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RESUMO

Modelos de regressão parametricos e semiparametricos baseados na família generalizada odd
log-logística

Nesse trabalho foram realizadas diferentes análises via modelos de regressão considerando
a família geradora de novas distribuições, denominada de generalizada odd log-logística-G (GOLL-G).
As distribuições nesta família apresentam maior flexibilidade, como por exemplo, funções de densi-
dades bimodais. Com base na família GOLL-G, foram propostos: modelos de regressão com diferentes
estruturas de regressão; modelo semi-paramétrico inflacionado de zeros modelando os parâmetros via
splines penalizados; Para todas as abordagens o recurso computacional para implementação dos mod-
elos foi o software R, sendo apresentados trechos de comandos ao longo do documento assim como
breve descrições dos códigos usados. Os resultados obtidos nas aplicações mostram que o modelo pro-
posto pode ser uma alternativa interessante, principalmente quando os dados apresentam assimetria
e bimodalidade.

Palavras-chave: Dados censurados, Fração de cura, Inflação de zeros, Spline cúbico, Simulação
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ABSTRACT

The parametric and semiparametric regression models based on the generalized odd log-logistic
family

In this work, several analyzes were performed through regression models considering the
family of new distributions, called generalized odd log-logistic-G (GOLL-G), the distributions in this
family have greater flexibility, such as functions of bimodal densities. Based on the GOLL-G family,
we proposed: regression models with different regression structures; inflated semi-parametric model
of zeros modeling of the parameters via penalized splines; For all the modeling approaches presented,
the computational resource for the implementation of the models was software R, throughout the
document as well as brief descriptions of the codes used. The results obtained in the applications
show that the proposed model can be an interesting alternative, especially when the data present
asymmetry and bimodality.

Keywords: Censored data, Cure rate, Cubic spline, Zero inflated, Simulation
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1 INTRODUCTION

Regression analysis is a commonly used statistical technique applied in many scientific fields.
The linear regression model with normal distribution is generally used to model data having symmetric
distribution. However, various phenomena cannot always be modeled with the normal distribution, be it
for the lack of symmetry, the existence of bimodality or the presence of atypical values.

In past decades, when the phenomenon of interest did not satisfy the assumption of normality
of the response variable, some type of transformation was applied at least to obtain symmetric behavior
of the data. However, recently it has become more attractive to propose new regression models to model
different types of data.

In this work we use regression model to solve problems in different areas. For example, in
survival analysis the study of the lifetime of patients with a particular disease and the study of the failure
time of an electronic component. The study of times is called survival analysis in the medical area and
reliability analysis in the industrial area.

There are also situations where continuous data can include a high percentage of zeros. In
these situations, continuous distributions can not be used. The data that contain excessive zeros can
be analyzed by a mixture of two distributions: a continuous distribution (with positive support) and a
degenerate distribution at zero, i.e. a model whose mixed discrete-continuous probability and distribution
functions.

Among the different proposed models and families of distribution, it is notable that only a
small number take bimodal forms. In this work a new model based on the generalized odd log-logistic - G
(Cordeiro et al. 2017) family is proposed. We consider the bade distribution the Maxwell distribution.

The Maxwell (or Maxwell-Boltzmann) distribution is an important model in physics, chemistry
and statistical mechanics. It forms the basis of the kinetic energy of gases and explains several fundamen-
tal properties of gases including pressure and diffusion. In statistical mechanics, it is related to properties
of molecules in thermal equilibrium from the microscopic perspective. The Maxwell distribution is also
important in kinetic translational energies for molecules. For example, Prigogine and Xhrouet (1949)
discussed this distribution for chemical reactions in gases and Brilliantov and Poschel (2000) studied its
deviations in granular gases with constant coefficient of restitution.

In recent years, the Maxwell distribution has been used to model failure times in survival
and reliability analysis and some of its extended forms have been investigated. Krishna et al. (2012)
addressed reliability estimation in the Maxwell distribution with progressively type-II censored data,
Kazmi et al. (2012) explored a heterogeneous population by means of two mixture components of Maxwell
distributions, Tomer and Panwar et al. (2015) considered point and interval estimation procedures for
the Maxwell distribution in the presence of type-I progressively hybrid censored data, Dey et al. (2016)
presented its structural properties and different methods of estimation, Iriarte et al. (2016) defined
the gamma-Maxwell distribution and, more recently, Venegas et al. (2017) proposed the transmuted
exponentiated Maxwell distribution. However, none of these papers deal with bimodality to real data
and do not even present regression models for the extensions of the Maxwell distribution. We aim to fill
up this gap.

Based on the proposed model, we try to solve problems from different areas based on regression
models. However, in many situations the relationship between the response variable and the explanatory
(or covariate) variable has no linear relationship. This can often make it difficult to explain this relation-
ship. In this work we propose the generalized odd log-logistic Maxwell parametric and semiparametric
regression models to solve the problems above. In addition, to solve the issue of nonlinear behavior and in
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order to obtain a more flexible model for the data we use cubic splines in this work. Thus, the inclusion
of cubic splines in the model requires, in addition to descriptive and exploratory analyzes, diagnostic
analyzes to assess the suitability of the model.

Another situation that occurs in many studies in several fields aim to determine how a set of
explanatory variables influence other variables expressed as ratios or proportions, i.e., random experiments
that produce results in the interval (0, 1). Several researchers tried to model this type of data. For
example, Ferrari and Cribari-Neto (2004) pioneered a regression in which the parameters are interpreted
as mean and precision, Bayes et al. (2012) proposed a robust regression for proportions based on the
beta rectangular distribution, Lemonte and Bazán (2016) defined a class of Johnson SB distributions
and its associated regression for rates and proportions, Mazucheli et al. (2019) proposed a unit-Lindley
distribution and its associated regression for proportional data. In these terms, our main aim is to propose
a regression based on the generalized odd log-logistic beta (“GOLLBE” for short) distribution to model
proportional data with bimodality.

All computational scripts of the new regression model were implemented in the R software using
the gamlss package (Stasinopoulos and Rigby, 2007).

1.1 Objetive

The objetive of this work is to propose a new probability distribution based on the family
proposed by Cordeiro et al. (2017). In this way, study of the properties and characteristics of such
models are studied. In addition, to present applications of the proposed models in different types of data
considering a regression structure.

1.2 Work Organization

This thesis is organized as follows. In Chapter 2, a new probability distribution called the
generalized odd log-logistic Maxwell, whose main advantage related to other competitive distribution is
modeling bimodal, asymmetric and heavy tails data. Some properties of this model are presented. Three
applications to real data sets in engineering are presented. The Chapter 3, considers the generalized
odd log-logistic Maxwell distribution with a semiparametric regression structure applied to censored
and uncensored data. The non-parametric term of the model studied is approximated considering the
cubic spline functions. In Chapter 4, considers the new zero adjusted generalized odd log-logistic Maxwell
distribution with a semiparametric regression structure applied using data from an experiment conducted
to assess the soil microbiology in a sugarcane field. In Chapter 4, considers the new zero adjusted
generalized odd log-logistic Maxwell distribution with a semiparametric regression structure applied using
data from an experiment conducted to assess the soil microbiology in a sugarcane field. The generalized
odd log-logistic Maxwell rate cure semiparametric regression models is presented in Chapter 5. An
application in prostate cancer data is performed, considering a regression structure joint in time and the
cure rate. In Chapter 6, a reparametrization in the median of the generalized odd log-logistic Maxwell
model is proposed with application in agricultural data. In Chapter 7, is proposed a new continous
distribution in the interval (0,1). Some properties of this model are presented. For the regression model,
studies of diagnotics and residual analysis are performed. Finally, some considerations and perspectives
for future work are presented in Chapter 8.
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2 THE GENERALIZED ODD LOG-LOGISTIC MAXWELL DISTRIBUTION WITH
APPLICATIONS IN ENGINEERING

Abstract: We define the generalized odd log-logistic Maxwell distribution and propose
a parametric regression model based on the new distribution with three systematic components for
its parameters. Some properties and maximum likelihood estimation are addressed and various
simulations for different parameter settings, systematic components and sample sizes are performed.
We present a simulation study to verify the adequacy of the normal approximation to the quantile
residuals in the regression model. Three applications to real data sets in engineering (strength and
mechanics of materials) prove empirically the usefulness of the proposed models.
Keywords: Maximum likelihood; Maxwell distribution; Odd log-logistic distribution; Regression
model; Simulation.

2.1 Introduction

The Maxwell (or Maxwell-Boltzmann) distribution is an important model in physics, chemistry
and statistical mechanics. It forms the basis of the kinetic energy of gases and explains several fundamen-
tal properties of gases including pressure and diffusion. In statistical mechanics, it is related to properties
of molecules in thermal equilibrium from the microscopic perspective. The Maxwell distribution is also
important in kinetic translational energies for molecules. For example, Prigogine and Xhrouet (1949)
discussed this distribution for chemical reactions in gases and Brilliantov and Poschel (2000) studied its
deviations in granular gases with constant coefficient of restitution.

In recent years, the Maxwell distribution has been used to model failure times in survival
and reliability analysis and some of its extended forms have been investigated. Krishna et al. (2012)
addressed reliability estimation in the Maxwell distribution with progressively type-II censored data and
Kazmi et al. (2012) explored a heterogeneous population by means of two mixture components of Maxwell
distributions. Tomer and Panwar et al. (2015) considered point and interval estimation procedures for
the Maxwell distribution in the presence of type-I progressively hybrid censored data, Dey et al. (2016)
presented its structural properties and different methods of estimation, Iriarte et al. (2016) defined
the gamma-Maxwell distribution and, more recently, Venegas et al. (2017) proposed the transmuted
exponentiated Maxwell distribution. However, none of these papers deal with bimodality to real data
and do not even present regression models for the extensions of the Maxwell distribution. We aim to fill
up this gap.

Many scientific studies involve data with bimodal characteristics of continuous random variables,
in which the usual choice is to employ a mixture of distributions. However, the most common mixtures
of distributions have a large number of parameters, thus making the estimation of these parameters
complicated. For example, engineers study materials to learn their properties and the problems that
the materials can cause. In this respect, ceramic materials are generally composed of a combination of
metallic and non-metallic elements (forming oxides, nitrides and carbides), and are more resistant to high
temperatures and severe environments than metals and polymers. In the applications, we study chemical
compounds with four levels (ZrO2, ZrO2 −TiB2, Si3N4 and glass). The behavior of each level is shown
in Figure 2.1, where the asymmetry and bimodality of the data can be noted.

In this context, we define a new distribution called the generalized odd log-logistic Maxwell
(“GOLLMax” for short), whose main advantage related to other competitive distribution is modeling
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Figure 2.1. Histograms and empirical densities. (a) ZrO2. (b) ZrO2 − TiB2. (c) Si3N4. (d) Glass.

bimodal, asymmetric and heavy tails data. It includes as special cases the Maxwell, exponentiated
Maxwell (EMax) and odd log-logistic Maxwell (OLLMax) distributions, among others. We derive some
mathematical properties of the proposed distribution. In practice, it is quite common situations where
there are some explanatory variables associated with the response random variable. For example, in
industry, the failure time of an equipment can be influenced by the voltage level to which the equipment
is subjected. In the medical field, a patient’s survival time can be related to the type of tumor and the
amount of hemoglobin in the blood. In general, we study the effects of these explanatory variables on
the response variable by means of a regression model.

In the second part of this chapter, we propose a regression model based on the new distribution
and present some global influence measures. In addition, we develop residual analysis based on quantile
residuals. For different parameter settings and sample sizes, various simulation studies are performed
and the empirical distribution of these residuals is compared with the standard normal distribution. The
simulation results indicate that the empirical distribution of the quantile residuals is in agreement with
the standard normal distribution.

The rest of the chapter is organized as follows. In Section 2.2, we introduce the new distribution
and subsection 2.2.1 some mathematical properties of the GOLLMax distribution are presented. We
propose the GOLLMax regression model with three systematic structures in Section 2.3 and evaluate
the performance of the maximum likelihood estimators (MLEs) of the model parameters by means of a
simulation study. In Section 2.5, we investigate the case-deletion diagnostic measure and define quantile
residuals for the fitted model. Further, we perform various simulations for these residuals. In Section 2.6,
we provide three applications to real data to illustrate the flexibility of the new models. Finally, some
concluding remarks are offered in Section 2.7.

2.2 The model definition

The cumulative distribution function (cdf) of the Maxwell random variable W is given by

G(x;µ) = γ1

(
3

2
,
x2

µ2

)
, x > 0, (2.1)
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where x denotes the molecule speed, µ > 0 is a scale parameter depending on three quantities (Boltzmann
constant, temperature and mass of a molecule), γ1(p, y) = γ(p, y)/Γ(p) is the incomplete gamma function
ratio, γ(p, y) =

∫ u

0
zp−1e−zdz is the incomplete gamma function and Γ(·) is the gamma function.

The probability density function (pdf) of W is given by

g(x;µ) =
4√
π

x2

µ3
exp

(
−x

2

µ2

)
, x > 0. (2.2)

The expectation and the variance of W are E(W ) = 2µ/
√
π and V ar(W ) = (3π − 8)µ2/(2π).

We have the following relation of the µ parameter, µ = 1/
√

m
2KBT , where KB is the Boltzmann constant,

T is temperature and m is the molecular mass. Thus, considering such quantities, the probability density
function (2.2) is given by

g(x) =
4√
π

m

2KBT
x2 exp

(
− mx2

2KBT

)
,

with average velocity of the molecules at a certain temperature is
√

8KBT
mπ .

The idea of the GOLLMax distribution follows the generator. Let G(x;γ) be a baseline cdf
having a p × 1 vector γ of unknown parameters. Cordeiro et al. (2017) defined the cdf of a wider
generator called the generalized odd log-logistic-G (“GOLL-G”) family, by integrating the log-logistic
density function, namely

F (x;σ, ν,γ) =

∫ G(x;γ)σ

1−G(x;γ)σ

0

ν wν−1

(1 + wν)2
dw =

G(x;γ)σν

G(x;γ)σν + [1−G(x;γ)σ]
ν , (2.3)

where σ > 0 and ν > 0 are two extra shape parameters. Equation (2.3) includes as special cases the
odd log-logistic-G (OLL-G) family introduced by Gleaton and Lynch (2006) and the exponentiated-G
(exp-G) class when σ = 1 and ν = 1, respectively. Further, the G distribution is the basic exemplar when
σ = ν = 1.

We define the cdf of the three-parameter GOLLMax distribution by inserting (2.1) in equation
(2.3), give by

F (x;µ, σ, ν) =
γσν1 (3/2, x2/µ2)

γσν1 (3/2, x2/µ2) + [1− γσ1 (3/2, x
2/µ2)]

ν . (2.4)

Henceforth, if X is a random variable with cdf (2.4), we write X ∼ GOLLMax(µ, σ, ν).
By differentiating (2.3) and inserting (2.1) and (2.2), we obtain the density function of X (for

x > 0) as

f(x;µ, σ, ν) =
4σν√
πµ3

x2 exp
(
−x

2

µ2

)
γσν−1
1 (3/2, x2/µ2)

[
1− γσ1 (3/2, x

2/µ2)
]ν−1

{γσν1 (3/2, x2/µ2) + [1− γσ1 (3/2, x
2/µ2)]

ν}2
. (2.5)

The hazard rate function (hrf) of X is h(x) = f(x)/[1−F (x)]. The GOLLMax model contains
as special cases the following distributions:

• For σ = 1, it gives the (new) OLLMax distribution.

• For ν = 1, it yields the (new) EMax distribution.

• The Maxwell distribution is as a basic exemplar when σ = ν = 1.

Some plots of the density and hrf of X for selected parameter values, including well-known
distributions, are displayed in Figures 2.2 and 2.3, respectively. A characteristic of the proposed dis-
tribution is that its hrf can be bathtub shaped, monotonically (increasing or decreasing), unimodal,
increasing-decreasing-increasing shaped, among others, depending basically on the parameter values.
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Figure 2.2. Plots of the GOLLMax density for some parameter values. (a) For different values of ν
with σ = 3.45 and µ = 0.15. (b) For different values of σ with ν = 0.30 and µ = 0.07. (c) For different
values of ν and σ with µ = 0.15.
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Equation (2.4) has tractable properties especially for simulations, since its quantile function
(qf) takes the simple form

x = QMax




(
u

1−u

) 1
ν

1 +
(

u
1−u

) 1
ν


1
σ
 , (2.6)

where QMax(u) = G−1(µ;u) is the qf of the Maxwell distribution.
Further, we can write

x = QMax(w;µ) = µ

√
γ−1
1 (3/2, w),

where w =

[
u

1
ν

(1−u)
1
ν +u

1
ν

] 1
σ

and γ−1
1 (3/2, w) is the inverse of the upper gamma regularized function. For

more details, see http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/.
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2.2.1 Structural properties

We derive here some mathematical properties of X ∼GOLLMax(µ, σ, ν). First, we introduce
some notation. Let Π(x;µ, k, β) = γ1

(
k, [ xµ ]

β
)

(for x > 0) be the cdf of the generalized gamma (GG)
(Stacy, 1962) distribution with shape parameters k > 0 and β > 0 and scale parameter µ > 0. The
corresponding density function, say π(x;µ, k, β), is

π(x, µ, k, β) =
β

µΓ(k)

(
x

µ

)kβ−1

exp
[
−
(
x

µ

)β
]
. (2.7)

Clearly, the Maxwell density (2.2) follows from (2.7) as g(x;µ) = π(x;µ, 3/2, 2).
Theorem 1: We can express the density f(x;µ, σ, ν) of X as a linear combination of GG

densities

f(x;µ, σ, ν) =

∞∑
m,i=0

pm,i π(x;µ, k
∗, 2), (2.8)

where the GG densities have common parameters µ and 2 and varying shape parameter k∗ = k∗(m, i) =

3(m + 1)/2 + i, and the coefficients pm,i = pm,i(µ, σ, ν) are functions of the model quantities (defined
below) given by

pm,i =
2(m+ 1)µ3m+2i wm+1 cm,i√

π
Γ

(
3m

2
+ i

)
.

Proof Theorem 1:
For any real non-integer λ > 0, the generalized binomial theorem

γ1(3/2, x
2/µ2)λ =

[
1−

{
1− γ1(3/2, x

2/µ2)
}]λ

=

∞∑
j=0

(−1)j
(
λ

j

){
1− γ1(3/2, x

2/µ2)
}j
,

holds, and it is always convergent since 0 < γ1(3/2, x
2/µ2) < 1. Hence,

γ1(3/2, x
2/µ2)λ =

∞∑
j=0

j∑
m=0

(−1)j+m

(
λ

j

)(
j

m

)
γ1(3/2, x

2/µ2)m.

By substituting
∑∞

j=0

∑j
m=0 for

∑∞
m=0

∑∞
j=m and after some algebra, we obtain

γ1(3/2, x
2/µ2)λ =

∞∑
m=0

sm(λ) γ1(3/2, x
2/µ2)m, (2.9)

where (for m ≥ 0)

sm(λ) =

∞∑
j=m

(−1)r+m

(
λ

j

)(
j

m

)
.

By using (2.9), the numerator of (2.4) can be expanded as

γσν1 (3/2, x2/µ2) =

∞∑
m=0

sm(σν) γ1(3/2, x
2/µ2)m (2.10)

where sm(σν) comes from a previous quantity. By using the generalized binomial theorem and (2.9), one
part of the denominator (2.4) can be written as

[
1− γσ1 (3/2, x

2/µ2)
]ν

= 1 +

∞∑
j=1

(−1)j
(
ν

j

)
γjσ1 (3/2, x2/µ2)

= 1 +

∞∑
m=0

tm(σ, ν) γ1(3/2, x
2/µ2)m,
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where tm(σ, ν) =
∑∞

j=1(−1)j
(
ν
j

)
sm(jσ).

The denominator of (2.4) can be determined from (2.10) and the last power series as

γσν1 (3/2, x2/µ2) +
[
1− γσ1 (3/2, x

2/µ2)
]ν

=

∞∑
m=0

vm(σν) γ1(3/2, x
2/µ2)m, (2.11)

where v0(σ, ν) = 1 + s0(σν) + t0(σ, ν) and vm(σ, ν) = sm(σν) + tm(σ, ν) for m ≥ 1.
Combining (2.10) and (2.11), we can express (2.4) as

F (x;µ, σ, ν) =

∑∞
m=0 sm(σν) γ1(3/2, x

2/µ2)m∑∞
m=0 vm(σ, ν) γ1(3/2, x2/µ2)m

.

The ratio of the two power series in the last equation reduces to

F (x;µ, σ, ν) =

∞∑
m=0

wm γ1(3/2, x
2/µ2)m, (2.12)

where the coefficients wm’s (for m ≥ 1) are determined from the recurrence equation

wm = wm(σ, ν) = v0(σ, ν)
−1

[
sm(σν)−

m∑
r=1

vr(σ, ν)wm−r(σ, ν)

]

and w0 = w0(σ, ν) = s0(σν)/v0(σ, ν).
By differentiating (2.12), we can rewrite (2.5) as

f(x;µ, σ, ν) =

∞∑
m=0

wm+1 hm+1(x;µ), (2.13)

where hm+1(x;µ) = (m + 1)g(x;µ) γ1(3/2, x
2/µ2)m is the EMax density with power parameter (m + 1)

(for m ≥ 0). Then, we have

hm+1(x;µ) =
4 (m+ 1)√

π µ3
x2 exp

(
−x

2

µ2

)
γ1(3/2, x

2/µ2)m.

Further, we adopt the power series for the incomplete gamma function ratio

γ1(3/2, x
2/µ2) =

∞∑
i=0

ai x
2i+3, (2.14)

where ai = ai(µ) =
(−1)i

(3/2+i)µ2i+3 Γ(3/2) i! (for i ≥ 0).
By application of an equation in Section 0.314 of Gradshteyn and Ryzhik (2000) for power

series raised to powers, we can write (for any m positive integer)( ∞∑
i=0

ai z
i

)m

=

∞∑
i=0

cm,i z
i, (2.15)

where the coefficients cm,i = cm,i(µ) are determined by cm,0 = am0 and, for i = 1, 2, . . ., from the
recurrence relation

cm,i = (i a0)
−1

i∑
r=1

[(m+ 1)r − i] ar cm,i−r.

So, the coefficient cm,i can follow from cm,0, · · · , cm,i−1 and then from a0, · · · , ai and
Further, we have from equation (2.15)

γ1(3/2, x
2/µ2)m =

∞∑
i=0

cm,i x
3m+2i. (2.16)
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Combining (2.9) and (2.16), the EMax density can be expanded as

hm+1(x;µ) =
4√
π µ3

∞∑
i=0

(m+ 1) cm,i x
3m+2i+2 exp

(
−x

2

µ2

)
.

By inserting this expression in Equation (2.13) gives

f(x;µ, σ, ν) =
4√
π µ3

∞∑
m,i=0

(m+ 1)wm+1 cm,i x
3m+2i+2 exp

(
−x

2

µ2

)
.

Finally, we can rewrite f(x;µ, σ, ν) as a linear combination of GG densities with two common
parameters 2 and µ and the third parameter k∗ = k∗(m, i) = 3(m+1)/2+i as in (2.8), and the coefficients
pm,i = pm,i(µ, σ, ν) are functions of previous quantities given by

pm,i =
2(m+ 1)µ3m+2i

√
π

Γ (3m/2 + i) wm+1 cm,i.

The linear representation (2.8) becomes very useful in deriving some mathematical properties
for the GOLLMax distribution using well-known GG properties. We can adopt at most ten terms in (2.8)
to provide accurate results for most analytical platforms.

Corollary 1 The nth moment of X takes the form

µ′
n = E(Xn) = µn

∞∑
m,i=0

pm,i
Γ (3[m+ 1]/2 + i+ n/2)

Γ (3[m+ 1]/2 + i)
. (2.17)

Proof Corollary 1:

The nth ordinary moment of the GG pdf π(x;µ, k, β) is known to be δ′n,GG = µn Γ(k+ n/β)/Γ(k).
Then, the nth moment of X can be determined from (2.8) as

µ′
n = E(Xn) = µn

∞∑
m,i=0

pm,i
Γ (3[m+ 1]/2 + i+ n/2)

Γ (3[m+ 1]/2 + i)
. (2.18)

Some of the most important features and characteristics of a distribution can be studied through
moments (e.g., tendency, dispersion, skewness and kurtosis). The central moments and cumulants
of X can be determined from the ordinary moments in (2.18) using well-known formulae.

Corollary 2 The nth incomplete of X can be expressed as

Mn(s) =

∫ s

0

xn f(x;µ, σ, ν) dx =

∞∑
m,i=0

pm,i In(s;µ, k
∗, 2).

Proof Corollary 2:

The nth incomplete moment In(s;µ, k, 2) =
∫ s

0
xn π(x;µ, k, 2)dx of π(x;µ, k, 2) is easily found by

transforming variables z = (t/µ)2 as

In(s;µ, k, 2) =
µn

Γ(k)
γ(n/2 + k, (s/µ)2).

Hence, the nth incomplete of X follows from Equation (2.8) as

Mn(s) =

∫ s

0

xn f(x;µ, σ, ν) dx =

∞∑
m,i=0

pm,i In(s;µ, k
∗, 2).
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The first incomplete moment M1(s) plays an important role for measuring inequality such as the
mean deviations and Lorenz and Bonferroni curves. First, the mean deviations about the mean
τ ′1 = E(X) and about the median m of X are determined from δ1 = 2τ ′1 F (τ

′
1) − 2M1(τ

′
1) and

δ2 = τ ′1 − 2M1(m), where F (τ ′1) and F (m) are easily calculated from (2.4).

Another application of M1(s) refers to the Bonferroni and Lorenz curves of X. These curves are
very useful in economics, reliability, demography, insurance and medicine. For a given probability
π, the Bonferroni and Lorenz curves are given by B(π) =M1(p)/(pτ

′
1) and L(p) =M1(p)/τ

′
1, where

p = Q(π) = F−1(π) can be computed from (2.6).

Corollary 3 The moment generating function (mgf) of X can be reduced to

M(s) =

∞∑
m,i=0

pm,i Mµ,k∗,2(s),

where Mµ,k∗,2(s) is the mgf of π(x;µ, k∗, 2).

Proof Corollary 3:

The mgf of π(x;µ, k∗, 2) follows from Cordeiro et al. (2011) as

Mµ,k∗,2(s) =
1

Γ(k∗)
1Ψ0

[
(1, 1/2)

−
;µ s

]
, (2.19)

where 1Ψ0 is the Wright generalized hypergeometric function defined by

pΨq

[ (
µ1, A1

)
, · · · ,

(
µp, Ap

)(
β1, B1

)
, · · · ,

(
βq, Bq)

; x

]
=

∞∑
m=0

p∏
j=1

Γ(µj +Aj m)

q∏
j=1

Γ(βj +Bj m)

xm

m!
.

Hence, the mgf of X can be determined from (2.8) and (2.19) as

M(s) = E(esX) = 1�0

[
(1, 1/2)

−
;µ s

]
=

∞∑
m,i=0

pm,i

�
(
3[m + 1]/2 + i

) .
2.3 The GOLLMax regression model

Regression analysis involves specifications of the distribution ofX given a vector v = (v1, . . . , vp)
T

of explanatory variables. In this section, we adopt systematic components for the three parameters in
density (2.5) to allow them varying across the observations (for i = 1, . . . , n) as

g1(µi) = vT
i β1, g2(σi) = vT

i β2, g3(νi) = vT
i β3, (2.20)

where gk : [0,∞) → R for k = 1, 2, 3 are known one-to-one link functions continuously twice diffe-
rentiables, vT

i = (vi1, . . . , vip) is a vector of known explanatory variables for the ith observation, and
β1 = (β11, . . . , β1p)

T , β2 = (β21, . . . , β2p)
T and β3 = (β31, . . . , β3p)

T are parameter vectors of dimension
p. Then, g1(µ) = Vβ1, g2(σ) = Vβ2, g3(ν) = Vβ3, where µ = (µ1, . . . , µn)

T , σ = (σ1, . . . , σn)
T ,

ν = (ν1, . . . , νn)
T , and V = (v1, . . . ,vn)

T is a specified n × p matrix of full column rank p < n. It is
assumed that β1, β2 and β3 are functionally independent. The GOLLMax regression model aims to
select the explanatory variables in V which model µ, σ and ν.
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Consider a sample (x1,v1), . . . , (xn,vn) of n independent observations. Conventional likelihood
estimation techniques can be applied here. The total log-likelihood function for the vector of parameters
ψ = (βT

1 ,β
T
2 ,β

T
3 )

T from model (2.20) takes the form

l(ψ) = n log
(

4√
π

)
+

n∑
i=1

log(νi) +
n∑

i=1

log(σi) +
n∑

i=1

log
(
x2i
µ3
i

)
−

n∑
i=1

(
x2i
µ2
i

)
+

(σi νi − 1)

n∑
i=1

log
[
γ1(3/2, x

2
i /µ

2
i )
]
+ (νi − 1)

n∑
i=1

log
[
1− γ1(3/2, x

2
i /µ

2
i )
]
−

2

n∑
i=1

log
{
γσi νi
1 (3/2, x2i /µ

2
i ) +

[
1− γσi

1 (3/2, x2i /µ
2
i )
]νi
}
. (2.21)

The MLE ψ̂ of ψ can be calculated by maximizing the log-likelihood (2.21). The numerical maximization
of (2.21) can be done in the optim and gamlss packages in R. Further, we can construct likelihood ratio
(LR) statistics for comparing some sub-models with the GOLLMax regression model in the classical way.

2.4 Simulation study for the regression model

We study the performance of the MLEs in the GOLLMax regression model based on 1, 000

replications from the true parameters β10 = 2.45, β11 = −0.35, β20 = 0.15, β21 = 0.50, β30 = −0.55 and
β31 = 0.20 for different sample sizes (n = 100, 350, 850), using optim package in R software by BFGS
method. We consider three different scenarios for the systematic components:

• scenario 1: log(µi) = β10 + β11v1i, log(σi) = β20 + β21v1i, log(νi) = β30 + β31v1i.

• scenario 2: log(µi) = β10 + β11v2i, log(σi) = β20 + β21v2i, log(νi) = β30 + β31v2i.

• scenario 3: log(µi) = β10 + β11v1i, log(σi) = β20 + β21v2i, log(νi) = β30 + β31v1i,

where v1i ∼ Binomial(1, 0.5) by considering two groups (0 and 1) and v2i ∼ Normal(0, 0.5), for i =

1, . . . , n.
The response variables x1, . . . , xn are generated from the GOLLMax regression model (2.20) as

follow:

i. Generate v1i and v2i.

ii. Estimate µi, σi and νi for the fixed scenario.

iii. Generate ui ∼ U(0,1).

iv. Use the steps i., ii. and iii. to calculate the observations xi’s from (2.6).

Tables 2.1, 2.2 and 2.3 gives the average estimates (AEs), biases, mean squared errors (MSEs)
of the MLEs, their average lengths (ALs) and we present the empirical coverage probabilities (CPs), say
C(ψ), corresponding to the 95% confidence intervals calculated from the simulations for the parameters
ψ=(β10, β11, β20, β21, β30, β31)T . We verify that the AEs tend to be closer to the true parameter values
and the MSEs, as well as biases of the sample estimates, decay toward zero when the sample size n

increases as expected under first-order asymptotic theory. The figures in Tables 2.1, 2.2 and 2.3 indicate
that the CPs are close to the nominal and ALs decrease substantially when n increases, respectively.
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Table 2.1. AEs, Biases, MSEs, ALs and CPs of the parameters for the GOLLMax regression model for
scenario 1.

n ψ AEs Biases MSEs ALs C(ψ)
β10 2.437 -0.013 0.174 1.495 0.898
β11 -0.314 0.036 0.373 2.334 0.981

100 β20 0.353 0.203 0.847 1.355 0.891
β21 0.484 -0.016 1.855 5.146 0.918
β30 -0.636 -0.086 0.413 2.354 0.909
β31 0.245 0.045 0.817 3.417 0.947
β10 2.479 0.029 0.067 0.883 0.922
β11 -0.333 0.017 0.153 1.272 0.970

350 β20 0.140 -0.009 0.320 2.049 0.910
β21 0.472 -0.028 0.790 3.071 0.913
β30 -0.525 0.025 0.167 1.454 0.911
β31 0.224 0.024 0.355 2.035 0.928
β10 2.452 0.002 0.021 0.545 0.937
β11 -0.344 0.005 0.044 0.740 0.967

850 β20 0.168 0.018 0.126 1.355 0.935
β21 0.490 -0.009 0.293 1.995 0.949
β30 -0.557 -0.007 0.062 0.949 0.930
β31 0.211 0.011 0.124 1.297 0.952

Table 2.2. AEs, Biases, MSEs, ALs and CPs of the parameters for the GOLLMax regression model for
scenario 2.

n ψ AEs Biases MSEs ALs C(ψ)
β10 2.450 0.000 0.111 1.042 0.880
β11 -0.297 0.053 0.156 1.205 0.784

100 β20 0.300 0.150 0.532 2.387 0.833
β21 0.410 -0.090 0.952 2.997 0.769
β30 -0.604 -0.054 0.258 1.686 0.853
β31 0.301 0.101 0.458 2.084 0.778
β10 2.460 0.010 0.030 0.601 0.919
β11 -0.322 0.028 0.058 0.793 0.861

350 β20 0.164 0.014 0.169 1.459 0.913
β21 0.453 -0.047 0.357 1.991 0.843
β30 -0.547 0.003 0.082 1.024 0.916
β31 0.254 0.054 0.176 1.381 0.848
β10 2.453 0.003 0.011 0.387 0.935
β11 -0.326 0.024 0.028 0.569 0.888

850 β20 0.157 0.007 0.068 0.971 0.929
β21 0.451 -0.049 0.184 1.475 0.879
β30 -0.550 0.000 0.033 0.677 0.931
β31 0.241 0.041 0.088 1.013 0.876

Due to the difficulty of working analytically with the proposed model, the regularity conditions
are verified on the basis of the qq-plots of the sample estimates. The Figures (2.4-2.9), for (n= 850),re-
spectively, are presented to better visualize and understand the behavior of the asymptotic distribution
of the MLEs. These plots reveal empirically that the asymptotic distributions of the MLEs tend to the
normal distribution (as expected) when the sample size increases. This fact supports that the asymptotic
normal distribution provides an adequate approximation to the finite sample distribution of the estimates.
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Table 2.3. AEs, Biases, MSEs, ALs and CPs of the parameters for the GOLLMax regression model for
scenario 3.

n ψ AEs Biases MSEs ALs C(ψ)
β10 2.431 -0.019 0.120 1.148 0.881
β11 -0.337 0.013 0.014 0.430 0.923

100 β20 0.316 0.166 0.614 2.624 0.855
β21 0.546 0.046 0.102 1.107 0.906
β30 -0.610 -0.060 0.302 1.878 0.871
β31 0.215 0.015 0.047 0.757 0.910
β10 2.436 -0.014 0.027 0.607 0.921
β11 -0.347 0.003 0.004 0.229 0.947

350 β20 0.213 0.063 0.162 1.493 0.914
β21 0.509 0.009 0.025 0.571 0.923
β30 -0.581 -0.031 0.082 1.057 0.915
β31 0.204 0.004 0.012 0.397 0.937
β10 2.446 -0.004 0.010 0.387 0.933
β11 -0.350 0.000 0.001 0.147 0.947

850 β20 0.173 0.023 0.061 0.973 0.936
β21 0.506 0.006 0.009 0.363 0.924
β30 -0.559 -0.009 0.032 0.685 0.931
β31 0.199 -0.001 0.004 0.254 0.951

Figure 2.4. Plots of the empirical distributions of the 1,000 parameter estimates for n = 850 for scenario
1. (a) For β̂10. (b) For β̂11. (c) For β̂20. (d) For β̂21. (e) For β̂30. (f) For β̂31.

2.5 Diagnostic and residual analysis

We adopt diagnostic measures based on case deletion (global influence) to detect influential
observations in the proposed regression model. The case-deletion model with systematic (2.20) is

g1(µl) = vT
l β1, g2(σl) = vT

l β2, g3(νl) = vT
l β3 l = 1, . . . , n, l ̸= i. (2.22)

In the following, a quantity with subscript “(i)” means the original quantity with the ith observa-
tion deleted. For model (2.22), the log-likelihood function for ψ is denoted by l(i)(ψ). Let ψ̂(i) =
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Figure 2.5. Normal probability plots when n = 850 for scenario 1. (a) For β̂10. (b) For β̂11. (c) For
β̂20. (d) For β̂21. (e) For β̂30. (f) For β̂31.

Figure 2.6. Plots of the empirical distributions of the 1,000 parameter estimates for n = 850 for scenario
1. (a) For β̂10. (b) For β̂11. (c) For β̂20. (d) For β̂21. (e) For β̂30. (f) For β̂31.

(β̂1

T

(i), β̂2

T

(i), β̂3

T

(i))
T be the MLE of ψ from l(i)(ψ). To assess the influence of the ith observation on

the MLEs ψ̂ = (β̂1

T
, β̂2

T
, β̂3

T
)T , we can compare the difference between ψ̂(i) and ψ̂. If deletion of an

observation seriously influences the estimates, more attention should be paid to that observation. Hence,
if ψ̂(i) is far from ψ̂, then the ith observation can be regarded as influential. A first measure of the global
influence is defined as the standardized norm of ψ̂(i) − ψ̂ (generalized Cook distance), namely

GDi = (ψ̂(i) − ψ̂)T
[
L̈(ψ̂)

]
(ψ̂(i) − ψ̂).
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Figure 2.7. Normal probability plots when n = 850 for scenario 1. (a) For β̂10. (b) For β̂11. (c) For
β̂20. (d) For β̂21. (e) For β̂30. (f) For β̂31.

Figure 2.8. Plots of the empirical distributions of the 1,000 parameter estimates for n = 850 for scenario
1. (a) For β̂10. (b) For β̂11. (c) For β̂20. (d) For β̂21. (e) For β̂30. (f) For β̂31.

Another popular measure of the difference between ψ̂(i) and ψ̂ is the likelihood distance given
by

LDi = 2
{
l(ψ̂)− l(ψ̂(i))

}
.

We can study departures from the error assumption as well as the presence of outliers for various
residuals introduced in the literature but we consider the quantile residuals (qr’s). For the new regression
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Figure 2.9. Normal probability plots when n = 850 for scenario 1. (a) For β̂10. (b) For β̂11. (c) For
β̂20. (d) For β̂21. (e) For β̂30. (f) For β̂31.

model, they are defined by

q̂ri = Φ−1

 γσ̂iν̂i
1 (3/2, x2i /µ̂

2
i )

γσ̂iν̂i
1 (3/2, x2i /µ̂

2
i ) +

[
1− γσ̂i

1 (3/2, x2i /µ̂
2
i )
]ν̂i

 , (2.23)

where Φ−1(·) is the inverse cumulative standard normal distribution.
We built envelopes to enable better interpretation of the probability normal plot of the residuals.

These envelopes are simulated confidence bands described by Atkinson (1985) that contain the residuals,
such that if the model is well-fitted, the majority of points will be randomly distributed within these
bands.

2.6 Applications

In this section, we perform three applications in the engineering area and analyze three real
data sets. In the first and second applications, we fit the Maxwell, EMax, OLLGMax and GOLLMax
(nested models). In addition, we analyze the data sets by using non-nested alternative models. We
consider the Weibull distribution with scale parameter µ > 0 and shape parameter δ > 0.

The cdf of the gamma-Maxwell (GMax) distribution (Iriarte et al., 2016) is given by

F (x) =
γ
(
δ,− log

(
1− 2

πγ
(
3
2 , µx

2
)))

Γ(δ)
, x > 0,

where µ > 0 is a scale parameter and δ > 0 is a shape parameter.
The cdf of the three-parameter transmuted exponentiated Maxwell (TEMax) distribution (Vane-

gas et al., 2017) is given by

F (x) = (1− λ)G(x)δ − λG(x)2 δ, x > 0,
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where µ > 0 is a scale parameter, δ > 0 is a shape parameter, |λ| ≤ 1 is a parameter that makes the
asymmetry more flexible and G(x) = G(x;µ) is the Maxwell cdf given by (2.1).

In the third application, we illustrate the flexibility of the GOLLMax regression model.
In the applications, we determine the MLEs and their estimated standard errors (SEs) (given in

parentheses) of the model parameters and the values of the Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), Cramér-von Mises (W ∗), Anderson Darling (A∗) and Kolmogorov-Smirnov
(KS) statistics for the fitted models. The lower the values of these measures, the better the fit. For
all distributions, the parameters are estimated by maximum likelihood. We adopt the AdequacyModel
script BFGS and CG algorithms for the first two applications, whereas the gamlss function by RS method
described by (Rigby and Stasinopoulos, 2005) in the R software is used for the third application.

2.6.1 Application 1: Strength data

The data set with 49 observations presented by Chen (2006) was obtained from a process of
manufacturing a plastic laminate whose resistance must exceed a few pounds per square inch (psi). We
calculate the MLEs of the model parameters and the above statistics for each fitted model to these data.
The results are presented in Table 2.4. The five statistical measures are favorable to the GOLLMax
distribution, which can be chosen as the best distribution to explain the current data.

Table 2.4. MLEs of the model parameters, the their SEs (given in parentheses) and the statistics: AIC,
BIC, W ∗, A∗ and KS (p-value associated in parentheses) for the strength data.

Model µ σ ν AIC BIC W ∗ A∗ KS
GOLLMax 21.4169 18.8193 0.3115 411.9 417.6 0.0382 0.2556 0.0854

(0.0002) (0.0017) (0.0375) (0.8364)
OLLMax 40.6034 1 1.2166 417.5 421.3 0.1202 0.7397 0.0949

(2.0973) (-) (0.1534) (0.7327)
EMax 36.3324 1.5610 1 416.2 420.0 0.1140 0.7000 0.1370

(2.7689) (0.3508) (-) (0.2892)
Maxwell 40.9888 1 1 418.0 419.9 0.1214 0.7448 0.1335

(2.3905) (-) (-) (0.3179)
Model µ δ λ AIC BIC W ∗ A∗ KS
GMax 34.5788 1.4853 416.6 420.4 0.1195 0.7331 0.1339

(3.5018) (0.3053) (0.3147)
TEMax 38.6766 1.6259 0.4090 417.3 422.9 0.1005 0.6181 0.1315

(0.0006) (0.2806) (0.2932) (0.3347)
Weibull 52.9449 2.8904 420.1 423.9 0.1587 0.9680 0.1145

(2.7770) (0.3039) (0.5045)

Formal tests to verify the inclusion or not of the additional parameters σ and ν in the proposed
distribution can be done based on the LR statistics as listed in Table 2.5. We reject the null hypotheses
in the three tests in favor of the GOLLMax distribution. The rejection is significant and provides
clear evidence of the flexibility of the shape parameters σ and ν when modeling real data with bimodal
characteristics. More information is provided by a visual comparison of the data histogram and fitted
density functions. The plots of the fitted GOLLMax, TEMax and Weibull densities are displayed in
Figure 2.10a. The estimated GOLLMax density provides the closest fit to the histogram of the data.

In order to assess if the model is appropriate, the plots of the fitted GOLLMax, TEMax and
Weibull cumulative distributions and the empirical cdf are displayed in Figure 2.10b. They also indicate
that the wider distribution provides a good fit to these data.
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Table 2.5. LR tests for strength data.

Models Hypotheses Statistic w p-value
GOLLMax vs OLLMax H0 : σ = 1 vs H1 : H0 is false 7.5 0.0059

GOLLMax vs EMax H0 : ν = 1 vs H1 : H0 is false 6.3 0.0120
GOLLMax vs Maxwell H0 : σ = ν = 1 vs H1 : H0 is false 10.0 0.0064
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Figure 2.10. (a) Estimated densities of the GOLLMax, TEMax and Weibull models for strength data.
(b) Estimated cumulative functions of the GOLLMax, TEMax and Weibull models for strength data.

2.6.2 Application 2: Image data

The data set was extracted from an image of Foulum (Denmark) obtained by the EMISAR sen-
sor (Lee and Pottier (2009)) jointly built by the Electro Magnetics Institute (EMI), the Technical Univer-
sity of Denmark (TUD), and its Danish Centre for Remote Sensing (DCRS), operated at C- and L-bands
(though not simultaneously) with quad-polarizations. The data are obtained at http://earth.eo.esa.int
/polsarpro/datasets.html by means of the PolSARpro software and, for each geographic position, each
one of its element consists in norm squared of a complex number, which represents the information of
the polarization channel resulting of a pulse both transmitted and recorded in horizontal direction. A
scenario of this data set is presented in Alizadeh et al. (2017).

We calculate the MLEs of the model parameters and the above statistics for the fitted models
to these data. The results are reported in Table 2.6. The five statistics agree with the suitability of the
proposed model. In fact, the lowest values of them indicate that the GOLLMax distribution could be
chosen as the best model to these data.

Formal tests to verify the inclusion or not of the additional parameters σ and ν in the proposed
distribution can be performed based on the LR statistics given in Table 2.7. We reject the null hypotheses
in the three tests in favor of the GOLLMax distribution. The rejection is significant and provides
clear evidence of the flexibility of the shape parameters σ and ν for modeling real data with bimodal
characteristics. More information is provided by a visual comparison of the data histogram and adjusted
densities. Figure 2.11a displays the plots of the estimated GOLLMax, OLLMax and Weibull densities.
The estimated GOLLMax density provides the closest fit to the histogram of these data.

In order to assess if the model is appropriate, the plots of the estimated cdfs of the GOLLMax,
OLLMax and Weibull distributions and the empirical cdf are displayed in Figure 2.11b. They also support
that the GOLLMax distribution provides a good fit to these data.
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Table 2.6. MLEs of the model parameters, their SEs (given in parentheses) and the AIC, BIC, W ∗, A∗

and KS (p-value associated in parentheses) statistics for the image data.

Model µ σ ν AIC BIC W ∗ A∗ KS
GOLLMax 0.0658 4.6876 0.1843 -243.0 -235.1 0.0642 0.4371 0.0579

(0.0133) (2.2051) (0.0755) (0.8871)
OLLMax 0.1108 1 0.5178 -233.4 -228.2 0.2089 1.1761 0.1162

(0.0067) (-) (0.0483) (0.1307)
EMax 0.1701 0.4222 1 -226.9 -221.7 0.2871 1.6149 0.1284

(0.0122) (0.0505) (-) (0.0714)
Maxwell 0.1290 1 1 -165.4 -162.8 0.2970 1.6711 0.3074

(0.0052) (-) (-) (<0.0001)
Model µ δ λ AIC BIC W ∗ A∗ KS
GMax 0.1879 0.4229 -226.4 -221.2 0.2933 1.6501 0.1292

(0.0150) (0.0511) (0.0685)
TEMax 0.1748 0.4428 0.1585 -225.2 -217.3 0.2851 1.5987 0.1232

(0.0170) (0.0613) (0.3047) (0.0930)
Weibull 0.1456 1.5051 -226.3 -221.1 0.2945 1.6488 0.1188

(0.0101) (0.1198) (0.1156)

Table 2.7. LR tests for the image data.

Models Hypotheses Statistic w p-value
GOLLMax vs OLLMax H0 : σ = 1 vs H1 : H0 is false 11.6 0.0006

GOLLMax vs EMax H0 : ν = 1 vs H1 : H0 is false 18.2 0.00001
GOLLMax vs Maxwell H0 : σ = ν = 1 vs H1 : H0 is false 81.6 <0.0001
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Figure 2.11. (a) Estimated densities of the GOLLMax, OLLMax and Weibull models to the image
data. (b) Estimated cumulative functions of the GOLLMax, OLLMax and Weibull models to the image
data.

2.6.3 Application 3: Brittle materials

Basu et al. (2009) presented a detailed analysis of the data on resistance measurements (in
MPa) for different components of ceramic materials and a glass material. In this way, the data set is
divided into four subsets with measurements of materials with different chemical compositions, such as,
ZrO2, ZrO2−TiB2, Si3N4 and glass (with unknown composition). The interest is to verify the strength
properties of solid materials, extremely brittle as glass and the most resistant as the materials to be made
of ZrO2 and Si3N4.

The Weibull distribution is an alternative in applications involving resistance studies of brittle
materials, for example, in Xu et al. (2001). Basu et al. (2009) proposed the Weibull distribution
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for an alternative modeling and compared it with other two-parameter distributions. However, in the
application, the analyzes are performed considering the compositions separately. Here, we propose a joint
analysis by considering a regression model with three systematic components given by (2.20).

The explanatory variables are:

• xi -observed value of the strength of the material (until rupture or crack occurs);

• vi - chemical compounds of materials with four levels (ZrO2, ZrO2 − TiB2, Si3N4 and Glass) is
defined by dummy variables: ZrO2 (vi1 = 0, vi2 = 0 and vi3 = 0), ZrO2 − TiB2 (vi1 = 1, vi2 = 0

and vi3 = 0), Si3N4 (vi1 = 0, vi2 = 1 and vi3 = 0) and Glass Si3N4 (vi1 = 0, vi2 = 0 and vi3 = 1).

First, we perform an exploratory analysis for these data. We can verify by means of Figure
2.12 that the different groups of chemical compounds have bimodality and asymmetry. This behavior
indicates that a more flexible model, for example, the GOLLMax distribution can be more adequate than
the most popular gamma, exponential, log-normal and Weibull distributions.
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Figure 2.12. Plots for brittle materials data. (a) ZrO2. (b) ZrO2-TiB2. (c) Si3N4. (d) Glass.

Considering only the response variable xi, we verify the suitability of the proposed model and
compare it with the Weibull distribution. Table 2.8 gives the MLEs and their SEs (in parentheses) and
the AIC, BIC, W ∗, A∗ and KS statistics.

Table 2.8. MLEs of the model parameters for brittle materials data, their SEs (given in parentheses)
and the AIC, BIC, W ∗, A∗ and KS statistic.

Model µ σ ν AIC BIC W ∗ A∗ KS
GOLLMax 230.0736 3.6791 0.0992 1623.6 1631.8 0.5419 4.0776 0.1521

(0.0297) (0.0178) (0.0075) (0.0107)
µ δ AIC BIC W ∗ A∗ KS

Weibull 591.0127 1.0321 1669.5 1674.9 1.0800 7.2024 0.2428
(56.5923) (0.0822) (<0.0001)

Figure 2.13a displays the estimated GOLLMax and Weibull densities and the histogram to
verify which model is more appropriate. As an alternative to check the quality fit, Figure 2.13b displays
the hrfs of the GOLLMax and Weibull models and the empirical hazard function. We conclude that the
GOLLMax distribution provides a better fit to these data.

We consider the following systematic structures:

µi = exp(β10 + β11vi1 + β12vi2 + β13vi3), σi = exp(β20 + β21vi1 + β22vi2 + β23vi3) and
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Figure 2.13. (a) Estimated densities of the GOLLMax and Weibull models for brittle materials data.
(b) Estimated cumulative functions of the GOLLMax and Weibull models for brittle materials data.

Table 2.9. MLEs, SEs and p-values for the fitted GOLLMax regression model to the brittle materials
data.

Parameters Estimates SEs p-values
β10 5.9882 0.0673 < 0.0001
β11 1.0437 0.0816 < 0.0001
β12 -0.4956 0.0857 < 0.0001
β13 -2.1062 0.0695 < 0.0001
β20 2.6242 0.2220 < 0.0001
β21 -2.8636 0.2362 < 0.0001
β22 1.4901 0.3797 0.0001
β23 -2.1661 0.2286 < 0.0001
β30 -1.2495 0.1784 < 0.0001
β31 2.3455 0.2241 < 0.0001
β32 0.0570 0.3064 0.8530
β33 2.4431 0.2597 < 0.0001

νi = exp(β30 + β31vi1 + β32vi2 + β33vi3), i = 1, . . . , 113.

In addition, we present the estimates of the parameters, SEs and the associated p-values of the
MLEs in Table 2.9. The figures in this table give evidence that the presence of the covariate vi2 (Si3N4)
is not significant at a significance level of 5% in the regression structure for the parameter νi in relation
to the ZrO2 level. This fact confirms the exploratory analysis shown in Figure 2.12 in which the groups
ZrO2 in Figure 2.12a and Si3N4 in Figure 2.12c present similar bimodal forms thus contributing to the
non-significance.

Table 2.9 suggests that the materials ZrO2 − TiB2, Si3N4 and glass are statistically different
from the ZrO2 material in all structures, except as mentioned above. This fact reveals the modeling
ability of the proposed structure to model the scale of the data using the parameter µi and asymmetry
and bimodality through the parameters σi and νi, respectively.

Model checking
The next step is to detect possible influential points in the GOLLMax regression model. The

generalized Cook distance distance and likelihood distance are displayed in Figure 2.14. These plots
reveal that the cases 29 and 56 are possible influential observations.

Further, we verify the quality of the adjustment of the GOLLMax regression by constructing
the normal probability plot for the qr’s for the waste diversion with simulated envelope. There is evidence
of a good fit of the GOLLMax regression model as illustrated in Figures 2.15a and 2.15b.
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Figure 2.14. (a) Generalized Cook distance for the GOLLMax regression model to the brittle materials
data. (b) Likelihood distance for the GOLLMax regression model to the brittle materials data.
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Figure 2.15. (a) Index plot of the qr’s from the fitted GOLLMax regression model to brittle materials
data. (b) Normal probability plot for the qr’s with envelopes.

In this analysis, we make an analogy with the methodology of survival analysis. We consider
that the event of interest is the breaking or rupture of the material, that is, applied a force of resistance
in MPa how much the material supports until breakage or rupture occurs.

The survival function corresponding to (2.5) is

S(x) = 1− γσν1 (3/2, x2/µ2)

γσν1 (3/2, x2/µ2) + [1− γσ1 (3/2, x
2/µ2)]

ν . (2.24)

In Figure 2.16a, we display the Kaplan-Meier empirical curves and estimated survival functions
determined from (2.24). Note that glass is the weakest material with least resistance. For a strength of
800 MPa the probabilities that in the materials ZrO2, ZrO2 − TiB2 and Si3N4 do not occur the event
of interest are 0.4912, 0.9446 and 0.1633, respectively. In Figure 2.16b, we give the estimated hrf for each
material and verify the presence of different forms for this function. Based on this figure, we note that
both models show satisfactory fits. However, the GOLLMax regression model presents a better fit to the
current data.

2.7 Concluding Remarks

We propose a three-parameter model called the generalized odd log-logistic Maxwell (GOLL-
Max) distribution, which includes as special cases the odd log-logistic Maxwell (OLLMax), exponentiated
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Figure 2.16. The GOLLMax regression model. (a) Estimated survival functions and the empirical
survival for the brittle materials data. (b) Estimated hrf for the brittle materials data.

Maxwell (EMax) and Maxwell distributions. We provide some of its mathematical properties. We define
a GOLLMax regression model with three systematic components based on the new distribution. The
proposed model serves as an important extension to several existing regression models and could be a
valuable addition to the literature. The maximum likelihood method is described for estimating the
model parameters. Some simulations are performed for different parameter settings and sample sizes to
evaluate the precision of the maximum likelihood estimates. Diagnostic analysis is presented to assess
global influences. We also discuss the sensitivity of the estimates from the fitted model via quantile
residuals. The utility of the introduced models is discussed by means of three real data sets.
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3 THE GENERALIZED ODD LOG-LOGISTIC MAXWELL SEMIPARAMETRIC
REGRESSION MODEL FOR CENSORED AND UNCENSORED DATA

Abstract: We propose a semiparametric regression model considering the cubic spline for
nonlinear effects for censored and uncensored data. Parameter estimates of the generalized odd log-
logistic Maxwell model are obtained by penalized maximum likelihood considering nonlinear effects.
Some global-influence measurements and quantile residuals are also investigated. Several Monte
Carlo simulations are performed for inference purposes under different nonlinear shape configurations,
effective degree of freedom and sample sizes. The proposals are illustrated by two applications to real
data set.

Keywords: Censored data; Maxwell distribution; Penalized likelihood; Residuals; Semiparametric
regression.

3.1 Introduction

Regression models are very useful tools in the statistical analysis of data and can be applied in
different areas of knowledge, such as biology, engineering, agriculture and health, among others, is one of
the most used techniques to model and study the relationship of one or more explanatory (or covariate)
variables and one dependent (or response) variable. The simplest form of these relationships is the linear
one, and over many years the normal linear models have been the most used in an attempt to explain
such relationships.

However, in many studies the assumption of linearity between the response variable and the
explanatory variables. It is not always appropriate. Like, assume normal distribution for data modeling
that in many situations present asymmetrical behavior. For example, the relation between body mass
index and patients age such measurements obtained preoperatively of the liver transplantation. The body
mass index (BMI) is an internationally-standard measure to assess whether a person has an ideal weight.
It is adopted as a metric by the World Health Organization (WHO) to measure obesity. Overweight
and obesity, as indicated by the BMI, are risk factors for diseases like arterial hypertension, coronary
artery disease, metabolic syndrome, respiratory diseases, digestive tract diseases, psychiatric disturbances,
cancer, osteoarthritis and diabetes mellitus, besides other pathologies considered to be serious public
health problems. We consider the data from the Kelly, et. al, (2012).

In this data set we can see in Figure 3.1a the relationship between the response variable (y =

BMI) and (x1 = age) does not have a linear effect, being a behavior closer to a point cloud. We can also
verify that the response variable has a certain degree of asymmetry Figure 3.1b.

A second data set refers to the monoclonal gammopathy of undetermined significance (MGUS)
data set included in the library suvival in R software. In Figure 3.2a and b, y denotes the time in days
from diagnosis to last follow-up and as covariates, (x1 = age in years at the detection of MGUS), (x2 =

size of the monoclonal protein spike at diagnosis) and (x3 = sex, a factor with level Male and reference
Female). It can be seen from plots for Figure 3.2 that the problems mentioned in the first data set also
apply to these data. In addition, in this data we have the presence of censored data. Thus, the behavior
of the empirical risk function is presented in Figure 3.2c.

We propose the generalized odd log-logistic Maxwell semiparametric regression model to solve
the problems above. In addition, to solve the issue of nonlinear behavior and in order to obtain a more
flexible model for the data we use cubic splines in this work. Thus, the inclusion of cubic splines in
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Figure 3.1. (a) Nonlinear effect of BMI versus age. (b) BMI empirical density.

(a) (b) (c)

40 50 60 70 80 90

0
2
0
0
0

6
0
0
0

1
0
0
0
0

1
4
0
0
0

x1

T
im

e

Failure

Censured

0.5 1.0 1.5 2.0 2.5 3.0

0
2
0
0
0

6
0
0
0

1
0
0
0
0

1
4
0
0
0

x2

T
im

e

Failure

Censured

0 5000 10000 15000

2
e
−

0
4

4
e
−

0
4

6
e
−

0
4

8
e
−

0
4

Time

H
a
za

rd
 f
u
n
ct

io
n

+ + + +
+ ++

+

++
+

++
++

Empirical hazard function

Figure 3.2. (a) Nonlinear effect of time versus age in years. (b) Nonlinear effect of time versus size of
monoclonal protein spike at diagnosis. (c) Empirical hazard function.

the model requires, in addition to descriptive and exploratory analyzes, diagnostic analyzes to assess the
suitability of the model.

The Monte Carlo simulation studies are conducted to evaluate the performance of this model
by means of bias, variance and mean squared error (MSE). For different sample sizes, effective degrees
of freedom and effects of nonlinear shapes, simulation studies are performed considering censored and
uncensored values. We perform global influence and develop residual analysis based on the quantile
residuals.

The chapter is organized as follows. In Section 3.2, we define the generalized odd log-logistic
Maxwell (GOLLMax) distribution. In Section 3.3, we propose the GOLLMax semiparametric regression
model using cubic spline to estimate the nonlinear effects of the covariates. We provide some simulation
results in Section 3.4 to verify the asymptotic behavior of the MLEs and the nonlinear effects when the
sample size increases. In Section 3.5, we illustrate the flexibility of the proposed regression model by
means of two applications. Finally, we offer some conclusions in Section 3.6.

3.2 The GOLLMax distribution

A random variable Y has the GOLLMax distribution if its cumulative distribution function
(cdf) and probability density function (pdf) are (for y > 0)

F (y;µ, σ, ν) =
γν σ
1 (3/2, y2/µ2)

γνσ1 (3/2, y2/µ2) + [1− γσ1 (3/2, y
2/µ2)]

ν (3.1)
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and

f(y;µ, σ, ν) =
4 ν σ y2√
π µ3

exp
(
− y

2

µ2

)
γνσ−1
1 (3/2, y2/µ2)

[
1− γσ1 (3/2, y

2/µ2)
]ν−1

{γνσ1 (3/2, y2/µ2) + [1− γσ1 (3/2, y
2/µ2)]

ν}2
, (3.2)

respectively, where ν > 0 and σ > 0 are two extra shape parameters and µ > 0 is scale parameter.
The γ1(p, u) = γ(p, u)/Γ(p) is the incomplete gamma function ratio, γ(p, u) =

∫ u

0
wp−1e−wdw is the

incomplete gamma function and Γ(·) is the gamma function. Henceforth, if Y is a random variable with
cdf (3.1), we write Y ∼GOLLMax(ν, σ, µ). The hazard rate function (hrf) of Y is given by h(y;µ, σ, ν) =
f(y;µ, σ, ν)/[1− F (y;µ, σ, ν)], where 1− F (y;µ, σ, ν) is survival function.

The GOLLMax distribution contains as special cases the following well-known distributions.
For σ = ν = 1, we obtain the Maxwell (Max) distribution. For ν = 1, we have the exponentiated Maxwell
(EMax) distribution. For σ = 1, we obtain the odd log-logistic Maxwell (OLLMax) distribution.

The GOLLMax distribution can be simulated by inverting (3.1). The quantile function (qf) of
Y , say

y = QMax




(
u

1−u

) 1
ν

1 +
(

u
1−u

) 1
ν


1
σ
 , (3.3)

where QMax(u) = G−1(µ;u) is the qf of the Maxwell distribution. The histograms from three simulated
data sets form (3.3) and the plots of the exact GOLLMax densities for some parameter values are
displayed in Figure 3. These histograms are constructed based on 2,000 generated values. We note that
this distribution can fit data with modal and slight bimodality shapes as well as positive and negative
skewness.
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Figure 3.3. Plots of the histograms for simulated values and exact density function (4.2). (a) For
µ = 2.0, σ = 2.0 and ν = 0.15. (b) For µ = 0.15, σ = 1.0 and ν = 0.45. (c) For µ = 0.30, σ = 5.0 and
ν = 0.15.

3.3 The GOLLMax semiparametric regression model

In many practical applications, the response variable Y can be influenced by explanatory vari-
ables such as gender, age, cholesterol level, blood pressure and many others. Let Y1, . . . , Yn are random
variable independent and each Yi has a density function (3.2) and a vector x = (x1, . . . , xp)

T of ex-
ploratory variables, (for i = 1, . . . , n). We can consider a regression structure given by

g(µi) = xT
i β, (3.4)
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where g : [0,∞) → R are known one-to-one link functions continuously twice differentiables. The usual
systematic component for the scala parameter is g(µi) = log(µi), then µi can be obtained by inverting
g(µi), as µ = exp(xT

i β), for xT
i = (xi1, . . . , xip) is a vector of known explanatory variables for the ith

observation, and β = (β11, . . . , β1p)
T , are parameter vectors of dimension p. Then, g(µ) = exp(Xβ),

where µ = (µ1, . . . , µn)
T and X = (x1, . . . ,xn)

T is a specified n× p matrix of full column rank p < n.
Consider a sample (y1,x1), . . . , (yn,xn) of n independent observations. Conventional likelihood

estimation techniques for uncensored data can be applied here. The total log-likelihood function for the
vector of parameters ψ = (βT , σ, ν)T from model (3.4) takes the form

l(ψ) = n log
(

4√
π

)
+

n∑
i=1

log(ν) +
n∑

i=1

log(σ) +
n∑

i=1

log
(
x2i
µ3
i

)
−

n∑
i=1

(
x2i
µ2
i

)
+

(σ ν − 1)

n∑
i=1

log
[
γ1(3/2, x

2
i /µ

2
i )
]
+ (ν − 1)

n∑
i=1

log
[
1− γ1(3/2, x

2
i /µ

2
i )
]
−

2

n∑
i=1

log
{
γσ ν
1 (3/2, x2i /µ

2
i ) +

[
1− γσ1 (3/2, x

2
i /µ

2
i )
]ν}

. (3.5)

For censored data, yi denotes the observed time for the ith subject, i.e, yi = min
{
Yi, Ci

}
,

Yi is the lifetime for the ith individual and Ci is the censoring time for the ith individual. With this
assumption we have, that the contribution of an individual that failed at yi to the likelihood function is
given by

l(ψ) = r log
(
4σ ν√
π

)
+
∑
i∈F

log
(
y2i
µ3
i

)
−
∑
i∈F

(
yi
µi

)2

+

(σ ν − 1)
∑
i∈F

log
[
γ1(3/2, y

2
i /µ

2
i

]
+ (ν − 1)

∑
i∈F

log
[
1− γλ1 (3/2, y

2
i /µ

2
i )
]
−

2
∑
i∈F

log
{
γσ ν
1 (3/2, y2i /µ

2
i ) +

[
1− γσ1 (3/2, y

2
i /µ

2
i )
]ν}

+
∑
i∈C

log
{
1− γσν1 (3/2, y2i /µ

2
i )

γσν1 (3/2, y2i /µ
2
i ) + [1− γσ1 (3/2, y

2
i /µ

2
i )]

ν

}
, (3.6)

where r is the number of uncensored observations (failures), F and C denote, respectively, that the set
of individuals is a lifetime or a censoring time.

In some cases we can have covariates that have a non-linear relationship whit response variable,
so to capture the non-linear effects of these covariates, it is necessary to adopt non-linear functions.

Let x⊤
2i = (x2i1, . . . , x2ip) be the vector of covariates that has a nonlinear form with the response

variable, we can define semi-parametric structures using appropriate link functions as

µi = exp

x⊤
1iβ +

J∑
j=1

hj(xj2i)

 (3.7)

where hj(·) are smooth functions of the covariates x2i for j = 1, . . . , J and i = 1, . . . , n. In this paper,
the approximation of hj(·) is by cubic spline. In the gamlss package of the R software, such smoothing
functions are expressed as random effects, i.e. hj(·) = Zjυj , where Zj is the (n× qj) known basis design
matrix and υj is the qj-dimensional unknown vector of parameters.

For the semiparametric model (3.7), the fixed and random effects ψ = (β, σ, ν) and φ, respec-
tively, are estimated by maximizing the penalized log-likelihood function

lp(ω) = l(ψ)− 1

2

J∑
j=1

λjφ
T
j Pjφj , (3.8)
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for ω = (β, σ, ν,φ,λ), where l(ψ) can be (3.5) or (3.6), λj is the unknown smoothing parameter and
Pj is a symmetric matrix that may depend on a vector of smoothing parameters and chosen number of
knots. The solution of (3.8) corresponds to the smoothing cubic spline with equidistant knots for distinct
x-variable values, more details see (Green and Silverman, 1993, Ruppert, et al. 2003 and Wood, 2017).
Another measure of interest are the effective degrees of freedom, df∗, relative to the non-parametric
component. The smoothing parameters can be fixed or estimated from the data. Some methods are
proposed in the literature, for example, by the generalized cross-validation method (see , Wood, 2006).
However, in this work, due to the direct relationship between df∗ and λj , to penalize overfitting the
Akaike information criterion AIC (Akaike, 1983) is used.

The numerical maximization of the (3.8) can be performed in the gamlss and gamlss.cens
packages in R. We use the maximization by RS algorithm described by Stasinopoulos and Rigby (2007) and
Stasinopoulos et al. (2017). The cs() function is used to assign the arguments to make the adjustment
via gamlss. Thus, in Section 3.5, the cs(·) function in regression structures is denoted by cs(xji, df

∗)

where xji is the j-th covariate considering the additive term and df∗ are the degrees of freedom related
to the additive term. The effective degree of freedom for structure of the regression in µ considering an
explanatory variable x is given by dfµ = df∗ + 2 where other two additional degrees of freedom are in
relation to the linear terms (see, Voudouris et al. (2012)). Finally, we have that the total freedom degree
of the adjusted model, represented by df , collectively considers the additive terms represented by the
hj(·) functions and the parametric terms, i.e, df = dfµ + dfσ + dfν , are the degrees of freedom used to
model µ, σ and ν, respectively.

3.3.1 Choosing the best model

For selection of the appropriate distribution, we use the global deviance (GD), GD = −2lp(ω̂),
lp(ω̂) is the penalized log-likelihood function and the generalized Akaike information criterion (GAIC)
defined by GAIC(k) = GD+ k× df , where df is the total degrees of freedom of the adjusted model and
k is the penalty for each degree of freedom used. The Akaike information criterion (AIC) and Bayesian
information criterion (BIC) are special cases of the GAIC(k) measure when k = 2 and k = log(n),
respectively. We consider the GD, AIC and BIC measures to select the best models.

3.3.2 Influence and residual analysis

The measure to evaluate the influence of an observation (Cook and Weisberg, 1982), called the
log-likelihood distance, is the difference between ω̂ and ω̂(i) on the log-likelihood scale, namely

LDi = 2
[
lp(ω̂)− lp(ω̂(i))

]
, (3.9)

where l(ω̂) is the maximized log-likelihood for the full sample and l(ω̂(i)) is the maximized log-likelihood
for the sample excluding the ith observation.

Another important step in the analysis of a fitted model is to check possible deviations from
the model assumptions. In this context, we consider the quantile residuals (Dunn and Smyth, 1996) for
the GOLLMax semiparametric regression model have the form

r̂qi = Φ−1

{
γν̂ σ̂
1 (3/2, y2/µ̂2

i )

γν̂σ̂1 (3/2, y2/µ̂2
i ) +

[
1− γσ̂1 (3/2, y

2/µ̂2
i )
]ν̂
}
, (3.10)

where Φ−1(·) is the standard normal qf.
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We built envelopes to enable better interpretation of the probability normal plot of the residuals.
These envelopes are simulated confidence bands described by Atkinson (1985) that contain the residuals,
such that if the model is well-fitted, the majority of points will be randomly distributed within these
bands.

3.4 Simulation study

In this section, we examine the performance of the GOLLMax semiparametric regression model
by means of a Monte Carlo simulation study under two scenarios. Various simulations are conducted
for different sample sizes (n = 80, 200, 450) for censored and uncensored data using the R software with
gamlss packages by RS method.

In this study we present and compare the results, adjusting the proposed GOLLMax model
(parametric and semiparametric ). The following two scenarios with regression structure (3.4) are pre-
sented:

• The first scenario, we consider the following structure for regression model with parameter µi =

exp {h1(x1i) + β21x2i + β31x3i}, where h1(x1i) = sin(x1i), σ = exp {β02}, ν = exp {β03}, with the
following sub-scenarios: (a) without censored values and (b) with a percentage of censored values
approximately 25%. The functional shape of the h1(x1i) is presented in Figure 3.4a and b, for
sub-scenarios (a) and (b), respectively.

• The second scenario, we consider the following structure for regression model with parameter µi =

exp {h1(xi1) + β21x2i + β31x3i}, where h1(x1i) = 0.45[sin(π x1i)], σ = exp {β02}, ν = exp {β03},
with the following sub-scenarios: (c) without censored values and (d) with a percentage of censored
values approximately 25%. The functional shape of the h1(x1i) is presented in Figure 3.4c and d,
for sub-scenarios (c) and (d), respectively.

The associated coefficients for the two scenarios are: β21 = 0.20, β31 = −0.35, β02 = 0.25 and β03 =

0.40. We assume that the explanatory variables for the two scenarios are x1i ∼ Uniform(0, 2.5), x2i ∼
Normal(5, 0.5) and x3i ∼ Uniform(0, 1), respectively, for i = 1, . . . , n. For all scenarios it was considered
df∗ = 3 which is the default value of the cs(·) function.
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Figure 3.4. Plots of the simulation values for n = 200. (a) Nonlinear effect for sub-scenario a. (b)
Nonlinear effect for sub-scenario b. (c) Nonlinear effect for sub-scenario c. (d) Nonlinear effect for
sub-scenario d.

We simulate the GOLLMax semiparametric regression model under the algorithm:

1. Generate the variables x1i, x2i and x3i.
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2. For uncensored values of the sub-scenarios (a) and (c):
- Generate the values yi ∼GOLLMax(µi, σ, ν) from the structure regression (3.4).

3. For censored values of the sub-scenarios (b) and (d):
- Generate the values y∗i ∼GOLLMax(µi, σ, ν) from the structure regression (3.4).
- Generate ci ∼Uniform(0, ζ), where ζ denotes the proportion of censored observations.
- Set yi = min(y∗i , ci).
- Define a vector δ of dimension n which receives one if (y∗i ≤ ci) and zero otherwise.

The samples can be easily generated in R using the code rGOLLMax(n, µ, σ, ν) as shown in Appendix A.
For each of the 1, 000 simulations, the average estimates (AEs), biases and MSEs are calculated.

The results are reported in Tables (3.1-3.4) for the parametric and semiparametric models. Based on the
simulation results presented, our interest is in verifying how much the inclusion of an additive term affects
in the estimations of the other fixed parameters. For semiparametric model, we verify that the MSEs of
the MLEs of β21, β31, β20 and β30 for sub-scenario a, b, c and d decay toward zero when the sample size
n increases as far as the case with censored and uncensored values, as usually expected under first-order
asymptotic theory. The mean estimates of the parameters tend to be closer to the true parameter values
when n increases. However, for the parametric model, such measures do not exhibit the same behavior.

Table 3.1. The AEs, biases and MSEs for the GOLLMax (parametric and semiparametric) regression
models based on 1,000 simulations for sub-scenario a.

Semiparametric Parametric
n Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.199 -0.001 0.004 β21 0.115 -0.085 0.012
β31 -0.352 -0.002 0.012 β31 -0.388 -0.038 0.015

80 β02 0.239 -0.011 0.007 β02 0.300 0.050 0.113
β03 0.476 0.076 0.014 β03 0.134 -0.266 0.113

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.198 -0.002 0.001 β21 0.214 0.014 0.002
β31 -0.348 0.002 0.004 β31 -0.317 0.033 0.006

200 β02 0.221 -0.029 0.005 β02 0.250 0.000 0.040
β03 0.440 0.040 0.006 β03 0.171 -0.229 0.068

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.201 0.001 0.001 β21 0.207 0.007 0.001
β31 -0.350 0.000 0.002 β31 -0.359 -0.009 0.002

450 β02 0.216 -0.034 0.003 β02 0.258 0.008 0.018
β03 0.430 0.030 0.003 β03 0.180 -0.220 0.055

In relation to the behavior of the nonlinear effects in the simulations (sub-scenarios a, b, c and
d), in the Figures 3.5 displays the generated and fitted effects for the parametric and semiparametric
models. We also present in this figure the box-plots of the GD, AIC and BIC statistics obtained in
1,000 simulations for both models. We can note that the nonlinear effects are very close to the true
shape as shown in the Figure 3.4, when the sample size increases. Further, we can conclude that the
semiparametric model presents the lowest values of GD, AIC and BIC statistics, indicating that it is the
most suitable model for simulated data in the presence of non-linear effects.

In Table 3.5 we present a study the actual degrees of freedom of adjustment by cubic spline,
considering the same scenarios presented above. In this study it is found that when we have behaviors
like point cloud or slightly nonlinear as sub scenarios a and b the default df∗ = 3 gives good results
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Table 3.2. The AEs, biases and MSEs for the GOLLMax (parametric and semiparametric) regression
models based on 1,000 simulations for sub-scenario b.

Semiparametric Parametric
n Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.197 -0.003 0.006 β21 0.112 -0.088 0.015
β31 -0.355 -0.005 0.004 β31 -0.389 -0.039 0.019

80 β20 0.232 -0.018 0.003 β02 0.168 -0.082 0.036
β03 0.488 0.088 0.016 β03 0.222 -0.178 0.049

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.199 -0.001 0.002 β21 0.216 0.016 0.002
β31 -0.345 0.005 0.006 β31 -0.318 0.032 0.008

200 β02 0.218 -0.032 0.002 β02 0.155 -0.095 0.019
β03 0.447 0.047 0.005 β03 0.236 -0.164 0.033

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.200 0.000 0.001 β21 0.205 0.005 0.001
β31 -0.352 0.002 0.002 β31 -0.361 -0.011 0.003

450 β02 0.211 -0.039 0.002 β02 0.160 -0.090 0.013
β03 0.434 0.034 0.002 β03 0.245 -0.155 0.027

Table 3.3. The AEs, biases and MSEs for the GOLLMax (parametric and semiparametric) regression
models based on 1,000 simulations for sub-scenario c.

Semiparametric Parametric
n Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.186 -0.014 0.004 β21 0.240 0.040 0.006
β31 -0.366 -0.016 0.012 β31 -0.301 0.049 0.017

80 β20 0.233 -0.017 0.007 β02 0.553 0.303 0.356
β03 0.450 0.050 0.010 β03 -0.174 -0.574 0.419

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.197 -0.003 0.001 β21 0.192 -0.008 0.002
β31 -0.353 - 0.003 0.005 β31 -0.436 -0.086 0.013

200 β02 0.216 -0.034 0.006 β02 0.637 0.387 0.301
β03 0.416 0.016 0.004 β03 0.294 -0.694 0.531

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.200 0.000 0.001 β21 0.187 -0.013 0.001
β31 -0.361 -0.011 0.002 β31 -0.393 -0.043 0.004

450 β02 0.212 -0.038 0.004 β02 0.476 0.226 0.108
β03 0.406 0.006 0.002 β03 -0.172 -0.572 0.347

in smoothing the points. When relationships with sinusoidal forms such as c and d sub-scenarios exist,
higher degrees of freedom or the choice of another type of smoothing function may be required.

3.5 Applications

In this section, we provide two applications to real data to prove empirically the flexibility of
the GOLLMax semiparametric regression model. The computations are performed using the gamlss
package in R software. In the first application the modeling is performed for an uncensored data. In the
second application we consider modeling for censored data.
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Table 3.4. The AEs, biases and MSEs for the GOLLMax (parametric and semiparametric) regression
models based on 1,000 simulations for sub-scenario d.

Semiparametric Parametric
n Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.184 -0.016 0.006 β21 0.242 0.042 0.008
β31 -0.370 -0.020 0.014 β31 -0.316 0.034 0.019

80 β20 0.219 -0.031 0.004 β02 0.377 0.127 0.198
β03 0.457 0.057 0.010 β03 -0.072 -0.472 0.298

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.197 -0.003 0.002 β21 0.191 -0.009 0.002
β31 -0.354 0.004 0.005 β31 -0.437 -0.087 0.015

200 β02 0.205 -0.045 0.003 β02 0.481 0.231 0.183
β03 0.420 0.020 0.003 β03 -0.194 0.594 0.401

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.197 -0.003 0.001 β21 0.186 -0.014 0.001
β31 -0.363 -0.013 0.002 β31 -0.394 -0.044 0.005

450 β02 0.200 -0.050 0.003 β02 0.383 0.133 0.068
β03 0.408 0.008 0.001 β03 -0.011 -0.510 0.280
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Figure 3.5. The fitted GOLLMaxSemi regression model under scenarios a, b, c and d for n = 450. (a)
Fitted of the effect of x1 in µ parameter for scenario 1. (b) Fitted of the effect of x1 in µ parameter
for scenario 2. (c) Fitted of the effect of x1 in µ parameter for scenario 3. (d) Fitted of the effect of x1
in µ parameter for scenario 4. (e) Goodness-of-fit statistics measures for scenario 1. (f) Goodness-of-fit
statistics measures for scenario 2. (g) Goodness-of-fit statistics measures for scenario 3. (h) Goodness-
of-fit statistics measures for scenario 4.

3.5.1 Application 1: uncensored data

In the first application, we consider the relationship of two variables that are part of the data set
analyzed by Kelly et. al, (2012). In this study the authors propose the development of a tool to predict,
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Table 3.5. The λ estimates and average AIC measurement for GOLLMax semiparametric regression
models based on 1,000 simulations for sub-scenarios a, b, c and d.

sub-scenario a sub-scenario b sub-scenario c sub-scenario d
df∗ λ AIC λ AIC λ AIC λ AIC
0 - 824.30 - 647.63 - 649.23 - 545.17
1 0.191 750.27 0.197 591.95 0.183 569.28 0.195 481.12
2 0.038 740.15 0.038 579.63 0.037 515.49 0.038 434.69
3 0.012 739.95 0.012 579.17 0.011 492.58 0.012 412.22
4 0.004 740.47 0.004 579.75 0.004 486.22 0.002 403.32
5 0.002 741.10 0.002 580.46 0.002 484.91 0.001 403.26
6 0.001 741.73 0.001 581.18 0.001 484.94 0.001 403.68
7 0.001 742.37 0.001 581.90 0.001 485.36 0.000 404.25
8 0.000 742.99 0.000 582.61 0.000 485.90 0.000 404.79
9 0.000 743.62 0.000 583.32 0.000 486.48 0.000 405.37
10 0.000 744.22 0.000 584.02 0.000 487.07 0.000 405.52

in the preoperative period, the need for a patient to attend an extended care service after orthotopic
liver transplantation. As a way of illustrating the applicability of the model we propose, the variables
considered are: (y = BMI) and (x1 = age), respectively, of transplanted patients.

First, we present an exploratory and marginal analysis of the BMI data. The data set with
n = 777 observations. Table 3.6 provides the mean, median, standard deviation, skewness, kurtosis,
minimum and maximum measures. In this table, stands out the value in relation to the skewness these
suggest positively skewed distributions.

Table 3.6. Descriptive Statistics for the BMI data.

Mean Median SD Skewness Kurtosis Min. Max.
28.648 28.0 5.967 0.679 0.734 15.0 55.0

In this way, we consider in this analysis the proposed GOLLMax model and the particular
OLLMax case. We also consider for comparison the Weibull and normal models, which are frequently used
in data analysis. Figure 3.6a the adjusted curves of the density functions considered under the marginal
analysis of the response variable y are presented. As previously mentioned due to positive asymmetry
the normal model visually is not the most suitable. Figure 3.6b shows a box plot of the response variable
which indicates the presence of asymmetry and possible outliers. In Figure 3.6c displays the dispersion
observed y against x1 with fitted smooth curve.
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Figure 3.6. Plots for BMI data. (a) Histogram and estimated GOLLMax, OLLMax, Weibull and
normal densities. (b) Box-plot for response variable y. (c) Observed y against x1 with fitted smooth
curve.
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Further, we present results for the GOLLMax, OLLMax, Weibull and normal semiparametric
regression models by considering the following systematic structures as presented in Section 3.3:

GOLLMax
{
µi = exp{β10 + cs(x1i, df

∗)}, σ = exp{β20} and ν = exp{β30};

OLLMax
{
µi = exp{β10 + cs(x1i, df

∗)} and σ = exp{β20};

Weibull
{
µi = exp{β10 + cs(x1i, df

∗)} and σ = exp{β20};

Normal
{
µi = β10 + cs(x1i, df

∗) and σ = exp{β20}.

The values of the GD, AIC and BIC statistics and the effective degrees of freedom and estimate
for smoothing parameter, λ, of the fitted semiparametric regression models are listed in Table 3.7. Also
based on the likelihood ratio test between the GOLLMax and OLLMax models, for null hypotheses
H0 : ν = 1, the obtained test value is (w = 1.835) with (p-value = 0.175). In this case not reject the null
hypotheses and the particular model is the most indicated. By comparing these figures, we conclude that
the OLLMax semiparametric regression model outperforms the GOLLMax, Weibull and normal models
irrespective of the criteria and then the proposed regression model can be used effectively in the analysis
of these data.

Table 3.7. The GD, AIC, BIC, df , df∗ and λ̂ measurements for the GOLLMax, OLLMax, Weibull and
Normal semiparametric regression models for the BIM data.

Model GD AIC BIC df df∗ λ̂
GOLLMax 4904.09 4922.09 4963.99 9 5 0.0056
OLLMax 4905.93 4921.93 4959.17 8 5 0.0056
Weibull 5029.35 5045.35 5082.58 8 5 0.0060
Normal 4949.49 4963.48 4996.07 7 4 0.0121

In Figure 3.7 it is shown how the df∗ values were chosen. In this way, the λ is estimated
according to the choice of df∗ that minimizes the AIC measurement.
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Figure 3.7. Plots of the AIC versus df∗ for OLLMax model.

Table 3.8 lists the MLEs, SEs and p-values obtained from the fitted OLLMax semiparametric
regression model to the BMI data. This table reveals (at the 5% significance level), considering the
proposed systematic component, that the intercept related to the parameter of the term of the nonlinear
effects is significant. The coefficients of the nonlinear term is presented, however such values are not
interpretable.
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Table 3.8. MLEs of the parameters and SEs from the fitted OLLMax semiparametric regression model
to the BMI data.

Parameter Estimate SE p-value
β10 3.096 0.038 << 0.001

cs(x1, df
∗ = 5.0) 0.003 0.007 < 0.001

β20 0.876 0.030 -

We compute case-deletion measures LDi defined in subsection 3.3.2. The results of such in-
fluence measure index plots are displayed in Figure 3.8a. In Figure 3.8b shows the scatter plot with
possible influential points identified. They reveal that the observations ♯224, ♯618 and ♯685 are possible
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Figure 3.8. Plots for the fitted OLLMax semiparametric regression model to the BMI data. (a) Index
plot versus likelihood distance. (b) Observed y against x1 with influential points.

influential observations. In Table 3.9 gives the relative change (in percentage) of each estimate defined by
RCθj

= [(ω̂j − ω̂j(I))/ω̂j ]×100, and the corresponding p-value, where ω̂j(I) is the MLE of ωj after the
“set I” of observations being removed. Table 3.9 provides the following sets: I1 = {♯224}, I2 = {♯618}
and I3 = {♯685}.

Table 3.9. MLEs, p-values (in parentheses), and their relative changes [-RC- in %] for the corresponding
set.

Dropping None Set I1 Set I2 Set I3
3.096 3.090 3.102 3.146

β10 (<< 0.001) (<<0.001) (<<0.001) (<0.001)
- [0.161] [-0.193] [-1.614]

0.003 0.003 0.003 0.002
cs(x1, df

∗ = 5.0) (<0.001) (<0.001) (<0.001) (0.003)
- [0] [0] [33.33]

Based on the in Table 3.9, we note that the MLEs of the parameters of the OLLMax semipara-
metric regression model are robust to the deletion of influential observations. Moreover, the significance
of the estimates of the parameters does not change (at the 5% significance level) after removal of these
cases, that is, no changes inferential after removal of observations considered influential in the diagnostics
plots. Therefore, the observations are kept in the data set.

In Figure 3.9, we perform the residual analysis by plotting the quantile residuals rqi (see sub-
section 3.3.2) against the index of observations for the fitted OLLMax (Figure 3.9a), Weibull (Figure
3.9b) and Normal (Figure 3.9c) regression models. In Figure 3.9a, we note that all the observations are
included in the interval [−3, 3] except the cases ♯224, ♯618 and ♯685, and that the residuals appear to
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behave randomly. Then, there is no evidence that the model assumptions are inadequate. We can note
in Figures 3.9b and 3.9c there are many discrepant points.

(a) (b) (c)

0 200 400 600 800

−
2

0
2

4
6

Index

Q
u
a
n
ti
le

 r
e
s
id

u
a
ls

224

618
685

0 200 400 600 800

−
2

0
2

4
6

Index
Q

u
a
n
ti
le

 r
e
s
id

u
a
ls

128

214

224
306

557

618

661 675

685

739

0 200 400 600 800

−
2

0
2

4
6

Index

Q
u
a
n
ti
le

 r
e
s
id

u
a
ls

128

214 224
306 557

618

661

685

Figure 3.9. The index plot of the quantile residuals with range [−3, 3] for the fitted semiparametric
models to the BMI data. (a) OLLMax model. (b) Weibull model . (c) Normal model.

For OLLMax semiparametric regression model is displayed in Figure 3.10 the plots of the
quantile residuals and the envelope. This provides indications of the absence of discrepant observations
and that the OLLMax model is adequate for this analysis.
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Figure 3.10. Normal probability plot for the quantile residuals with envelope from the fitted OLLMax
semiparametric regression model to BMI data.

Figure 3.11a indicates that the BMI increases rapidly until the 40 year of age, and then remains
approximately constant from 40 to 60 years of age, declines for age > 60. Figure 3.11b gives six fitted
percentile curves q x 100 = (5, 25, 50, 75, 90, 97.5) for y versus the variables x1. Figure 3.11c exhibits the
functional form curve fitted by the OLLMax semiparametric regression model for the BMI data with some
conditional densities adjusted to different values of x1. We finish up that the OLLMax semiparametric
regression model can be chosen as the best model.

3.5.2 Application 2: censored data

In this application, we use the monoclonal gammopathy of undetermined significance (MGUS)
dataset included in the library suvival in R software. The plasma cells are responsible for manufacturing
immunoglobulins, an important part of the immune defense. At any given time there are estimated to
be about 106 different immunoglobulins in the circulation at any one time. When a patient has a plasma
cell malignancy the distribution will become dominated by a single isotype, the product of the malignant
clone, visible as a spike on a serum protein electrophoresis. Monoclonal gammopathy of undertermined
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Figure 3.11. The OLLMax semiparametric regression model fitted for the BMI data. (a) Fitted partial
effects of the x1 . (b) Fitted percentile curves for q x 100 = (5, 25, 50, 75, 90, 97.5) against x1. (c)
Smoothed scatterplot diagram which shows how the fitted conditional distribution of the response variable
BMI changes for different values of x1.

significance (MGUS) is the presence of such a spike, but in a patient with no evidence of overt malignancy
more details (see Kyle, 1993). The data frame has 241 observations, in this paper we consider the following
variables:

• yi: days from diagnosis to last follow-up;

• xi1: age in years at the detection of MGUS;

• xi2: size of the monoclonal protein spike at diagnosis;

• xi3: sex, a factor with level Male and reference Female,

where i = 1, . . . , 240 because the variable xi2 contains an NA that was omitted in this analysis.
First, we present an exploratory and marginal analysis of the data. In Figure 3.12a boxplot by

x3 is presented considering failure times, it is visually verified that there is similarity between sex. Figure
3.12b and c displays the dispersion plot between y and covariates x1 and x2, respectively.
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Figure 3.12. Plots for MGUS data. (a) Box plot by x3. (b) Observed y against x1 with fitted smooth
curve for uncensored values. (c) Observed y against x2 with fitted smooth curve for uncensored values.

We consider in a preliminary analysis only the times of survival and censoring without covari-
ates. The TTT-plot is displayed in Figure 3.13a, which indicates that the hrf associated with the data
set has a increscent shape. Therefore, of the GOLLMax, OLLMax and Weibull distributions can be con-
sidered to model these data. In Figure 3.13b displays the estimated survival functions of the GOLLMax,
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OLLMax and Weibull distributions and the empirical survival function. The Figure 3.13c displays the
estimated hrfs of the GOLLMax, OLLMax and Weibull distributions and the empirical hrf. It turns out
that the GOLLMax distribution provides a good fit to the current data for the response variable.

(a) (b) (c)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

N. failure = 224 N. censored = 16

r/n

G
(r

/n
)

0 2000 4000 6000 8000 12000
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time

S
u
vi

va
l f

u
n
ct

io
n

+

+
+

+

+

++

+

++

+

++
+
+

Empirical survival

GOLLMax

OLLMax

Weibull

0 5000 10000 15000

2
e
−

0
4

4
e
−

0
4

6
e
−

0
4

8
e
−

0
4

Time

H
a
za

rd
 f
u
n
ct

io
n

+ + + +
+ ++

+

++
+

++
++

Empirical hazard function

GOLLMax

OLLMax

Weibull

Figure 3.13. Plots for MGUS data. (a) TTT-plot for y. (b) Empirical survival function with the
estimated by GOLLMax, OLLMax and Weibull models. (c) Empirical hazard function with the estimated
by GOLLMax, OLLMax and Weibull models.

Following with the analysis we consider the three models with regression structure. Unlike
application 1 we have in this case two continuous covariates. Thus, to obtain the values of df∗ and λ we
adopted the following strategy:

i - For obtain df∗ and λ̂ with respect to x1 we consider x2 and x3 fixed with the following structure:µi =

exp{β10 + cs(x1i, df
∗) + β12x2i + β13x3i};

ii - For obtain df∗ and λ̂ with respect to x2 we consider x1 and x3 fixed with the following structure:µi =

exp{β10 + β11x1i + cs(x2i, df
∗) + β13x3i}.

Figure 3.14 it is shown how the df∗ values were chosen for GOLLMax semiparametric regression
model. According to the values presented in Figure 3.14a by regression structure (i) the model for variable
x1 can be considered linear, in agreement with the initial exploratory shown in Figure 3.12b. In Figure
3.14b by regression structure (ii) there is a minimum point indicating the need to use a smoothing function
for variable x2. The same procedure applies for OLLMax and Weibull models, respectively.
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Figure 3.14. Plots of the AIC versus df∗ for GOLLMax model for MGUS data. (a) For x1. (b) For x2.

Further, we present results for the GOLLMax, OLLMax and Weibull semiparametric regression
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models for censored data following systematic structures as presented in Section 3.3:

GOLLMax
{
µi = exp{β10 + β11x1i + cs(x2i, df

∗) + β13x3i}, σ = exp{β20} and ν = exp{β30};

OLLMax
{
µi = exp{β10 + β11x1i + cs(x2i, df

∗) + β13x3i} and σ = exp{β20};

Weibull
{
µi = exp{β10 + β11x1i + cs(x2i, df

∗) + β13x3i} and σ = exp{β20};

The values of the GD, AIC and BIC statistics and the effective degrees of freedom and estimate
for smoothing parameter, λ, of the fitted semiparametric regression models are listed in Table 3.10. Also
based on the likelihood ratio test between the GOLLMax and OLLMax models, for null hypotheses
H0 : ν = 1, the obtained test value is (w = 7.645) with (p-value = 0.005). In this case reject the null
hypotheses and the GOLLMax model is the most indicated. By comparing these figures, we conclude
that the GOLLMax semiparametric regression model outperforms the OLLMax and Weibull models
irrespective of the criteria. The proposed regression model can be used effectively in the analysis of these
data with censoring.

Table 3.10. The GD, AIC, BIC, df , df∗ and λ̂ measurements for the GOLLMax, OLLMax and Weibull
semiparametric regression models for the BIM data.

Model GD AIC BIC df df∗ λ̂
GOLLMax 4208.95 4230.95 4269.24 11 5 0.00095
OLLMax 4216.59 4236.59 4271.40 10 5 0.00098
Weibull 4226.56 4248.56 4286.86 11 6 0.00085

Table 3.11 lists the MLEs, SEs and p-values obtained from the fitted GOLLMax semiparametric
regression model to the MGUS data. This table reveals (at the 5% significance level), considering the
proposed systematic component, that the intercept related to the parameter of the term of the nonlinear
effects is significant. The coefficients of the linear term for variable x1 is significant. This indicates that
age has an effect on the life time of patients. Due to the linear decreasing trend, we have that as the age
of the patient increases at the time of diagnosis the lifetime decreases. The coefficients of the nonlinear
term is presented, however such values are not interpretable. In this set of variables considered, the
variable x3 (sex) also has no significant effect in relation to the lifetime of the patients under study.

Table 3.11. MLEs of the parameters and SEs from the fitted GOLLMax semiparametric regression
model to the BMI data.

Parameter Estimate SE p-value
β10 10.899 0.459 << 0.001
β11 -0.037 0.005 << 0.001

cs(x2, df
∗ = 5.0) 0.099 0.150 0.509

β13 -0.131 0.117 0.265
β20 -0.657 0.058 -
β30 -0.261 0.050 -

We compute case-deletion measures LDi defined in subsection 3.3.2. The results of such influ-
ence measure index plots are displayed in Figure 3.15a. In Figure 3.15b and c shows the scatter plot with
possible influential points identified for variables x1 and x2, respectively.

They reveal that the observations ♯14 and♯90 are possible influential observations. In Table 3.12
gives the relative change (in percentage) of each estimate defined by RCθj

= [(ω̂j − ω̂j(I))/ω̂j ]×100,
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Figure 3.15. Plots for the fitted OLLMax semiparametric regression model to the BMI data. (a) Index
plot versus likelihood distance. (b) Observed y against x1 with influential points. (c) Observed y against
x2 with influential points.

and the corresponding p-value, where ω̂j(I) is the MLE of ωj after the “set I” of observations being
removed. Table 3.9 provides the following sets: I1 = {♯14} and I2 = {♯90}.

Table 3.12. MLEs, p-values (in parentheses), and their relative changes [-RC- in %] for the corresponding
set.

Dropping None Set I1 Set I2
10.899 11.011 10.798

β10 (<< 0.001) (<<0.001) (<<0.001)
- [-1.027] [0.917]

-0.037 -0.039 -0.037
β11 (<< 0.001) (<<0.001) (<<0.001)

- [-8.108] [0]
0.099 0.094 0.106

cs(x1, df
∗ = 5.0) (0.509) (0.520) ( 0.497)

- [5.050] [-7.070]
-0.131 -0.156 -0.145

β13 (0.265) (0.173) (0.222)
- [-19.847] [-11.450]

Based on the in Table 3.12, we note that the MLEs of the parameters of the GOLLMax semipara-
metric regression model are robust to the deletion of influential observations. Moreover, the significance
of the estimates of the parameters does not change (at the 5% significance level) after removal of these
cases.

In Figure 3.16, we perform the residual analysis by plotting the quantile residuals rqi (see
subsection 3.3.2) against the index of observations for the fitted GOLLMax (Figure 3.16a), OLLMax
(Figure 3.16b) and Weibull (Figure 3.16c) semiparametric regression models. In Figure 3.16a, we note
that all the observations are included in the interval [−3, 3] except the cases ♯79 and ♯135, and that
the residuals appear to behave randomly. Then, there is no evidence that the model assumptions are
inadequate. We can note in Figures 3.16b and 3.16c there are some discrepant points.

Figure 3.17 shows the plots of the quantile residuals and the simulated envelope for GOLLMax
semiparametric regression model. This provides indications of the absence of discrepant observations and
that the GOLLMax model is adequate for this analysis.

The partial effects for the covariates in relation to the systematic structures are displayed
in Figures 3.18. In Figure 3.18a, we present the effect of the term linear for variable x1, as we have
already interpreted before, when the age of the patient is elevated at the moment of diagnosis the lifetime
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Figure 3.16. Plots of the index versus quantile residuals for MGUS data. (a) GOLLMax model. (b)
OLLMax model . (c) Weibull model.
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Figure 3.17. Normal probability plot for the quantile residuals with envelope from the fitted GOLLMax
semiparametric regression model to MGUS data.

decreases. Figure 3.18b indicates that for monoclonal protein spike measurements between approximately
0.5 and 1 there is a growing linear trend in lifetime. For values between 1 and 2.6 the lifetime it remains
constant and from 2.6 there is a linear decreasing trend in the lifetime.
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Figure 3.18. The GOLLMax semiparametric regression model fitted for the MGUS data. (a) Fitted
partial effects of the x1. (b) Fitted partial effects of the x2.

3.6 Concluding Remarks

The generalized odd log-logistic Maxwell semiparametric regression model provides a flexible
regression model for a dependent real outcome. It’s defined a GOLLMax regression model with systematic
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components based on the new distribution, which is very suitable for modeling censored and uncensored
data. Procedures for fitting the semiparametric GOLLMax regression model and for model diagnostics
are included in the gamlss package and available from the authors. Two real data sets are used to
illustrate the importance of the semiparametric GOLLMax regression model, considering censored and
uncensored data.
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4 ZERO ADJUSTED GENERALIZED ODD LOG-LOGISTIC MAXWELL
SEMIPARAMETRIC REGRESSION MODEL

Abstract: In various applications, it is common to find data with the presence of bimodal-
ity, heteroskedasticity, zero-inflation and covariables with linear and nonlinear effects in relation to
the response variable. Therefore, the objective of this chapter is to propose a regression model able
to model data in the presence of all these problems. We use the maximum likelihood method to
estimate the parameters of the proposed regression model. For different fixed parameters, sample
sizes and percentages of zeros, we perform various simulations to assess the behavior of the estima-
tors. Additionally, we develop an analysis of the residuals based on the residual quantile approach
to evaluate the assumptions of the proposed model. Finally, the model is illustrated using data from
an experiment conducted to assess the soil microbiology in a sugarcane field.
Keywords: Data analysis; Maxwell distribution; Maximum likelihood estimation; Variation of soil
microbiological data; Zero adjusted.

4.1 Introduction

Regression analysis is a commonly used statistical technique applied in many scientific fields.
The linear regression model with normal distribution is generally used to model data having symmetric
distribution. However, various phenomena cannot always be modeled with the normal distribution, be it
for the lack of symmetry, the existence of bimodality or the presence of atypical values.

In past decades, when the phenomenon of interest did not satisfy the assumption of normality
of the response variable, some type of transformation was applied at least to obtain symmetric behavior
of the data. However, recently it has become more attractive to propose new regression models to model
different types of data.

For example, in the area of microbiology, various phenomena are observed where the data
are not normally distributed or have other problems, such as asymmetry, non-constant variance (het-
eroskedasticity) or bimodality.

Regression models have permitted understanding many aspects of the interaction of soil with
crops and climate factors. In particular, the use of molecular tools has enabled identifying components
of previously unknown microbial communities, increasing the range of information regarding soil quality
(Lambais et al. 2005 and Andreote et al. 2017). However, many of the datasets generated by application of
molecular techniques, such as terminal restriction fragment length polymorphism (T-RFLP), have peculiar
distributions. Each dataset obtained is a reflection of the heterogeneity of the soil where the sample was
collected. In Brazil, molecular analytic techniques have attracted particular attention in the sugar-alcohol
sector, aiming to reduce the traditional application of mineral fertilizers to grow sugarcane, and instead
use microbiota from the soil with application of organic matter. One of these alternatives (Gurdeep and
Reddy, 2015, Estrada-Bonilla et al. 2017 and Soltangheisi et al. 2019) is to use microorganisms that can
enhance the availability to plants of nutrients, especially phosphorus. However, the results obtained by
experiments in this respect are hard to interpret due to limitations in the use of statistical techniques.

An experiment was recently conducted by the Department of Soil Science of the Luiz de Queiroz
College of Agriculture of the University of São Paulo employing a molecular approach in field conditions.
The objective of this study is to discover which factors positively or negatively influence the biological
response of the soil to the different treatments applied in that experiment, by applying a regression model
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to that set of microbiological data able to reflect as closely as possible the productive gain observed in
the field.

In this study, the response variable (Y ) is the terminal restriction fragment length polymorphism
(T-RFLP) and the covariables or explanatory variables are, for example, the abundance of the gene that
encodes the 16S RNAr subunit (for bacteria). The region ITS corresponds to the group of total fungi
in the soil, and the gene phoD, which encodes the enzyme alkaline phosphatase. We also consider as
covariables the treatments applied in the experiment. The description of these variables is presented in
the section 4.6.

According to the descriptive analysis of the response variable (y=T-RFLP), we have the following
observations:

• Possible presence of bimodality in the dataset according to the distribution of Y (Figure 4.1a).

• High percentage of zeros in the response variable (Figures 4.1b and 4.1c).

• Presence of heterogeneity and nonlinear behavior of the covariables (x1 = 16S RNAr , x2 = ITS and
x3 = phoD) and the response variable Y (Figures, 4.2a, 4.2b and 4.2c).
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Figure 4.1. Plots of the microbiological data. (a) Histogram with empirical density for y without the
zeros. (b) Histogram as for y with the zeros. (c) Empirical distribution for y with zeros .
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Based on the characteristics observed in the set of microbiological data (Figures 4.1 and 4.2),
we propose the following new models:
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• First we propose a new distribution, called generalized odd log-logistic Maxwell (GOLLMax), based
on the Maxwell distribution.

• Based on the GOLLMax distribution, we propose the zero adjusted generalized odd log-logistic
Maxwell model (ZAGOLLMax) to model the excess of zeros.

• Then we propose regression models based on the ZAGOLLMax model considering two systematic
components, where one of these components models the presence of heterogeneity in the data.

• Finally, we propose a semiparametric zero-inflated regression model with the objective of modeling
the nonlinear effect, based on the ZAGOLLMax distribution.

After fitting the model, it is important to check the model assumptions and conduct robustness
studies to detect possible influential or extreme observations that can cause distortions on the results of
the analysis. In this chapter, we discuss the diagnostic influence of the ith observation on the parameter
estimates by removing it from the analysis.We propose diagnostic measures based on case-deletion for the
ZAGOLLMax semiparametric regression model in order to determine which subject might be influential
in the analysis.

The assessment of the fitted model is an important part of data analysis, particularly in regres-
sion models, and residual analysis is a helpful tool to validate the fitted model. Examination of residuals
can be used, for instance, to detect the presence of outlying observations, the absence of components
in the systematic part of the model and departures from the error and variance assumptions. In this
chapter, we proposed a residual quantile for the ZAGOLLMax semiparametric regression model whose
empirical distribution is close to normality.

The plan of the following sections of the chapter are as follows. Section 4.2 is dedicated to
model formulation. In Section 4.3, the ZAGOLLMax semiparametric regression models are presented as
well as some inferential results. A simulation study is presented for the ZAGOLLMax semiparametric
regression model in Section 4.5. In Section 4.4 we discuss the diagnostic and residuals for the ZAGOLL-
Max semiparametric regression model. Results of an application to a real data set are reported in Section
4.6. In Section 4.7, we end up with some general remarks.

4.2 Model formulation

A random variable Y has the GOLLMax distribution if its cumulative distribution function
(cdf) and probability density function (pdf) are (for y > 0)

H(y; ν, σ, µ) =
γν σ
1 (3/2, y2/µ2)

γνσ1 (3/2, y2/µ2) + [1− γσ1 (3/2, y
2/µ2)]

ν . (4.1)

and

h(y; ν, σ, µ) =
4 ν σ y2√
π µ3

exp
(
− y

2

µ2

)
γνσ−1
1 (3/2, y2/µ2)

[
1− γσ1 (3/2, y

2/µ2)
]ν−1

{γνσ1 (3/2, y2/µ2) + [1− γσ1 (3/2, y
2/µ2)]

ν}2
, (4.2)

respectively, where ν > 0 and σ > 0 are two extra shape parameters and µ > 0 is scale parameter.
Henceforth, if Y is a random variable with cdf (4.1), we write Y ∼GOLLMax(ν, σ, µ).
The GOLLMax distribution can be simulated by inverting (4.1). The quantile function (qf) of

Y , is given

y = QMax




(
u

1−u

) 1
ν

1 +
(

u
1−u

) 1
ν


1
σ
 , (4.3)
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where QMax(u) = G−1(µ;u) is the qf of the Maxwell distribution.
There are situations where continuous data can include a high percentage of zeros. In these

situations, continuous distributions can not be used, in this research we will assume that the continuous
component is described by the GOLLMax distribution, since this model is very flexible to describe the
behavior of the phenomenon under study. Meanwhile, the discrete component (mass point) will be
described by means of a degenerate distribution at zero point. According to Heller et al. (2006), Ospina
and Ferrari (2012) and Hashimoto et al. (2018), data that contain excessive zeros can be analyzed by a
mixture of two distributions: a continuous distribution defined by the pdf h(y) (with positive support) and
cdf H(y) and a degenerate distribution at zero, i.e. a model whose mixed discrete-continuous probability
and distribution functions. Thus we introduce the zero adjusted generalized odd log-logistic Maxwell
(ZAGOLLMax) model defined by mixed discrete-continuous probability and distribution functions are

f(y;µ, σ, ν, τ) =


τ if y = 0,

(1−τ) 4 ν σ y2

√
π µ3 exp

(
− y2

µ2

)
γνσ−1
1 (3/2,y2/µ2)[1−γσ

1 (3/2,y2/µ2)]
ν−1

{γνσ
1 (3/2,y2/µ2)+[1−γσ

1 (3/2,y2/µ2)]
ν}2 if y > 0,

(4.4)

and

F (y) = I{y=0}(y) τ + I{y>0}
(1− τ) γν σ

1 (3/2, y2/µ2)

γνσ1 (3/2, y2/µ2) + [1− γσ1 (3/2, y
2/µ2)]

ν (4.5)

respectively and we use the indicator function IA(y) is one if y ∈ A and zero if y ∈ A.
Some plots of the ZAGOLLMax pdf for selected parameter values are displayed in Figure 4.3.

A characteristic of the distribution is that its pdf can be unimodal, bimodal, among others, depending
basically on the parameter values.
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Figure 4.3. Plots of the ZAGOLLMax density for some parameter values. (a) For different values of
the ν and τ with µ = 0.15 and σ = 3.45 (b) For different values of the τ with µ = 0.30, σ = 1.00 and
ν = 2.00. (c) For different values of the µ with σ = 3.45, ν = 1.45 and τ = 0.50.

4.3 The ZAGOLLMax semiparametric regression model

In many practical applications, the response variable Y can be influenced by explanatory vari-
ables. In this work we consider that these covariables may have linear and nonlinear effects in relation
to the response variable. Therefore, to study the effect of these explanatory variables on the response



59

variable and the shape parameters, we can consider a regression model, where the response variable has
the GOLLMax distribution given by (4.5). Let θ = (µ, σ, ν, τ)T denote the parameter vector of this
density. Further, let θi = (µi, σi, νi, τi)

T be a parameter vector related to the ith response variable. We
consider that the independent observations yi conditional on θi (for i = 1, . . . , n) has pdf f(yi;θi).

Therefore we will define the ZAGOLLMax semiparametric regression model regression models.
We define the semiparametric systematic component

θ =


µ

σ

ν

τ

 =


g1

(
X1β1 +

∑J1

j=1 hj1(xj1)
)

g2

(
X2β2 +

∑J2

j=2 hj2(xj2)
)

g3

(
X3β3 +

∑J3

j=3 hj3(xj3)
)

g3

(
X4β4 +

∑J4

j=4 hj4(xj4)
)

 , (4.6)

where hjk(xjk) are smooth functions of the covariables xjk for k = 1, . . . , 4 and j = 1, . . . , Jk. In this
chapter, the approximation of hjk(·) is by cubic spline. In the gamlss package of the R software, such
smoothing functions are expressed as random effects, i.e. hjk(·) = Zjγj , where Zj is the (n× qj) known
basis design matrix and γj is the qj-dimensional unknown vector of parameters.

We shall consider the logarithmic link function for gk(·) (k = 1, 2 and 3) and the logit link
function for g4(·). However, in this work we assume a systematic regression structure, only in the µi and
τi parameters, considering for σi, log(σi) = β02 and νi, log(νi) = β03 constants, respectively. Thus, the
follow systematic components are given by

log(µi) = X1β1 +

J1∑
j=1

hj1(xj1), and logit(τi) = X4β4 +

J4∑
j=1

hj4(xj4), (4.7)

reversing these functions we directly recover µi and τi as follows

µi = exp
(

X1β1 +

J1∑
j=1

hj1(xj1)
)
, and τi =

exp
(

X4β4 +
∑J4

j=4 hj4(xj4)
)

1 + exp
(

X4β4 +
∑J4

j=4 hj4(xj4)
) ,

for i = 1, . . . , n.
For the semiparametric model with structure by (4.7), the fixed and random effects θ =

(ν, σ,βT
1 ,β

T
2 )

T and η, respectively, are estimated by maximizing the penalized log-likelihood function

l(ω) = r log
(
4 ν σ√
π

)
+
∑

i:yi=0

log(τi) +
∑

i:yi>0

log(1− τi) +
∑

i:yi>0

log
(
y2i
µ3
i

)
−
∑
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(
yi
µi

)2

+

(ν σ − 1)
∑

i:yi>0

log
[
γ1(3/2, y

2
i /µ

2
i )
]
+ (ν − 1)

∑
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log
[
1− γσ1 (3/2, y

2
i /µ

2
i )
]
−

2
∑

i:yi>0

log
{
γν σ
1 (3/2, y2i /µ

2
i ) + [1− γσ1 (3/2, y

2
i /µ

2
i )]

ν
}
− 1

2

J∑
j=1

λjη
T
j Pjη

T
j , (4.8)

λj is the unknown smoothing parameter and Pj is a symmetric matrix that may depend on a vector
of smoothing parameters and chosen number of knots. The solution of (4.8) corresponds to the cubic
smoothing spline with equidistant knots for distinct x-variable values (see more details in Green and
Silverman, 1993, Ruppert, et al. 2003 and Wood, 2017). Another measure of interest are the effective
degrees of freedom, df∗, relative to the non-parametric component. The smoothing parameters can be
fixed or estimated from the data. Some methods are proposed in the literature, for example, by the
generalized cross-validation method (see Wood, 2017). However, in this work, we consider in simulations
and applications the default df∗ = 3.
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The proposed model ZAGOLLMax was implemented numerically in the structure gamlss pack-
age in R software. The functions used are presented in Appendix B. We use the maximization by RS
algorithm described by Stasinopoulos and Rigby (2007) and Stasinopoulos et al. (2017). The cs() func-
tion is used to assign the arguments to make the adjustment via gamlss. Thus, in Section 4.6, the cs(·)
function is denoted by cs(xjk, df

∗ = 3). The effective degree of freedom for structure of the regression in
µ considering an explanatory variable x, for example, is given by dfµ = df∗+2 where other two additional
degrees of freedom are in relation to the linear terms (see Voudouris et al. (2012)). Finally, we have
that the total freedom degree of the adjusted model, represented by df , collectively considers the additive
terms and the parametric terms, i.e, df = dfµ + dfσ + dfν + dfτ , which are the freedom degrees used to
model µ, σ, ν and τ , respectively.

4.4 Checking model

The selection of the appropriate distribution is performed in two steps, the adjustment phase
considering the marginal analysis (only response variable) and modeling with regression structure (con-
sidering the complete model), according to the chosen model, we proceed to the diagnostic step. In the
first step, we use the global deviance (GD), Akaike Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC). The GD is given by GD = −2 l(θ̂), where lp(θ̂) is the total log-likelihood function
and the AIC and BIC criterion are obtained by AIC = GD+ 2 df and AIC = GD+ log(n) df , where df
is the total effective degrees of freedom of the fitted model. The model with the smallest values of these
criteria is then selected.

In the diagnostic step, the model assumptions and the presence of outlying observations are
checked. We can use the diagnostic tools in the gamlss package. Some of the diagnostic techniques used
in this work are described below. We will consider the normalized randomized quantile residuals (Dunn
and Smyth, 1996). These residuals are determined by r̂i = Φ−1(ûi), where Φ−1(·) is the inverse cdf of the
standard normal distribution. We have that ûi is a random variable with uniform distribution in interval
(ai, bi], where ai = F̂ (yi − 1|θ̂) and bi = F̂ (yi|θ̂) are the fitted distribution function (4.5). Considering
that the model was specified correctly, these residues will have standard normal distribution. That said,
several usual diagnostic techniques can be performed to verify the model.

We also use Worm Plots (WP) as the technique to check the adjustment quality. Worm plots
of the residuals were introduced by Buuren and Fredriks (2001). The general idea of these plots is to
identify regions (intervals) of an explanatory variable within which the model does not fit adequately
the data. The WP is a detrended normal QQ-plot of the residuals. Model inadequacy is indicated
when many points plotted lie outside the pointwise 95% confidence bands or when the points follow a
systematic shape. For example, the interpretations of the shapes of the WP are: a vertical shift, a slope,
a parabola or an S shape, thus indicating a misfit in the mean, variance, skewness and excess kurtosis of
the residuals, respectively.

For the verification of the ability of the model to reproduce the current data, we construct
simulated envelopes considering the complete model (Atkinson, 1985), only the continuous component and
only the discrete part of the regression model. In this way, these envelopes help in a better interpretation
of the normal probability graph with based in the residues.

Similar to the complete model the envelopes for the continuous component are constructed
simulating values of the model (4.1), the residues are obtained by fitting the model (4.7). For the discrete
component we consider a binary variable in which it receives the value 1 if yi = 0 and 0 if yi > 0, the
residues are obtained considering the steps above with the binomial model.



61

4.5 Simulation study for ZAGOLLMax semiparametric regression model

In this section, we examine the performance of the ZAGOLLMax semiparametric regression
model by means of a Monte Carlo simulation study under two scenarios. Various simulations are con-
ducted for different sample sizes (n = 200, 400, 900) using the R software with gamlss packages by RS
method.

In this study we present and compare the results, adjusting the proposed GOLLMax model
(parametric and semiparametric ). The following three scenarios with regression structure (4.7) are
presented:

• In the first scenario, we consider the following structure for regression model with parameter
µi = exp {h11(xi1) + β21xi2 + β31xi3}, where h11(xi1) = 0.45[sin(π xi1)] with the functional shape
presented in Figure 4.4a, σ = exp {β02}, ν = exp {β03} and τi = logit {β04 + β14xi1}. The values
associated to the coefficients are: β21 = 0.20, β31 = −0.35, β03 = 0.45, β04 = 1.20, β04 = −0.95 and
β14 = 0.30, with a percentage of zeros approximately 0.35.

• In the second scenario, we consider the following structure for regression model with parameter µi =

exp {h11(xi1) + β21xi2 + β31xi3}, where h11(xi1) = sin(xi1) with the functional shape presented in
Figure 4.4b, σ = exp {β02}, ν = exp {β03} and τi = logit {β04 + β14xi1}. The values associated to
the coefficients are: β21 = 0.20, β31 = −0.35, β02 = 0.45, β03 = 1.20, β04 = −0.65 and β14 = 1.30,
with a percentage of zeros approximately 0.70.

• In the third scenario, we consider the idea presented in Ramires et al. (2018) for nonlinear effects in
regression models with long-term survival. Thus, the following structure for regression model with
parameter µi = exp {h11(xi1) + β21xi2 + β31xi3}, where h11(xi1) = sin(xi1) with the functional
shape presented in Figure 4.4b, σ = exp {β02}, ν = exp {β03} and structure of the regression model
for parameter τi = logit {h14(xi4)} with the functional shape presented in Figure 4.4c. For each
level of xi4, it was generated a sample size of length ni, so that n =

∑10
i=1 ni. The fixed values of

τ , for each value of the x4, are given in Table 4.5, associated to the coefficients are: β21 = 0.20,
β31 = −0.35, β02 = 0.45, β03 = 1.20, β04 = −0.65 and β14 = 1.30, with a percentage of zeros
approximately 0.70.

Table 4.1. Fixed values of the τ parameter of each level of the xi4 explanatory variable.
τ 0.20 0.25 0.35 0.40 0.45 0.45 0.40 0.35 0.25 0.20
x4 1 2 3 4 5 6 7 8 9 10

We assume that the explanatory variables for the two scenarios are xi1 ∼ Uniform(0, 2.5),
xi2 ∼ Normal(0, 5.50) and xi3 ∼ Uniform(0, 1), respectively, for i = 1, . . . , n.

To generate the random values of the proposed model with zero proportion, we present a brief
script:

i. Generate the vector of proportions by p ∼ U(0, 1) of size n.

ii. Create a function W = F (q, µ = µ[i], σ = σ[i], ν = ν[i], τ = τ [i]) − p[i], where q is the quantil
evaluated in the distribution function (4.3) and p is the probability to be assessed by the qf.

iii. Make the condition to choose the zeros and the continuous values
- if (τ [i] >= p[i]) q[i] = 0
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- else uniroot(W, c(lower[i], upper[i]))$root
- if (q[i] >= upper[i]) warning(”q is at the upper limit, increase the upper.limit”).

iv. Thus, y = q where y ∼ ZAGOLLMax(µi, σ, ν, τi).

The samples can be generated in R using the code rZAGOLLMax(n, µ, σ, ν, τ).
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Figure 4.4. Plots of the simulation values. (a) Nonlinear effect for scenario 1. (b) Nonlinear effect for
scenarios 2 and 3. (c) Nonlinear effect for scenario 3.

For each of the 1, 000 simulations, the average estimates (AEs), biases and mean square errors
(MSEs) are calculated. The results are reported in Tables 4.2, 4.3 and 4.4 for the parametric and
semiparametric models. Based on the simulation results in Tables 4.2, 4.3 and 4.4, we are interested
in verifying how much the inclusion of an additive term affects in the estimations of the other fixed
parameters. For semiparametric model, we verify that the MSEs of the maximum likelihood estimates
(MLEs) of β21, β31, β02, β03, β04 and β14 for scenario 1, 2 and 3 decay towards zero when the sample
size n increases, as usually expected under first-order asymptotic theory. The mean estimates of the
parameters tend to be closer to the true parameter values when n increases. However, for the parametric
model, such measures do not exhibit the same behavior.

In relation to the behavior of the nonlinear effects in the simulations (scenarios 1, 2 and 3), the
Figures 4.5, 4.6 and 4.7 display the generated and fitted effects for the parametric and semiparametric
models. We also present in this figure the box-plots of the GD, AIC and BIC statistics obtained in
1,000 simulations for both models. We can note that the nonlinear effects are very close to the true
shape as shown in the Figure 4.4, when the sample size increases. Further, we can conclude that the
semiparametric model presents the lowest values of GD, AIC and BIC statistics, indicating that it is the
most suitable model for simulated data in the presence of non-linear effects.

4.6 Data analysis

The set of microbiological data was obtained from an experiment conducted in field conditions
in the municipality of Novo Horizonte, state of São Paulo, Brazil (21º29’42”S - 49º11’23”W; altitude of
462 meters).

Agricultural experiments conducted under field conditions generally adopt a randomized block
design with the purpose of reducing the effects of environmental heterogeneity. In this respect, the
experiment was conducted in a randomized block design with four repetitions, where the sugarcane
cultivar CTC 24 was used. Each treatment consisted of seven rows of plants, spaced 1.5 meters apart, with
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Table 4.2. The AEs, biases and MSEs for the parametric and semiparametric ZAGOLLMax regression
models based on 1,000 simulations for scenario 1.

Semiparametric Parametric
n Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.199 -0.001 0.001 β21 0.199 -0.001 0.002
β31 -0.364 -0.014 0.002 β31 -0.439 -0.089 0.012

200 β02 0.417 -0.033 0.001 β02 0.898 0.448 0.281
β03 1.118 -0.082 0.010 β03 -0.088 -1.282 1.674
β04 -0.957 -0.007 0.076 β04 -0.957 -0.007 0.076
β14 0.300 0.000 0.040 β14 0.300 0.000 0.040

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.206 0.006 0.000 β21 0.202 0.002 0.001
β31 -0.366 0.016 0.001 β31 -0.354 -0.004 0.002

400 β02 0.416 -0.034 0.001 β02 1.440 0.990 1.036
β03 1.089 -0.111 0.014 β03 -0.430 -1.673 2.673
β04 -0.939 0.011 0.048 β04 -0.939 0.048 0.048
β14 0.293 -0.007 0.021 β14 0.293 0.021 0.021

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.202 0.002 0.000 β21 0.187 -0.013 0.001
β31 -0.346 0.004 0.000 β31 -0.339 0.011 0.001

900 β02 0.417 -0.033 0.001 β02 1.005 0.555 0.327
β03 1.095 0.105 0.012 β03 -0.176 -1.376 0.900
β04 -0.948 0.002 0.021 β04 -0.948 0.002 0.021
β14 0.294 -0.006 0.010 β14 0.294 -0.006 0.010

Table 4.3. The AEs, biases and MSEs for the parametric and semiparametric ZAGOLLMax regression
models based on 1,000 simulations for scenario 2.

Semiparametric Parametric
n Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.204 0.004 0.001 β21 0.211 0.011 0.002
β31 -0.351 -0.001 0.003 β31 -0.309 0.041 0.007

200 β20 0.433 -0.017 0.001 β02 0.335 -0.115 0.018
β03 1.293 0.093 0.020 β03 0.848 -0.352 0.139
β04 -0.660 -0.010 0.113 β04 -0.660 -0.010 0.113
β14 1.321 0.021 0.083 β14 1.321 0.021 0.083

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.199 -0.001 0.000 β21 0.217 0.017 0.001
β31 -0.349 0.001 0.001 β31 -0.364 -0.014 0.003

400 β02 0.426 -0.024 0.001 β02 0.315 -0.135 0.022
β03 1.245 0.045 0.008 β03 0.781 -0.419 0.183
β04 -0.664 -0.014 0.047 β04 -0.664 -0.014 0.047
β14 1.316 0.016 0.033 β14 1.316 0.016 0.033

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.200 0.000 0.000 β21 0.207 0.007 0.000
β31 -0.350 0.000 0.001 β31 -0.336 0.014 0.001

900 β02 0.424 -0.026 0.001 β02 0.301 -0.149 0.027
β03 1.224 0.024 0.003 β03 0.768 -0.432 0.192
β04 -0.662 -0.012 0.020 β04 -0.662 -0.012 0.020
β14 1.314 0.014 0.015 β14 1.314 0.014 0.015

a length of 20 m, resulting in an area of 30m². Therefore, the area of each treatment was approximately
210m². In this study, we consider data from four blocks, each containing seven treatments.

Therefore, three types of compost were assessed (non-enriched compost, compost enriched with



64

Table 4.4. The AEs, biases and MSEs for the parametric and semiparametric ZAGOLLMax regression
models based on 1,000 simulations for scenario 3.

Semiparametric Parametric
n Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.202 0.002 0.001 β21 0.222 0.022 0.00’
β31 -0.350 0.000 0.001 β31 -0.350 0.000 0.002

200 β20 0.426 -0.024 0.001 β02 0.330 -0.120 0.069
β03 1.244 0.044 0.007 β03 0.589 -0.611 0.388

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.198 -0.002 0.000 β21 0.187 0.013 0.001
β31 -0.353 0.003 0.001 β31 -0.423 -0.073 0.007

400 β02 0.425 -0.025 0.001 β02 1.446 0.996 1.546
β03 1.227 0.027 0.003 β03 0.004 -1.196 1.551

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.201 0.001 0.000 β21 0.195 -0.005 0.000
β31 -0.348 0.002 0.000 β31 -0.350 0.000 0.001

900 β02 0.424 -0.026 0.001 β02 1.288 0.838 0.832
β03 1.219 0.019 0.001 β03 0.077 -1.123 1.291
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Figure 4.5. The fitted ZAGOLLMax semiparametric and parametric regression model and box plots
for GD, AIC and BIC measures for scenario 1, with the black line is the mean of the fitted values. (a)
n=200. (b) n=400. (c) n=900.

apatite and compost enriched with phosphorite). These composts were or were not inoculated in the field
with phosphate solubilizing bacteria, for a total of 6 treatments. Finally, one additional treatment was
established, where the plants only received the mineral fertilizer commonly used in conventional large-
scale sugarcane crops, including phosphorus in the form of triple superphosphate, summing up seven
treatments in all (Table 4.5).
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Figure 4.6. The fitted ZAGOLLMax semiparametric and parametric regression model and box plots
for GD, AIC and BIC measures for scenario 2, with the black line is the mean of the fitted values. (a)
n=200. (b) n=400. (c) n=900.

The soil samples were collected at six and 12 months after planting, corresponding to the first
cycle of sugarcane growth. Therefore, we consider the factor period in the analysis of the data.

Table 4.5 presents the description of the study treatments:

Table 4.5. Description of treatments.

Treatments Description Inoculation with PSB 1 ACA (tons.ha−1)
Treat 1 Mineral (Control) - -
Treat 2 Compost Without 19,00
Treat 3 Compost With 19,00
Treat 4 Compost with apatite With 9,75
Treat 5 Compost with apatite Without 9,75
Treat 6 Compost with phosphorite Without 9,75
Treat 7 Compost with phosphorite With 9,75

1Phosphate solubilizing bacteria.
2Amount of compost applied in (tons.ha−1).

Here we provide a brief description of the response variable (y=T-RFLP). After collection, the
soil samples were stored at -80°C for subsequent extraction of total DNA. To ascertain the structure of the
fungal community, the terminal restriction fragment length polymorphism technique was used (y). In this
technique, aliquots of the extracted DNA are submitted to amplification of specific fragments by poly-
merase chain reaction (PCR). The primers used were ITS1 (5’-CTTGGTCATTTAGAGGAAGTAA-3’)
marked with 5-carboxyfluorescein(5-FAM) (Gardes and Bruns, 1993) and ITS4 (5’-TCCTCCGCTTATTG
ATATC-3’) (White et al. 1990). At the end of the amplification, the samples were sequenced, generating
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Figure 4.7. The fitted ZAGOLLMax semiparametric and parametric regression model and box plots
for GD, AIC and BIC measures for scenario 3, with the black line is the mean of the fitted values. (a)
n=200. (b) n=400. (c) n=900.

an electropherogram, from which the peak areas were used to compose the data matrix employed in
this study. A cutoff line of 50 fluorescence units was applied to avoid background noise (such as noise
generated by the equipment). With these results, a profile was obtained with varied peaks, also called
restriction fragments T-RFs (Liesack and Dunfield, 2004). The profile T-RFs differentiates between the
samples, which may or may not be present, so that there is greater or lesser prevalence in the proportion
of zeros.

Besides the structure of the fungal community, the following variables were quantified:

• Abundance of bacterial genes (x1 = 16S RNAr). The genes 16S RNAr were quanitied by using the
primers Eub338 (5’ - CCTACG GGA GGC AGC AG-3’) (Muyzer et al. 1993) and Eub518 (5’ -
ATTACC GCG GCT GCT GG - 3’) (Muyzer et al. 1993), generating a fragment of 193 base pairs
for bacteria.

• The total fungi (x2 = ITS) were obtained from specific fragments for each ITS region. To obtain
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the data, the primers used were ITS1f (5’-CTTGGTCATTTAGAGGAAGTA A-3’) (Gardes and
Bruns, 1993) and 5.8 s (5’-CGCTGCGTTCTTCATCG-3’) (Gardes and Bruns, 1993), generating
a fragment with 300 base pairs. The gene quantification was performed with the StepOneTM

Real-Time PCR System (Applied Biosystems, Life Technologies), with the SYBRR GreenERTM .

• Abundance of the gene (x3 = phoD), related to the synthesis of phosphatase, an enzyme related to
the availability of phosphorus in the soil, was quantified using the primers ALPS-F730 (5’ - CAG
TGG GAC GAC CAC GAG GT-3’) (Sakurai et al. 2008) and ALPS-R1101 (5’ -GAG GCC GAT
CGG CAT GTC G - 3’) (Sakurai et al. 2008), generating a fragment of 370 base pairs.

4.6.1 Descriptive and marginal analyses

First, we present an exploratory and marginal analysis of the microbiological data for the
T-RFLP variable. Table 4.6 provides the mean, median, variance, standard deviation, asymmetry, kurtosis,
minimum, maximum and proportion of zeros measures. In this table, the highest values in relation to
the mean, median and proportion of zeros are highlighted by treatments 2 and 3 in relation to the others
and especially in relation to treatment 1 control.

Table 4.6. Descriptive statistics for the y variable by blocks, treatments and periods.

Variables Mean Median Variance SD Skewness Kurtosis Min. Max. % zero
Block 1 0.909 0.917 0.097 0.312 0.084 -0.530 0.197 1.680 0.200
Block 2 0.808 0.744 0.158 0.397 0.235 -1.246 0.117 1.666 0.202
Block 3 0.686 0.629 0.127 0.356 0.695 -0.174 0.154 1.844 0.182
Block 4 0.629 0.533 0.134 0.367 0.640 -0.255 0.018 2.004 0.173
Treat 1 0.685 0.627 0.102 0.320 0.572 -0.313 0.018 1.572 0.100
Treat 2 0.862 0.880 0.133 0.351 0.437 0.062 0.263 2.004 0.118
Treat 3 0.812 0.835 0.141 0.376 0.391 -0.509 0.193 1.844 0.115
Treat 4 0.759 0.765 0.176 0.420 0.160 -1.205 0.067 1.731 0.113
Treat 5 0.646 0.577 0.141 0.375 0.626 -0.548 0.084 1.666 0.101
Treat 6 0.765 0.745 0.174 0.417 0.128 -1.363 0.129 1.531 0.116
Treat 7 0.693 0.638 0.123 0.350 0.499 -0.835 0.172 1.476 0.103
Period 1 0.795 0.776 0.127 0.357 0.287 -0.565 0.018 2.004 0.394
Period 2 0.679 0.606 0.146 0.382 0.563 -0.671 0.067 1.844 0.372

y 0.732 0.664 0.141 0.375 0.408 -0.695 0.018 2.004 0.767

Table 4.7 presents some descriptive data means, medians, variances, standard deviations, asym-
metries, kurtoses, minima, maxima of the variables x1, x2 and x3.

Table 4.7. Descriptive statistics for the x1, x2 and x3 variables.

Variables Mean Median Variance SD Skewness Kurtosis Min. Max.
x1 9.748 9.755 0.011 0.105 0.436 0.759 9.560 10.070
x2 6.023 5.995 0.061 0.247 -0.024 0.216 5.300 6.630
x3 6.663 6.640 0.023 0.154 1.325 2.538 6.420 7.250

The first step before fitting a regression model is to select a suitable distribution for the response
variable. In addition to the distributions GOLLMax, we consider two others: gamma (GA) and inverse
gaussian (IG) distributions.
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The GA distribution, denoted by GA(µ, σ), is defined by (for y > 0)

f(y) =
y(

1
σ2 −1)

Γ (1/σ2) (µσ2)
1
σ2

exp
{
− y

µσ2

}
, (4.9)

were µ > 0 and σ > 0, with measures E(y) = µ and V ar(y) = µ2σ2 are the mean and variance of the
gamma distribution, respectively.

The IG distribution, denoted by IG(µ, σ), is defined by

f(y) =
1√

2πy3σ2
exp

{
− (y − µ)2

2µ2σ2 y

}
, (4.10)

where y > 0, µ > 0 and σ > 0, with measures E(y) = µ and V ar(y) = µ3σ2 are the mean and variance
of the inverse gaussian distribution, respectively.

The zero inflated or zero adjusted gamma (ZAGA) and inverse gaussian (ZAIG) distributions
are a mixture of such zero degenerate distributions similarly to that presented in equation (4.5). Thus,
we denote by ZAGA(µ, σ, τ) and ZAIG(µ, σ, τ) with the parameter τ that represents the ratio of zero
occurrence.

The fitted models to the T-RFLP variable are compared by means of the GD, AIC and BIC
using the gamlss package of the R software. In this analysis we consider the T-RFLP variable without
zeros and with zeros, respectively. In Tables 4.8 and 4.9, we give the values of GD, AIC and BIC. The
smaller these values more appropriate the model. For this study, the GOLLMax distribution yields the
lowest values.

Table 4.8. MLEs of the parameters of the GOLLMax, GA and IG models for T-RFLP variable, the
corresponding SEs (given in parentheses) and statistics: GD, AIC and BIC.

Model log(α) log(σ) log(ν) GD AIC BIC
GOLLMax -0.755 0.880 -0.844 571.8 577.8 591.8

(0.060) (0.194) (0.123)
GA -0.311 -0.598 624.6 628.6 637.9

(0.019) (0.024)
IG -0.311 -0.220 770.4 774.4 783.7

(0.024) (0.025)

Table 4.9. MLEs of the parameters of the ZAGOLLMax, ZAGA and ZAIG models for T-RFLP variable,
the corresponding SEs (given in parentheses) and statistics: GD, AIC and BIC.

Model log(µ) log(σ) log(ν) logit(τ) GD AIC BIC
ZAGOLLMax -0.755 0.880 -0.844 1.194 4215.5 4223.5 4248.0

(0.060) (0.194) (0.123) (0.040)
ZAGA -0.311 -0.598 1.194 4268.2 4274.2 4292.6

(0.019) (0.024) (0.040)
ZAIG -0.311 -0.220 1.194 4414.0 4420.0 4438.4

(0.024) (0.025) (0.040)

Figure 4.8 reveals the presence of asymmetry and bimodality in the response variable T-RFLP
without zeros. In order to assess if the model is appropriate, plots of the fitted GOLLMax, GA and IG
density functions and the histogram are displayed in Figure 4.8a. Plots of the fitted GOLLMax, GA
and IG cumulative and empirical cdfs are given in Figure 4.8b. They also reveal that the GOLLMax
distribution provides a good fit to these data.
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Figure 4.8. Plots for T-RFLP variable without the zeros. (a) Histogram with estimated density functions
of the GOLLMax, GA and IG models. (b) Empirical distribution with estimated cumulative functions
of the GOLLMax, GA and IG models.

In the presence of zeros in the response variable T-RFLP, Figure 4.9 reveals the presence of asym-
metry and bimodality in the response variable T-RFLP without zeros. The plots of the fitted ZAGOLLMax,
ZAGA and ZAIG density functions and the histogram are displayed in Figure 4.9a. Plots of the fitted
ZAGOLLMax, ZAGA and ZAIG cumulative and empirical cdfs are given in Figure 4.9b. Based on this
marginal analysis, we verified that the proposed ZAGOLLMax model can be a good alternative for this
type of data, especially when in the occurrence of bimodality.
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Figure 4.9. Plots for T-RFLP variable with the zeros. (a) Histogram with estimated density functions
of the GOLLMax, GA and IG models. (b) Empirical distribution with estimated cumulative functions
of the GOLLMax, GA and IG models.

4.6.2 The ZAGOLLMax semiparametric regression model

We have the following explanatory variables:

• x1 = 16S RNAr; x2 = ITS e x3 = phoD;

• Block 1 - Block 2 - Block 3 - Block 4︸ ︷︷ ︸
Blocks

⇒ x4 x5 x6︸ ︷︷ ︸
3 dummy variables

• Treat 1 - Treat 2 - Treat 3 - Treat 4 - Treat 5 - Treat 6 - Treat 7︸ ︷︷ ︸
Treatments

⇒ x7 x8 x9 x10 x11 x12︸ ︷︷ ︸
6 dummy variables

• Period 1 - Period 2︸ ︷︷ ︸
Period

⇒ x13︸︷︷︸
1 dummy variable
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Then, all variables involved in the study are:

• yi: response variable T-RFLP;

• xi1: 16S RNAr;

• xi2: ITS;

• xi3: phoD;

• xi4: comparing Block 1 with Block 2;

• xi5: comparing Block 1 with Block 3;

• xi6: comparing Block 1 with Block 4;

• xi7: comparing Treat 1 with Treat 2;

• xi8: comparing Treat 1 with Treat 3;

• xi9: comparing Treat 1 with Treat 4;

• xi10: comparing Treat 1 with Treat 5;

• xi11: comparing Treat 1 with Treat 6;

• xi12: comparing Treat 1 with Treat 7;

• xi13: comparing period 1 with period 2; for i = 1, . . . , 3360.

We now present results from the fit of the regression model (4.7) under two systematic structures

µi = exp

β01 + 3∑
j=1

hj(xij) +

13∑
j=4

βj1 xij


and

τi =
exp

(
β04 +

∑3
j=1 hj(xij) +

∑13
j=4 βj4 xij

)
1 + exp

(
β04 +

∑3
j=1 hj(xij) +

∑13
j=4 βj4 xij

)
The values of the GD, AIC and BIC statistics and the effective degrees of freedom fitted

ZAGOLLMax, ZAGA and ZAIG semiparametric regression models are listed in Table 4.10. By compar-
ing these figures, we conclude that the ZAGOLLMax semiparametric regression model outperforms the
ZAGA and ZAIG models irrespective of the criteria and then the proposed regression model can be used
effectively in the analysis of these data.

Table 4.10. Semiparametric regression models and statistics: GD, AIC and df.

Model GD AIC BIC df
ZAGOLLMax 3949.4 4045.4 4339.2 48.0

ZAGA 3959.6 4053.6 4341.3 47.0
ZAIG 4153.0 4247.0 4534.6 47.0

We consider the 5% level of significance. Table 4.11 lists the MLEs for the ZAGOLLMax, ZAGA
and ZAIG regression models. In this situation, we have that the fixed reference levels are: treatment 1,
block 1 and period 1.
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The proposed ZAGOLLMax model presents greater robustness in the results when compared to
the ZAIG and ZAGA models, in agreement with the descriptive analysis. Note that the proposed model
parameter µ is related to the dispersion. Thus, we note that only treatment 2 and treatment 3 differs
from treatment 1 at the dispersion parameter and treatment 2, treatment 3, treatment 4 and treatment
6 differ from treatment 1 at the zero inflated parameter. The coefficients of the nonlinear terms are
presented, however such values are not interpretable. Our interest is in verifying the forms or trends that
the variables x1, x2 and x3 present.

Table 4.11. MLEs of the parameters of the ZAGOLLMax, ZAGA and ZAIG models for microbiological
data, the corresponding SEs and p-value.

ZAGOLLMax ZAGA ZAIG
Parameters Estimate SE p-value Estimate SE p-value Estimate SE p-value

β01 -4.667 2.706 0.084 -5.526 2.867 0.054 -5.178 3.819 0.175
cs(x1) 0.209 0.290 0.471 0.335 0.319 0.293 0.352 0.419 0.400
cs(x2) 0.294 0.091 0.001 0.419 0.101 0.000 0.406 0.132 0.002
cs(x3) 0.004 0.125 0.973 -0.074 0.146 0.612 -0.141 0.178 0.426
β41 0.079 0.059 0.176 0.022 0.064 0.721 0.059 0.088 0.498
β51 -0.012 0.058 0.831 -0.080 0.062 0.196 -0.070 0.082 0.394
β61 -0.130 0.058 0.025 -0.218 0.062 0.000 -0.200 0.082 0.015
β71 0.134 0.071 0.059 0.131 0.074 0.080 0.119 0.099 0.230
β81 0.129 0.063 0.042 0.115 0.070 0.103 0.095 0.090 0.292
β91 0.104 0.059 0.076 0.131 0.066 0.048 0.132 0.085 0.124
β101 -0.086 0.058 0.138 -0.151 0.066 0.022 0.180 0.079 0.022
β111 0.117 0.069 0.092 0.113 0.078 0.151 0.095 0.099 0.337
β121 0.023 0.055 0.669 0.002 0.062 0.974 -0.005 0.077 0.945
β131 -0.044 0.052 0.393 -0.047 0.059 0.423 -0.039 0.078 0.613

log(σ) 0.874 0.227 - -0.277 0.025 - -0.679 0.024 -
log(ν) -0.729 0.138 - - - - - - -
β04 -5.146 6.338 0.416 -5.146 6.338 0.416 -5.146 6.338 0.416

cs(x1) 0.205 0.695 0.767 0.205 0.695 0.767 0.205 0.695 0.767
cs(x2) 0.912 0.233 <0.001 0.912 0.233 <0.001 0.912 0.233 <0.001
cs(x3) -0.180 0.319 0.571 -0.180 0.319 0.571 -0.180 0.319 0.571
β44 0.164 0.138 0.236 0.164 0.138 0.236 0.164 0.138 0.236
β54 0.187 0.136 0.169 0.187 0.136 0.169 0.187 0.136 0.169
β64 -0.517 0.135 0.0001 -0.517 0.135 0.0001 -0.517 0.135 0.0001
β74 0.528 0.172 0.002 0.528 0.172 0.002 0.528 0.172 0.002
β84 0.558 0.161 0.0005 0.558 0.161 0.0005 0.558 0.161 0.0005
β94 0.493 0.153 0.001 0.493 0.153 0.001 0.493 0.153 0.001
β104 -0.188 0.157 0.230 -0.188 0.157 0.230 -0.188 0.157 0.230
β114 0.693 0.177 <0.001 0.693 0.177 <0.001 0.693 0.177 <0.001
β124 0.098 0.147 0.501 0.098 0.147 0.501 0.098 0.147 0.501
β134 -0.133 0.128 0.300 -0.133 0.128 0.300 -0.133 0.128 0.300

4.6.3 Model checking

In Figure 4.10, we perform the residual analysis by plotting the quantile residuals r̂qi (see
Section 4.4) against the index of observations for the fitted ZAGOMAx (Figure 4.10a), ZAGA (Figure
4.10b) and ZAIG (Figure 4.10c) semiparametric regression models in the interval [−3, 3]. It is found that
the ZAGA model has the highest number of points outside the range [−3, 3].

Figures 4.11, 4.12 and 4.13 give the plots of the quantile residuals by density, qq-plot and worm
plot for the ZAGOLLMax, ZAGA and ZAIG models, respectively, to detect possible outlying observations
as well as departures from the assumptions of semiparametric regression models. Note that Figures 4.12b,
c and 4.13b, c show that the quantile residuals show normality deviations and extrapolation with respect
to the confidence bands in the worm plots. Thus, according to Figures 4.10a and 4.11 and Table 4.10 the
ZAGOLLMAx model is an alternative to analyze these data under study.

For the ZAGOLLMax semiparametric regression model Figures 4.14 displays the quantile resid-
uals and the envelope. In Figure 4.14a the envelope for the complete model is presented considering the
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Figure 4.10. Plots of the quantile residuals against the index for microbiological data. (a) For the
ZAGOLLMax semiparametric regression model. (b) For the ZAGA semiparametric regression model. (c)
For the ZAIG semiparametric regression model.
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Figure 4.11. Plots of the fitted ZAGOLLMax regression model for microbiological data. (a) Density of
the quantile residuals. (b) Q-Q plot for quantile residuals. (c) Worm plot for quantile residuals.
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Figure 4.12. Plots of the fitted ZAGA regression model for microbiological data. (a) Density of the
quantile residuals. (b) Q-Q plot for quantile residuals. (c) Worm plot for quantile residuals.

systematic regression structure in µ and τ . It is verified that the model is capable of reproducing by sim-
ulation the real data. In Figure 4.14b we show for the µ continuous component the simulated envelope
where values are generated by the GOLLMax. Figure 4.14c shows the simulated envelope for the discrete
component τ , and the values are simulated by the binomial distribution (see Section 4.4). In the three
situations considered, it is verified that the proposed model is capable of encompassing practically all
points within the confidence bands. This provides indications of the absence of discrepant observations
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Figure 4.13. Plots of the fitted ZAIG regression model for microbiological data. (a) Density of the
quantile residuals. (b) Q-Q plot for quantile residuals. (c) Worm plot for quantile residuals.

and that the ZAGOLLMax model is adequate for this analysis.
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Figure 4.14. Normal probability plot for the quantile residual with envelope based on the fitted
ZAGOLLMax regression model to microbiological data. (a) For the complete model with regression
structure in µ and τ . (b) For the continuous component with regression structure in µ. (c) For the
discrete component with regression structure in τ .

1. Interpretations of the systematic structure for µ.

As explained in the previous section, treatment 1 (control), block 1 and period 1 (6 months) were
taken as reference cases. However, the main objective (from the microbiological and agricultural
standpoints) is to make comparisons between the treatments, the reason for our discussion in this
line.

• As can be noted in Table4.11, irrespective of the cultivation period, treatments 2 and 3 (com-
post with and without inoculation) were the only ones that differed (p-value< 0.05) from
treatment 1 (control) in relation to the response variable y (T-RFLP).

• If considering a p-value< 0.10, treatments 4 and 6 also differ from treatment 1. This is
interesting, since these treatments presented higher productivity than treatment 1, with the
greatest yield being observed in the presence of inoculation with phosphate solubilizing bacteria
(PSB), which was 10% higher (equivalent to approximately 15 tons.ha−1).

• With this, according to the data obtained by the T-RFLP technique, irrespective of the growing
period, analysis with the ZAGOLLMax model produces the same productive response found
at the end of the cultivation period (one year after planting).
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• The differences found in relation to treatment 1 reinforce the efficacy of applying the compost,
even without enrichment with phosphate sources, especially the presence of BSF.

• Some authors have found increased yield of sugarcane with the application of filter cake asso-
ciated with phosphate rocks, but have not considered the microbiological aspects (Teles et al.
2017 and Soltangheisi et al. 2019).

• The data on productivity (to be published) corroborate the findings with application of the
ZAGOLLMax model, making it applicable to the dataset under analysis.

• For the covariables, we observed, regarding the shape presented from the smoothing curve,
that there was no substantial alteration of x1 (16S RNAr) (Figure 4.15a), while for x2 (ITS)
there was a tendency for increase (Figure 4.15b). For the covariable x3 (phoD), there was a
tendency to increase up to 6.6, followed by a decrease in the shape of the smoothing curve
(Figure 4.15c).

2. Interpretations of the systematic structure for τ .

Analysis of the proportion of zeros shown in Table 4.11 (lower part) indicates that:

• The data from treatments 2, 3, 4 and 6 have a greater proportion of zeros than those of
treatment 1.

• In treatment 4, there was enrichment of the organic compost with apatite (an igneous rock,
harder to became available to plants) and inoculation with PSB.

• In treatment 6, there was enrichment of the compost with phosphorite (of sedimentary origin,
easier to become available) without the inoculation with PSB.

• The differences in the proportions of zeros found in the data from these treatments denote
differences in the fungal community structure. This higher proportion of zeros observed from
treatments 2,3,4 and 6 leads to the interpretation that these treatments share absence of
determined T-RFs.

• Nevertheless, this absence of T-RFs might be contributing to increase the productivity, since
these treatments showed higher productivity than treatment 1.

• In the covariables, we observed the same behavior as in µ, but there was a rising trend for the
variable x2 (ITS) and for x3 > 0.7 (phoD) there was an approximately linear decline.
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Figure 4.15. Fitted terms for ZAGOLLMax regression model with regression structure in µ parameter.
(a) For x1. (b) For x2. (c) For x3.
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Figure 4.16. Fitted terms for ZAGOLLMax regression model with regression structure in τ parameter.
(a) For x1. (b) For x2. (c) For x3.

4.7 Concluding Remarks

We define a new zero adjusted generalized odd log-logistic Maxwell (ZAGOLLM) semiparametric
regression to analyze data in presence of bimodality, heteroskedasticity, zero-inflation and nonlinear effects
in covariables. We discuss some inferential issues related to this regression and perform some simulations.
We illustrate the potentiality of the new regression by means of microbiological data which includes
descriptive and marginal analysis, model checking and interpretations of its systematic components.
In conclusion, the proposed semiparametric regression is extremely effective in demonstrating all the
biological and productive effects observed in the field. The organic compost, when inoculated with PSB,
was sufficient to evidence 10% increase in sugarcane productivity even in the absence of rock phosphate.
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5 THE GENERALIZED ODD LOG-LOGISTIC MAXWELL CURE RATE
SEMIPARAMETRIC REGRESSION MODELS APPLIED TO PROSTATE CANCER DATA

Abstract: In this paper we propose a new semiparametric regression model with gener-
alized odd log-logistic Maxwell errors to model possible presence of long-term survivors in the data
using the cubic splines basis for nonlinear effects. The models attempt to simultaneously estimate the
effects of covariates on the acceleration/deceleration of the timing of a given event and the surviving
fraction, that is, the proportion of the population for which the event never occurs. We consider
penalized quasi likelihood estimators for the fixed and random parameters of the model. Finally, we
analyze a real data set for localized prostate cancer patients after open radical prostatectomy.
Keywords: Cubic spline; Censored data; Maxwell distribution; Penalized likelihood; Prostate cancer.

5.1 Introduction

In addition to choosing the model to be used in the study, one of the basic assumptions of
the survival models is that all individuals will present the event of interest since they are followed for a
sufficiently long period of time. However, in some situations, not all individuals will be susceptible to
the event of interest for as long as the follow-up time is, these individuals are called immune or cured
(Maller and Zhou, 1996). Long-life models or models with a curing fraction adjust data with these
characteristics. The best known long-term models are: the standard mixing model, initially introduced
by Boag (1949) and developed by Berkson and Gage (1952), and the promotion time model, proposed
by Yakovlev et al. (1993). The standard mixture model divides the population into two groups and
consists of a mixture of two distributions for these two groups. On the other hand, the promotion time
model involves a competitive risk structure in which n factors compete for the occurrence of the event
of interest. Rodrigues et al. (2009) proposed a unified long-term model whose particular cases are the
standard mix model and the promotion time model. Ortega et al. (2009) presented the generalized
log-gamma regression model with fraction of cure, including as special cases the exponential regression,
Weibull and log-normal models with fraction of cure. Martinez et al. (2013) use a mixture model and
a non-mixture model based on the modified Weibull distribution generalized in gastric cancer data and
the results are obtained by Bayesian inference.

Cure rate models have been used to model time-to-event data for various types of cancer,
including breast cancer, leukemia, melanoma and prostate cancer. Recently, Ortega et al. (2012, 2013)
present studies and analyzes related to a database on prostate cancer. Such a database is previously
studied and provided by Kattan et al. (1999) and Stephenson et al. (2005). The database studied by
these authors consists of the random response variable given by the number of months without detectable
disease after prostatectomy the main objective is to investigate a possible relation of the responser variable
and other explanatory variables. This data set basically has three problems:

1. In Figure 5.1a, we can see that the empirical failure rate function has the form of descending,
increasing and descending.

2. In Figure 5.1b, we can see that there is a possibility of a proportion of individuals cured.

3. In Figure 5.2a and Figure 5.2b , presence of heterogeneity and nonlinear behavior of the covariable
(x1 = PSA) and the response variable time (months).
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Figure 5.1. (a) Empirical survival function. (b) Empirical hazard function.
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Figure 5.2. (a) Scatter plots between the variable (x1 = PSA) versus the response variable time
(months). (b) Spine plot for variable (x1 = PSA) versus proportion of cured and uncured.

So in this research we are proposing a solution for each problem presented in items (1), (2) and
(3).

1. Solution for (1). As the usual distributions do not model this type of failure rate function, we
are proposing the distribution called generalized odd log-logistic Maxewell distribution to model
different types of failure rate function forms. Note that we are also introducing a new distribution
little known in the area of survival analysis which is the Maxwell distribution.

2. Solution for (2). To model the proportion of cured we will combine the mixing model with the
GOLLMax distribution, including the regression structure both in the time of failure as well as in
the proportion of cured. Perhaps the most popular type of cure rate models is the mixture model
introduced by Berkson and Gage (1958) and Maller and Zhou (1996).

3. Solution for (3). To model nonlinear effects we are going to propose a GOLLMax mixture semi-
parametric regression model.

Based on these 3 solutions, the following research proposes the generalized odd log-logistic
Maxwell mixture (GOLLMaxM) distribution from the GOLLMax. In this chapter, we propose a new
GOLLMaxM semiparametric regression model with a cure rate to analyze survival data of long-term
survivors to solve the problems above.

The rest of the chapter proceeds as follows. In Section 5.2, we formulate the model and derive
the time distribution for the entire population. In Section 5.3, we present the he generalized odd log-
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logsitic Maxwell mixtures semi-parametric regression model and inference based on penalized maximum
likelihood is developed A simulation study is presented in Section 5.4 in order to verify some statistical
properties of the penalized maximum likelihood estimators. An application of the proposed model to fit
a prostate cancer data set is reported in Section 5.5, which illustrates the potential of our methodology.
Finally, some conclusions are given in Section 5.6.

5.2 Model formulation

A random variable T has the GOLLMax distribution if its cumulative distribution function
(cdf) and probability density function (pdf) are (for t > 0)

F (t;µ, σ, ν) =
γν σ
1 (3/2, t2/µ2)

γνσ1 (3/2, t2/µ2) + [1− γσ1 (3/2, t
2/µ2)]

ν (5.1)

and

f(t;µ, σ, ν) =
4 ν σ t2√
π µ3

exp
(
− t2

µ2

)
γνσ−1
1 (3/2, t2/µ2)

[
1− γσ1 (3/2, t

2/µ2)
]ν−1

{γνσ1 (3/2, t2/µ2) + [1− γσ1 (3/2, t
2/µ2)]

ν}2
, (5.2)

respectively, where ν > 0 and σ > 0 are two extra shape parameters and µ > 0 is scale parameter.
The γ1(p, u) = γ(p, u)/Γ(p) is the incomplete gamma function ratio, γ(p, u) =

∫ u

0
wp−1e−wdw is the

incomplete gamma function and Γ(·) is the gamma function. Henceforth, if Y is a random variable with
cdf (5.1), we write T ∼GOLLMax(µ, ν, σ). The hazard rate function (hrf) of Y is given by h(t;µ, σ, ν) =
f(t;µ, σ, ν)/[1− F (t;µ, σ, ν)], where 1− F (t;µ, σ, ν) is survival function.

To formulate the generalized odd log-logistic Maxwell mixture model (GOLLMaxM), we con-
sidered that the studied population is a mixture of susceptible (uncured) individuals, who may experience
the event of interest, and non-susceptible (cured) individuals, who will experience it (Maller and Zhou,
1996). This approach allows to estimate simultaneously whether the event of interest will occur, which
is called incidence, and when it will occur, given that it can occur, which is called latency. Let Ni (for
i = 1, . . . , n) be the indicator denoting that the ith individual is susceptible (Ni = 1) or non-susceptible
(Ni = 0), i.e., the population is classified in two sub-populations so that an individual either is cured
with probability 0 < τ < 1, or has a proper survival function S(t) with probability (1− τ). The mixture
model (MM) can be expressed by

Spop(ti) = τ +
(
1− τ

)
S(ti|Ni = 1), (5.3)

where Spop(ti) is the unconditional survival function of ti for the entire population, S(ti|Ni = 1) is the
survival function for susceptible individuals and τ = P (Ni = 0) is the probability of cure of an individual.
The population survival function, denoted by Spop(ti), for GOLLMaxM model is given by,

Spop(t) = τ +

(
1− τ

)
[1− γσ1 (3/2, t

2/µ2)]ν

γνσ1 (3/2, t2/µ2) + [1− γσ1 (3/2, t
2/µ2)]

ν , (5.4)

where Spop(t) is the unconditional survival function of T for the entire population, S(t|N = 1) the survival
function for susceptible individuals and τ = P (N = 0) is the probability of cure variation, (0 < τ < 1).
The pdf corresponding to (5.4) is given by

fpop(t) =
(1− τ) 4 ν σ t2√

π µ3
exp

(
− t2

µ2

)
γνσ−1
1 (3/2, t2/µ2)

[
1− γσ1 (3/2, t

2/µ2)
]ν−1

{γνσ1 (3/2, t2/µ2) + [1− γσ1 (3/2, t
2/µ2)]

ν}2
, . (5.5)

The hazard rate function (hrf) of the GOLLMaxM model is given by hpop(t) = fpop(t)/Spop(t).
A random variable having density (5.5) is denoted by T ∼ GOLLMaxM(µ, σ, ν, τ). The GOLLMaxM
model contains as special cases the following distributions:
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• For σ = 1, it leads to the (new) odd log-logistic Maxwell mixture (OLLMaxM) model.

• For ν = 1, it gives the (new) exponentiated Maxwell mixture (EMaxM) model .

• The (new) Maxwell mixture (MM) model is as a basic exemplar when σ = ν = 1.

Plots of the GOLLMaxM survival and hazard functions for selected parameter values are dis-
played in Figures 5.3a and 5.3b, respectively.
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Figure 5.3. (a) The GOLLMaxM survival function for fixed σ = 5.0. (b) The GOLLMaxM hazard
function for fixed σ = 5.0.

5.3 The GOLLMaxM regression model with cure fraction

In order to introduce a regression structure in the class of models (5.4), we assume that both
parameters µi and τi vary across observations through regression structures which are parameterized as

µi = µi(β1), τi = τi(β2),

where β1 = (β11, . . . , β1q1)
⊤ and β2 = (β21, . . . , β2q2)

⊤. The usual systematic component for the scala
parameter is µi = exp(x⊤

1iβ1), where x⊤
1i = (x1i1, . . . , x1iq1) is a vector of known explanatory variables,

i.e. µ = exp(X1β1), with µ = (µ1, . . . , µn)
⊤ and X1 = (x11, . . . ,x1n)

⊤ is a specified n × q1 matrix of
full rank and q1 < n.

Analogously, we consider for the cured proportion parameter the systematic component

τi =
exp(x⊤

2iβ2)

1 + exp(x⊤
2iβ2)

, where x⊤
2i = (x2i1, . . . , x2iq2),

is a vector of known explanatory variables; i.e. the linear structure, then have τ = exp(X2β2)
1+exp(X2β2)

, where
τ = (τ1, . . . , τn)

⊤ and X2 = (x21, . . . ,x2n)
⊤ is a specified n × q2 matrix of full rank and q2 < n. The

dispersion covariates in X2 are commonly, but not necessary, a subset of the regression covariates in X1.
It is assumed that β1 is functionally independent of β2. The identifiability between the parameters in the
cure fraction and those in the latency distribution for the mixture model has been discussed by Li et al.
(2001). The mixture model is not identifiable when cure fraction τ(β2) is a constant τ , but is identifiable
when τ(β2) is modeled by a logistic regression with non-constant covariates x2 (Li et al. 2001). So, it
is necessary to include some covariates in the cure fraction to ensure identifiability. Note that τi is the
probability of cure variation from individual to individual.
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5.3.1 Extension semi-parametric

In the surveys that consider regression models, the structure of continuous covariates is added
in linear models in the parameters both in the proportion of individuals cured, as well as in the time of
failure, although this relationship is not always true. That is, in some cases we can have covariates that
have a non-linear relationship, so to capture the non-linear effects of these covariates, it is necessary to
adopt non-linear functions.

Let x⊤
3i = (x3i1, . . . , x3iq3) be the vector of covariates that has a nonlinear form with the response

variable, we can define semi-parametric structures for the elements of the vector θ using appropriate link
functions as

µi = exp

x⊤
1iβ1 +

J∑
j=1

hj(xj3i)

 τi =
exp

(
x⊤
2iβ2 +

∑J
j=1 hj(xj3i)

)
1 + exp

(
x⊤
2iβ2 +

∑J
j=1 hj(xj3i)

) (5.6)

where hj(.) are smooth functions of the covariates x3i for j = 1, . . . , J and i = 1, . . . , n.
The model (5.6) will be referred to as the GOLLMaxM semi-parametric regression model with

long-term survivors in competitive-risk structure. The most important of this regression model defines
the parameters depending on x1i, x2i and x3i. In this paper, we only use the cubic splines as smooth
functions hj(.). The GOLLMaxM regression model (5.4) opens new possibilities for fitting many different
types of data, since the GOLLMax distribution is much more flexible then the Maxwell distribution and
hence data with monotone and nonmonote hazard rate functions can be analyzed using the proposed
regression model.

Suppose we have data in the form (ti,x1i,x2i,x3i), i = 1, . . . , n where ti denotes the observed
time for the ith subject, i.e, ti = min

{
Ti, Ci

}
, Ti is the lifetime for the ith individual and Ci is the

censoring time for the ith individual, x1i and x2i is covariate vectors. With this assumption we have,
that the contribution of an individual that failed at ti to the likelihood function is given by

(1− τi)4 ν σ t
2
i√

π µ3
i

exp
(
− t2i
µ2
i

)
γνσ−1
1 (3/2, t2i /µ

2
i )
[
1− γσ1 (3/2, t

2
i /µ

2
i )
]ν−1{

γνσ1 (3/2, t2i /µ
2
i ) + [1− γσ1 (3/2, t

2
i /µ

2
i )]

ν}2 (5.7)

and the contribution of an individual that is at risk at ti is

τi +

(
1− τi

)
[1− γσ1 (3/2, t

2
i /µ

2
i )]

ν

γνσ1 (3/2, t2i /µ
2
i ) + [1− γσ1 (3/2, t

2
i /µ

2
i )]

ν . (5.8)

For the semiparametric model (5.6), the fixed and random effects θ = (σ, ν,β1,β2) and η,
respectively, are estimated by maximizing the penalized log-likelihood function

l(ω) = r log
(
4 ν σ√
τ

)
+
∑
i∈F

log(1− τi) +
∑
i∈F

log
(
t2i
µ3
i

)
−
∑
i∈F

(
ti
µi

)2

+

(ν σ − 1)
∑
i∈F

log
[
γ1(3/2, t

2
i /µ

2
i

]
+ (ν − 1)

∑
i∈F

log
[
1− γσ1 (3/2, t

2
i /µ

2
i )
]
−

2
∑
i∈F

log
{
γν σ
1 (3/2, t2i /µ

2
i ) +

[
1− γσ1 (3/2, t

2
i /µ

2
i )
]ν}

+
∑
i∈C

log
{
τi +

(
1− τi

)
[1− γσ1 (3/2, t

2
i /µ

2
i )]

ν

γνσ1 (3/2, t2i /µ
2
i ) + [1− γσ1 (3/2, t

2
i /µ

2
i )]

ν

}
− 1

2

J∑
j=1

λjη
T
j Pjη

T
j , (5.9)

where ω = (θT ,ηT )⊤ r is the number of uncensored observations (failures), F and C denote, respectively,
that the set of individuals is a lifetime or a censoring time, γ1(·, ·) is the incomplete gamma function
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ratio, where Pj is a symmetric matrix that may depend on a vector of smoothing parameters, see for
example, Rigby and Stasinopouls (2005). For each smoothing term selected, and any of the parameters
of the GOLLMaxM distribution, there is one smoothing parameter λ associated with it. The smoothing
parameters can be fixed or estimated from the data. The numerical maximization of the (5.9) can be
performed in the gamlss and gamlss.cens packages in R. We use the maximization by RS algorithm
described by Stasinopoulos and Rigby (2007) and Stasinopoulos et al. (2017). The cs() function is used
to assign the arguments to make the adjustment via gamlss. Thus, in Section 5.5, the cs(·) function
in regression structures is denoted by cs(xji, df∗) where xji is the j-th covariate considering the additive
term and df∗ are the degrees of freedom related to the additive term. The effective degree of freedom for
structure of the regression in µ considering an explanatory variable x is given by dfµ = df∗+2 where other
two additional degrees of freedom are in relation to the linear terms (see, Voudouris et al. (2012)). Finally,
we have that the total freedom degree of the adjusted model, represented by df , collectively considers the
additive terms represented by the hj(·) functions and the parametric terms, i.e, df = dfµ+dfσ+dfν+dfτ ,
are the degrees of freedom used to model µ, σ, ν and τ , respectively. Thus, in this study we consider in
the simulations and application df∗ = 3 which is the default value of the cs(·) function.

5.3.2 Choosing the best model

For selection of the appropriate distribution, we use the global deviance (GD), GD = −2lp(ω̂),
lp(ω̂) is the penalized log-likelihood function and the generalized Akaike information criterion (GAIC)
defined by GAIC(k) = GD+ k× df , where df is the total degrees of freedom of the adjusted model and
k is the penalty for each degree of freedom used. The Akaike information criterion (AIC) and Bayesian
information criterion (BIC) are special cases of the GAIC(k) measure when k = 2 and k = log(n),
respectively. We consider the GD, AIC and BIC measures to select the best models.

5.3.3 Residual analysis

The important step in the analysis of a fitted model is to check possible deviations from the
model assumptions. In this context, we consider the quantile residuals (Dunn and Smyth, 1996) for the
GOLLMax semiparametric regression model have the form

r̂qi = Φ−1

{
γν̂ σ̂
1 (3/2, y2/µ̂2

i )

γν̂σ̂1 (3/2, y2/µ̂2
i ) +

[
1− γσ̂1 (3/2, y

2/µ̂2
i )
]ν̂
}
, (5.10)

where Φ−1(·) is the standard normal qf.

5.4 Simulation study

In this section, we examine the performance of the GOLLMaxM semiparametric regression
model by means of a Monte Carlo simulation study under two scenarios. Various simulations are con-
ducted for different sample sizes (n = 100, 350, 700) using the R software with gamlss packages by RS
method.

In this study, we considered two scenarios for GOLLMaxM semiparametric regression model
with regression structure defined in equation (5.6):

• The first scenario, we consider the following structure for regression model with parameter µi =

exp {h21(x1i) + β21x2i + β31x3i}, where h21(x1i) = sin(x1i) with functional shape presented in
Figure 5.4a, σ = exp {β02}, ν = exp {β03} and τi = logit {β04 + β14x4i}, the values associated
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to the coefficients are: β21 = 0.20, β31 = −0.35, β03 = 0.35, β04 = 0.85, β04 = −0.95 and
β14 = 0.30, explanatory variables for the scenario are x1i ∼ Uniform(0, 2.5), x2i ∼ Normal(5, 0.50),
x3i ∼ Uniform(0, 1) and x4i ∼ Binomial(1, 0.5).

• The second scenario, we consider the idea presented in (Ramirez et al. 2018) for nonlinear effects in
regression models with long-term survival. Thus, the following structure for regression model with
parameter µi = exp {h21(x1i) + β21x2i + β31x3i}, where h21(x1i) = sin(x1i) with functional shape
presented in Figure 5.4a, σ = exp {β02}, ν = exp {β03} and structure of the regression model for
parameter τi = logit {h41(x4i)} with functional shape presented in Figure 5.4b. The explanatory
variables for the scenario are x1i ∼ Uniform(0, 2.5), x2i ∼ Normal(5, 0.50), and x3i ∼ Uniform(0, 1).
For each level of x4i, it was generated a sample size of length ni, so that n =

∑10
i=1 ni. The fixed

values of τ , for each value of the x4i, are given in Table 5.1. The associated to the coefficients are:
β21 = 0.20, β31 = −0.35, β03 = 0.35 and β04 = 0.95.

Table 5.1. Fixed values of the τ parameter of each level of the x4 explanatory variable.
τ 0.20 0.25 0.35 0.40 0.45 0.45 0.40 0.35 0.25 0.20
x4 1 2 3 4 5 6 7 8 9 10

We assume that the a percentage of cured approximately 0.55 for the two scenarios. To generate
the random values of the proposed model with of cured proportion, we present a brief script:

i. Calculation τ such that τi = logit(β04 + β14xi);

ii. Mi ∼ Bernoulli(τi);

iii. If Mi = 0, yi = ∞, else Mi = 1, yi =rGOLLMax(1,µi,σi,νi);

iv. Generate censored time by tci ∼ Uniforme(0, ξ), where ξ denoted the proportion of censored obser-
vations, which ξ = 18 for first and second scenario, respectively;

v. The observed time ti of the i-th individual is ti = min(yi, tci);

vi. Create a censored indicator vector, δi, if yi ≤ tci do δi = 1, otherwise δi = 0.
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Figure 5.4. Plots of the simulation values. (a) Nonlinear effect for x1 versus time simulated. (b)
Nonlinear effect for x4 versus cured proportion simulated.

For each of the 1, 000 simulations, the average estimates (AEs), biases and MSEs are calculated.
The results are reported in Tables 5.2 and 5.3 for the parametric and semi-parametric models. Based
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Table 5.2. The AEs, biases and MSEs for the parametric and semiparametric GOLLMaxM regression
models based on 1,000 simulations for scenario 1.

Semiparametric Parametric
n Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.192 -0.008 0.004 β21 0.197 -0.003 0.006
β31 -0.345 0.005 0.010 β31 -0.339 0.011 0.017

100 β02 0.224 -0.126 0.028 β02 0.117 -0.233 0.060
β03 0.885 0.035 0.010 β03 0.565 -0.285 0.087
β04 -1.061 -0.111 2.629 β04 -1.169 -0.219 4.143
β14 0.406 0.106 2.651 β14 0.506 0.206 3.937

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.196 -0.004 0.001 β21 0.204 0.004 0.001
β31 -0.325 0.025 0.003 β31 -0.296 0.054 0.007

350 β02 0.230 -0.120 0.019 β02 0.134 -0.216 0.049
β03 0.827 -0.023 0.003 β03 0.550 -0.300 0.092
β04 -0.947 0.003 0.044 β04 -0.976 -0.026 0.048
β14 0.301 0.001 0.086 β14 0.309 0.009 0.091

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.200 0.000 0.000 β21 0.209 0.009 0.001
β31 -0.349 0.001 0.001 β31 -0.372 -0.022 0.003

700 β02 0.227 -0.123 0.018 β02 0.122 -0.228 0.053
β03 0.812 -0.038 0.003 β03 0.513 -0.337 0.115
β04 -0.948 0.002 0.025 β04 -0.968 -0.018 0.026
β14 0.302 0.002 0.044 β14 0.295 -0.005 0.046

Table 5.3. The AEs, biases and MSEs for the parametric and semiparametric GOLLMaxM regression
models based on 1,000 simulations for scenario 2.

Semiparametric Parametric
n Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.197 -0.003 0.005 β21 0.218 0.018 0.010
β31 -0.316 0.034 0.011 β31 -0.297 0.053 0.018

350 β02 0.232 -0.118 0.024 β02 0.129 -0.221 0.054
β03 0.883 0.033 0.009 β03 0.579 -0.271 0.080

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.204 0.004 0.001 β21 0.211 0.011 0.002
β31 -0.351 -0.001 0.003 β31 -0.309 0.041 0.007

350 β20 0.433 -0.017 0.021 β02 0.335 -0.225 0.068
β03 1.293 0.093 0.020 β03 0.848 -0.352 0.139

Semiparametric Parametric
Parameter AE Bias MSE Parameter AE Bias MSE

β21 0.200 0.000 0.001 β21 0.201 0.001 0.001
β31 -0.342 0.008 0.003 β31 -0.351 -0.001 0.005

700 β02 0.225 -0.125 0.020 β02 0.111 -0.239 0.059
β03 0.819 -0.031 0.003 β03 0.552 -0.328 0.110

on the simulation results in Tables 5.2 and 5.3, we interest is in verifying how much the inclusion of an
additive term affects in the estimations of the other fixed parameters. For semiparametric model, we
verify that the MSEs of the MLEs of β21, β31, β02, β03, β04 and β14 for scenario 1 and 2 decay toward
zero when the sample size n increases, as usually expected under first-order asymptotic theory. The mean
estimates of the parameters tend to be closer to the true parameter values when n increases. However,
for the parametric model, such measures do not exhibit the same behavior.

In relation to the behavior of the nonlinear effects in the simulations (scenarios 1 and 2), in
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the Figures 5.5 and 5.6 displays the generated and fitted effects for the parametric and semi-parametric
models. We also present in this figure the box-plots of the GD, AIC and BIC statistics obtained in
1,000 simulations for both models. We can note that the nonlinear effects are very close to the true
shape as shown in the Figure 5.4, when the sample size increases. Further, we can conclude that the
semi-parametric model presents the lowest values of GD, AIC and BIC statistics, indicating that it is the
most suitable model for the simulated data.
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Figure 5.5. The fitted GOLLMaxM semiparametric and parametric regression model under scenario 1
of the effect of x1 in µ whit goodness-of-fit statistics measures. (a) For n = 100. (b) For n = 350. (c)
For n = 700.

5.5 Applications

In this section, we apply the GOLLMaxM model to prostate cancer data. The patient data
come from a study developed by Kattan et al. (1999) and Stephenson et al. (2005) at the Cleveland
Clinic. The study cohort comprises 1324 patients with clinically localized prostate cancer treated by
open radical prostatectomy between 1987 and 2003. Patient data were obtained from the Cleveland
Clinic from a single surgeon and the authors have the rights on the data. Patients with clinical stage T1a
or T1b disease, who received neoadjuvant therapy or adjuvant therapy or who had missing data for PSA
were excluded. All information was obtained with appropriate Institutional Review Board waivers. The
response variable is given by the number of months (ti) without detectable disease after prostatectomy.
Uncensored observations correspond to patients having the cancer recurrence time computed. Censoring
observations correspond to patients who were not observed to have cancer recurrence at the time the data
were collected. The numbers of censoring and uncensored observations are 1096 and 228, respectively,
of the total of 1324 patients. The following explanatory variables were associated with each patient (for
i = 1, . . . , 1324):

• δi is the event indicator where 1 represents the event and 0 is censored;

• xi1 is the PSA value (in ng/ml) from the laboratory report before undergoing prostatectomy;
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Figure 5.6. The fitted GOLLMaxM semiparametric and parametric regression model under scenario 2
of the effect of x1 in µ and x4 in τ whit goodness-of-fit statistics measures. (a) For n = 100. (b) For
n = 350. (c) For n = 700.

• xi2 is whether the patient received neoadjuvant hormones, that is, treated with hormone therapy
prior to radical prostatectomy (xi2 = 1, yes and xi2 = 0, no);

• xi3 is the extracapsular extension on path report (xi3 = 1, yes and xi3 = 0, no);

• xi4 is the seminal vesicle invasion on path report (xi4 = 1, yes and xi4 = 0, no);

• xi5 is the lymph node involvement on path report (xi5 = 1, negative and xi5 = 0, positive);

• xi6 is surgical margin status (xi6 = 1, yes and xi6 = 0, no).

5.5.1 Descriptive analysis of the prostat data

Next, we perform an exploratory analysis of these data. The percentage of individuals consid-
ered cured is approximately 83%. In Figure 5.7 we present the empirical survival function by explanatory
variables. In particular attention to the variable lymph node involvement on path report, xi5, for level
xi5 = 0, there are 7 patients who did not have a recurrence of the disease and 26 recurring; for level
xi5 = 1, 1089 did not have a recurrence and 202 had a recurrence of prostate cancer.

We considered a marginal analysis considering only the time response variable. In this study
we consider the proposed model GOLLMax2 and Weibull mix model. the values of GD, AIC and BIC
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Figure 5.7. Plots of the empirical survival curves for prostate cancer data.(a) By xi2. (b) By xi3. (c)
By xi4. (d) By xi5. (e) By xi6.

statistics are given in Table 5.4. We note that the GOLLMaxM model presents the lowest values of
statistics, that is, the GOLLMaxM model adjusts better the prostate cancer data compared to the
Weibull mixture model.

Table 5.4. The GD, AIC and BIC measurements for GOLLMaxM and Weibull mixture models for
prostate cancer data.

Models GD AIC BIC
GOLLMaxM 2998.5 3006.5 3027.3

Weibull mixture 3006.2 3012.2 3027.7

In order to evaluate if the model is appropriate, Figure 5.8a and 5.8b adjusted curves of the
survival and hazard functions, respectively, considered under the marginal analysis of the response variable
ti.

5.5.2 Semiparametric regression model

Next, we present results from the fit of the regression (5.6) with two systematic components:

µi = exp (β01 + β11xi1 + β21xi2 + β31xi3 + β41xi4 + β51xi5 + β61xi6)

and
τi =

exp (β04 + cs(xi1, df
∗ = 3) + β24xi2 + β34xi3 + β44xi4 + β54xi5 + β64xi6)

1 + exp (β04 + cs(xi1, df∗ = 3) + β24xi2 + β34xi3 + β44xi4 + β54xi5 + β64xi6)
.

The MLEs, SEs and p-value associated for the GOLLMaxM and Weibull mixture models are
presented in Table 5.5. Thus, when establishing a significance level of 5%, we note that the voltage level
is significant and should be used to model the location and scale.
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Figure 5.8. Plots for prostate cancer data. (a) Empirical survival function and estimated GOLL-
MaxM and Weibull mixture distributions. (b) Empirical hazard function and estimated GOLLMaxM
and Weibull mixture distributions.

For the µi regression structure, the variable xi3 is not significant for the GOLLMaxM model and
in the Weibull mixture model all variables are significant. In the regression structure of the proportion of
cured τi it appears that xi2 and xi5 are not significant for both models. The coefficient of the nonlinear
term is presented, however such value is not interpreted.

Table 5.5. MLEs, SEs and p-values for the LOLLGG regression model fitted to the voltage level data.

GOLLMaxM Weibull mixture
Parameter Estimate SE p-Value Parameter Estimate SE p-Value

log(σ) -0.494 0.033 - log(σ) -0.145 0.020 -
log(ν) -0.690 0.017 - - - - -
β01 4.404 0.040 < 0.001 β01 4.870 0.241 < 0.001
β11 -0.008 0.001 < 0.001 β11 -0.020 0.004 < 0.001
β21 -0.754 0.026 < 0.001 β21 -0.242 0.091 0.008
β31 0.019 0.030 0.524 β31 0.432 0.073 < 0.001
β41 -0.448 0.034 < 0.001 β41 -1.696 0.128 < 0.001
β51 0.166 0.019 < 0.001 β51 0.574 0.228 0.012
β61 -0.644 0.027 < 0.001 β61 -0.725 0.076 < 0.001
β04 1.127 1.146 0.325 β03 1.590 0.966 0.100

cs(x1) -0.059 0.008 < 0.001 cs(x1) -0.054 0.009 < 0.001
β24 -0.176 0.114 0.122 β23 -1.018 0.165 < 0.001
β34 -1.106 0.097 < 0.001 β33 -2.429 0.209 < 0.001
β44 -1.187 0.314 0.0001 β43 0.548 0.299 0.0678
β54 1.137 1.143 0.319 β53 0.391 0.960 0.684
β54 -0.603 0.102 < 0.001 β63 -0.751 0.130 < 0.001

GD=2729.16 AIC=2767.16 BIC=2865.73 GD=2729.59 AIC=2773.59 BIC=2887.72

In Figure 5.9, we perform the residual analysis by plotting the quantile residuals r̂qi (see
Subsection 5.3.3) against the index of observations for the fitted GOLLMaxM semiparametric regression
models in the interval [−3, 3].

Figures 5.10 and 5.11 give the plots of the quantile residuals by density, qq-plot and worm plot
for the GOLLMaxM and Weibull mixture models, respectively, to detect possible outlying observations
as well as departures from the assumptions of semiparametric regression models. Note that Figures 5.11b
and c show normality deviations and extrapolation with respect to the confidence bands in the worm
plots.

The partial effects for the covariates in relation to the systematic structures are displayed
in Figures 5.12. In Figure 5.12a, we present the effect of the term linear for variable x1, as we have
already interpreted before, when the age of the patient is elevated at the moment of diagnosis the lifetime
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Figure 5.9. Plots for GOLLMaxM semiparametric regression model. (a) Fitted (whit regression struc-
ture in µi) versus quantile residuals. (b) Fitted (whit regression structure in τi) versus quantile residuals.
(c) Index plot of the quantile residual for the prostate cancer data.
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Figure 5.10. Plots of the GOLLMaxM semiparametric regression model for prostate cancer data. (a)
Density of the quantile residuals. (b) Q-Q plot for quantile residuals. (c) Worm plot for quantile residual.
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Figure 5.11. Plots of the Weibull mixture semiparametric regression model for prostate cancer data.
(a) Density of the quantile residuals. (b) Q-Q plot for quantile residuals. (c) Worm plot for quantile
residual.

decreases. Figure 5.12b indicates that for monoclonal protein spike measurements between approximately
0.5 and 1 there is a growing linear trend in lifetime. For values between 1 and 2.6 the lifetime it remains
constant and from 2.6 there is a linear decreasing trend in the lifetime.

Equation (5.6) provides an estimate of the cure probability for any prostate cancer patient who
underwent radical prostatectomy in terms of the above explanatory variables:
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Figure 5.12. The GOLLMaxM semiparametric regression model fitted for the prostate cancer data.
(a) Fitted partial effects of the xi1 for structure regression in µi. (b) Fitted partial effects of the xi1 for
structure regression in τi.

τ̂i =
exp

(
β̂04 + cs(xi1, df

∗ = 3) + β̂24xi2 + β̂34xi3 + β̂44xi4 + β̂54xi5 + β̂64xi6

)
1 + exp

(
β̂04 + cs(xi1, df∗ = 3) + β̂24xi2 + β̂34xi3 + β̂44xi4 + β̂54xi5 + β̂64xi6

) . (5.11)

Then, the overall cure probability for the population under study is obtained from Equation (5.11)

τ̂ =

∑1324
i=1 τ̂i
1324

= 0.71.

Hence, for the total population of the 1324 patients with localized prostate cancer treated by open radical
prostatectomy, the estimate of the cure fraction is about τ̂ = 0.71.

Considering the following scenario xi1 = 15, xi2 = 1, xi3 = 1, xi4 = 1, xi5 = 1 and stratification
by variable xi6 = 1, is presented the plots comparing the empirical and estimated survival functions
for the GOLLMaxM semiparametric regression model are given in Figure 5.13a. In Figure 5.13b, we
also present the fitted hazard functions. From these plots, we can note a significant different between
the survival curves by scenario considered. These plots indicate that the GOLLMaxM regression model
yields a satisfactory fit to the current data.
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Figure 5.13. Plots for fixed values xi1 = 15, xi2 = 1, xi3 = 1, xi4 = 1, xi5 = 1 and stratification
by variable xi6 = 1.(a) Empirical and estimated survival functions for the GOLLMaxM semiparametric
regression model. (b) Empirical and estimated hazard functions for the GOLLMaxM semiparametric
regression model.
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5.6 Concluding Remarks

We define a new generalized odd log-logistic Maxwell mixture (GOLLMaxM) semiparametric
regression to analyze data in presence of cure rate, heteroskedasticity and nonlinear effects in covariables.
We discuss some inferential issues related to this regression and perform some simulations. We illustrate
the potentiality of the new regression by means of prostate cancer data which includes descriptive and
marginal analysis, model checking and interpretations of its systematic components. In conclusion, the
proposed semiparametric regression is a effective alternative in demonstrating all the biological and
productive effects observed in the field. In conclusion, the proposed semiparametric regression is an
alternative in data modeling in the presence of cure rate.
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6 THE GENERALIZED ODD LOG-LOGISTIC MAXWELL REPARAMETRIZED

We propose a reparametrization regression model considering the GOLLMax distribution.
The proposed model features a parameter related to the median. The reparametrized distribution
can be used in different contexts, for example, in experimental data when the response variable
belongs to the positive reals. Thus, a median regression model is proposed. Parameter estimates
are obtained by maximum likelihood. Some global-influence measurements and quantile residuals are
also investigated. The proposals are illustrated by one application in experimental data.
Keywords: Experimental Data; Diagnostics; Likelihood inference ; Median; Regression model.

6.1 Introduction

Defining new families by adding shape parameters to control skewness, kurtosis and tail weights,
providing great flexibility in modeling skewed data in practice, is an important focus in statistics in
several papers as, for example, Mudholkar and Srivastava (1993) present the exponentiated Weibull
distribution and applications, Cordeiro, Ortega, and Silva (2011) defined the exponentiated generalized
gamma (EGG) distribution. da Cruz et al. (2016) proposed the odd log-logistic Weibull distribution,
Braga et al. (2016) studied the odd log-logistic normal distribution. Recently, Prataviera et al. (2018)
defined the heteroscedastic odd log-logistic generalized gamma regression model for censored data and
the generalized odd log-logistic family studied by Cordeiro et al. (2017), among others.

The great difficulty when generalizing a distribution is the interpretation of the parameters
when a regression structure is considered. For example, in Braga, the base distribution is the normal one
in which the parameters represent the mean and variance, respectively. However, in the model obtained
by the generalization, the parameters no longer have the original characteristic. Thus, this work proposes
a reparametrization of the GOLLMax in terms of the median.

This chapter is organized as follows. In Section 6.2, we define the reparametrized GOLLMax.
In Section 6.3, we define the median regression model. In Section 6.4, we provide one application to
real data to illustrate the flexibility of the model. Section 6.5 offers some concluding remarks and future
works.

6.2 The model definition

A random variable Y has the GOLLMax distribution if its cumulative distribution function
(cdf) and probability density function (pdf) are (for y > 0)

F (y;α, σ, ν) =
γν σ
1 (3/2, y2/α2)

γνσ1 (3/2, y2/α2) + [1− γσ1 (3/2, y
2/α2)]

ν (6.1)

and

f(y;α, σ, ν) =
4 ν σ y2√
π α3

exp
(
− y2

α2

)
γνσ−1
1 (3/2, y2/α2)

[
1− γσ1 (3/2, y

2/α2)
]ν−1

{γνσ1 (3/2, y2/α2) + [1− γσ1 (3/2, y
2/α2)]

ν}2
, (6.2)

respectively, where ν > 0 and σ > 0 are two extra shape parameters and α > 0 is scale parameter.
The γ1(p, u) = γ(p, u)/Γ(p) is the incomplete gamma function ratio, γ(p, u) =

∫ u

0
wp−1e−wdw is the

incomplete gamma function and Γ(·) is the gamma function. Henceforth, if Y is a random variable with
cdf (6.1), we write Y ∼GOLLMax(α, ν, σ).
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The GOLLMax distribution can be simulated by inverting (6.1). In fact, the quantile function
(qf) of Y can be expressed as

y = QMax (w;α) ,

where w =

[
u

1
ν

(1−u)
1
ν +u

1
ν

] 1
σ

and QMax(w;α) = G−1(w;α) is the qf of the Maxwell distribution.
Further, we can write

y = QMax(w;α) = α

√
γ−1
1 (3/2, w), (6.3)

where γ−1
1 (3/2, w) is the inverse of the upper gamma regularized function. For more details, see

http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/.
The median, first and third quartiles of GOLLMax distribution are

µ = Q0.50 = α

√
γ−1
1 (3/2, 0.5

1
σ ),

Q0.25 = α

√
γ−1
1

(
3/2,

[
1/(3

1
ν + 1)

] 1
σ

)
end Q0.75 = α

√
γ−1
1

(
3/2,

[
3

1
ν /(3

1
ν + 1)

] 1
σ

)
.

The proposed reparametrization of GOLLMax models is based on the median, Q0.50. The
relation of the new parameter µ is given as follows

α =
µ√

γ−1
1 (3/2, 0.5

1
σ )
,

where µ > 0 is scale and position parameter. A random variable Y has the GOLLMax reparametrized
distribution if its pdf is

f(y;µ, σ, ν) =
4 ν σ b

3/2
σ y2√

π µ3
exp

(
−bσ y

2

µ2

)
γνσ−1
1 (3/2, bσ y

2/µ2)
[
1− γσ1 (3/2, bσ y

2/µ2)
]ν−1

{γνσ1 (3/2, bσ y2/µ2) + [1− γσ1 (3/2, bσ y
2/µ2)]

ν}2
. (6.4)

where bσ = γ−1
1 (3/2, 0.5

1
σ ). If Y is a random variable with cdf (6.4), we denote Y ∼GOLLMax2(µ, σ, ν).

Some possible shapes of the density (6.4) for selected parameter values, including well-known
distributions, are displayed in Figure 6.1, thus emphasizing its asymmetrical, symmetrical and lightly
bimodal shapes. Note that the additional shape parameters give flexibility to the new distribution. We
have lightly bimodality when ν ∈ (0, 1), among other shapes depending on the parameter values.

The GOLLMax2 distribution can be simulated by replacing α in (6.3). The qf of Y can be
expressed as

y = QMax(w;µ, σ, ν) = µ

√
γ−1
1 (3/2, w)√

γ−1
1 (3/2, 0.5

1
σ )
, (6.5)

6.3 GOLLMax2 median regression model

In this section, we define a reparametrized GOLLMax regression model based in median as
presented in the Section 6.2. Regression analysis has a potential interest in verifying and estimating the
effects of one or more covariables in relation to a given distribution parameters to be used. Such relation
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Figure 6.1. Plots of the GOLLMax2 density for selected parameter values.(a) For asymmetrical and
lightly bimodal shapes. (b) For symmetrical shapes.

can be in relation to the average, median or some quantiles. In this work, we are interested in studying
the median regression model. The systematic components for µ parameter in density (6.4) to allow them
varying across the observations (for i = 1, . . . , n) as

g(µi) = vT
i β, (6.6)

where g : [0,∞) → R is known one-to-one link functions continuously twice differentiables, vT
i =

(vi1, . . . , vip) is a vector of known explanatory variables for the ith observation, and β = (β11, . . . , β1p)
T is

a parameter vectors of dimension p. Then, g(µ) = Vβ, where µ = (µ1, . . . , µn)
T and V = (v1, . . . ,vn)

T

is a specified n × p matrix of full column rank p < n. The usual systematic component for the scale
parameter is g(µi) = log(µi), then µi can be obtained by inverting g(µi), as µi = exp(vT

i β).
Consider a sample (y1,v1), . . . , (yn,vn) of n independent observations. Conventional likelihood

estimation techniques can be applied here. The total log-likelihood function for the vector of parameters
ψ = (βT , σ, ν)T from model (6.4) takes the form

l(ψ) = n log
(

4√
π

)
+

3

2
log (bσ) +

n∑
i=1

log(ν) +
n∑

i=1

log(σ) +
n∑

i=1

log
(
bσ y

2
i

µ3
i

)
−

n∑
i=1

(
bσ y

2
i

µ2
i

)
+

(σ ν − 1)

n∑
i=1

log
[
γ1(3/2, bσ y

2
i /µ

2
i )
]
+ (ν − 1)

n∑
i=1

log
[
1− γ1(3/2, bσ y

2
i /µ

2
i )
]
−

2

n∑
i=1

log
{
γσi ν
1 (3/2, bσ y

2
i /µ

2
i ) +

[
1− γσ1 (3/2, bσ y

2
i /µ

2
i )
]ν}

. (6.7)

The MLE ψ̂ of ψ can be calculated by maximizing the log-likelihood (6.7). The numerical maximization
of (6.7) can be done in the gamlss packages in R using the RS maximization algorithm (Rigby and
Stasinopoulos, 2007) to determine the estimate ψ̂.

For selection of the appropriate distribution, we use the global deviance (GD), say GD = −2l(θ̂),
where l(θ̂) is the maximized log-likelihood function (6.7), and the generalized Akaike information criterion
(GAIC) given by GAIC(k) = GD + k × df, where df is the total degrees of freedom of the adjusted
model and k is the penalty for each degree of freedom used. The Akaike information criterion (AIC)

and Bayesian information criterion (BIC) are special cases of the GAIC(k) measure when k = 2 and
k = log(n), respectively. We consider the (GD), AIC and BIC criteria to select the best regressions.
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6.3.1 Influence and residual analysis

We adopt diagnostic measures based on case deletion (global influence) to detect influential
observations in the proposed regression model. The case-deletion model with regression model structure
(6.6). Thus, the log-likelihood function for ψ is denoted by l(i)(ψ). A global influence measure considered
by (Xie and Wei, 2007) is a generalization of the Cook distance defined as a standardized norm of ψ̂(i)−ψ̂
(generalized Cook distance), namely

GDi = (ψ̂(i) − ψ̂)T
[
L̈(ψ̂)

]
(ψ̂(i) − ψ̂).

The measure to evaluate the influence of an observation (Cook and Weisberg, 1982), called the
log-likelihood distance, is the difference between ω̂ and ω̂(i) on the log-likelihood scale, namely

LDi = 2
[
l(ψ̂)− l(ψ̂(i))

]
, (6.8)

where l(ψ̂) is the maximized log-likelihood for the full sample and l(ψ̂(i)) is the maximized log-likelihood
for the sample excluding the ith observation.

Another important step in the analysis of a fitted model is to check possible deviations from
the model assumptions. In this context, we consider the quantile residuals (Dunn and Smyth, 1996) for
the GOLLMax2 median regression model, is defined by

q̂ri = Φ−1

 γσ̂ν̂1 (3/2, b̂σ y
2
i /µ̂

2
i )

γσ̂ν̂1 (3/2, b̂σ y2i /µ̂
2
i ) +

[
1− γσ̂1 (3/2, b̂σ y

2
i /µ̂

2
i )
]ν̂
 , (6.9)

where Φ−1(·) is the inverse cumulative standard normal distribution.
We built envelopes to enable better interpretation of the probability normal plot of the residuals.

These envelopes are simulated confidence bands described by Atkinson (1985) that contain the residuals,
such that if the model is well-fitted, the majority of points will be randomly distributed within these
bands.

6.4 Applications

In this section, we provide two applications to real data sets to prove empirically the flexibility
of the proposed models. The calculations are performed using the gamlss packages in the R software. To
compare the performance of the proposed regression model, we consider some distributions. We consider
the gamma (GA) distribution with density function given by

f(y, µ, σ) =
y(

1
σ2 −1)

(σ2µ)
1
σ2 Γ

(
1
σ2

) exp
{
− y

σ2µ

}
, y > 0, (6.10)

where µ > 0 and σ > 0. In this parameterization we have, E[Y ] = µ and variance V ar[Y ] = µ2σ2, such
that σ is the square root of the dispersion parameter of the usual GLM gamma model.

The three parameter generalized inverse Gaussian (GIG) defined by Jørgensen (1982) has den-
sity function (y > 0) given by

f(y, µ, σ, ν) =

(
b

µ

)ν
[

yν−1

2kν
(

1
σ2

)] exp
{
− 1

2σ2

(
b y

µ
+

µ

b y

)}
, y > 0, (6.11)

where µ > 0, σ > 0, ν ∈ ℜ, b =
[
kν+1

(
1
σ2

)] [
kν
(

1
σ2

)]−1 and kλ(t) = 1
2

∫∞
0
yλ exp

{
− 1

2 t(y + y−1)
}
dy.

The µ is the mean and scaling parameter and the variance is V ar[Y ] = µ2
[
2σ2

b (ν + 1) + 1
b2 − 1

]
.

We also consider the normal (NO) distribution. However, for comparison purposes the link
function logarithmic is used for the parameters µ.
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6.4.1 Application 1: Effect of doses

The first data set comes from an experiment carried out to assess the effects of doses of an
anthelmintic compound (ml) to control a parasite (fixed effects) using a CRD with five treatments.
Treatment 1 and treatment 2 are controls, and treatment 3, treatment 4, and treatment 5 use a new drug
at concentrations of 5%, 10%, and 15%, with six replications. The data set with n = 30 observations is
available at Professor Euclides Malheiros Braga’s website: http://jaguar.fcav.unesp.br/euclides/.
Choose the year 2013 and the option Estatistica Experimental-PG em Ciencia Animal (UFERSA) and
download the file A DIC ex2.txt. These data were recently described and analyzed by Braga et al. (2016).
The authors propose a new distribution based on the extension of the normal distribution.

Table 6.1 summarizes the main descriptive statistics for each of the five treatments and suggest
positively skewed except for Treatment 1 distributions with different degrees of variability, skewness and
kurtosis. We can also verify by Figure 6.2, that treatments 1 and 2 are quite distant in relation to
treatments 3, 4 and 5 considering the measures of the mean and median.

Table 6.1. Descriptive statistics for the effect of doses data.

Mean Median SD Skewness Kurtosis Min. Max.
Treatment 1 2477.00 2481.00 483.47 -0.381 -1.434 1687.00 3020.00
Treatment 2 2075.00 1972.50 274.87 0.587 -1.546 1825.00 2527.00
Treatment 3 527.16 523.50 200.31 0.298 -1.579 317.00 842.00
Treatment 4 156.33 141.00 38.76 0.850 -1.030 127.00 227.00
Treatment 5 91.33 76.50 52.8 1.028 -0.588 44.00 193.00

Treat 1 Treat 2 Treat 3 Treat 4 Treat 5
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Figure 6.2. Boxplot for effect of doses data by treatments.

First, we present an exploratory and marginal analysis. In this way, we consider in this analysis
the proposed GOLLMax2, GIG, GA and NO models. Figure 6.3a and 6.3b adjusted curves of the
cumulative distribution and density functions, respectively, considered under the marginal analysis of the
response variable y. As we can see due to the positive asymmetry, the normal model visually is not the
most suitable.

Then, all variables involved in the study are: yi: response variable control a parasite (log
scale); di1: comparing Treatment 1 with Treatment 2; di2: comparing Treatment 1 with Treatment
3; di3: comparing Treatment 1 with Treatment 4; di4: comparing Treatment 1 with Treatment 5; for
i = 1, . . . , 30. We now present results for the GOLLMax2, GIG, GA and NO regression models by
considering the following systematic structures as presented in (6.6):
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Figure 6.3. Plots for doses data data. (a) Histogram and estimated GOLLMax2, GIG, GA and NO
densities. (b) Empirical distribution and estimated GOLLMax2, GIG, GA and NO distributions.

µi = exp(ψ0 + ψ1di1 + ψ2di2 + ψ3di3 + ψ4di4).

The values of the GD, AIC and BIC statistics of the fitted regression models are listed in Table
6.2. The estimates of the parameters, SEs and the associated p-values of the MLEs in Table 6.2. The
figures in this table give evidence that the Treatment 1 and Treatment 2 considered control do not differ
at a significance level of 5% for GOLLMax2, GIG and GA models. This fact confirms the exploratory
analysis shown in Figure 6.2. The same is not true for the normal regression model.

Table 6.2. MLEs and information criteria for effect of doses data.
GOLLMax2 GIG

θ MLE E.P p-value θ MLE E.P p-value
ψ0 7.808 0.102 <0.001 ψ0 7.860 0.116 <0.001
ψ1 -0.188 0.140 0.192 ψ1 -0.153 0.162 0.354
ψ2 -1.578 0.164 <0.001 ψ2 -1.633 0.162 <0.001
ψ3 -2.801 0.146 <0.001 ψ3 -2.768 0.162 <0.001
ψ4 -3.451 0.162 <0.001 ψ4 -3.469 0.162 <0.001

log(σ) -3.181 0.650 - log(σ) 1.462 85.516 -
log(ν) 3.247 0.124 - ν -12.63 3.221 -

GD AIC BIC GD AIC BIC
382.37 396.37 406.18 382.61 396.6 406.42

Gamma Normal
θ MLE E.P p-value θ MLE E.P p-value
ψ0 7.814 0.102 <0.001 ψ0 7.814 0.040 <0.001
ψ1 -0.177 0.170 0.31 ψ1 -0.177 0.062 0.009
ψ2 -1.547 0.170 <0.001 ψ2 -1.547 0.192 <0.001
ψ3 -2.762 0.170 <0.001 ψ3 -2.762 0.635 0.0002
ψ4 -3.300 0.170 <0.001 ψ4 -3.300 1.086 0.005

log(σ) -1.218 0.127 - log(σ) 5.492 0.129 -
GD AIC BIC GD AIC BIC

385.68 397.68 406.08 414.67 426.67 435.07

In Figure 6.4, we perform the residual analysis by plotting the quantile residuals rqi (see sub-
section 6.3.1) against the index of observations for the fitted GOLLMax2 (Figure 6.4a), GIG (Figure
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6.4b), GA (Figure 6.4c) and Normal (Figure 6.4d) regression models.
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Figure 6.4. The index plot of the quantile residuals with range [-3, 3] for the fitted models to the effect
of doses data. (a) GOLLMax2 regression model. (b) GA regression model. (c) GIG regression model.
(c) NO regression model.

In Figure 6.5, gives the worm plot of the quantile residuals for the fitted GOLLMax2 (Figure
6.5a), GIG (Figure 6.5b), GA (Figure 6.5c) and Normal (Figure 6.5d) regression models. We conclude
that Figures 5 and 8 support the hypothesis that the GOLLMax2 regression model is very suitable to fit
these data
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Figure 6.5. The worm plot of the quantile residuals for the fitted models to the effect of doses data. (a)
GOLLMax2 regression model. (b) GA regression model. (c) GIG regression model. (c) NO regression
model.

We compute case-deletion measures LDi and GDi defined in subsection 6.3.1. The results of
such influence measure index plots are displayed in Figure 6.6a and Figure 6.6b, respectively. 6.6c shows
the quality of the adjustment of the GOLLMax2 regression model by constructing the normal probability
for qr′s for the waste diversion with simulated envelope. There is evidence of a good fit of the GOLLMax2
regression model.

6.5 Concluding Remarks

In general, in this application it appears that the proposed model GOLLMax2 can be an
alternative in the analysis of experimental data. The GOLLMax2, GIG and GA models do not differ
significantly from the measures GD, AIC and BIC. However, such models are not fitted. Regarding the
diagnostic analysis, the proposed model presents behaviors similar to the models mentioned. Procedures
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Figure 6.6. (a) Likelihood distance for for GOLLMax2 regression model to the effect dose data. (b) Gen-
eralized Cook distance for GOLLMax2 regression model to the effect dose data. (c) Normal probability
plot for the qr′s with envelopes.

for fitting the GOLLMax2 median regression model and for model diagnostics are included in the gamlss
package and available from the authors.
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7 A NEW DISTRIBUTION FOR RATES AND PROPORTIONS DATA

Abstract: We propose a new continuous distribution in the interval (0, 1) based on the
generalized odd log-logistic-G family, whose density function can be symmetrical, asymmetric, uni-
modal and bimodal. The new model is implemented using the gamlss packages in R. We obtain
some of its structural properties. We propose an extended regression based on this distribution
which includes as sub-models some important regressions. We employ a frequentist analysis and
non-parametric and parametric bootstrap methods to estimate its parameters. Further, for different
parameter settings and sample sizes, several simulations are conducted to study the empirical dis-
tribution of the maximum likelihood estimators. The empirical distribution of the quantile residuals
is compared with the standard normal distribution. The extended regression is very useful for the
analysis of real data and can give more realistic fits than other special regressions.
Keywords: Beta distribution; Generalized odd log-logistic; Maximum likelihood; Moment; Simula-
tion.

7.1 Introduction

Many studies in several fields aim to determine how a set of explanatory variables influence
other variables expressed as ratios or proportions, i.e., random experiments that produce results in the
interval (0, 1). Several researchers tried to model this type of data. For example, Ferrari and Cribari-Neto
(2004) pioneered a regression in which the parameters are interpreted as mean and precision, Bayes et al.
(2012) proposed a robust regression for proportions based on the beta rectangular distribution, Lemonte
and Bazán (2016) defined a class of Johnson SB distributions and its associated regression for rates and
proportions, Mazucheli et al. (2019) proposed a unit-Lindley distribution and its associated regression
for proportional data and Nakamura et al. (2019) defined a flexible distribution to deal with variables
on the unit interval based on a transformation of the sinh-arcsinh distribution applied to modeling the
points ratio of football teams.

It is common in practice to find proportional data with U and bimodal shapes. The known
models applied in these situations generally have an initial structure based on the beta distribution,
traditionally used to model constant, increasing, decreasing and unimodal data. For example, the Human
Development Index (HDI) is adopted for comparison among countries, cities or other regions by measuring
the degree of economic development and quality of life offered to the population. In this paper, we analyze
the HDI of Brazilian cities in the States of Santa Catarina and Bahia. Figure 7.1 displays the histogram
of these data (n = 710 observations) which refers to the first application, where a clear bimodal shape is
evident.

Furthermore, the response variable in many practical situations can be related with covariates
to explain the variability of proportional data. In these terms, our main aim is to propose a regression
based on the generalized odd log-logistic beta (“GOLLBE” for short) distribution to model proportional
data with bimodality.

The GOLLBE model is implemented numerically in the gamlss package of the R software to
estimate the model parameters. The generalized additive model for location, scale and shape (GAMLSS)
in R (Stasinopoulos and Rigby, 2007) is used to implement some new models. Here, we denote the package
by gamlss and the modeling by GAMLSS. Recently, de Castro et al. (2010) described an application
of the GAMLSS framework to fitting long-term survival models, Correa et al. (2012) implemented the
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Figure 7.1. Histogram and plot of the empirical density for the HDI.

Kumaraswamy normal distribution in gamlss and make comparisons with Azzalini’s skew normal dis-
tribution and Alizadeh et al. (2019) developed a new useful four-parameter extension of the Gumbel
distribution with applications using gamlss. We also conduct hypothesis tests based on the asymptotic
distribution of the maximum likelihood estimators (MLEs). Finally, through several simulation studies,
we evaluate the performance of these estimators in the GOLLBE regression. Therefore, as an alterna-
tive to the maximum likelihood method, we also adopt the bootstrap method to estimate the model
parameters.

In general, we have to verify the model assumptions after fitting a regression to a data set. If
the model is not adequate, it can lead to misleading conclusions. It is also important to check for the
presence of extreme or influential observations, which can cause distortions in the results. We adopt global
influence measures based on case deletion to detect influential observations in the proposed regression.
In order to check the model assumptions and detect atypical points, we consider the quantile residuals,
and also perform Monte Carlo simulations to check the empirical distribution of these residuals using
confidence bands constructed from generated envelopes (Atkinson, 1985).

The rest of the chapter is organized as follows. In Section 7.2, we introduce the GOLLBE
distribution. Some structural properties of the GOLLBE distribution are addressed in 7.3 including
ordinary and incomplete moments, generating function and mean deviations. In Section 7.4, we define
a regression in the interval (0, 1) and the classic inference and bootstrap method to estimate the model
parameters. In Section 7.5, we perform and discuss some simulations. In Section 7.6, we consider
diagnostics and residual analysis for the proposed regression. In Section 7.7, we provide two applications
for the new regression. Section 7.8 offers some concluding remarks. Finally, we present some codes used
in applications in Appendix C.

7.2 The GOLLBE distribution

A large number of distributions to extend well-known ones providing flexibility in modeling data
has being investigated recently. In fact, Cordeiro et al. (2017) defined the cumulative distribution function
(cdf) of the generalized odd log-logistic-G (“GOLL-G”) family from a baseline cdf G(y;γ) (depending on
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a parameter vector γ) by integrating the log-logistic density function, namely

F (y; ν, τ,γ) =

∫ G(y;γ)ν

1−G(y;γ)ν

0

τ wτ−1

(1 + wτ )2
dw =

G(y;γ)ν τ

G(y;γ)ν τ + [1−G(y;γ)ν ]
τ , (7.1)

where ν > 0 and τ > 0 are two additional shape parameters.
Equation (7.1) is a wider continuous family including as special cases the odd log-logistic

(Gleaton and Lynch, 2006) and proportional reversed hazard rate (Gupta and Gupta, 2007) distribu-
tions when ν = 1 and τ = 1, respectively. For ν = τ = 1, we obtain the baseline G distribution.

The probability density function (pdf) corresponding to (7.1) is

f(y; ν, τ,γ) =
ν τ g(y;γ)G(y;γ)ν τ−1 [1−G(y;γ)ν ]

τ−1

{G(y;γ)ν τ + [1−G(y;γ)ν ]
τ}2

, (7.2)

where g(y) = g(y;γ) is the baseline density. Further, we can omit the dependence on the vector γ and
write simply G(y) = G(y;γ). The density function (7.2) allows greater flexibility of its tails and can be
widely applied in many areas of engineering and biology. It will be most tractable when G(y) and g(y)

have closed-forms.
The interest in the beta distribution is due to its versatility to model random experiments that

produce data in terms of proportions. The normal linear regression is widely used in empirical analysis,
but such model becomes inappropriate in situations where the response variable represents rates and
proportions. For this reason, we present a new extended beta distribution.

The pdf and cdf of the beta random variable W (for 0 < y < 1), re-parametrized in terms of
the mean parameter µ (0 < µ < 1) and dispersion parameter σ (0 < σ < 1), are

g(y;µ, σ) =
Γ( 1−σ2

σ2 )

Γ
(

µ(1−σ2)
σ2

)
Γ
(

(1−µ)(1−σ2)
σ2

)y µ(1−σ2)

σ2 −1(1− y)
(1−µ)(1−σ2)

σ2 (7.3)

and

G(y;µ, σ) = Iy

(
µ(1− σ2)

σ2
,
(1− µ)(1− σ2)

σ2

)
=
B
(
y; µ(1−σ2)

σ2 , (1−µ)(1−σ2)
σ2

)
B
(

µ(1−σ2)
σ2 , (1−µ)(1−σ2)

σ2

) , (7.4)

respectively, where Γ(p) =
∫∞
0
wp−1 e−wdw (for p > 0) is the gamma function, B(a, b) =

∫ 1

0
wa−1 (1 −

w)b−1 dw is the beta function (for a > 0 and b > 0) and B(w; a, b) =
∫ w

0
ta−1(1−t)b−1 dt is the incomplete

beta function. We consider the notation W ∼BE(µ, σ). The mean and variance of W are E(W ) = µ and
V ar(W ) = σ2V (µ), where V (µ) = µ(1− µ) and then σ2 is a multiplier factor in the variance of W .

By inserting (7.3) and (7.4) in Equation (7.2) with γ = (µ, σ), the GOLLBE density function
can be expressed as (for 0 < y < 1)

f(y; ν, τ, µ, σ) =
ν τIy

(
µ(1−σ2)

σ2 , (1−µ)(1−σ2)
σ2

)ν τ−1 [
1− Iy

(
µ(1−σ2)

σ2 , (1−µ)(1−σ2)
σ2

)ν]τ−1

{
Iy

(
µ(1−σ2)

σ2 , (1−µ)(1−σ2)
σ2

)ν τ

+
[
1− Iy

(
µ(1−σ2)

σ2 , (1−µ)(1−σ2)
σ2

)ν]τ}2 ×

Γ( 1−σ2

σ2 )

Γ
(

µ(1−σ2)
σ2

)
Γ
(

(1−µ)(1−σ2)
σ2

)y µ(1−σ2)

σ2 −1(1− y)
(1−µ)(1−σ2)

σ2 , (7.5)

where 0 < µ < 1 is the mean parameter and 0 < σ < 1 is the dispersion parameter (both refereeing to
the baseline BE), and ν > 0 and τ > 0 are the shape parameters. We denote by Y ∼GOLLBE(µ, σ, ν, τ)
a random variable with pdf (7.5). The GOLLBE distribution includes as special cases the following
distributions:
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• The new odd log-logistic beta (OLLBE) distribution when ν = 1.

• The new exponentiated beta (EBE) distribution when τ = 1.

• The beta (BE) distribution when τ = ν = 1.

Some possible shapes of the density (7.5) for selected parameter values, including well-known
distributions, are displayed in Figure 7.2, thus emphasizing its bimodal shapes. Note that the additional
shape parameters give flexibility to the new distribution. We have bimodality when τ ∈ (0, 1), among
other shapes depending on the parameter values.
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Figure 7.2. Plots of the GOLLBE density for selected parameter values. =(a) For µ = 0.3 and σ = 0.2.
(b) For σ = 0.35, ν = 0.5 and τ = 2. (c) For µ = 0.3 and ν = 3.=

The quantile function (qf) of Y has the form

y = Q(u) = QBE




(
u

1−u

) 1
τ

1 +
(

u
1−u

) 1
τ


1
ν

;µ, σ

 , (7.6)

where QBE(u) = G−1(u;µ, σ) is the qf of the beta distribution.
The plots comparing the exact GOLLBE densities and histograms from three simulated data

sets for some parameter values are displayed in Figure 7.3. These histograms are constructed based on
2,000 generated values.

(a) (b) (c)

y

f(
y)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

µ=0.30;σ=0.20;ν=7.00;τ=0.20

y

f(
y)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

µ=0.90;σ=0.35;ν=0.50;τ=2.00

y

f(
y)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1

0

µ=0.30;σ=0.50;ν=3.00;τ=0.20

Figure 7.3. Histograms from generated GOLLBE densities for some shapes with adjusted density
function (7.5). (a) Bi-modality. (b) Left skewness. (c) U-shape.
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7.3 Structural properties

Linear representation
We provide a linear representation for the GOLLBE density. First, we define

F (y; ν, τ, µ, σ) =
zν τ

zν τ + (1− zν)τ
, (7.7)

where z = z(y) = Iy
(
µ (1− σ2)/σ2, (1− µ) (1− σ2)/σ2

)
∈ (0, 1).

Second, we use a convergent power series for zν τ (both parameters are positive real numbers)

zν τ =

∞∑
k=0

ak z
k, (7.8)

where

ak = ak(ν, τ) =

∞∑
j=k

(−1)k+j

(
ν τ

j

)(
j

k

)
.

Third, we consider the generalized binomial expansion (under these parameters)

(1− z)ν τ =

∞∑
k=0

(−1)k
(
ν τ

k

)
zk. (7.9)

Inserting (7.8) and (7.9) in Equation (7.7), we obtain

F (y; ν, τ, µ, σ) =

∑∞
k=0 ak z

k∑∞
k=0 bk z

k
, (7.10)

where bk = bk(ν, τ) = ak(ν, τ) + (−1)k
(
ν τ
k

)
(for k ≥ 0). The ratio of the two power series in Equation

(7.10) can be written as

F (y) = F (y; ν, τ, µ, σ) =

∞∑
k=0

ck Iy
(
µ (1− σ2)/σ2, (1− µ) (1− σ2)/σ2

)k
, (7.11)

where c0 = a0/b0 and the coefficients ck’s (for k ≥ 1) are determined recursively from

ck = ck(ν, τ) = b−1
0

(
ak −

k∑
r=1

br ck−r

)
.

By differentiating (7.11), we can write the density, say f(y) = f(y; ν, τ, µ, σ), as

f(y) = c1 g(y;µ, σ) + g(y;µ, σ)

∞∑
k=1

(k + 1) ck+1 Iy
(
µ (1− σ2)/σ2, (1− µ) (1− σ2)/σ2

)
)k. (7.12)

Fourth, the power series for the incomplete beta function ratio when (1− µ)(1− σ2)/σ2 is real
non-integer is

Iy
(
µ (1− σ2)/σ2, (1− µ) (1− σ2)/σ2

)
=

∞∑
m=0

tm ym+µ (1−σ2)/σ2

, (7.13)

where tm = tm(µ, (1 − σ2)/σ2) = (1−(1−µ)(1−σ2)/σ2)m
(µ(1−σ2)/σ2+m)m!B(µ (1−σ2)/σ2,(1−µ)(1−σ2)/σ2) (for m ≥ 0), and (p)k =

Γ(p+ k)/Γ(p) is the ascending factorial.
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Based on a result by Gradshteyn and Ryzhik (2000, 0.314) for a power series raised to an integer
k ≥ 1, we can write ( ∞∑

m=0

tm um

)k

=

∞∑
m=0

wk,m um, (7.14)

where the coefficients wk,m = wk,m(µ, (1 − σ2)/σ2) (for m = 1, 2, . . .) can be determined from the
recurrence equation (with wk,0 = tk0)

wk,m = (mt0)
−1

m∑
r=1

[r(k + 1)−m] tr wk,m−r.

Finally, combining (7.12), (7.13) and (7.14), we obtain

f(y)=c1 g(y;µ(1−σ2)/σ2,(1−µ)(1−σ2)/σ2)+g(y;µ(1−σ2)/σ2,(1−µ)(1−σ2)/σ2)
∑∞

k=1

∑∞
m=0(k+1) ck+1 wk,m ym+kµ (1−σ2)/σ2

,

which can take the form

f(y)=c1 g(y;µ(1−σ2)/σ2,(1−µ)(1−σ2)/σ2)+
∑∞

k=1

∑∞
m=0 sk,m g(y;(k+1)µ(1−σ2)/σ2+m,(1−µ)(1−σ2)/σ2), (7.15)

where (for k ≥ 1, m ≥ 0)

sk,m = sk,m(ν, τ, µ, σ) =
(k + 1)Γ((1− σ2)/σ2) Γ((k + 1)µ(1− σ2)/σ2 +m)

Γ(µ(1− σ2)/σ2) Γ((1 + kµ)(1− σ2)/σ2 +m)
ck+1 wk,m.

Equation (7.15) reveals that the GOLLBE density is a linear combination of beta densities.
Thus, several mathematical properties of the new distribution can be easily determined from those beta
properties. For most applications, k and m could be limited to five.

Structural properties
Here, we obtain only two mathematical properties of Y ∼GOLLBE(µ, σ, ν, τ) from those of

W ∼BE(µ, σ2). First, the nth ordinary moment of Y can be found from (2.8) and the beta moments

µ′
n=E(Y n)=c1

B(n+µ(1−σ2)/σ2,(1−µ)(1−σ2)/σ2)

B(µ(1−σ2)/σ2,(1−µ)(1−σ2)/σ2)
+
∑∞

k=1

∑∞
m=0 sk,m

B(n+(k+1)µ(1−σ2)/σ2+m,(1−µ)(1−σ2)/σ2)

B(µ(1−σ2)/σ2,(1−µ)(1−σ2)/σ2)
.

The moment generating function (mgf) of Y follows from the mgf of W ∼BE(µ, σ) written in
terms of Kummer’s confluent hypergeometric function (of the first kind), namely

E(etW) = 1F1(µ(1 − σ2)/σ2; (1 − σ2)/σ2) =

∞∑
k=0

(µ(1 − σ2)/σ2)k
((1 − σ2)/σ2)k k! .

We can write from (7.15) and the above result

E(etY)=c1 1F1(µ(1−σ2)/σ2;(1−σ2)/σ2)+
∑∞

k=1
∑∞

m=0 sk,m 1F1((k+1)µ(1−σ2)/σ2+m;kµ(1−σ2)/σ2+m+(1−σ2)/σ2).

The plots below reveal the behavior of the expected value of the GOLLBE distribution and
also the behavior of the sample mean (Ȳ ) in relation to the parameter µ. In fact, Figure 7.4 shows
the expected value of the new distribution versus one of the parameters for fixed values of the other
parameters. Thus, we can note very different forms of E(Y ) depending on the selected parameters.
Figure 7.5 shows that generating different samples under these scenarios, Ȳ tends to follow a linear
regression with the parameter µ. The simulations in Figure 7.5 are performed in the R software based on
300 replications.
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Figure 7.4. Typical forms for E(Y ) for selected parameter values. (a) Varying τ for µ = 0.2, σ = 0.4
and ν fixed. (b) Varying ν for µ = 0.2, σ = 0.4 and ν fixed. (c) Varying µ for σ = 0.5, τ = 0.45 and ν
fixed. (d) Varying µ for σ = 0.45, ν = 3.0 and τ fixed. (e) Varying µ for ν = 3.0, τ = 0.65 and σ fixed.
(f) Varying σ for ν = 8.0, τ = 0.25 and µ fixed. (g) Varying µ for ν = 7.0, σ and τ fixed. (h) Varying µ
for τ = 0.45, σ and τ fixed. (i) Varying σ for µ = 0.5, ν and τ fixed.

7.4 The GOLLBE regression and estimation

In several problems of the medical, biological, industrial and chemical areas, among others, it
is of interest to verify if two or more variables are related in some way. When performing a regression
analysis, one typically wishes to make inferences on the model parameters and use diagnostic tools to
identify atypical observations.

Let Y1, . . . , Yn be independent random variables with each Yi ∼GOLLBE(µi, σ, ν, τ) by assum-
ing that the mean parameter µi of the baseline BE distribution varies across observations. We define the
GOLLBE regression from the random component (7.5) and the systematic component

g(µi) = ηi = x
⊤
i β, i = 1, . . . , n, (7.16)

where g : (0, 1) → R is the link function, x⊤
i = (xi1, . . . , xip) is a vector of known explanatory variables
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Figure 7.5. Plots of Y versus µ from simulated GOLLBE variates. (a) Varying µ for ν = 7.0, τ = 0.25
and σ fixed. (b) Varying µ for τ = 0.25, σ and ν fixed. (c) Varying µ for ν = 7.0, σ and τ fixed.

and β = (β1, . . . , βp)
⊤ is a vector of dimension p of unknown coefficients. We can write g(µ) = η =Xβ,

where µ = (µ1, . . . , µn)
⊤, η = (η1, . . . , ηn)

⊤ and X = (x1, . . . ,xn)
⊤ is a specified n × p matrix of full

column rank p < n. The linear structure in g(µ) aims to explain the variability of the observations.
We consider that g(·) is a known one-to-one continuously twice differentiable function. We can

choose different building functions such as the logit g(µ) = log[µ/(1−µ)]. The GOLLBE regression opens
new possibilities for fitting many different types of proportional data, since the response distribution is
much more flexible than the OLLBE, EBE and beta distributions.

Some works that may be developed in the future:

• Define a systematic component for the dispersion parameter σ similar to that one of the generalized
linear models with dispersion covariates.

• Consider the GAMLSS approach, where all parameters of a distribution (not necessarily belonging
to the exponential family) can be modeled by systematic parametric or semiparametric components.

Let y = (y1, . . . , yn)
⊤ be a random sample of n independent observations, where the response

variable yi belongs to the interval (0, 1). The log-likelihood function for the parameter vector θ =

(β⊤, σ, ν, τ)⊤ can be expressed as

l(θ) = n log[ν τ Γ((1− σ2)/σ2)] + (ν τ − 1)

n∑
i=1

log[hi(yi;µi, σ)]−

n∑
i=1

log
[
Γ(µi(1− σ2)/σ2)Γ((1− µi)(1− σ2)/σ2)

]
−

2

n∑
i=1

log {hν τ
i (yi;µi, σ) + [1− hνi (yi;µi, σ)]

τ}+

n∑
i=1

(µi(1− σ2)/σ2 − 1) log(yi)

+

n∑
i=1

[(1− µi)(1− σ2)/σ2 − 1] log(1− yi) + (τ − 1)

n∑
i=1

log[1− hνi (yi;µi, σ)], (7.17)

where hi(yi;µi, σ) = Iyi

(
µi (1− σ2)/σ2, (1− µi) (1− σ2)/σ2

)
. The MLEs of the unknown parameters are

calculated by maximizing the log-likelihood function (7.17) with respect to θ. There is no closed-form
expression for the MLE θ̂ but its computation can be performed using the RS maximization algorithm
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(default in gamlss platform) in R; see Stasinopoulos and Rigby (2007) and Stasinopoulos et al. (2017).
Initial values for β and σ are taken from the fit of the beta regression with ν = τ = 1. We can also consider
the EBE regression for τ = 1 and OLLBE regression for ν = 1. The codes used in the applications are
given in Appendix C.

Besides estimation of the model parameters, hypothesis tests can be performed based on the
classical likelihood ratio (LR) statistics. For selection of the appropriate distribution, we use the global
deviance (GD), say GD = −2l(θ̂), where l(θ̂) is the maximized log-likelihood function (7.17), and the
generalized Akaike information criterion (GAIC) given by GAIC(k) = GD + k × df , where df is the
total degrees of freedom of the adjusted model and k is the penalty for each degree of freedom used.
The Akaike information criterion (AIC) and Bayesian information criterion (BIC) are special cases of the
GAIC(k) measure when k = 2 and k = log(n), respectively. We consider the GD, AIC and BIC criteria
to select the best regressions.

7.4.1 Bootstrap re-sampling method

The bootstrap re-sampling method pioneered by Efron (1979) considers that the observed sam-
ple represents the population and it is widely used in different statistical situations. According to Moore
(2006) the re-sampling methods allow to quantify the uncertainty by calculating the standard errors and
confidence intervals as well as performing hypothesis tests. Based on the information obtained from one
sample, B bootstrap samples of similar size to that of the observed sample are generated from which it
is possible to estimate various characteristics of the population, such as the mean, variance, percentiles
and so on. According to the literature, the re-sampling method may be non-parametric or parametric.
In this study, we conduct non-parametric and parametric bootstrap methods. To perform the bootstrap
procedure, we use the boot library available in R. Let Y = (Y1, . . . , Yn) be an observed random sample
and F the empirical distribution or the true distribution for the parametric case of Y. A bootstrap sam-
ple Y∗ is constructed by re-sampling nonparametric scheme with the replacement of n elements from the
sample Y. From B generated bootstrap samples, Y ∗

1 , . . . , Y
∗
B , the bootstrap replication of the parameter

of interest for the bth sample is
θ̂
∗
b = s(Y ∗

b ),

which is the value of θ̂ for sample T ∗
b (b = 1, . . . , B).

The bootstrap estimator of the standard error (Efron and Tibshirani, 1993), say ÊPB , is the
standard deviation of the B parameter estimates computed from the bootstrap samples given by

ÊPB =

[
1

(B − 1)

B∑
b=1

(
θ̂∗b − θ̄B

)2]1/2
,

where θ̄B = B−1
∑B

b=1 θ̂
∗
b .

We describe the bias corrected and accelerated (BCa) method for constructing approximated
confidence intervals based on the bootstrap re-sampling method.

BCa bootstrap interval
The bootstrap confidence intervals (CIs) based on the BCa method considers that the percentiles

used in delimiting the CIs depend on the corrections to tendency â and acceleration ẑ0. The bias-correction
constant (Efron, 1987) ẑ0 can be expressed as

ẑ0 = Φ−1
(
Pr(θ̂

∗
b < θ̂)

)
, b = 1, . . . , B,
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where Φ(·) is the cumulative standard normal distribution, Φ−1(·) is its inverse, θ̂ is the MLE from the
observed sample and θ̂

∗
b is the MLE from the bth bootstrap sample.

Let θ̂(i) be the MLE of θ computed from the sample without the ith observation. Then, â has
the form

â =

n∑
i=1

[
θ̂(·) − θ̂(i)

]3
6

{
n∑

i=1

[
θ̂(·) − θ̂(i)

]2}3/2
.

Note that θ̂(·) =
n∑

i=1

θ̂(i)/n.

The BCa bootstrap interval of coverage 100(1− 2α)% is[
θ̂
∗
(Bα1), θ̂

∗
(Bα2)

]
,

where

α1 = Φ

{
ẑ0 +

ẑ0 +Φ−1(α)

1− â
[
ẑ0 +Φ−1(α)

]} and α2 = Φ

{
ẑ0 +

ẑ0 +Φ−1(1− α)

1− â
[
ẑ0 +Φ−1(1− α)

]} .
Here, α1 and α2 are corrections to the bootstrap percentiles and the other quantities were

defined before.

7.5 Simulation study

We perform different simulation studies with and without covariates and a misspecification
study for the GOLLBE regresssion. We calculate the MLEs µ̂, σ̂, ν̂ and τ̂ for each replication and
n = 60, 250 and 500. We repeat this process 1, 000 times and determine the average estimates (AEs),
say (µ̂, σ̂, ν̂, τ̂), biases and means squared errors (MSEs). The generated variates from the GOLLBE
distribution are obtained as follow: i) Generate u ∼Uniforme (0,1); ii) Calculate y = Q(u) from equation
(7.6) to generate values from the GOLLBE distribution.

We consider three scenarios by taking the shapes shown in Figure 7.3. In the first scenario
(a), Figure 7.3a, we set µ = 0.30, σ = 0.20, ν = 7.0 and τ = 0.20. In the second scenario (b), Figure
7.3b, we have µ = 0.90, σ = 0.35, ν = 0.50 and τ = 2.0. In the third scenario (c), Figure 7.3c, we take
µ = 0.30, σ = 0.50, ν = 3.0 and τ = 0.20. The simulation results reported in Table 7.1 indicate that the
MSEs of the MLEs of µ, σ, ν and τ decay toward zero when the sample size increases, as expected under
first-order asymptotic theory.

7.5.1 Simulations for the GOLLBE regression

Various simulations are performed for the GOLLBE regression with three sample sizes (n =

60, 250 and 500). We explore two scenarios based on the systematic component (7.16). In the first
scenario, β0 = 0.45, β1 = −0.15, σ = 0.20, ν = 0.45, τ = 0.40. In the second scenario, β0 = 0.10, β1 =

0.85, σ = 0.20, ν = 2.0, τ = 0.95. For both scenarios the systematic component is µi =
exp(β0+β1xi1)

1+exp(β0+β1xi1)

and xi1 ∼ N(0.50, 0.65) for i = 1, . . . , n.
The response variables y1, . . . , yn are generated from the GOLLBE regression in the following

way:

i. For the first and second scenarios, generate xi1 ∼N(0.50, 0.65);
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Table 7.1. AEs, Bias and MSEs for the estimates in the GOLLBE distribution under scenarios a, b and
c.

scenario a
n = 60 n = 250 n = 500

Parameters AEs Bias MSE AEs Bias MSE AEs Bias MSE
µ 0.319 0.019 0.004 0.311 0.011 0.001 0.305 0.005 0.000
σ 0.201 0.001 0.002 0.197 -0.003 0.000 0.199 -0.001 0.000
ν 6.312 -0.688 10.803 6.522 -0.478 3.544 6.708 -0.292 1.541
τ 0.229 0.029 0.008 0.203 0.003 0.001 0.203 0.003 0.001

scenario b
n = 60 n = 250 n = 500

Parameters AEs Bias MSEs AEs Bias MSEs AEs Bias MSEs
µ 0.897 -0.003 0.000 0.898 -0.002 0.000 0.898 -0.002 0.000
σ 0.312 -0.038 0.011 0.337 -0.013 0.004 0.342 -0.008 0.002
ν 0.533 0.033 0.142 0.510 -0.010 0.007 0.505 0.005 0.000
τ 1.801 -0.199 0.547 1.925 -0.075 0.292 1.954 -0.046 0.156

scenario c
n = 60 n = 250 n = 500

Parameters AEs Bias MSEs AEs Bias MSEs AEs Bias MSEs
µ 0.310 0.010 0.007 0.319 0.019 0.005 0.307 0.007 0.001
σ 0.502 0.002 0.007 0.491 -0.009 0.002 0.501 0.001 0.001
ν 2.944 -0.056 0.384 2.891 -0.109 0.000 2.937 -0.063 0.104
τ 0.229 0.029 0.018 0.229 0.000 0.001 0.205 0.005 0.001

ii. For both scenarios, calculate µi from the above systematic component;

iii. Generate ui ∼ U(0,1);

iv. Use steps i., ii. and iii. to calculate the simulated observations yi’s from (7.6).

The simulation results reported in Tables 7.2 and 7.3 indicate that the AEs of the parameters
tend to be closer to the true parameter values when the sample size n increases in agreement with the
law of large numbers.

Table 7.2. The AEs, biases and MSEs based on 1,000 simulations for the GOLLBE regression under
scenario 1 with β10 = 0.45, β11 = −0.15, σ = 0.20, ν = 0.45 and τ = 0.40.

n = 60 n = 250 n = 500
θ AEs Bias MSEs AEs Bias MSEs AEs Bias MSEs
β0 0.442 -0.008 0.162 0.452 0.002 0.045 0.453 0.003 0.025
β1 -0.150 0.000 0.049 -0.149 0.001 0.007 -0.147 -0.003 0.004
σ 0.188 -0.012 0.004 0.195 -0.005 0.001 0.196 -0.004 0.000
ν 0.602 0.152 0.498 0.479 0.029 0.045 0.461 0.011 0.020
τ 0.395 -0.005 0.029 0.398 -0.002 0.008 0.394 -0.006 0.004

7.5.2 Misspecification Study

We investigate the behavior of the MLEs of the parameters in the GOLLBE regression when
it is poorly specified by carrying out Monte Carlo simulations based on 1,000 replications. The response
values are generated from the BE distribution by taking β0 = 0.35, β1 = 0.15 and σ = 0.3. We consider
the generalized beta (GBE) density function

f(y;µ, σ, ν, τ) =
τν

(1−µ)(1−σ2)

σ2 y
τ µ(1−σ2)

σ2 −1(1− yτ )
(1−µ)(1−σ2)

σ2 −1

B
(

µ(1−σ2)
σ2 , (1−µ)(1−σ2)

σ2

)
[ν + (1− ν)yτ ]

(1−σ2)

σ2

, 0 < y < 1,
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Table 7.3. The AEs, biases and MSEs based on 1,000 simulations for the GOLLBE regression under
scenario 2 with β10 = 0.10, β11 = 0.85, σ = 0.20, ν = 2.0 and τ = 0.95.

n = 60 n = 250 n = 500
θ AEs Bias MSEs AEs Bias MSEs AEs Bias MSEs
β0 0.125 0.025 0.054 0.096 -0.004 0.016 0.100 0.000 0.008
β1 0.866 0.016 0.009 0.851 0.001 0.002 0.851 0.001 0.001
σ 0.173 -0.027 0.005 0.197 -0.003 0.002 0.198 -0.002 0.001
ν 2.938 0.938 17.024 2.214 0.214 1.005 2.081 0.081 0.322
τ 0.847 -0.103 0.201 0.941 0.063 0.063 0.944 -0.006 0.032

where 0 < µ < 1, 0 < σ < 1, ν > 0 and τ > 0. The observations are simulated by taking β0 = 0.35,
β1 = 0.15, σ = 0.3, ν = 2.0 and τ = 0.85.

The logit-normal (LOGITNO) density function is defined by (0 < y < 1)

f(y;µ, σ) =
1

y(1− y)
√
2πσ

exp

−1

2

 log
(

y
1−y

)
− log

(
µ

1−µ

)
σ

2
 ,

where 0 < µ < 1 and σ > 0. The parameters are fixed at β0 = 0.35, β1 = 0.15 and σ = 0.3.
We fit all these regressions under the systematic component (given in Section 7.4) with xi1 ∼

N(0.50, 0.65) (for i = 1, . . . , 60) to each generated data set using the gamlss packages. The results are
listed in Tables 7.4, 7.5 and 7.6. In addition to the AEs, biases and MSEs, we present the mean measures
of GD, AIC and BIC. They indicate that there are small sample biases in the parameter estimation. The
average measures of GD, AIC and BIC for the fitted GOLLBE regression are very close to those values
obtained from the true regressions used in the generation of the response values. Hence, the GOLLBE
regression provides consistent MLEs even when the data are generated from different regressions.

Table 7.4. The AEs, biases and MSEs for the GOLLBE regression based on 1,000 simulations of the
beta regression for n = 60 with β0 = 0.35 and β1 = 0.15.

BE GOLLBE
θ AEs Bias MSEs AEs Bias MSEs
β0 0.352 0.002 0.012 0.273 -0.077 0.121
β1 0.150 0.000 0.018 0.154 0.004 0.022
σ 0.294 -0.006 0.003 0.249 -0.051 0.011
ν 1.720 -0.280 8.007
τ 0.795 -0.055 0.196

GD=-65.26 AIC=-59.26 BIC=-52.97 GD=-66.89 AIC=-56.89 BIC=-46.41

Table 7.5. The AEs, biases and MSEs for the GOLLBE regression model based on 1,000 simulations of
the GBE regression for n = 60 with β0 = 0.35 and β1 = 0.15.

GBE GOLLBE
θ AEs Bias MSEs AEs Bias MSEs
β0 0.638 0.288 0.126 0.874 0.524 0.392
β1 0.152 0.002 0.019 0.159 0.009 0.023
σ 0.286 -0.014 0.003 0.235 -0.065 0.015
ν 1.593 -0.407 2.681 1.196 -0.804 3.703
τ 0.989 0.139 0.189 0.887 0.037 0.325

GD=-82.61 AIC=-72.61 BIC=-62.14 GD=-83.69 AIC=-73.69 BIC=-63.22
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Table 7.6. The AEs, biases and MSEs for the GOLLBE regression based on 1,000 simulations of the
LOGITNO regression for n = 60 with β0 = 0.35 and β1 = 0.15.

LOGITNO GOLLBE
θ AEs Bias MSEs AEs Bias MSEs
β0 0.352 0.002 0.003 0.318 -0.032 0.028
β1 0.146 -0.004 0.005 0.145 -0.005 0.005
σ 0.294 -0.006 0.001 0.116 -0.184 0.036
ν 1.509 -0.491 3.023
τ 0.786 -0.064 0.172

GD=-151.83 AIC=-145.83 BIC=-139.54 GD=-153.54 AIC=-143.54 BIC=-133.07

7.6 Diagnostics and residual analysis

An important step after the estimation of the parameters is the diagnosis of abnormalities of
the fitted regression, for example, detect influential observations that may cause significant distortions
in the analysis results. This step is known as sensitivity analysis. A first tool to perform this analysis,
as stated before, is by means of global influence starting from case-deletion. Case-deletion is a common
approach to study the effect of dropping the ith case from a data set. A global influence measure as a
generalization of the Cook distance (Xie and Wei, 2007) is the standardized norm of θ̂(i) − θ̂ given by

GDi = (θ̂(i) − θ̂)⊤
[
L̈(θ̂)

]
(θ̂(i) − θ̂), (7.18)

where −L̈(θ̂) is the observed information matrix evaluated at θ̂.
Another measure to evaluate the influence of an observation (Cook and Weisberg, 1982), called

the log-likelihood distance, is the difference between θ̂ and θ̂(i) on the log-likelihood scale, namely

LDi = 2
[
l(θ̂)− l(θ̂(i))

]
, (7.19)

where l(θ̂) is the maximized log-likelihood for the full sample and l(θ̂(i)) is the maximized log-likelihood
for the sample excluding the ith observation.

In the analysis of a fitted regression we have to check possible deviations from the model
assumptions. In this context, we aim to detect the presence of outliers in the data set and evaluate their
impact on the inferential results. Therefore, an analysis of the residuals can help to validate the robustness
of the inferential results. We consider the quantile residuals and prove from the simulations that they
have some interesting properties in the GOLLBE regression under different systematic components.

The quantile residuals (Dunn and Smyth, 1996) for the GOLLBE regression have the form

r̂qi = Φ−1

{
I ν̂ τ̂
yi

(
µ̂i (1− σ̂2)/σ̂2, (1− µ̂i) (1− σ̂2)/σ̂2

)
I ν̂ τ̂
yi (µ̂i (1− σ̂2)/σ̂2, (1− µ̂i) (1− σ̂2)/σ̂2) + [1− I ν̂yi (µ̂i (1− σ̂2)/σ̂2, (1− µ̂i) (1− σ̂2)/σ̂2)]τ̂

}
,(7.20)

where Iyi(·) is defined in equation (7.4) and Φ−1(·) is the standard normal qf.
Atkinson (1985) suggested the construction of envelopes to provide better interpretation of the

probability normal plot of the residuals. These envelopes are simulated confidence bands that contain
the residuals such that the majority of points will be within these bands and randomly distributed if the
regression is well-fitted.

We also use Worm Plots (WP) as the technique to check the adjustment quality. Worm plots
of the residuals were introduced by Buuren and Fredriks (2001). The general idea of these plots is to
identify regions (intervals) of an explanatory variable within which the model does not fit adequately to
the data. The WP is a detrended normal QQ-plot of the residuals. Model inadequacy is indicated when
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many observations lie outside the point-wise 95% confidence bands or when the points follow a systematic
shape. For example, the interpretations of the shapes of the WP are: a vertical shift, a slope, a parabola
or a S shape, thus indicating a misfit in the mean, variance, skewness and excess kurtosis of the residuals,
respectively.

7.7 Applications

In this section, we provide two applications to real data to illustrate the flexibility of the
GOLLBE regression. The calculations are performed using the gamlss packages in the R software. In
the first application, we present a real situation in which the behavior of the data is bimodal. In the
second application, we consider a regression with systematic component (7.16) and the parametric and
non-parametric bootstrap methods. The proposed regression is compared to other nested regressions.
We also consider the GBE distribution as a competitive model.

7.7.1 Municipal HDI in Brazil

Our aim here is to prove empirically the potentiality of the proposed distribution to model
data that present a complex shape including bimodality. The Human Development Index (HDI) is a
measure of long-term progress in three basic dimensions of human development which takes into account
education, income and longevity indexes. The HDI is the geometric mean of the normalized indexes for
the three dimensions of human development. The current data set with n = 710 observations is available
at the link http://atlasbrasil.org.br/2013/, where the observations were measured during the 2010 census.
We analyze a municipal HDI (MHDI) data set in the cities of the States of Santa Catarina and Bahia
(Brazil).

Tables 7.7 and 7.8 give the MLEs of the parameters, the values of the GD, AIC and BIC criteria
and LR tests for the extra parameters ν and τ in the proposed distribution, respectively. We note that
the lowest values of these criteria refer to the GOLLBE distribution, which can be chosen in this case.

Table 7.7. MLEs of the model parameters and statistical measures for HDI data.

Model logit(µ) logit(σ) log(ν) log(τ) GD AIC BIC
GOLLBE 0.357 -2.509 2.149 -1.809 -1807.03 -1799.03 -1780.70

(0.001) (0.003) (0.045) (0.034)
OLLBE 0.672 -2.780 - -1.451 -1740.11 -1734.11 -1720.41

(0.005) (0.012) - (0.062)
EBE -0.190 -0.991 2.135 - -1607.52 -1601.52 -1587.82

(0.012) (0.017) ( 0.044) -
BE 0.623 -1.606 - - -1585.00 -1581.00 -1571.87

(0.013) (0.030) - -
GBE 2.530 -1.701 -4.410 1.475 -1627.29 -1619.29 -1601.03

(0.734) (0.396) (0.861) (0.190)

For the LR tests, we reject the three null distributions in favor of the GOLLBE distribution.
As an alternative to the goodness-of-fit criteria, we display the plots of the fitted GOLLBE, OLLBE,
EBE, GBE and BE densities and the histogram of the data in Figure 7.6a. The plots of the estimated
cumulative distributions and empirical cdf are given in Figure 7.6b.

Two plots of the ordered quantile residuals versus the standard normal quantiles (QQ-plots) are
displayed in Figure 7.7 to verify the adequacy of the fitted GOLLBE and BE regressions. We note that
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Table 7.8. LR tests for HDI data.

Models Hypotheses Statistic w p-value
GOLLBE vs OLLBE H0 : ν = 1 vs H1 : H0 is false 67.69 <<0.0001

GOLLBE vs EBE H0 : τ = 1 vs H1 : H0 is false 194.37 <<0.0001
GOLLBE vs BE H0 : ν = τ = 1 vs H1 : H0 is false 222.37 <<0.0001
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Figure 7.6. Some plots for HDI data. (a) Histogram and estimated GOLLBE, OLLBE, EBE, BE
and GBE densities. (b) Estimated GOLLBE, OLLBE, EBE, BE and GBE cumulative distributions and
empirical distribution.

the quantile residuals follow more approximately a normal distribution for the GOLLBE distribution. In
fact, these plots reveal that the new distribution provides a good fit to the MHDI data.
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Figure 7.7. QQ-plots for MHDI data. (a) For the GOLLBE distribution. (b) For the BE distribution.

7.7.2 Body fat percentages in Australia

In the second application, we consider the Australian Institute of Sport (AIS) data set included
in the library sn in the R software with n = 202 observations. The variables are: the body fat percentage
(yi = Bfat), weight (in kg) (xi1 = wt) and (xi2 = sex) a factor with levels (f: female and m: male) of each
athlete (for i = 1, . . . , 202). In the second part of this application, we also fit the GOLLBE regression
to y with the explanatory variables x1 and x2 and present a diagnostic analysis based on the quantile
residuals.

First, we present a marginal analysis considering only the response variable y. In Table 7.9, we
give the MLEs of the parameters for some distributions and the values of the GD, AIC and BIC statistics.
It is clear that the smallest values of these statistics are associated with the GOLLBE distribution, which
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can be chosen in this case. The LR statistics for the extra parameters ν and τ in this distribution are
listed in Table 7.10.

Table 7.9. MLEs in some fitted distributions for AIS data and statistical measures.

Model logit(µ) logit(σ) log(ν) log(τ) GD AIC BIC
GOLLBE -2.332 -2.481 1.990 -1.625 -633.27 -625.27 -612.04
OLLBE -1.859 -2.477 - -1.093 -613.81 -607.81 -597.89

EBE -2.854 -1.203 1.876 - -594.54 -588.54 -578.62
BE -1.855 -1.563 - - -589.32 -585.32 -578.70

GBE -1.471 -1.397 -0.436 0.015 -590.37 -582.37 -569.14

The LR values support the rejection of the null models in relation to the proposed distribution.

Table 7.10. LR tests for AIS data.

Models Hypotheses Statistic w p-value
GOLLBE vs OLLBE H0 : ν = 1 vs H1 : H0 is false 19.46 <0.0001

GOLLBE vs EBE H0 : τ = 1 vs H1 : H0 is false 38.73 <0.0001
GOLLBE vs BE H0 : ν = τ = 1 vs H1 : H0 is false 43.95 <0.0001

The histogram of the current data set and the plots of the estimated GOLLBE, OLLBE, EBE,
GBE and BE densities are displayed in Figure 7.8a. The plots of the corresponding estimated cumulative
and empirical distributions are given in Figure 7.8b. These plots reveal that both GOLLBE and OLLBE
models provide good fits to the current data.
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Figure 7.8. Plots for AIS data. (a) Histogram and estimated GOLLBE, OLLBE, EBE, BE and GBE
densities. (b) Estimated GOLLBE, OLLBE, EBE, BE and GBE cumulative and empirical distributions.

Next, we fit some regressions to the body fat percentages with the systematic component

µi =
exp(β0 + β1xi1 + β2xi2)

1 + exp(β0 + β1xi1 + β2xi2)
, i = 1, . . . , 202.

Table 7.11 provides the MLEs, SEs and p-values obtained from the fitted GOLLBE and BE
regressions to the AIS data. The figures in this table reveal that the explanatory variables x1 and x2 are
significant (at the 5% level) in modeling the body fat percentages.

The GD, AIC and BIC values for the fitted GOLLBE, OLLBE, EBE, BE and GBE regressions
are listed in Table 7.12. We conclude that the GOLLBE and EBE regressions are better that the other
competitive regressions independently of the criteria and then they can chosen to explain these data.
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Table 7.11. MLEs, SEs and p-values for the GOLLBE and BE regression models fitted for AIS data.

GOLLBE BE
Parameter Estimate SE p-Value Parameter Estimate SE p-Value

β0 -3.444 0.385 < 0.0001 β0 -2.955 0.112 < 0.0001
β1 0.023 0.002 < 0.0001 β1 0.020 0.001 < 0.0001
β2 -1.203 0.124 < 0.0001 β2 -1.073 0.047 < 0.0001

logit(σ) -2.188 0.340 - logit(σ) -2.306 0.054 -
log(ν) 1.480 0.837 -
log(τ) -0.231 0.345 -

Table 7.12. Statistical measures for five fitted regressions to the AIS data.

Model GD AIC BIC
GOLLBE -855.40 -843.40 -823.55
OLLBE -851.73 -841.73 -825.19

EBE -855.10 -845.10 -828.55
BE -851.09 -843.09 -829.85

GBE -854.94 -842.94 -823.09

Since the GOLLBE regression is the most suitable model for the AIS data, its parameters are
also estimated by the non-parametric and parametric bootstrap methods. The bootstrap procedure is
performed using the boot library in the R software with B = 1, 000. We obtain the AEs computed from B

bootstrap samples and the BCa CIs as described in Section 7.4.1. The AEs, their SEs and CIs are given
in Table 7.13. The figures in Tables 7.11 and 7.13 indicate that the non-parametric bootstrap method is
more efficient than the other two methods.

Table 7.13. AEs and CIs based on the non-parametric and parametric bootstrap re-sampling methods
for the AIS data under the GOLLBE regression.

Non-parametric Parametric
Parameter Average SE 95% CIs - BCa Parameter Average SE 95% CIs - BCa

β0 -3.097 0.124 (-3.346; -2.860) β0 -3.344 0.242 (-4.352; -3.207)
β1 0.021 0.001 (0.018; 0.024) β1 0.022 0.002 (0.019; 0.029)
β2 -1.104 0.050 (-1.206; -1.013) β2 -1.178 0.089 (-1.507; -1.106)

logit(σ) -2.462 0.136 (-2.694; -2.178) logit(σ) -2.284 0.257 (-2.393; -1.464)
log(ν) 0.581 0.185 (0.272; 0.998) log(ν) 1.309 0.507 (1.099; 3.424)
log(τ) -0.335 0.198 (-0.708, 0.044) log(τ) -0.314 0.290 (-0.524; 0.655)

The case deletion measures GDi(θ) and LDi(θ) given by (7.18) and (7.19) for the AIS data are
displayed in Figure 7.9, respectively, where the cases ♯56 and ♯121 are possible influential observations.

Figure 7.10 displays the quantile residuals calculated from equation (7.20) for the chosen
GOLLBE regression. In Figure 7.10a, we plot the quantile residuals against the fitted values. In Figure
7.10b, we plot these residuals against the index. The simulated envelop is displayed in Figure 7.10c.
These plots reveal that the quantile residuals are arranged randomly in the interval (−3, 3) and that they
are within the confidence bands. Based on these analyses, there is a strong evidence of a good fit of the
GOLLBE regression to the body fat data.

The worm plots obtained from all fitted regressions are displayed in Figure 7.11. We note that
the GOLLBE and EBE regressions do not present any trend (vertical shift, slope, quadratic or cubic
shapes). However, for the OLLBE, GBE and BE regressions, the normalized quantile residuals exhibit
a quadratic or U shapes, thus indicating a problem with their skewness. Hence, based on the plots in
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Figure 7.9. Plots for global influence. (a) Likelihood distance against index. (b) Generalized Cook’s
distance against index.
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Figure 7.10. The quantile residuals from the GOLLBE regression. (a) Residuals against fitted values.
(b) Residuals against index. (c) Simulated envelope for the residuals.

Figure 7.11 and the AIC and BIC measures in Table 7.12, we can conclude that the GOLLBE and EBE
regressions are the most suitable models in relation to the others to explain AIS data.

In Figure 7.12, we present the predicted curves for both regressions. These plots are constructed
using the function update() in the R software. It is evident that the proposed regression can be an
interesting alternative in terms of prediction. We confirm the figures in Table 7.11, i.e. two distinct
clusters in relation to the explanatory variable x2. The percentages y are always higher for females than
for males.

We can note from Table 9 that the covariables x1 and x2 are significant at a 5% significance
level. The percentage of body fat tends to increase when the weight of individuals increases. Further,
there is a significant difference between men and women regarding the percentage of body fat.

7.8 Conclusions

We propose a new continuous distribution with four parameters, called the generalized odd
log-logistic beta (GOLLBE) distribution, for bimodal data in the unit interval. Its main advantage
is the flexibility in accommodating different forms of the density function, such as U, unimodal and
bimodal. We also investigate some f its structural properties. We define a new regression based on the
GOLLBE distribution to the analysis of proportions and estimate its parameters by maximum likelihood.
The bootstrap method is considered as an alternative for obtaining parameter estimates and confidence
intervals. In addition, we perform diagnostic and residual analysis to verify the regression assumptions.
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Figure 7.11. Worm plots in some fitted regressions for AIS data. (a) GOLLBE. (b) OLLBE. (c) EBE.
(d) BE. (e) GBE.
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Figure 7.12. Plots of AIS data for y against x1 (for each level of x2) with fitted lines for the GOLLBE
and BE regressions.

The usefulness of the new distribution and regression is illustrated by means of two real data sets, thus
showing that the estimation methods present good results and that the residuals and sensitivity analysis
can be helpful in choosing an appropriate model. Future work may be developed to deal with other
estimation methods, such as Bayesian approach, and some studies can be conducted to verify the model
robustness with respect to outliers. Further, zero-inflated regression models can be developed. Also, the
GAMLSS models, parametric and/or semi-parametric models with random effects can be investigated.
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8 CONCLUSION

In this work we propose parametric and semiparametric regression models based on the family
generalized odd log-logistic-G. Thus, two new models were proposed for the generalized odd log-logistic
Maxwell (GOLLMax) distribution for for data on positive support and the generalized odd log-logistic
beta (GOLLBE) distribution for data analysis in the unit interval. Various mathematical properties of
the GOLLMax and GOLLBE distribution are investigated. We show that it can accommodate various
shapes of the skewness, kurtosis and bi-modality. The former class of GOLLMax regression models is
very suitable for modeling censored and uncensored lifetime data.

Based on the GOLLMax distribution, we propose a reparametrization of the model in terms of
median, denoted by GOLLMax2. This chapter needs further studies on the reparametrized model. For
example, to verify the properties of the model, simulation studies should be developed. Applications in
different areas must be considered, as well as censored and uncensored data can be an alternative work.

Based on the GOLLMax distribution, we propose a new distribution called zero adjusted gener-
alized odd log-logistic Maxwell (ZAGOLLMax). For this model, we present a ZAGOLLMax semiparamet-
ric regression model to analyze soil microbiology data. We also propose a mixture model called generalized
odd log-logistic Maxwell mixture (GOLLMaxM), with application to a prostate cancer dataset.

Considering data in the unit interval, the GOLLBE distribution was proposed. This model
presents more flexible shapes in against to the beta distribution, which is considered as the base line
distribution. Such flexibility can be verified in the shapes that the probability density function assumes,
as bimodality, right asymmetry, left asymmetry, U shape. The model proves to be a very interesting
alternative, especially when it is considered a regression structure.

We use the gamlss script in the R package to obtain the maximum likelihood estimates and
perform asymptotic tests for the model parameters based on the asymptotic distribution of the estimates.

As future perspective of work, the following possibilities can be highlighted: based on the
GOLLMax2 model, consider the parametric and semiparametric regression models for censored and
uncensored data, regression model with cure rate, inflated of zeros model and competitive risks. For the
GOLLBE model, parametric and semiparametric regression models can be considered, considering model
with inflated data of zeros, inflated of ones and or inflated of zeros and ones. In addition to further studies
on the robustness of the model in a regression structure when in the presence of autlier observations
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APPENDICES

Appendix A: Codes for Chapter 2

Here, we present the codes implemented in the GAMLSS package in the software R. The pdf, cdf,
qf and the samples generator functions are

library(flexsurv); library(numDeriv); library(gamlss);
library(gamlss.cens); #required packages source('https:xxxxx')
#implemented codes dGOLLMax(x,mu,sigma,nu,tau) #pdf
pGOLLMax(x,mu,sigma,nu,tau) #cdf
qGOLLMax(u,mu,sigma,nu,tau) #qf
rGOLLMax(n,mu,sigma,nu,tau) #samples generator

Example of the code used to obtain the estimates of the semiparametric regression model in
the application 1.

fit1 = gamlss(y~cs(x1,df=5),sigma.formula =~1,nu.formula =~1,
family = GOLLMax(),n.cyc=200,c.crit=0.01,
data=data1)

Example of the code used to obtain the estimates of the semiparametric regression model in
the application 2.

fit2 = gamlss(Surv(y,delta)~cs(x1,df=5)+x2+x5,sigma.formula
=~1,nu.formula =~1, family = cens(GOLLMax()),n.cyc=200,c.crit=0.01,
data=data2)

Appendix B: Codes for Chapter 3

Here, we present the codes implemented in the gamlss package in the software R. The pdf, cdf,
qf and the samples generator functions are

library(gamlss); library(flexsurv); library(numDeriv) #required
packages source('https:xxxxx') #implemented codes
dZAGOLLMax(x,mu,sigma,nu,tau) #pdf
pZAGOLLMax(x,mu,sigma,nu,tau) #cdf
qZAGOLLMax(u,mu,sigma,nu,tau) #qf
rZAGOLLMax(n,mu,sigma,nu,tau) #samples generator

Example of the code used to obtain the estimates of semiparametric regression model.

fit = gamlss(y~cs(x1,df=3)+cs(x2,df=3)+cs(x3,df=3)+Block +
Trat,sigma.formula =~1,nu.formula =~1,tau.formula
=~cs(x1,df=3)+cs(x2,df=3)+cs(x3,df=3)+Block + Trat, family =
ZAGOLLMax(),n.cyc=300,c.crit=0.01, data=microbiological.data)
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Appendix C: Codes for Chapter 3

The proposed GOLLBE model was implemented in the gamlss packages in the R software. The
implemented structure and the codes of the applications are available for access via Github at the links
described below.

The file with the implemented structure can be accessed by source('https://gist.githubusercontent.
com/fabiopviera/69847c04cf02c3f4df078bd748dfb6f4/raw/ec07e163314eb55d8063b9d03c467f0782003ceb/
GOLLBE.r') or https://gist.github.com/fabiopviera. The pdf, cdf, qf and the samples generator
functions are:

library(flexsurv); library(numDeriv); library(gamlss);

#implemented code
dGOLLBE(x,mu,sigma,nu,tau) #pdf
pGOLLBE(x,mu,sigma,nu,tau) #cdf
qGOLLBE(u,mu,sigma,nu,tau) #qf
rGOLLBE(n,mu,sigma,nu,tau) #samples generator

Example of the script used to obtain the estimates for Application 1, can be accessed by
https://gist.github.com/fabiopviera/da2a74f5306f167dda12ee086b96cb8b.

fit_BE<-gamlss(y~1,family=BE,n.cyc=300,c.crit=0.01)
fit_EBE<-gamlss(y~1,family=GOLLBE,n.cyc=300,c.crit=0.01,tau.start=1,tau.fix=T,
mu.start=fit_BE$mu.fv,sigma.start=fit_BE$sigma.fv)
fit_OLLBE<-gamlss(y~1,family=GOLLBE,n.cyc=300,c.crit=0.01,nu.start=1,nu.fix=T,
mu.start=fit_EBE$mu.fv,sigma.start=fit_EBE$sigma.fv,tau.start=1)
fit_GOLLBE<-gamlss(y~1,family=GOLLBE,n.cyc=300,c.crit=0.01,mu.start=fit_BE$mu.fv,
sigma.start=fit_BE$sigma.fv,nu.start=fit_EBE$nu.fv)

Example of the script used to obtain the estimates for Application 2, can be accessed by
https://gist.github.com/fabiopviera/94fad80f93907782b0da83e98ae03ebd.

fit_BE<-gamlss(y~x1+x2,family=BE)
fit_EBE<-gamlss(y~x1+x2,family=GOLLBE,n.cyc=200,c.crit=0.01,
tau.start=1,tau.fix=T,mu.start=fit_BE$mu.fv,sigma.start=fit_BE$sigma.fv)
fit_OLLBE<-gamlss(y~x1+x2,family=GOLLBE,n.cyc=200,c.crit=0.01,
nu.start=1,nu.fix=T,mu.start=fit_BE$mu.fv,sigma.start=fit_BE$sigma.fv)
fit_GOLLBE<-gamlss(y~x1+x2,family=GOLLBE,n.cyc=200,c.crit=0.01,
sigma.start=fit_BE$sigma.fv,nu.start=fit_EBE$nu.fv)


