• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.11.2019.tde-03012019-175609
Documento
Autor
Nome completo
Djair Durand Ramalho Frade
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2018
Orientador
Banca examinadora
Piedade, Sonia Maria de Stefano (Presidente)
Dias, Carlos Tadeu dos Santos
Lima, Cesar Goncalves de
Pião, Antonio Carlos Simões
Rodrigues, Josiane
Título em português
Diretrizes para aplicação de inferência Bayesiana aproximada para modelos lineares generalizados e dados georreferenciados
Palavras-chave em português
Inferência bayesiana
INLA
Modelos lineares generalizados
Resumo em português
Neste trabalho, exploramos e propusemos diretrizes para a análise de dados utilizando o método Integrated Nested Laplace Approxímation - INLA para os modelos lineares generalizados (MLG's) e modelos baseados em dados georreferenciados. No caso dos MLG's, verificou-se o impacto do método de aproximação utilizado para aproximar a distribuição a posteriori conjunta. Nos dados georreferenciados, avaliou-se e propôs-se diretrizes para construção das malhas, passo imprescindível para obtenção de resultados mais precisos. Em ambos os casos, foram realizados estudos de simulação. Para selecionar os melhores modelos, foram calculadas medidas de concordância entre as observações e os valores ajustados pelos modelos, por exemplo, erro quadrático médio e taxa de cobertura.
Título em inglês
Approximate Bayesian inference guidelines for generalized linear models and georeferenced data
Palavras-chave em inglês
Bayesian inference
Generalized linear models
INLA
Meshes
Resumo em inglês
In this work, we explore and propose guidelines for data analysis using the Integrated Nested Laplace Approximation (INLA) method for generalized linear models (GLM) and models based on georeferenced data. In the case of GLMs, the impact of the approximation method used to approximate the a posteriori joint distribution was verified. In the georeferenced data, we evaluated and proposed guidelines for the construction of the meshes, an essential step for obtaining more precise results. In both cases, simulation studies were performed. To select the best models, agreement measures were calculated between observations and models, for example, mean square error and coverage rate.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-01-10
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.