random effects in both models, effects

not used by the authors.

Darmani Kuhi et al. (2003) used the Gompertz, three-parameter logistic,

Lopez, Richards, France, and von Bertalanffy models to model growth data for chicken

meat and egg strains reported that the Richards model was better than the others. Norris

et al. (2007) compared the Gompertz, three-parameter logistic, and Richards models to

model the live weight of indigenous chickens and reported that the Gompertz model was

the most suitable for modeling chicken growth. Rizzi et al. (2013) compared linear and

nonlinear models (Gompertz, three-parameter logistic, and Richards) to describe broiler

chicken growth patterns and concluded that the Richards model was the most appropriate.

Mohammed (2015) used the models Gompertz, von Bertalanffy, and three-parameter logistic

to estimate the growth curve of Ross broiler chickens and reported that the Gompertz model

was the most appropriate. While in our study, the four-parameter logistic model and von

Bertalanffy, both with random effects, were better adjusted than Gompertz to describe the

growth pattern of broiler chickens. Demuner et al. (2017) compared the Gompertz, three-

parameter logistic, von Bertalanffy, and Richards models to model broiler chickens data.

The authors report that the Richards and Gompertz models obtained the best adjustments.

We used mixed nonlinear models (Gompertz, four-parameter logistic, von

Bertalanffy, and Richards) and got suitable adjustments of these models to broiler chicken

data. We note that by including random effects in these models and selecting an appro-

priate variance and covariance structure, there was a considerable improvement in the fit

of the models. Much of the residual variation that was present in the fixed effect model

was modeled by the variance and covariance structures of the mixed effect model, which

considerably reduced the residual variance. These results are in agreement with the work

of Wang and Zuidhof (2004), who used a mixed Gompertz growth model to analyze data

from a commercial broiler chicken strain crosses experiment and concluded that the use

of the mixed model decreases by over 55% of the residual variance. They indicated that

the mixed model has several advantages over the fixed effects model, recommending the

use of mixed models for the analysis of longitudinal growth data. Some authors indicate
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a significant decrease in residual variance estimation using nonlinear models mixed with

growth data from other species, such as Aggrey (2009) and Karaman et al. (2013), who

reported a decrease of 72% and 65%, respectively, in Japanese quail growth data.

Galeano-Vasco et al. (2014) compared mixed nonlinear models (von Berta-

lanffy, Richards, Gompertz, Brody, and three-parameter logistic) for the ability to estimate

the growth curve in commercial laying hens. They concluded that the Gompertz model had

a better fit for the data, followed by Richards and then von Bertalanffy. In our work, for

broiler chicken data, we obtained that the von Bertalanffy model was better adjusted than

the Gompertz, followed by Richards. These same authors reported that the models Brody

and three-parameter logistic did not fit the data. We had a similar problem regarding the

adjustment of the three-parameter logistic model that did not fit well with broiler chicken

data (see Appendix A8).

For the four growth models studied (Gompertz, four-parameter logistic, von

Bertalanffy, and Richards), we observed the difference between the growth of male and

female chickens. Which is in agreement with the works of Havenstein et al. (2003), Sako-

mura et al. (2005), and Marcato et al. (2008), who evaluated the male and female growth

potential of Ross broiler chickens and concluded that males have higher growth potential

than females. According to Salim et al. (2012), the performance of each sex is related to

genetics. Male broiler chickens consume more feed, use nutrients better, and grow faster

than females.

According to the comparison criteria used in this work (correlation between

observed values and predicted values, estimated residual variance, AICc, and BIC), we had

the following classification of the models for the best fit to the data: 1st four-parameter

logistic, 2nd von Bertalanffy, 3rd Gompertz, and 4th Richards.

3.6 Conclusion

In the selection of Gompertz, four-parameter logistic, von Bertalanffy, and

Richards models, it was possible to observe a considerable improvement in the adjustment

of each of the four models after the inclusion of random effects. According to the comparison

criteria used in this work, we had the following classification of the models according to

the best fit to the data: 1st four-parameter logistic, 2nd von Bertalanffy, 3rd Gompertz,

and 4th Richards. For the four growth models studied (Gompertz, four-parameter logistic,

von Bertalanffy, and Richards), in the selection of curves for the treatments, we observed

differences between the growth potential of males and females. Regarding the diets, we

found that diets with high and moderate nutritional density provided a higher weight of

broiler chickens than the diet with low nutritional density within each sex, considering the

entire experimental period.
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4 AN APPROACH TOMULTIVARIATE LONGITUDINAL DATAANALYSIS

USING NONLINEAR MIXED MODELS

Abstract

In broiler performance studies, it is common to observe multiple responses

repeatedly taken over time in a single experiment, in the same experimental units. Usu-

ally, the analysis of these data is performed using univariate techniques; however, these

techniques disregard the possible correlations between the variables and do not allow joint

interpretations of them. One possible way to jointly analyze multiple response longitudi-

nal data is by using mixed models. The data used in this work come from an experiment

(FZEA/USP), with 1080 Ross broiler chickens, in a randomized block design with a fac-

torial treatment structure with three nutritional densities and two sexes. We sought to

model the variables body weight responses and feed consumption, in grams, using bivariate

Gompertz mixed model and bivariate four-parameter logistic mixed model. Additionally,

we compared these models using the Akaike’s information corrected criterion (AICc) and

Bayesian information criterion (BIC). The results indicated that the four-parameter logistic

mixed bivariate model better explained the behavior of the mean responses over time.

Keywords: Broiler chickens; Bivariate nonlinear mixed models; Repeated measurements;

Variance components; Growth models.

4.1 Introduction

In scientific research, researchers are often faced with studies that have mul-

tiple outcomes and that are observed over the levels of a longitudinal factor, and these

outcomes are commonly admitted to be correlated. Data are considered longitudinal when

a measurement is made for each study subject repeatedly over a longitudinal factor, such

as time. In a study with longitudinal data, the clustered nature of the data has to take into

account, i.e., allow measurements within subjects to be correlated, while observations from

different subjects are independent (VERBEKE et al., 2014).

Many authors have proposed models for longitudinal data in the statistical

literature, for example, Verbeke and Molenberghs (2000), Diggle et al. (2002) and Molen-

berghs and Verbeke (2005). However, most attention is given to the univariate analysis for

longitudinal data, although it is very common to find tests with more than one variable

response measured over time, not necessarily with the same number of observations or the

same number of occasions over time (VERBEKE et al., 2014). In addition, variables can

be qualitative, discrete or continuous and have a linear or non-linear behavior.

A flexible way to analyze data with these characteristics is through the use
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of mixed models, where the choice of a model depends on the type of response (continuous,

ordinal or categorical) and also how the variables and covariates are related to the model

(linear, generalized linear or non-linear) (WEISS, 2005; FIEUWS, 2006). Some approaches

to modeling multivariate longitudinal data have been proposed in the statistical literature,

such as Lambert and Vandenhende (2002), Ferrer McArdle (2003), Beckett et al. (2004)

and Fieuws et al. (2008).

While some questions can be answered by modeling the variables separately,

others are only answered by taking into account the joint nature of the variables involved.

The purpose of this work was to compare the bivariate mixed Gompertz and four-parameter

logistic mixed models applied to broiler performance data. The variables used in this study

are body weight and feed consumption, in grams, from an experiment with 1080 Ross broiler

chickens.

4.2 Case-study

The data that motivated this work is from a study conducted by Silva (2018)

to evaluate the productive performance of broiler chickens, at the School of Animal Science

and Food Engineering of the University of São Paulo (FZEA/USP) Brazil. A total of 1080

Ross broiler chickens were used, with a initial bodyweight of 45.69 ± 0.33 grams, allocated

in 36 boxes, with 30 birds each. The broiler chickens were distributed in a randomized block

design to control temperature differences throughout the shed. Six treatments were studied

in the factorial scheme (3 × 2) being three nutritional densities (low, moderate, and high)

and two sexes (male and female)(Table 4.1) with six replicates (Blocks). The experimental

diets were formulated based on corn and soybean meal in a three-phase feeding program:

initial (1 to 10 days), growth (11 to 22 days), and final (23 to 56 days). The experiment

was carried out in the period from 3 to 56 days, was collected in grams the bodyweight and

feed consumption, totaling 19 measures at the times: 3, 7, 9, 12, 15, 18, 21 , 24, 27, 30, 33,

36, 39, 41, 44, 47, 51, 54 and 56 days.

Table 4.1 – Description of treatments

Treatment Nutrition Sex
ModM Moderate Male
ModF Moderate Female
LowM Low Male
LowF Low Female
HighM High Male
HighF High Female
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4.3 Modelling

4.3.1 Linear mixed model for multivariate longitudinal data

A mixed model is a flexible tool for joint modeling of different variables re-

sponses from longitudinal data, especially when the data collected are unbalanced (FIEUWS,

2006). Let measurement 𝑌𝑖𝑗 be obtained on the 𝑖th individual at the 𝑗th occasion (time).

The intervals between occasions do not need to be equally spaced. Here 𝑖 = 1, . . . , 𝑁 ,

𝑗 = 1, . . . , 𝑛𝑖. It is also assumed that the same number of measures on individuals and

response variables is not needed. Let 𝑌𝑖 be the vector of all measures taken on individual 𝑖,

i.e., 𝑌 𝑇
𝑖 = (𝑦𝑖1, . . . , 𝑦𝑖𝑛𝑖

). A linear mixed model for univariate longitudinal data is written

as follows (LAIRD; WARE, 1982):

𝑌𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝜀𝑖

𝑏𝑖 ∼ 𝑁𝑞(0,𝐺)

𝜀𝑖 ∼ 𝑁𝑛𝑖
(0,𝑅𝑖)

with 𝑏1, . . . , 𝑏𝑁 and 𝜀1, . . . , 𝜀𝑁 independent, 𝑋𝑖 and 𝑍𝑖 are matrices of known covariates 𝛽

is the vector of the fixed effects parameters, 𝑏𝑖 is the vector of the random effects, 𝜀𝑖 is the

vector of the residual components, 𝐺 is a general matrix of variances and covariances with

(𝑖, 𝑗) elements and 𝑑𝑖𝑗 = 𝑑𝑗𝑖, 𝑅𝑖 is a matrix of variances and covariances that depend on 𝑖

only for 𝑛𝑖 dimension, i.e., the unknown parameters of 𝑅𝑖 do not depend on the individual

𝑖.

Let 𝑌𝑚 the different variables that were measured over time in the same

individual and should be modeled together with 𝑚 = 1, 2, . . . , 𝑟. Therefore,

𝑌𝑖,𝑌𝑚 = 𝑋𝑖,𝑌𝑚𝛽𝑌𝑚 + 𝑍𝑖,𝑌𝑚𝑏𝑖,𝑌𝑚 + 𝜀𝑖,𝑌𝑚

where 𝛽𝑌𝑚 is the vector of fixed effects parameters for the 𝑌𝑚 variable response, 𝑋𝑖,𝑌𝑚 and

𝑍𝑖,𝑌𝑚 are respectively the matrices of specification of fixed and random effects for the 𝑌𝑚

variable response, 𝑏𝑖,𝑌𝑚 is the vector of random effects and 𝜀𝑖,𝑌𝑚 is the vector of the residual

components of the variable 𝑌𝑚. In terms of hierarchical models, the general linear mixed

model can be rewritten as:

𝑌𝑖,𝑌𝑚|𝑏𝑖,𝑌𝑚 ∼ 𝑁𝑛𝑖,𝑌𝑚
(𝑋𝑖,𝑌𝑚𝛽𝑌𝑚 + 𝑍𝑖,𝑌𝑚𝑏𝑖,𝑌𝑚 ,𝑅𝑖,𝑌𝑚)

where 𝑁𝑛𝑖,𝑌𝑚
is the normal distribution 𝑛𝑖,𝑌𝑚-dimensional.

The 𝑅𝑖,𝑌𝑚 matrix can admit various covariance matrix structures, and the

choice depends on the data variability and the correlation between repeated measures.

According to Barbosa (2009), the structure of variances and covariances influences esti-
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mation of the parameter of fixed effects factors, their standard errors as well as the fit

diagnostics of the model and inferences about the population.

4.3.2 Nonlinear mixed-effects model

In the literature, different nonlinear mixed models have been proposed, as in

Lindstrom and Bates (1990), Vonesh and Carter (1992), Wakefield et al. (1994), Vonesh and

Chinchilli (1997) among others. For data analysis, the nonlinear mixed model (NLMM) was

used, as described in Lindstrom and Bates (1990). In its first stage NLMM can be written

as:

𝑦𝑖𝑗 = 𝑓(𝜑𝑖𝑗,𝑥𝑖𝑗) + 𝜀𝑖𝑗, 𝑖 = 1, . . . , 𝑁 ; 𝑗 = 1, . . . , 𝑛𝑖

where 𝑦𝑖𝑗 is the 𝑗th observation in individual 𝑖, 𝑁 is the number of samples in the group, 𝑛𝑖

is the number of observations in the individual 𝑖, 𝑓 is a nonlinear function of the parameter

vector 𝜑𝑖𝑗 with a covariate vector 𝑥𝑖𝑗 and 𝜀𝑖𝑗 is a commonly distributed error term.

In the second stage the parameters of specific groups are modeled as

𝜑𝑖𝑗 = 𝐴𝑖𝑗𝛽 + 𝐵𝑖𝑗𝑏𝑖

where 𝛽 is a vector of unknown fixed parameters and common to all individuals, 𝑏𝑖 is

a unique unknown random effects vector for the 𝑖th individual, 𝐴𝑖𝑗 and 𝐵𝑖𝑗 are design

matrices for the fixed and random effects, respectively, that may depend on the values of

some covariates in the 𝑗th observation.

A general expression for NLMM can be written to individual 𝑖 as

𝑦𝑖 = 𝑓(𝛽, 𝑏𝑖,𝑋𝑖) + 𝜀𝑖

where 𝑦𝑖 = [𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝑛𝑖
]𝑇 is a vector of measurements on the individual 𝑖, 𝑋𝑖 is a known

matrix of covariates and 𝜀𝑖 = [𝜀𝑖1, 𝜀𝑖2, . . . , 𝜀𝑖𝑛𝑖
, ]𝑇 is a vector of intra-individual errors, 𝑏𝑖

and 𝜀𝑖 are usually assumed to be independent and normally distributed with zero mean

and matrix of variance 𝐺 and 𝑅, respectively, that is 𝑏𝑖 ∼ 𝑁(0,𝐺) and 𝜀𝑖 ∼ 𝑁(0,𝑅).

4.3.3 Bivariate Gompertz mixed model

Let 𝑌1 and 𝑌2 two response variables measured for subject 𝑖 at time 𝑗 and in

treatment 𝑘. Mixed Gompertz model for each response variable is given by:

𝑦𝑖𝑗𝑘,𝑌1 = (𝛽1𝑘,𝑌1 + 𝑏1𝑖,𝑌1)exp[(−𝛽2𝑘,𝑌1 + 𝑏2𝑖,𝑌1)exp((−𝛽3𝑘,𝑌1 + 𝑏3𝑖,𝑌1)𝑡𝑖𝑗,𝑌1)] + 𝜀𝑖𝑗𝑘,𝑌1

𝑦𝑖𝑗𝑘,𝑌2 = (𝛽1𝑘,𝑌2 + 𝑏1𝑖,𝑌2)exp[(−𝛽2𝑘,𝑌2 + 𝑏2𝑖,𝑌2)exp((−𝛽3𝑘,𝑌2 + 𝑏3𝑖,𝑌2)𝑡𝑖𝑗,𝑌2)] + 𝜀𝑖𝑗𝑘,𝑌2
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with 𝑖 = 1, . . . , 6, 𝑗 = 1, . . . , 19 and 𝑘 = 1, . . . , 6, where 𝑌𝑖𝑗𝑘,𝑌1 and 𝑌𝑖𝑗𝑘,𝑌2 are body weight

and feed consumption, respectively, observed at the instant 𝑡𝑖𝑗, on the 𝑖th box, which

received the 𝑘th treatment on the 𝑗th day of the experimental period. The coefficient 𝛽1𝑘,𝑌1

represents the maximum body weight, and 𝛽1𝑘,𝑌2 represents the maximum feed consumption

of broilers that received the treatment 𝑘, 𝛽2𝑘,𝑌1 and 𝛽2𝑘,𝑌2 are scale parameters related to

the initial weight and the initial consumption, respectively, of the birds that received the

treatment 𝑘, 𝛽3𝑘,𝑌1 represents the maturity index expressed as a proportion of the maximum

growth percentage in relation to the adult weight of the birds and 𝛽3𝑘,𝑌2 represents the

consumption index expressed in proportion to the percentage of the maximum consumption

in relation to the adult birds consumption; 𝜀𝑖𝑗𝑘,𝑌1 and 𝜀𝑖𝑗𝑘,𝑌2 are the experimental errors

associated with observations of body weight and feed consumption, respectively; 𝑏1𝑖,𝑌1 , 𝑏2𝑖,𝑌1 ,

𝑏3𝑖,𝑌1 , 𝑏1𝑖,𝑌2 , 𝑏2𝑖,𝑌2 , and 𝑏3𝑖,𝑌2 are the random effects associated with the model coefficients,

𝛽1𝑘,𝑌1 , 𝛽2𝑘,𝑌1 , 𝛽3𝑘,𝑌1 , 𝛽1𝑘,𝑌2 , 𝛽2𝑘,𝑌2 , and 𝛽3𝑘,𝑌2 , respectively. We can write a Gompertz mixed

model by connecting the vectors of body weight and feed consumption observations into a

single vector for individual 𝑖, resulting in:[︃
𝑦𝑖,𝑌1

𝑦𝑖,𝑌2

]︃
=

[︃
𝑓𝑌1(𝛽𝑌1 , 𝑏𝑖,𝑌1 , 𝑡𝑖𝑗,𝑌1)

𝑓𝑌2(𝛽𝑌2 , 𝑏𝑖,𝑌2 , 𝑡𝑖𝑗,𝑌2)

]︃
+

[︃
𝜀𝑖,𝑌1

𝜀𝑖,𝑌2

]︃

We assume that,

𝑏𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏1𝑖,𝑌1

𝑏2𝑖,𝑌1

𝑏3𝑖,𝑌1

𝑏1𝑖,𝑌2

𝑏2𝑖,𝑌2

𝑏3𝑖,𝑌2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∼𝑁𝑞,𝑌1𝑌2(0,𝐺) and 𝜀𝑖 ∼ 𝑁𝑛𝑖,𝑌1𝑌2(0,𝑅)

where

𝐺 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎2
𝑏1,𝑌1

𝜎𝑏1𝑌1,𝑏2𝑌1 𝜎𝑏1𝑌1,𝑏3𝑌1 𝜎𝑏1𝑌1,𝑏1𝑌2 𝜎𝑏1𝑌1,𝑏2𝑌2 𝜎𝑏1𝑌1,𝑏3𝑌2

𝜎2
𝑏2,𝑌1

𝜎𝑏2𝑌1,𝑏3𝑌1 𝜎𝑏2𝑌1,𝑏1𝑌2 𝜎𝑏2𝑌1,𝑏2𝑌2 𝜎𝑏2𝑌1,𝑏3𝑌2

𝜎2
𝑏3,𝑌1

𝜎𝑏3𝑌1,𝑏1𝑌2 𝜎𝑏3𝑌1,𝑏2𝑌2 𝜎𝑏3𝑌1,𝑏3𝑌2

𝜎2
𝑏1,𝑌2

𝜎𝑏1𝑌2,𝑏2𝑌2 𝜎𝑏1𝑌2,𝑏3𝑌2

Symmetric 𝜎2
𝑏2,𝑌2

𝜎𝑏2𝑌2,𝑏3𝑌2

𝜎2
𝑏3,𝑌2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In this case, the matrix structure 𝐺 is called unstructured (UN) because 𝐺 has different

variances for random effects with nonzero correlations between them. When the correlations

are null, the matrix structure 𝐺 will be named heterogeneous variance components (VCH).
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The matrix 𝑅 is given by

𝑅 =

[︃
𝜎2
𝜀,𝑌1

0

0 𝜎2
𝜀,𝑌2

]︃
⊗

⎡⎢⎢⎢⎢⎣
𝐷1 036 . . . 036

036 𝐷2 . . . 036

...
...

. . .
...

036 036 . . . 𝐷19

⎤⎥⎥⎥⎥⎦
where 036 is a 36 × 36 order null matrix and 𝐷𝑗 with 𝑗 = 1, 2, . . . , 19, is a 36 × 36 order

diagonal matrix.

We use three possible structures for 𝐷𝑗:

(1) Considering different variances by Sex and equal variances by Age - VCH(Sex)

𝐷𝑗 = 𝐼3 ⊗ diag (𝜎2
𝑀 , 𝜎2

𝐹 ) ⊗ 𝐼6, where 𝜎2
𝑀 , and 𝜎2

𝐹 are variance components for male and

female broilers, respectively, 𝐼3 and 𝐼6 are identity matrices of order 3 × 3 and 6 × 6,

respectively.

(2) Considering different variances by Age nd equal variances by Sex - VCH(Age)

𝐷𝑗 = 𝐼3 ⊗ diag
(︀
𝜎2
𝑗 , 𝜎

2
𝑗

)︀
⊗ 𝐼6, where 𝜎2

1, 𝜎
2
2, . . . , 𝜎

2
19 are the variance components for each of

the 19 time measurements.

(3) Considering different variances for Age and Sex interaction - VCH(Age×Sex)

𝐷𝑗 = 𝐼3 ⊗ diag
(︁
𝜎2
𝑀𝑗

, 𝜎2
𝐹𝑗

)︁
⊗ 𝐼6, where 𝜎2

𝑀1
, 𝜎2

𝑀2
, . . . , 𝜎2

𝑀19
are the variance components for

male broilers, and 𝜎2
𝐹1
, 𝜎2

𝐹2
, . . . , 𝜎2

𝐹19
are the variance components for female broilers in each

of the 19 time measurements.

4.3.4 Bivariate four-parameters logistic mixed model

Let 𝑌1 and 𝑌2 two response variables measured for subject 𝑖 at time 𝑗 and in

treatment 𝑘. Mixed four-parameters logistic model for each response variable is given by:

𝑦𝑖𝑗𝑘,𝑌1 = (𝛽4𝑘,𝑌1 + 𝑏4𝑖,𝑌1) +
(𝛽1𝑘,𝑌1 + 𝑏1𝑖,𝑌1) − (𝛽4𝑘,𝑌1 + 𝑏4𝑖,𝑌1)

1 + exp[(𝛽3𝑘,𝑌1 + 𝑏3𝑖,𝑌1)(𝛽2𝑘,𝑌1 + 𝑏2𝑖,𝑌1 − log(𝑡𝑖𝑗,𝑌1))]
+ 𝜀𝑖𝑗𝑘,𝑌1

𝑦𝑖𝑗𝑘,𝑌2 = (𝛽4𝑘,𝑌2 + 𝑏4𝑖,𝑌2) +
(𝛽1𝑘,𝑌2 + 𝑏1𝑖,𝑌2) − (𝛽4𝑘,𝑌2 + 𝑏4𝑖,𝑌2)

1 + exp[(𝛽3𝑘,𝑌2 + 𝑏3𝑖,𝑌2)(𝛽2𝑘,𝑌2 + 𝑏2𝑖,𝑌2 − log(𝑡𝑖𝑗,𝑌2))]
+ 𝜀𝑖𝑗𝑘,𝑌2

with 𝑖 = 1, . . . , 6, 𝑗 = 1, . . . , 19 and 𝑘 = 1, . . . , 6. considering 𝑌1 the measurements for body

weight, 𝑌2 the measurements for feed consumption and 𝑘 the index for each treatment, we

have that, 𝑌𝑖𝑗 is the value observed at time 𝑡𝑖𝑗, in the 𝑖th box and 𝑗th day of the experimental

period. The coefficient 𝛽1 is the upper asymptote, 𝛽2 is the intrinsic growth rate, 𝛽3 is the

predicted value at the response halfway between the two asymptotes (upper and lower),𝛽4

is the lower asymptote; 𝜀𝑖𝑗 is the experimental error associated with the observation 𝑦𝑖𝑗,

and 𝑏1𝑖, 𝑏2𝑖, 𝑏3𝑖, and 𝑏4𝑖 are the random effects associated with the model coefficients, 𝛽1,
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𝛽2, 𝛽3, and 𝛽4, respectively.

We can write a four-parameters logistic mixed model by connecting the vec-

tors of body weight and feed consumption observations into a single vector for individual

𝑖, resulting in: [︃
𝑦𝑖,𝑌1

𝑦𝑖,𝑌2

]︃
=

[︃
𝑓𝑌1(𝛽𝑌1 , 𝑏𝑖,𝑌1 , 𝑡𝑖𝑗,𝑌1)

𝑓𝑌2(𝛽𝑌2 , 𝑏𝑖,𝑌2 , 𝑡𝑖𝑗,𝑌2)

]︃
+

[︃
𝜀𝑖,𝑌1

𝜀𝑖,𝑌2

]︃
We assume that,

𝑏𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏1𝑖,𝑌1

𝑏2𝑖,𝑌1

𝑏3𝑖,𝑌1

𝑏4𝑖,𝑌1

𝑏1𝑖,𝑌2

𝑏2𝑖,𝑌2

𝑏3𝑖,𝑌2

𝑏4𝑖,𝑌2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∼𝑁𝑞,𝑌1𝑌2(0,𝐺) and 𝜀𝑖 ∼ 𝑁𝑛𝑖,𝑌1𝑌2(0,𝑅)

where

𝐺 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎2
𝑏1,𝑌1

𝜎𝑏1𝑌1,𝑏2𝑌1 𝜎𝑏1𝑌1,𝑏3𝑌1 𝜎𝑏1𝑌1,𝑏4𝑌1 𝜎𝑏1𝑌1,𝑏1𝑌2 𝜎𝑏1𝑌1,𝑏2𝑌2 𝜎𝑏1𝑌1,𝑏3𝑌2 𝜎𝑏1𝑌1,𝑏4𝑌2

𝜎2
𝑏2,𝑌1

𝜎𝑏2𝑌1,𝑏3𝑌1 𝜎𝑏2𝑌1,𝑏4𝑌1 𝜎𝑏2𝑌1,𝑏1𝑌2 𝜎𝑏2𝑌1,𝑏2𝑌2 𝜎𝑏2𝑌1,𝑏3𝑌2 𝜎𝑏2𝑌1,𝑏4𝑌2

𝜎2
𝑏3,𝑌1

𝜎𝑏3𝑌1,𝑏4𝑌1 𝜎𝑏3𝑌1,𝑏1𝑌2 𝜎𝑏3𝑌1,𝑏2𝑌2 𝜎𝑏3𝑌1,𝑏3𝑌2 𝜎𝑏3𝑌1,𝑏4𝑌2

𝜎2
𝑏4,𝑌1

𝜎𝑏4𝑌1,𝑏1𝑌2 𝜎𝑏4𝑌1,𝑏2𝑌2 𝜎𝑏4𝑌1,𝑏3𝑌2 𝜎𝑏4𝑌1,𝑏4𝑌2

𝜎2
𝑏1,𝑌2

𝜎𝑏1𝑌2,𝑏2𝑌2 𝜎𝑏1𝑌2,𝑏3𝑌2 𝜎𝑏1𝑌2,𝑏4𝑌2

𝜎2
𝑏2,𝑌2

𝜎𝑏2𝑌2,𝑏3𝑌2 𝜎𝑏2𝑌2,𝑏4𝑌2

Symmetric 𝜎2
𝑏3,𝑌2

𝜎𝑏3𝑌2,𝑏4𝑌2

𝜎2
𝑏4,𝑌2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The matrix 𝑅 has the same structures presented in section section 4.3.3.

4.3.5 Adjustment of models

The variables body weight and feed consumption of broilers in grams were

jointly modeled using the bivariate Gompertz mixed model and bivariate four-parameter

logistic mixed model. We worked with different structures for the variance and covariance

matrices 𝐺 and 𝑅, presented in section section 4.3.3, to select the structure that best

described the data. The models were adjusted by the maximum likelihood method using

nlme() function (PINHEIRO et al., 2019) of the R software (R CORE TEAM, 2019) and

compared using the likelihood ratio test and the AICc (HURVICH; TSAI, 1989) and BIC

(SCHWARZ, 1978) information criteria. The block effect was not considered in this work,
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but the study for its inclusion is in progress. Part of the programming used in this work

is in Appendix B1. The quality of fit was assessed based on the observation of conditional

residuals versus adjusted values plots.

4.4 Results and Discussion

Figure 4.1 presents the individual profiles by box (a) and the average profiles

by treatment (b) over time of the variables body weight and feed consumption. We note

similarities in the growth pattern of the curves for each of the variables. In the first days of

the period, the variability between individuals was small, over time, this variability increased

as the body weight, and feed consumption increased. In general, feed consumption was

higher than body weight.
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Figure 4.1 – Individual profiles by box and average profiles body weight and feed consumption in grams of
broilers by treatment

Looking at Tables 4.2 and 4.3, we see that feed consumption exceeded body

weight from the 21st day of the experimental period, for all nutritional densities, in both

sexes. It can be seen from Figure 4.1 and Tables 4.2 and 4.3 that from the broiler growth

phase (11 to 22 days) males consumed more ration and their body weight was higher than

females, which is in agreement with Salim et al. (2012), who reported that males consume

more ration, use nutrients better and grow faster than females. Regarding the nutritional

densities, in general, within each sex, we observed a higher feed consumption and a lower

body weight for the low nutritional density, we also noticed a lower feed consumption for

the high nutritional density.
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Table 4.2 – Means and standard errors (s.e.) of body weight (g) of broiler chickens by treatment over time

Age ModM ModF LowM LowF HighM HighF
(Days) Means s.e. Means s.e. Means s.e. Means s.e. Means s.e. Means s.e.

3 69.1 1.1 72.1 0.5 70.3 0.8 72.4 0.7 69.1 0.8 72.1 0.9
7 144.4 2.7 152.5 1.6 146.3 2.6 148.3 1.8 144.1 2.1 150.0 1.6
9 211.4 3.4 220.5 2.0 212.0 4.5 213.3 2.3 212.2 2.9 219.7 2.6
12 339.7 5.0 344.4 2.8 333.8 6.4 329.2 3.3 342.9 4.0 347.5 3.1
15 521.6 7.9 512.5 3.9 504.6 7.8 486.6 3.5 512.7 5.5 510.6 4.8
18 730.2 6.5 701.7 3.8 696.4 8.6 660.3 4.6 722.9 10.2 708.9 9.1
21 970.5 5.4 908.7 4.3 917.5 7.7 851.1 8.3 958.8 12.8 920.7 14.0
24 1257.5 5.9 1161.7 10.0 1197.7 11.7 1089.5 13.4 1238.6 16.7 1162.0 16.6
27 1542.8 8.5 1418.3 6.4 1479.3 12.7 1327.4 16.7 1499.8 34.9 1412.3 20.5
30 1890.8 21.4 1717.1 5.9 1834.9 24.0 1612.1 15.3 1904.6 29.0 1691.8 22.3
33 2154.6 19.4 1952.4 7.0 2089.5 26.3 1859.6 10.6 2154.0 20.4 1922.2 23.4
36 2465.5 25.9 2179.8 14.9 2368.8 30.7 2087.6 10.0 2473.0 21.7 2175.8 22.6
39 2729.0 47.1 2430.3 12.4 2656.7 39.0 2332.6 7.4 2794.6 26.9 2421.7 22.4
41 3097.4 58.9 2653.2 32.9 2896.0 41.6 2536.7 18.8 3093.0 35.9 2673.8 25.7
44 3305.2 55.0 2884.2 42.9 3221.5 49.8 2789.5 16.6 3313.6 54.7 2865.3 19.2
47 3673.0 62.0 3172.0 41.2 3562.6 65.8 3078.0 20.9 3706.6 46.0 3150.9 33.2
51 3959.2 61.4 3377.4 71.3 3827.4 69.5 3312.6 28.1 3861.5 20.0 3465.5 111.6
54 4290.8 63.2 3631.4 69.0 4382.3 130.7 3570.5 36.6 4231.1 124.4 3601.7 50.0
56 4396.2 73.4 3683.0 51.7 4237.3 88.0 3642.0 66.8 4339.0 83.8 3734.9 87.0

ModM and ModF: Moderate nutritional density for Male and Female; LowM and LowF: Low nutritional density for Male
and Female; HighM and HighF: High nutritional density for Male and Female.

Table 4.3 – Means and standard errors (s.e.) of feed consumption (g) of broiler chickens by treatment over
time

Age ModM ModF LowM LowF HighM HighF
(Days) Means s.e. Means s.e. Means s.e. Means s.e. Means s.e. Means s.e.

3 58.1 0.5 60.3 0.5 60.0 0.7 61.1 0.7 58.1 0.3 58.9 0.6
7 108.2 1.8 115.3 1.3 117.3 2.9 118.1 1.2 106.4 1.8 110.8 2.1
9 190.2 2.9 201.1 1.5 202.0 4.9 203.3 1.9 185.5 2.7 192.5 3.5
12 354.8 4.7 367.5 2.9 369.9 7.3 369.0 3.1 344.4 4.3 352.8 5.9
15 485.3 12.1 504.4 7.7 518.2 17.3 504.7 8.0 449.0 16.6 454.8 14.0
18 777.0 12.4 775.0 9.4 806.0 19.8 771.7 10.9 710.4 19.1 710.5 18.6
21 1172.4 13.5 1136.6 10.0 1196.5 24.7 1105.8 15.0 1071.9 28.5 1041.6 25.8
24 1609.0 13.7 1525.6 11.2 1640.1 28.1 1509.7 23.0 1479.3 38.8 1417.4 27.0
27 2090.3 16.8 1950.6 14.8 2133.7 29.4 1935.3 25.6 1923.5 48.9 1824.1 31.2
30 2662.8 19.3 2454.9 16.5 2645.3 84.3 2373.3 76.6 2365.2 70.7 2282.0 35.4
33 3222.6 29.4 2951.6 8.5 3266.3 43.8 2880.8 70.9 2911.9 68.1 2748.2 42.8
36 3835.3 36.9 3452.1 25.4 3871.0 49.6 3449.3 38.1 3450.8 70.7 3208.5 49.0
39 4227.8 58.4 3999.5 29.5 4114.0 85.7 4000.9 41.9 3981.3 74.3 3672.2 45.7
41 4770.6 75.9 4475.7 29.2 4660.2 82.9 4494.2 55.9 4569.5 70.6 4515.1 68.4
44 4847.6 66.0 4856.4 111.0 5154.1 124.4 4927.1 61.2 5019.5 78.6 4859.6 30.3
47 6075.2 136.5 5681.8 102.1 6233.2 117.5 5712.4 110.8 5841.8 76.3 5688.4 92.1
51 6649.0 155.6 6270.7 115.0 6927.4 119.2 6343.0 125.8 6367.7 98.0 6194.6 112.3
54 7444.5 155.1 6942.0 116.7 7674.3 124.0 7061.0 135.5 6984.8 133.0 6801.5 126.0
56 7847.7 164.6 7261.3 152.8 8079.5 133.5 7483.8 163.8 7384.2 174.1 7126.5 140.7

ModM and ModF: Moderate nutritional density for Male and Female; LowM and LowF: Low nutritional density for Male
and Female; HighM and HighF: High nutritional density for Male and Female.

4.4.1 Bivariate Gompertz mixed model

To adjust the Gompertz bivariate mixed model for the variables body weight

and feed consumption, we first plotted the individual interval graphs with 95% confidence for
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each of the bivariate model coefficients. These confidence intervals are presented in Figure

4.2; through these intervals, we select the coefficients that would receive random effects.

According to Pinheiro and Bates (2000), the non-overlapping of the intervals indicates the

need to include random effects, so for the Gompertz bivariate mixed model, we include

random effects in the coefficients 𝛽1,𝑌1 , 𝛽3,𝑌1 , 𝛽1,𝑌2 , 𝛽2,𝑌2 , and 𝛽3,𝑌2 .
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Figure 4.2 – Ninety-five percent confidence intervals on the bivariate Gompertz model parameters for each
box

Table 4.4 presents the results of the selection of the bivariate Gompertz mixed

model. The three models presented (G1, G2, and G3) have the same random effects 𝑏1,𝑌1 ,

𝑏3,𝑌1 , 𝑏1,𝑌2 , 𝑏2,𝑌2 , and 𝑏3,𝑌2 , and different structures of variance and covariance matrices 𝐺 and

𝑅. In model G1 and G2, we consider a structure for matrix 𝐺 with different variances and

correlations between random effects. For the intra-individual matrix (𝑅), we considered

uncorrelated structures with different variances for each sex in the G1 model, different

variances for each age in the G2 model, and different variances for the interaction between

sex and age in the G3 model. In model G3, there was a need not to consider correlations

between random effects in the matrix (𝐺), as there was no convergence to the structure
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with correlations. According to the AICc, BIC, and the likelihood ratio test, the bivariate

model best suited to body weight and feed consumption data was the G3 model. Through

the same criteria, we verified the necessity of the permanence of the random effects in the

coefficients 𝛽1,𝑌1 , 𝛽3,𝑌1 , 𝛽1,𝑌2 , 𝛽2,𝑌2 , and 𝛽3,𝑌2 of the model G3.

Table 4.4 – Selection of bivariate Gompertz models with mixed effects

Mod. 𝐺 𝑅 npar −2𝑙𝑜𝑔𝐿 AICc BIC Comp. 𝑝-value

G1 UN VCH(Sex) 54 16320.84 16433.37 16710.79 - -

G2 UN VCH(Age) 71 14632.56 14782.46 15145.27 G1 vs G2 < .0001

G3 VCH VCH(Age*Sex) 80 14580.86 14750.93 15158.54 G2 vs G3 < .0001

𝐺: Variance-covariance matrix for the random effects; 𝑅: Variance-covariance matrix intra-individual; npar: number of
model parameters; −2𝑙𝑜𝑔𝐿: −2(logarithm of the likelihood); UN: Unstructured; VCH(Age): Heterogeneous variance
components for age ; VCH(Sex): Heterogeneous variance components for sex; VCH(Age*Sex): Heterogeneous variance
components for interaction age and sex.

In Figure 4.3, we present the graph of the standardized conditional residuals

versus the adjusted values for the initial model G1 (a) and the selected model G3 (b).

The residuals represented by the red triangles refer to the observations of the body weight

variable, while the blue dots are the residuals to the observations of the feed consumption

variable. We see in this figure that the G3 model was better fitted to the data than the G1

model.
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Figure 4.3 – Graph of conditional residuals versus adjusted values of bivariate Gompertz mixed models G1
(a) and G3 (b)

In Table 4.5, we present the estimates of the coefficients of the selected model

(G3) with their respective standard errors and the estimates of the residual variance com-

ponents for each of the variables. Note that a different curve was adjusted for each of the

treatments, as the treatment factor was significant for each of the model coefficients (see

Appendix B2).
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Table 4.5 – Estimates of the coefficients of the bivariate Gompertz mixed model (G3) with the respective
standard errors for each treatment and residual variance estimates for each of the variables

Body weight Feed consumption

Treatment 𝛽1,𝑌1
𝛽2,𝑌1

𝛽3,𝑌1
𝛽1,𝑌2

𝛽2,𝑌2
𝛽3,𝑌2

HighM 5933± 184 5.17± 0.03 0.050± 0.0010 12480± 779 6.15± 0.06 0.044± 0.0014

ModM 5892± 182 5.18± 0.03 0.050± 0.0010 12222± 732 6.20± 0.06 0.046± 0.0014

LowM 6027± 192 5.14± 0.03 0.048± 0.0010 12653± 740 6.16± 0.06 0.046± 0.0014

HighF 4672± 119 4.88± 0.02 0.052± 0.0007 12386± 585 6.09± 0.04 0.043± 0.0010

ModF 4731± 169 4.89± 0.03 0.052± 0.0011 11387± 751 6.03± 0.06 0.045± 0.0014

LowF 4856± 180 4.87± 0.03 0.049± 0.0011 12112± 786 6.04± 0.06 0.044± 0.0014

𝜎̂2
𝜀 1.07 5.10

ModM and ModF: Moderate nutritional density for Male and Female; LowM and LowF: Low nutritional density for Male
and Female; HighM and HighF: High nutritional density for Male and Female.

The estimated of the random effects variances-covariances matrix 𝑏1,𝑌1 , 𝑏3,𝑌1 ,

𝑏1,𝑌2 , 𝑏2,𝑌2 , and 𝑏3,𝑌2 is given by:

𝐺 =

⎡⎢⎢⎢⎢⎢⎢⎣
4209.30 0 0 0 0

0 0.0000002 0 0 0

0 0 9.50 0 0

0 0 0 0.00023 0

0 0 0 0 0.0000004

⎤⎥⎥⎥⎥⎥⎥⎦
Table 4.6 presents the estimates of the variance components of the intra-

individual matrix, 𝑅.

Table 4.6 – Intra-individual matrix variance component estimates (𝑅) of the model G3

Variance components

Sex 𝜎̂2
1 𝜎̂2

2 𝜎̂2
3 𝜎̂2

4 𝜎̂2
5 𝜎̂2

6 𝜎̂2
7 𝜎̂2

8 𝜎̂2
9 𝜎̂2

10

Male 1.8 121.7 43.8 50.7 493.4 303.7 41.4 154.0 670.4 3136.8

Female 1.0 84.5 8.5 92.1 217.7 177.4 187.7 346.4 378.1 1054.8

𝜎̂2
11 𝜎̂2

12 𝜎̂2
13 𝜎̂2

14 𝜎̂2
15 𝜎̂2

16 𝜎̂2
17 𝜎̂2

18 𝜎̂2
19

Male 1023.5 2379.9 13301.5 12897.2 28731.4 15537.7 12450.0 42446.3 22295.7

Female 1182.1 2112.8 3899.0 6738.5 8271.7 16329.9 29538.9 27076.1 35610.0

Note that the selected model (G3) has different variances for males and fe-

males on different days of the experimental period and also models the heterogeneity of

intra-individual variances over time.

4.4.2 Bivariate four-parameter logistic mixed model

For the preliminary adjustment of the bivariate four-parameter logistic (4PL)

mixed model, we found by the 95% confidence interval graph, shown in Figure 4.4, the need
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to include random effects in the coefficients 𝛽1,𝑌1 , 𝛽1,𝑌2 , 𝛽2,𝑌2 , 𝛽3,𝑌2 and 𝛽4,𝑌2 of the 4PL

bivariate mixed model.
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Figure 4.4 – Ninety-five percent confidence intervals on the bivariate four-parameter logistic model
parameters for each box

Table 4.7 presents the results of the selection of the 4PL bivariate mixed

model. The three models are shown (L1, L2, and L3) have the same random effects 𝑏1,𝑌1 ,

𝑏1,𝑌2 , 𝑏2,𝑌2 , 𝑏3,𝑌2 , and 𝑏4,𝑌2 .

Table 4.7 – Selection of bivariate four-parameter logistic models with mixed effects

Mod. 𝐺 𝑅 npar −2𝑙𝑜𝑔𝐿 AICc BIC Comp. 𝑝-value

L1 VCH VCH(Sex) 56 16448.82 16565.68 16853.19 - -

L2 VCH VCH(Age) 73 14447.88 14602.23 14975.02 L1 vs L2 < .0001

L3 VCH VCH(Age*Sex) 92 14381.28 14578.70 15045.62 L2 vs L3 < .0001

𝐺: Variance-covariance matrix for the random effects; 𝑅: Variance-covariance matrix intra-individual; npar: number of
model parameters; −2𝑙𝑜𝑔𝐿: −2(logarithm of the likelihood); VCH(Age): Heterogeneous variance components for age ;
VCH(Sex): Heterogeneous variance components for sex; VCH(Age*Sex): Heterogeneous variance components for interaction
age and sex.

Due to problems with the tuning process convergence of some models, struc-
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tures with heterogeneous variances and null correlations were used for the matrix of vari-

ances and covariance 𝐺. For matrix 𝑅, we considered structures with null correlations and

different variances for each sex in the L1 model, different variances for each age in the L2

model, and different variances for the interaction between sex and age in the L3 model.

According to the AICc, BIC, and the likelihood ratio test, the 4PL bivariate mixed model

best suited to body weight and feed consumption data was the L3 model. After selecting

the L3 model, we verified the need for random effects on the model coefficients, the results

of this selection are presented in Table 4.8. In this selection procedure, we maintained the

same structure of matrix 𝑅 of model L3, previously selected, for all models, and modified

the structure of matrix 𝐺. According to the AICc, BIC, and the likelihood ratio test,

the selected model was the L3.6 model. Subsequently, we verified the significance of the

treatment factor in the coefficients of the model selected using ANOVA (See Appendix

B2). We found the lack of significance of the treatment factor in the coefficient 𝛽4,𝑌2 , thus

removing the treatment factor of this coefficient in the L3.7 model. Therefore, the 4PL

bivariate mixed model most suited to the data according to the selection procedure used

was the L3.7. This model has random effects on coefficients 𝛽1,𝑌1 , 𝛽1,𝑌2 , and 𝛽3,𝑌2 , with

different variances and correlations between random effects in matrix 𝐺. The matrix 𝑅 has

different variances for the interaction age and sex and null correlations.

Table 4.8 – Selection of bivariate four-parameter logistic models with mixed effects modifying the matrix
𝐺

Mod. RE 𝐺 npar −2𝑙𝑜𝑔𝐿 AICc BIC Comp. 𝑝-value

L3 𝑏1,𝑌1 ;𝑏1,𝑌2 ;𝑏2,𝑌2 ;𝑏3,𝑌2 ;𝑏4,𝑌2 VCH 92 14381.28 14578.70 15045.62 - -

L3.1 𝑏1,𝑌1
;𝑏1,𝑌2

;𝑏2,𝑌2
;𝑏3,𝑌2

VCH 91 14381.28 14576.40 15038.40 L3 vs L3.1 0.9810

L3.2 𝑏1,𝑌1
;𝑏1,𝑌2

;𝑏2,𝑌2
VCH 90 14411.26 14604.09 15061.16 L3.1 vs L3.2 < .0001

L3.3 𝑏1,𝑌1 ;𝑏1,𝑌2 ;𝑏3,𝑌2 VCH 90 14381.28 14574.10 15031.18 L3.1 vs L3.3 0.9877

L3.4 𝑏1,𝑌1
;𝑏3,𝑌2

VCH 89 14432.28 14622.82 15074.97 L3.3 vs L3.4 < .0001

L3.5 𝑏1,𝑌2
;𝑏3,𝑌2

VCH 89 14586.66 14777.19 15229.33 L3.3 vs L3.5 < .0001

L3.6 𝑏1,𝑌1 ;𝑏1,𝑌2 ;𝑏3,𝑌2 UN 93 14371.70 14571.43 15043.27 L3.3 vs L3.6 0.0226

L3.7 𝑏1,𝑌1
;𝑏1,𝑌2

;𝑏3,𝑌2
UN 88 14319.18 14507.43 14954.64 - -

RE: Random Effect; 𝐺: Variance-covariance matrix for the random effects; npar: number of model parameters; −2𝑙𝑜𝑔𝐿:
−2(logarithm of the likelihood); VCH: Heterogeneous variance components; UN: Unstructured.

In Figure 4.5, we present the graph of the standardized conditional residuals

versus the adjusted values for the initial model L1 (a) and the selected model L3.7 (b).

The residuals represented by the red triangles refer to the observations of the body weight

variable, while the blue dots are the residuals to the observations of the feed consumption

variable. We observe in this figure that the L3.7 model was better adjusted to the data.
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Figure 4.5 – Graph of conditional residuals versus adjusted values of bivariate four-parameter logistic mixed
models L1 (a) and L3.7 (b)

In Table 4.9, we present the estimates of the coefficients of the selected model

(L3.7) with the respective standard errors and the estimates of the residual variance com-

ponents for each of the variables.

Table 4.9 – Estimates of the coefficients of the bivariate four-parameter logistic mixed model (L3.7) with
the respective standard errors for each treatment and residual variance estimates for each of
the variables

Body weight Feed consumption

Treat. 𝛽1,𝑌1
𝛽2,𝑌1

𝛽3,𝑌1
𝛽4,𝑌1

𝛽1,𝑌2
𝛽2,𝑌2

𝛽3,𝑌2
𝛽4,𝑌2

HighM 8522±649 4.00±0.06 2.2±2.1 55.6±2.1 14489±1846 4.0±0.07 2.6±0.08 52±0.9

ModM 8376±642 3.98±0.06 2.2±2.1 55.4±2.1 13307±1682 3.9±0.06 2.7±0.07 52±0.9

LowM 9031±728 4.07±0.07 2.2±2.2 56.6±2.2 15128±1776 4.0±0.06 2.6±0.07 52±0.9

HighF 6861±424 3.95±0.05 2.1±1.5 55.9±1.5 16368±1477 4.1±0.05 2.5±0.05 52±0.9

ModF 7114±625 3.98±0.07 2.1±2.2 55.8±2.2 14324±1824 4.0±0.07 2.6±0.07 52±0.9

LowF 7943±756 4.09±0.07 2.1±2.2 56.2±2.2 16488±2034 4.1±0.07 2.5±0.07 52±0.9

𝜎̂2
𝜀 1.53 5.99

ModM and ModF: Moderate nutritional density for Male and Female; LowM and LowF: Low nutritional density for Male
and Female; HighM and HighF: High nutritional density for Male and Female.

The estimated of the random effects variances-covariances matrix 𝑏1,𝑌1 , 𝑏1,𝑌2 ,

and 𝑏3,𝑌2 is given by:

𝐺 =

⎡⎢⎣ 24047.81 28545.47 −4.46

28545.47 133925.4 4.09

−4.46 4.09 0.0017099

⎤⎥⎦
Table 4.10 presents the estimates of the variance components of the intra-

individual matrix, 𝑅.
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Table 4.10 – Intra-individual matrix variance component estimates (𝑅) of the model L3.7

Variance components

Sex 𝜎̂2
1 𝜎̂2

2 𝜎̂2
3 𝜎̂2

4 𝜎̂2
5 𝜎̂2

6 𝜎̂2
7 𝜎̂2

8 𝜎̂2
9 𝜎̂2

10

Male 1.2 9.1 44.5 185.4 165.2 115.9 70.8 101.4 410.7 2950.6

Female 1.0 6.2 44.0 229.7 49.1 50.2 176.0 259.7 307.8 1268.2

𝜎̂2
11 𝜎̂2

12 𝜎̂2
13 𝜎̂2

14 𝜎̂2
15 𝜎̂2

16 𝜎̂2
17 𝜎̂2

18 𝜎̂2
19

Male 565.4 1137.3 9050.7 9641.5 21695.5 10982.9 8473.1 21175.0 15996.3

Female 934.0 901.1 2009.0 5531.6 6218.9 10147.0 18328.0 12524.2 19998.3

Note that the selected model (L3.7) has different variances for males and

females on different days of the experimental period and also models the heterogeneity of

intra-individual variances over time.

4.4.3 Comparison between bivariate Gompertz mixed model and bivariate

four-parameter logistic mixed model

Table 4.11 presents the results of the selection criteria used to compare the

two bivariate mixed models. According to the AICc, BIC, and the correlation between

observed and predicted values, the most appropriate model for broiler body weight and

feed consumption data was the bivariate four-parameter logistic mixed model.

Table 4.11 – Results of information criteria and statistics for the mixed bivariate models

Model npf npr 𝜎̂2
𝑌1

𝜎̂2
𝑌2

Corr AICc BIC −2𝑙𝑜𝑔𝐿

Gompertz 36 44 1.07 5.10 0.9975 14750.93 15158.54 14580.86

4-par logistic 43 45 1.53 5.99 0.9981 14507.43 14954.64 14319.18

npf: number of parameters related to fixed-effect factors; npr: number of parameters corresponding to variance components;
corr: correlation between observed values and predicted values; 𝜎̂2

𝑌1
: residual variance estimate for the variable bodyweight;

𝜎̂2
𝑌2

: residual variance estimate for the variable feed consumption; −2𝑙𝑜𝑔𝐿: −2(logarithm of the likelihood).

4.5 Conclusion

According to the comparison criteria used in this work, the four-parameter lo-

gistic mixed bivariate model was better suited to broiler body weight and feed consumption

data than the Gompertz mixed bivariate model. As we increased the number of model

parameters, it became more difficult to converge the iterative process in parameter estima-

tion, so we recommend looking for other iterative procedures to evaluate a larger number

of variance and covariance structure options.
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SILVA, Amanda da Lapa. Impacto econômico da densidade nutricional e da idade

de abate de frangos de corte. 2018. Tese (Doutorado em Qualidade e Produtividade

Animal) - Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo,

Pirassununga, 2018.

VERBEKE, G.; FIEUWS, S.; MOLENBERGHS, G.; DAVIDIAN, M. (2014). The

analysis of multivariate longitudinal data: A review. Statistical Methods Medical

Research, v. 23, 2014, p.42-59.

VERBEKE, G.; MOLENBERGHS, G. Linear Mixed Models for Longitudinal Data.

New York: Springer-Verlag, 2000. 568 p.

VONESH, E.; CHINCHILLI, V. M. Linear and Non-Linear Models for the

Analysis of Repeated Measurements Marcel Decker. Inc, New York, NY, 1997.

VONESH, E.F.; CARTER, R.L. Mixed-effects nonlinear regression for unbalanced

repeated measures. Biometrics, p. 1-17, 1992.

WAKEFIELD, J.C. et al. Bayesian analysis of linear and non-linear population models by

using the Gibbs sampler. Journal of the Royal Statistical Society: Series C

(Applied Statistics), v. 43, n. 1, p. 201-221, 1994.

WEISS, R. Modeling longitudinal data. New York: Springer-Verlag, 2005. 432 p.



81

APPENDIX



82



83

Appendix A: Additional information about Chapter 3

Appendix A1: Correlation and sample variances

Table (4.12) presents the estimates of the variances (values in bold), covari-

ance (below bold values), and the sample correlations (above bold values) in the different

days of the experimental period, for broiler chicken body weight. We observed that the

variances increase with time, and the correlations decrease, which suggests that a structure

that admits homogeneity of variances and the non-correlation between the observations

over time is inadequate.

Table 4.12 – Table of variance (values in bold), covariances (below bold values), and correlations (above
bold values) over time (days) for broiler chicken body weight

Days 3 7 9 12 15 18 21 24 27 30

3 3.18 0.87 0.78 0.71 0.73 0.68 0.55 0.39 0.38 0.15

7 6.58 18.05 0.95 0.90 0.86 0.78 0.64 0.48 0.44 0.14

9 8.16 23.51 34.25 0.97 0.85 0.76 0.69 0.56 0.47 0.15

12 10.09 30.50 44.97 63.01 0.88 0.78 0.66 0.55 0.43 0.10

15 14.64 41.25 55.96 78.58 127.35 0.77 0.67 0.57 0.48 0.18

18 17.38 47.49 64.29 89.37 125.89 207.60 0.78 0.68 0.63 0.35

21 17.23 47.93 71.26 92.40 133.88 197.02 309.16 0.92 0.78 0.56

24 18.25 53.10 86.26 114.48 168.08 256.36 425.03 684.97 0.77 0.66

27 23.52 65.31 96.35 120.20 191.78 319.67 478.66 707.84 1229.97 0.57

30 9.62 22.21 32.95 30.20 76.10 188.48 364.75 634.07 741.41 1361.02

33 26.86 74.82 107.83 130.42 191.91 258.65 442.33 715.28 697.22 1165.95

36 10.69 38.07 54.23 38.96 45.79 63.40 222.50 397.60 163.05 940.60

39 17.23 52.02 56.63 41.78 79.79 149.99 227.94 433.21 136.09 644.16

41 -28.64 -12.40 11.56 24.44 0.69 -180.68 43.06 165.81 -88.92 829.30

44 -49.78 -42.97 -64.50 -82.14 -97.48 -111.11 -110.82 75.69 51.29 982.56

47 -63.73 -63.13 -71.18 -80.09 -146.29 -288.91 -386.92 -266.67 -558.84 940.06

51 -66.19 13.65 -9.18 0.92 -77.48 -285.04 -424.14 -223.14 222.89 584.60

54 -25.19 105.55 119.24 176.52 381.76 599.94 517.60 1024.89 1901.30 2597.63

56 -58.14 23.83 23.42 19.62 -54.18 -170.84 -442.49 -197.20 -761.23 796.29

Days 33 36 39 41 44 47 51 54 56

3 0.40 0.16 0.18 -0.20 -0.34 -0.36 -0.26 -0.08 -0.20

7 0.47 0.24 0.23 -0.04 -0.12 -0.15 0.02 0.13 0.03

9 0.49 0.24 0.18 0.03 -0.14 -0.12 -0.01 0.11 0.02

12 0.44 0.13 0.10 0.04 -0.13 -0.10 0.00 0.12 0.01

15 0.45 0.11 0.13 0.00 -0.11 -0.13 -0.05 0.18 -0.03

18 0.48 0.12 0.19 -0.16 -0.10 -0.20 -0.14 0.23 -0.07

21 0.67 0.33 0.24 0.03 -0.08 -0.22 -0.17 0.16 -0.15

24 0.73 0.40 0.31 0.08 0.04 -0.10 -0.06 0.21 -0.05

27 0.53 0.12 0.07 -0.03 0.02 -0.16 0.04 0.29 -0.13

30 0.84 0.67 0.33 0.29 0.33 0.26 0.11 0.38 0.13

33 1404.19 0.75 0.39 0.32 0.24 0.20 0.13 0.33 0.16

36 1068.15 1445.90 0.66 0.46 0.50 0.50 0.34 0.23 0.42

39 775.66 1337.00 2881.90 -0.08 0.42 0.34 0.24 0.24 0.35

41 946.11 1365.74 -347.55 6157.51 0.56 0.62 0.44 0.33 0.65

44 723.65 1527.71 1816.96 3591.84 6574.28 0.91 0.68 0.73 0.81

47 739.83 1879.92 1812.57 4879.83 7383.03 9969.17 0.66 0.60 0.82

51 718.72 1893.57 1831.06 5045.03 7970.72 9471.60 20964.51 0.55 0.61

54 2274.76 1629.81 2393.28 4759.95 10867.82 11047.57 14636.15 34061.30 0.57

56 991.53 2656.37 3049.64 8356.73 10782.08 13498.85 14613.77 17448.48 27034.37
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Appendix A2: Profiles over time of broiler chicken body weight

The individual profiles for each treatment for the variable body weight, de-

pending of the age of the broiler chickens, are presented in Figure (4.6).
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Figure 4.6 – Graph of profiles over time of total weight in grams per box for each treatment
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Appendix A3: Curves for each growth model studied

For a better understanding of the interpretation of the coefficients, were

plotted curves for each growth model studied, assigning different values for each of the

coefficients referring to the fixed part of the models.

In these figures, the red curves were plotted with the following values:

� Gompertz: 𝛽1 = 5805, 𝛽2 = 5.21 and 𝛽3 = 0.0511

� Four-parameter Logistic: 𝛽1 = 8270.16, 𝛽3 = 3.97, 𝛽4 = 2.23 and 𝛽5 = 55, 47

� Von Bertalanffy: 𝛽1 = 5955.92, 𝛽2 = 0.2290, 𝛽3 = 0.0486 and 𝛽6 = 0.97

� Richards: 𝛽1 = 6553.29, 𝛽2 = −0.5150, 𝛽3 = 0.0414 and 𝛽6 = −0.1277

Note that the left graphs refer to the study time interval, while the right

graphs were constructed with a more extended time interval for a better view of the entire

curve, and red dashed vertical lines were drawn indicating the study interval.
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Figure 4.7 – Gompertz curves with different coefficient values
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Figure 4.8 – Four-parameter logistic curves with different coefficient values
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Figure 4.9 – Von Bertalanffy curves with different coefficient values
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Figure 4.10 – Richards curves with different coefficient values
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Appendix A4: Confidence intervals for coefficients

Confidence interval graphs for each coefficient of the model studied allow us

to visualize the variation of broiler chickens weight profiles among individuals. This graph

is constructed using the model adjusted by the nlsList() function. For the Gompertz

model, for example, we have the following adjustment:

Coefficients:

Box Beta1 Beta2 Beta3

25 4726.983 4.735796 0.05021185

33 4386.476 4.810472 0.05384951

2 4301.280 4.807963 0.05590498

36 4732.764 4.906873 0.05022150

6 4867.270 4.720258 0.04784039

3 4675.434 4.840197 0.05208639

24 4941.348 4.695509 0.04885686

23 5317.517 4.721149 0.04528741

18 5511.362 4.767503 0.04464600

14 5048.209 4.875836 0.05000717

29 5738.747 4.863685 0.04360113

17 5281.959 4.773968 0.04761909

9 5647.274 4.681191 0.04425823

8 5509.866 4.673800 0.04513114

10 5702.145 4.678758 0.04348872

38 5568.356 4.958440 0.04743821

31 5938.504 4.724005 0.04320770

32 5657.339 5.189211 0.04890238

Box Beta1 Beta2 Beta3

37 6393.740 4.724523 0.04090304

35 6330.864 4.878009 0.04400203

30 5290.670 5.646084 0.05522608

28 5847.665 4.983016 0.04882548

13 6386.762 4.972140 0.04527376

16 5895.335 5.115887 0.04941160

4 5972.919 5.055132 0.04894494

27 6034.074 5.139547 0.04850581

11 6542.917 4.834760 0.04377050

22 6071.019 4.988011 0.04786292

15 6211.516 5.272180 0.04894834

5 6302.886 5.094306 0.04747635

34 6270.861 5.070001 0.04806836

19 7123.334 5.097430 0.04414809

7 6704.442 4.906021 0.04336287

39 7296.124 5.111868 0.04414061

12 6672.048 5.232264 0.04745008

26 7610.408 4.888877 0.04006993

In this adjustment, the 108 coefficients are used to represent the individual

weight profiles. The adjusted by nlsList model is useful when we are interested in mod-

eling the behavior of a particular fixed set of individuals. In this case, the interest is to

estimate the average behavior of an individual in the population and the variability between

and within individuals, which is precisely what mixed-effects models are designed to do.

(PINHEIRO; BATES, 2000). Graphing the individual confidence intervals for the nlsList

adjusted model coefficients provides a better idea of the variability between individuals.

If the confidence intervals for each of the coefficients are not overlapping, it suggests a

random effect for the coefficient. Confidence intervals for the coefficients of the Gompertz,

four-parameter logistic, von Bertalanffy, and Richards models are shown in Figures 4.11,

4.12, 4.13, and 4.14. Note in the graphs that the confidence interval lengths for each coef-

ficient are different, some individuals have a larger confidence interval than others. This is

because the approximate standard errors used to produce confidence intervals in a nonlinear

least squares fit depend on parameter estimates (SEBER; WILD, 2003).
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Figure 4.11 – Ninety-five percent confidence intervals on the Gompertz model coefficients for each box in
the body weight data
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Figure 4.12 – Ninety-five percent confidence intervals on the four-parameter logistic model coefficients for
each box in the body weight data
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Figure 4.13 – Ninety-five percent confidence intervals on the von Bertalanffy model coefficients for each box
in the body weight data
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Figure 4.14 – Ninety-five percent confidence intervals on the Richards model coefficients for each box in the
body weight data
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Appendix A5: Code related to Chapter 3

#---------------------------------------------------------

# Dataset read

rm(list=ls())

data <- read.csv2("Dados_Desempenho.csv",head=T)

str(data)

data$Box <- as.factor(data$Box)

data$Block <- as.factor(data$Block)

Box <- data$Box

Sex <- data$Sex

Nutrition <- data$Nutrition

Treatment <- data$Treatment

Age <- data$Age

FC <- data$FC

BW <- data$BW

#---------------------------------------------------------

# Selection of Gompertz models with mixed effects

#---------------------------------------------------------

#Gompertz model

Gompertz <- function(Age,A,E,I){

A*exp(-E*exp(-I*Age))}

#A: Beta1, E: Beta2 and I: Beta3

#---------------------------------------------------------

#---------------------------------------------------------

# Charts to adjust initial values

require(nlstools)

plot(BW ~ Age, data = data, ylab = "Body weight (g)",

xlab = "Age (days)",xlim=c(0,60),ylim=c(0,5500))

curve(Gompertz(x,A=5000,E=6,I=0.06),add =TRUE,lwd=2)

#BW: Body weight

#---------------------------------------------------------

#---------------------------------------------------------

require(nlme)

data.BW <- groupedData(BW ~ Age|Box,labels=list(x="Age", y="Body Weight"),

data=data,units=list(y="(g)"))

# Model to estimate initial values

fit0 <- nlsList(BW ~ Gompertz(Age,A,E,I),start =list(A=5000,E=6,I=0.06),

data=data.BW)
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ini <- fixef(fit0)

#---------------------------------------------------------

# Model with treatments, without random effects

#MG1: GF

MG1 <- gnls(BW ~ Gompertz(Age,A,E,I), params=list(A + E + I ~ Treatment),

start=c(ini[1],0,0,0,0,0,ini[2],0,0,0,0,0,ini[3],0,0,0,0,0),

control= gnlsControl(nlsTol=50, nlsMaxIter=20))

summary(MG1)

#fit1:G1

fit1 <- nlme(BW ~ Gompertz(Age,A,E,I), fixed=A + E + I ~ Treatment,

start=c(ini[1],0,0,0,0,0,ini[2],0,0,0,0,0,ini[3],0,0,0,0,0),

random=A~1, control=lmeControl(msMaxIter = 1000,maxIter = 500), data=data.BW)

anova(MG1,fit1)

#fit2:G2

fit2 <- update(fit1, random=A + E ~1)

anova(fit1,fit2)

#fit3:G3

fit3 <- update(fit2, random=E ~1)

anova(fit2,fit3)

#fit4:G4

fit4 <- update(fit2, random=A+E+I ~1)

anova(fit2,fit4)

#fit5:G5

fit5 <- update(fit4, random=A+I ~1)

anova(fit4,fit5)

#fit6:G6

fit6 <- update(fit5, random=E+I ~1)

anova(fit5,fit6)

#fit7:G7

fit7 <- update(fit5, random=I ~1)

anova(fit5,fit7)

#fit8:G8

fit8 <- update(fit5, random=pdIdent(A + I ~1))

anova(fit5,fit8)

#fit9:G9

fit9 <- update(fit5, random=pdDiag(A + I ~1))

anova(fit5,fit9)

#fit10:G10

fit10 <- update(fit5,weights=varIdent(form=~1|Sex))
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anova(fit5,fit10)

#fit11:G11

fit11 <- update(fit5,weights=varIdent(form=~1|Age))

anova(fit10,fit11)

#fit12:G12

#fit12 <- update(fit5,weights=varIdent(form=~1|Sex*Age))

anova(fit11,fit12)

anova(fit12,test='Wald')

#---------------------------------------------------------

#Four-parameter logistic model

Logistic4 <- function(Age,A,E,I,S){

S + (A-S)/(1+exp(I*(E-log(Age))))}

#A: Beta1, E: Beta3, I: Beta4 and S: Beta5

#---------------------------------------------------------

#---------------------------------------------------------

#von Bertalanffy model

VonBertalanffy <- function(Age,A,E,I,S){

(A^(1-S)-E*exp(-I*Age))^(1/(1-S))}

#A: Beta1, E: Beta2, I: Beta3 and S: Beta6

#---------------------------------------------------------

#---------------------------------------------------------

#Richards model

Richard <- function(Age,A,E,I,S){

A/(1+E*exp(-I*Age))^(1/S)}

#A: Beta1, E: Beta2, I: Beta3 and S: Beta6

#---------------------------------------------------------
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Appendix A6: ANOVA

We can evaluate the significance of the treatments for each of the coefficients

of the studied models using the anova() function. The following are the ANOVA outputs

for the selected growth models (G12, L12, V11, and R9). Note that in the Gompertz model,

the treatment factor was significant for all coefficients, that is, we have different estimates of

the specific coefficient for each of the treatment factor levels. In the four-parameter logistic

and von Bertalanffy models, the treatment factor was not significant for the coefficients 𝛽5

and 𝛽6, respectively. Thus, the treatment factor of the 𝛽5 coefficient in the four-parameter

logistic model and the 𝛽6 coefficient in the von Bertalanffy model was removed. Then, the

anova function was again used to evaluate the significance of the other coefficients. The

ANOVA output for the Richards model indicated the non-significance of treatments for the

𝛽6 coefficient. However, we decided to keep the treatment factor at this coefficient because

the p-value was close to 0.05.

Mixed Gompertz growth model (G12)

ANOVA

numDF denDF F-value p-value

Beta1.(Intercept) 1 631 104050.8 <.0001

Beta1.Treatment 5 631 260.9 <.0001

Beta2.(Intercept) 1 631 795779.9 <.0001

Beta2.Treatment 5 631 114.8 <.0001

Beta3.(Intercept) 1 631 19659.3 <.0001

Beta3.Treatment 5 631 2.5 0.0283

Mixed four-parameter logistic growth model (L12)

ANOVA: Model with the treatment factor in the coefficient 𝛽5.

ANOVA

numDF denDF F-value p-value

Beta1.(Intercept) 1 625 2332810.7 <.0001

Beta1.Treatment 5 625 20409.2 <.0001

Beta3.(Intercept) 1 625 1268884.5 <.0001

Beta3.Treatment 5 625 864.8 <.0001

Beta4.(Intercept) 1 625 120104.2 <.0001

Beta4.Treatment 5 625 185.4 <.0001

Beta5.(Intercept) 1 625 45574.0 <.0001

Beta5.Treatment 5 625 0.1 0.9839
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ANOVA: Model without the treatment factor in the coefficient 𝛽5.

numDF denDF F-value p-value

Beta1.(Intercept) 1 630 334910.5 <.0001

Beta1.Treatment 5 630 6017.5 <.0001

Beta3.(Intercept) 1 630 1062162.2 <.0001

Beta3.Treatment 5 630 511.1 <.0001

Beta4.(Intercept) 1 630 101000.6 <.0001

Beta4.Treatment 5 630 16.1 <.0001

Beta5 1 630 37856.3 <.0001

Mixed Von Bertalanffy growth model (V11)

ANOVA: Model with the treatment factor in the coefficient 𝛽6.

numDF denDF F-value p-value

Beta1.(Intercept) 1 625 114618749 <.0001

Beta1.Treatment 5 625 2414603 <.0001

Beta2.(Intercept) 1 625 289076448 <.0001

Beta2.Treatment 5 625 2331017 <.0001

Beta3.(Intercept) 1 625 31850 <.0001

Beta3.Treatment 5 625 69 <.0001

Beta6.(Intercept) 1 625 8555 <.0001

Beta6.Treatment 5 625 2 0.1765

ANOVA: Model without the treatment factor in the coefficient 𝛽6.

numDF denDF F-value p-value

Beta1.(Intercept) 1 630 158351414 <.0001

Beta1.Treatment 5 630 19769 <.0001

Beta2.(Intercept) 1 630 1114946356 <.0001

Beta2.Treatment 5 630 223054 <.0001

Beta3.(Intercept) 1 630 5004 <.0001

Beta3.Treatment 5 630 14 <.0001

Beta6 1 630 14703 <.0001

Mixed Richard growth model (R9)

ANOVA

numDF denDF F-value p-value

Beta1.(Intercept) 1 625 387738.1 <.0001

Beta1.Treatment 5 625 923.8 <.0001

Beta2.(Intercept) 1 625 118417.6 <.0001

Beta2.Treatment 5 625 3612.6 <.0001

Beta3.(Intercept) 1 625 85654.4 <.0001

Beta3.Treatment 5 625 14.3 <.0001

Beta6.(Intercept) 1 625 224.4 <.0001

Beta6.Treatment 5 625 2.1 0.059
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Appendix A7: Adjusted individual curves for growth models
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Figure 4.15 – Individual adjusted curves by Gompertz model

Four−parameter logistic
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Figure 4.16 – Individual adjusted curves by four-parameter logistic model
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Von Bertalanffy
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Figure 4.17 – Individual adjusted curves by Von Bertalanffy model

Richards
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Figure 4.18 – Individual adjusted curves by Richard model
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Appendix A8: Three-parameter logistic model

One of the parameterizations used for the three-parameter logistic growth

model is given by (OLIVER, 1964):

𝑦 = 𝜑1/ [1 + 𝜑2exp (−𝜑3𝑡)]

where 𝑦 is the dependent variable or response variable, 𝑡 is the independent variable, that

is, the age of the broiler chickens, 𝜑1 is the asymptote or maximum response of growth, 𝜑2

is a scale parameter related to initial response, and 𝜑3 is the intrinsic growth rate.

Table 4.13 presents the results of the selection for the three-parameter logistic

model. Considering the information criteria (AICc and BIC) and the likelihood ratio test,

the selected model was the L11.

Table 4.13 – Selection of Logistic models with mixed effects

Mod. RE 𝐺 𝑅 npar −2𝑙𝑜𝑔𝐿 AICc BIC Comp. 𝑝-value

LF - - VC 19 8389.62 8428.76 8513.65 - -

L1 𝜑1 - VC 20 8253.82 8295.09 8384.38 LF vs L1 < .0001

L2 𝜑1, 𝜑2 UN VC 22 8217.04 8262.58 8360.66 L1 vs L2 < .0001

L3 𝜑2 - VC 20 8359.36 8400.64 8489.93 L2 vs L3 < .0001

L4 𝜑1, 𝜑2, 𝜑3 UN VC 25 8217.06 8269.04 8380.26 L2 vs L4 0.9995

L5 𝜑1, 𝜑3 UN VC 22 8227.66 8273.19 8371.27 L2 vs L5 -

L6 𝜑2, 𝜑3 UN VC 22 8278.94 8324.47 8422.55 L2 vs L6 -

L7 𝜑3 - VC 20 8318.98 8360.25 8449.55 L2 vs L7 < .0001

L8 𝜑1,𝜑2 VC VC 20 8359.30 8400.57 8489.86 L2 vs L8 < .0001

L9 𝜑1,𝜑2 VCH VC 21 8253.82 8297.22 8390.91 L2 vs L9 < .0001

L10 𝜑1,𝜑2 UN VCH(Sex) 23 8192.28 8239.96 8342.43 L2 vs L10 < .0001

L11 𝜑1,𝜑2 UN VCH(Age) 40 7856.58 7941.67 8117.69 L10 vs L11 < .0001

RE: Random effect; 𝐺: Variance-covariance matrix for the random effects; 𝑅: Variance-covariance matrix intra-individual;
npar: number of model parameters; −2𝑙𝑜𝑔𝐿: −2(logarithm of the likelihood); UN: Unstructured; VC: Variance Components;
VCH(Age): Heterogeneous variance components for age; VCH(Sex): Heterogeneous variance components for sex;
VCH(Age*Sex): Heterogeneous variance components for interaction age and sex.

Figure (4.19) shows the residual graphs for the fixed model LF (items a and

b) and the selected model L11 (items c and d). Note that the models did not fit properly

to broiler chickens weight data.
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Figure 4.19 – Graph of standardized residuals versus adjusted values and half-normal simulated envelope
graphs for the models three-parameter logistic with fixed effects (LF), items (a) and (b), and
three-parameter logistic with random effects (L11) items (c) and (d)
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Appendix B: Additional information about Chapter 4

Appendix B1: Code related to Chapter 4

#---------------------------------------------------------

# Dataset read

rm(list=ls())

data <- read.csv2("Dados_Desempenho.csv",head=T)

str(data)

Box <- data$Box

Sex <- data$Sex

Nutrition <- data$Nutrition

Treatment <- data$Treatment

Age <- data$Age

FC <- data$FC

BW <- data$BW

#---------------------------------------------------------

#Organizing the bivariate data

BW.d <- data.frame(Box = data$Box,

Sex = data$Sex,

Nutrition = data$Nutrition,

Treatment = data$Treatment,

resp = data$BW,

Age = data$Age,

d_BW = 1,

d_FC = 0,

var = 'BW')

FC.d <- data.frame(Box = data$Box,

Sex = data$Sex,

Nutrition = data$Nutrition,

Treatment = data$Treatment,

resp = data$FC,

Age = data$Age,

d_BW = 0,

d_FC = 1,

var = 'FC')

multivariate <- rbind(BW.d,FC.d)

#---------------------------------------------------------
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#Bivariate Gompertz model fit

options(contrasts = c("contr.treatment","contr.poly"))

require(nlme)

lmeCtlList <- lmeControl(maxIter = 500, msMaxIter = 200,

tolerance = 1e-4, niter = 100,

msTol = 1e-5, nlmStepMax = 500,

msVerbose = FALSE,

returnObject = TRUE)

#---------------------------------------------------------

data.multi <- groupedData(resp ~ Age| Box, data=multivariate,

labels=list(x="Age", y="BW-FC"),units=list(y="(g)"))

#---------------------------------------------------------

# Modelo Gompertz

Gompertz <- function(Age,A,E,I){

A*exp(-E*exp(-I*Age))}

#---------------------------------------------------------

#Model to estimate initial values

fit0 <- nlsList(resp ~ Gompertz(Age,A,E,I)|d_BW,

start =list(A=5.748048e+03,E=4.913225,I=4.694446e-02),level=2, data=multivariate)

ini <- fixef(fit0)

#---------------------------------------------------------

#fit1:G1

fit1 <- nlme(resp ~ d_BW*(B11*exp(-B21*exp(-B31*Age)))+

d_FC*(B12*exp(-B22*exp(-B32*Age))),

data = multivariate,

fixed = B11+B21+B31+B12+B22+B32~Treatment,

random = B11+B31+B12+B22+B32~1,

group = ~ Box,

start = c(5500,0,0,0,0,0,

5,0,0,0,0,0,

0.04,0,0,0,0,0,

13500,0,0,0,0,0,

6,0,0,0,0,0,

0.04,0,0,0,0,0),

weights = varComb(varIdent(form =

~1|var),varIdent(form =

~1|Sex)),

control = lmeCtlList

)
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fit2: G2

fit2 <- nlme(resp ~ d_BW*(B11*exp(-B21*exp(-B31*Age)))+

d_FC*(B12*exp(-B22*exp(-B32*Age))),

data = multivariate,

fixed = B11+B21+B31+B12+B22+B32~Treatment,

random = B11+B31+B12+B22+B32~1,

group = ~ Box,

start = c(5500,0,0,0,0,0,

5,0,0,0,0,0,

0.04,0,0,0,0,0,

13500,0,0,0,0,0,

6,0,0,0,0,0,

0.04,0,0,0,0,0),

weights = varComb(varIdent(form =

~1|var),varIdent(form =

~1|Age)),

control = lmeCtlList

)

fit3: G3

fit3 <- nlme(resp ~ d_BW*(B11*exp(-B21*exp(-B31*Age)))+

d_FC*(B12*exp(-B22*exp(-B32*Age))),

data = multivariate,

fixed = B11+B21+B31+B12+B22+B32~Treatment,

random = pdDiag(B11+B31+B12+B22+B32~1),

group = ~ Box,

start = c(5500,0,0,0,0,0,

5,0,0,0,0,0,

0.04,0,0,0,0,0,

13500,0,0,0,0,0,

6,0,0,0,0,0,

0.04,0,0,0,0,0),

weights = varComb(varIdent(form =

~1|var),varIdent(form =

~1|Sex*Age)),

control = lmeCtlList

)
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Appendix B2: ANOVA

We can evaluate the significance of the treatments for each of the coefficients

of the studied models using the anova() function. Note that in the bivariate Gompertz

mixed model, the treatment factor was significant for all coefficients, that is, we have

different estimates of the specific coefficient for each of the treatment factor levels. In the

bivariate four-parameter logistic mixed model, the treatment factor was not significant for

the coefficient 𝛽4,𝑌2 . Thus, the treatment factor of the 𝛽4,𝑌2 coefficient in the bivariate four-

parameter logistic mixed model was removed. Then, the anova function was again used to

evaluate the significance of the other coefficients.

Bivariate Gompertz mixed model (G3)

ANOVA

numDF denDF F-value p-value

B11.(Intercept) 1 1297 9376.7 <.0001

B11.Treatment 5 1297 2398.6 <.0001

B21.(Intercept) 1 1297 1820317.2 <.0001

B21.Treatment 5 1297 34.4 <.0001

B31.(Intercept) 1 1297 114613.3 <.0001

B31.Treatment 5 1297 19.6 <.0001

B12.(Intercept) 1 1297 9426.8 <.0001

B12.Treatment 5 1297 2312.5 <.0001

B22.(Intercept) 1 1297 538667.4 <.0001

B22.Treatment 5 1297 352.1 <.0001

B32.(Intercept) 1 1297 47417.6 <.0001

B32.Treatment 5 1297 8.1 <.0001
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Mixed four-parameter logistic growth model (L3.6)

ANOVA: Model with the treatment factor in the coefficient 𝛽4,𝑌2 .

ANOVA

numDF denDF F-value p-value

B11.(Intercept) 1 1285 949269 <.0001

B11.Treatment 5 1285 258780 <.0001

B21.(Intercept) 1 1285 3757925 <.0001

B21.Treatment 5 1285 2509 <.0001

B31.(Intercept) 1 1285 91668 <.0001

B31.Treatment 5 1285 104 <.0001

B41.(Intercept) 1 1285 35242 <.0001

B41.Treatment 5 1285 10 <.0001

B12.(Intercept) 1 1285 3425043 <.0001

B12.Treatment 5 1285 27261 <.0001

B22.(Intercept) 1 1285 1865836 <.0001

B22.Treatment 5 1285 5820 <.0001

B32.(Intercept) 1 1285 53987 <.0001

B32.Treatment 5 1285 37 <.0001

B42.(Intercept) 1 1285 8893 <.0001

B42.Treatment 5 1285 1 0.3647

ANOVA: Model without the treatment factor in the coefficient 𝛽4,𝑌2 .

B11.(Intercept) 1 1290 2306840 <.0001

B11.Treatment 5 1290 120270 <.0001

B21.(Intercept) 1 1290 3696068 <.0001

B21.Treatment 5 1290 1343 <.0001

B31.(Intercept) 1 1290 76772 <.0001

B31.Treatment 5 1290 93 <.0001

B41.(Intercept) 1 1290 29820 <.0001

B41.Treatment 5 1290 4 0.002

B12.(Intercept) 1 1290 2564712 <.0001

B12.Treatment 5 1290 3742 <.0001

B22.(Intercept) 1 1290 743236 <.0001

B22.Treatment 5 1290 318 <.0001

B32.(Intercept) 1 1290 34504 <.0001

B32.Treatment 5 1290 7 <.0001

B42 1 1290 11940 <.0001


