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“Live as if you were to die tomorrow. Learn as if you were
to live forever.”

Mahatma Gandhi
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Até a calmaria chegar

Eu estou sozinho
Não posso nem mesmo imaginar

As incertezas do caminho
De um barco perdido em alto mar

Onde está a estrela que há tanto tempo procuro?
Às vezes fico assim pensando...

Em episódios arrítmicos
E, assim, enlouquecendo a procura de um lar!

Estou completamente perdido nessa imensidão
Como posso, então, fixar meu olhar

Em estrelas que me confundem o tempo todo?
São apenas portas aberta aos tolos sob a luz do luar!

Lá se vai meu pequeno barco novamente
Levado por outra onda doutro amor luzente

Até a calmaria chegar!

Thiago de Paula Oliveira



7

SUMMARY

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Lista de Abreviaturas e Siglas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Lista de Símbolos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Importance of papaya, methods for measurement fruit’s color and agreement indexes 21
2.2 Longitudinal data and mixed effects models . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Selecting the covariance structure . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Prediction of random effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Conditional test for fixed effect parameters . . . . . . . . . . . . . . . . . . . . . . 38
2.5 The top-down strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Longitudinal concordance correlation function based on variance components: an appli-
cation in fruit color analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Experimental data and descriptive analysis . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Definition of the longitudinal concordance correlation (LCC) . . . . . . . . . . . . 51

3.3.1 The multiple mixed effects regression model for longitudinal data . . . . . . 51
3.3.2 Model extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.3 The longitudinal concordance correlation . . . . . . . . . . . . . . . . . . . 53

3.4 Estimation of the LCC using variance components . . . . . . . . . . . . . . . . . . 55
3.5 Non-parametric bootstrap confidence intervals . . . . . . . . . . . . . . . . . . . . 56
3.6 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.7 Papaya’s peel hue data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Estimation of the longitudinal concordance correlation function in R: The lcc package . 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 The longitudinal concordance correlation (LCC) . . . . . . . . . . . . . . . . . . . 73

4.2.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Overview of the package lcc and R syntax . . . . . . . . . . . . . . . . . . . . . . 76



8

4.3.1 Output of the lcc function . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Specifying models in the lcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5 The papaya’s peel hue dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6 Comparison with cccrm package . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.8 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Annex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



9

RESUMO

Estimando a correlação de concordância longitudinal por meio de efeitos fixos e
componentes de variâncias do modelo de regressão polinomial de efeitos mistos

Resumo: No setor de pós-colheita é muito comum a utilização de colorímetros para
avaliar a cor média da casca de frutos ao longo do tempo. No entanto, muitas vezes as técni-
cas de amostragem utilizando esse equipamento podem levar a medidas tendenciosas da média
amostral. Alternativamente, a utilização de imagens digitais pode levar a um menor viés, uma
vez que toda a região da casca do fruto é amostrada de forma sistemática. No entanto, ainda
é necessária a comparação de ambas abordagens, pois o colorímetro tem vantagens em relação
a facilidade de utilização e menor tempo para realizar a amostragem em cada fruto quando
comparado a um scanner de mesa. Assim, no caso de variáveis respostas medidas em uma escala
contínua, a reprodutibilidade das medidas tomadas por ambos equipamentos pode ser avaliada
por meio do coeficiente de correlação de concordância. Dessa forma, para avaliar o perfil da con-
cordância entre métodos, nós propomos uma correlação de concordância longitudinal (LCC),
baseada em um modelo de regressão polinomial com efeitos mistos. Os resultados sugeriram que
as técnicas por meio de imagens digitais devem ser utilizadas para a quantificação da tonalidade
média de frutos. Adicionalmente, a partir do perfil de concordância estimado notamos que existe
um período em que ambos os equipamentos podem ser utilizados. A performance do coeficiente
de concordância longitudinal foi avaliada por meio de um estudo de simulação, o qual sugeriu
que nossa metodologia é robusta a dados desbalanceados (“dropout”) e que a probabilidade de
convergência é aceitavel para uma amostra de 20 frutos e ideal para amostras a partir de 100
frutos. Uma vez que ainda não existem pacotes disponibilizados no ambiente computacional
R para a estimação da correlação de concordância longitudinal, nós estamos desenvolvendo um
pacote intitulado lcc, o qual será submetido ao “Comprehensive R Archive Network” (CRAN).
Nesse pacote nós implementamos procedimentos para estimação da correlação de concordância
longitudinal, da correlação de Person longitudinal e de uma medida de acurácia longitudinal.
Além disso, nosso pacote foi desenvolvido para dados balanceados e desbalanceados, permitindo
modelar a heteroscedasticidade entre erros dentro do grupo usando ou não o tempo como covar-
iável, e, também, permitindo a inclusão de covariáveis no preditor linear para controlar variações
sistemáticas na variável resposta.

Palavras-chave: Dados longitudinais, Modelo de regressão linear misto, Concordância longi-
tudinal, Carica papaya L., Análise de cor, Software R
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ABSTRACT

Estimating the longitudinal concordance correlation through fixed effects and variance
components of polynomial mixed-effects regression model

In the post-harvest area, a common approach to quantify the average color of fruits
peel over time is the sampling of small number of points generally on its equatorial region
using a colorimeter. However, when we use a colorimeter to classify an uneven-colored fruit
misclassification may occur because points in the peel region may not be representative of average
color of fruit. The main problem when we use this method is to determine the number of points
to be sampled as well as the location of these points on the fruit’s surface. An alternative method
to evaluate measure of color is digital image analysis because it covers whole of the object surface,
by using a sample of pixels taken from the image. As the colorimeter approach is faster and
easier than image analysis, it may not be suitable for assessing the overall mean color of the
papaya’s peel and its performance will depend on the number of measured points and choice of
sampled region. In this sense, the comparison between these approach is still necessary because
we need to know if a sample on the equatorial region can reproduce a sample over the whole
region, and if the colorimeter can compete with a scanner or digital camera in measuring the
mean hue of papaya peel over time. Thus, we proposed a longitudinal concordance correlation
(LCC) based on polynomial mixed-effects regression model to evaluate the extent of agreement
among methods. The results show that ideally image analysis of whole fruit’s region should be
used to compute the mean hue and that the topography and curved surface of papaya fruit did
not affect the mean hue obtained by the scanner. Since there are still no packages available to
estimate the LCC in the free software environment R, we are developing a package called lcc,
which provides functions for estimating the longitudinal concordance correlation (LCC) among
methods based on variance components and fixed effects of polynomial mixed-effects model.
Additionally, we implemented arguments in this function to estimating the longitudinal Pearson
correlation (LPC), as precision measure, and longitudinal bias corrector factor (LA), as accuracy
measure. Moreover, these components can be estimated using different structures for variance-
covariance matrices of random effects and variance functions to model heteroscedasticity among
within-group errors using or not the time as variance covariate.

Keywords: Longitudinal data, Mixed-effects regression, Longitudinal agreement, Carica pa-
paya L., Color analysis, Software R
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1 INTRODUCTION

Measuring the amount of agreement between two or more responses is a common re-
search goal. When the data are categorical in nature, the Cohen’s kappa (Cohen, 1960) and
weighted kappa (Cohen, 1968) statistics are appropriated measures of agreement for ordinal
and nominal categorical variables, respectively. On the other hand, when the data are measured
in continuous scale, the concordance correlation coefficient (CCC) introduced by Lin (1989)
should be used as agreement measure between two methods. This agreement index is calculated
by measuring the variation of the linear relationship between each pair of observations from the
45◦ line through the origin. Therefore, the mainly advantage of this coefficient is not only mea-
suring how far each observation deviates from the best-fit line (measure of precision), but also
how far the best-fit line deviates from the 45◦ line through the origin (measure of accuracy).
Moreover, some extensions of CCC to categorical data was developed to estimate agreement
equivalently to Cohen’s kappa and weighted kappa statistics (Krippendorff, 1970; King and
Chinchilli, 2001).

However, when subjects, methods, or covariates variation are considered in the estima-
tion of CCC, Carrasco and Jover (2003) suggested the use of two-way linear mixed-effect
model to estimate CCC through variance components (VC), which was extended to repeated
measures by Carrasco et al. (2009) and soon after to generalized linear mixed-effects models
(GLMMs) for count data by Carrasco (2010). Other research direction is to estimate CCC
via generalized estimating equations (GEE) introduced by Barnhart and Williamson (2001),
who proposed three sets of estimating equations to model CCC between two methods for con-
tinuous variables. This approach was also extended to multiple methods (Barnhart et al.,
2005). Additionally, Tsai (2015) demonstrated through simulation study that CCC under VC
and GEE can be biased when the model is misspecified, consequently, it is very important to
perform model selection in both approach. Besides, this author also show that VC approach is
less affected by model misspecification than GEE one.

In longitudinal studies where multiple methods measure the same individual and the
main goal is to evaluate whether the methods agree with each other, it is natural to want to know
when interchangeably among them will be possible. This would allows the use of cheapest or
most convenient method in place of others. Thus, in this thesis we proposed an extension of ideas
presented by Lin (1989) and Carrasco et al. (2009) based on the mixed-effects polynomial
regression model rather than a mixed-effects ANOVA approach. Our approach allows to estimate
the extent of agreement among pair of observations for multiple methods. Furthermore, we also
proposed an R (R core Team, 2017) package called lcc, which provides functions for estimating
the longitudinal concordance correlation (LCC) among methods based on variance components
and fixed effects of polynomial mixed-effects model. We also add arguments in this function for
estimating the longitudinal Pearson correlation (LPC), as precision measure, and longitudinal
bias corrector factor (LA), as accuracy measure.
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The remainder of the thesis is organized as follows. In Chapter 2, we present a brief
review on papaya ripeness, color measurements, concordance correlation coefficient, longitudi-
nal data, mixed effects models, estimation methods (likelihood-based estimation), and model
selection. In Chapter 3 we define the longitudinal concordance correlation (LCC) based on fixed
effects and variance components in a multiple mixed-effects regression model. We also present
a bootstrap-based confidence intervals, a simulation study to demonstrate the performance of
LCC, and illustrate our approach with an application to the papaya hue color, considering fruit
classification and maturation studies in the post-harvest phase. We describe the implementation
of R package called lcc and explain its technical arguments in the Chapter 4. Numerical and
graphical summaries for the fitted and confidence intervals were implemented for ‘lcc’ object
in order to facilitate the interpretation of results. The approach is illustrated using two real
datasets. In Chapter 5, we make our general conclusion. Finally, in the Appendix section, we
present some proofs, matrix algebra theory used in demonstrations discussed throughout of this
thesis. Moreover, R code used in the development of Chapter 3 is available in the Appendix
while R code used in Chapter 4 may be upon request to the author.
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2 LITERATURE REVIEW

In this chapter, we present a brief review about some important topics. In Section 2.1,
we discuss the importance of papaya fruits, what methods can be used to evaluate the peel color
of these fruits, and how we can assess the agreement among these methods. Longitudinal data
analysis involving multiples outcomes or covariates is described in Section 2.2. In the Section 2.3,
we presented how the prediction of random effects is made. The fixed effect selection procedure
that can be made using the conditional F -test is presented in Section 2.4. Finally, the top-down
strategy to model selection is presented in Section 2.5.

2.1 Importance of papaya, methods for measurement fruit’s color and agreement indexes

The global demand of papaya (Carica papaya L.) has grown over the last years. The
Brazilian production in 2012 was approximately 1.5 million tons of fruit in around 31,000 hectares
of cropped area (EMBRAPA, 2012). Regions with higher productivity are the Northeast and
Southeast, whose productions are approximately 0.92 and 0.55 million tons, respectively (Sec-
retaria da Agricultura, Pecuária, Irrigação, Pesca e Aquicultura, 2014).

On the other hand, producers face a challenge when ensuring pre- and post-harvest
quality of the fruit when aiming to export. In September 2014, around 2,896 tons of papaya
were sold for the exportation market, representing an increase of 24.94% when compared with
2013 (Secretaria da Agricultura, Pecuária, Irrigação, Pesca e Aquicultura, 2014).
However, one of the main problems related to exporting is the misclassification of fruits that
may cause non-uniformity in a box and among boxes. Generally, fruits in advanced ripening
stages may increase the ripening velocity of other fruits due to ethylene emission, causing a
reduction in fruits lifetime and consequently affecting its exportation (Fonseca et al., 2007).

Fruit quality depends on maturation stage, but does not depend on the cultivar. Ac-
cording to Bron and Jacomino (2006), the maturation stages can be determined by the peel
color that is considered a reliable variable to establish a maturation index. Moreover, maturation
stage can also be used to determine harvest and consumption times of several fruits (Fonseca
et al., 2007).

Harvest point can influence directly on aroma, flavor, shelf life, and ripeness process.
As consequence, fruits harvested before or after this point can also have its market price reduced.
(Bron and Jacomino, 2006). In general, the visual appearance has a larger influence on fruit
purchasing decisions by consumers (Chitarra and Chitarra, 2005). They have a greater
preference for fruits with bright-yellow or bright-orange peel coloring (Fioravanço et al., 1994).
Thus, the acceptance or rejection of fruits by consumers is directly associated with its peel color,
more specifically with hue color component.

Although coloration is important to classification and study of ripening process, tech-
niques used to quantify the papaya peel color may be strongly biased (Oliveira et al., 2017).
In general, researchers do not take into account the non-uniformity of peel color among fruits
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evaluated at same time and within-fruits measured over time in the sampling. Thus, as the
sampling may not properly represent the target population, the sampled mean color can be
biased.

Currently, we have three techniques to color quantification that are visual, instrumental,
and image analysis. Color quantification by visual method is based on comparison of peel color
with standard color scales, as Munsell color charts for plant tissues proposed by Munsell
Color Company (1952). However, this method can be naturaly biased because it is possible
to get different interpretation for a same fruit measured by distinct classifiers, or for a same
fruit measured at different times by the same classifier (Avila et al., 2015). Besides, bias in
fruit classification can increases with fatigue of the classifier (Avila et al., 2015). Consequently,
this process can lead to non-uniformity of fruits color in the same box and/or among boxes
(Oliveira et al., 2002).

When we use a colorimeter to classify an uneven-colored fruit, misclassification may
occur because sampled points in the peel region may not be representative of target population.
To understand the possible failures when using the colorimeter methodology, we must initially
understand how it works. A colorimeter is a relatively simple sensor device consisting of a
cuvette (a small tube of circular cross section, sealed at one end, made of plastic and designed
to sampling a small area of objects), a light source and light intensity sensor (Minolta, 1991). In
the post-harvest, it is used to evaluate the entire peel mean color of several fruits, such as mango,
papaya, banana, lemon, orange and others. Thus, the main problem when we use this method
is to determine the number of points to be sampled as well as the location of these points on the
fruit surface. It is common, for example, the sampling of four points on the equatorial region in
papaya fruit (Chávez-Sánchez et al., 2013; Martins et al., 2014), however, as this fruit do
not have a uniform coloration, sampling only equatorial region could not be representative of its
entire surface (Oliveira et al., 2017). Despite of this problem, colorimeter methodology can
be very efficient when the goal is to measure the mean color of fruits whose peel has uniform
coloration.

An alternative method to evaluate uneven color fruits is digital image analysis because it
covers the whole of the object surface, by using a sample of pixels taken from the image. Besides,
it also offers many versatile possibilities, such as to evaluate the fruit’s shape (O’Sullivan et al.,
2003; Darrigues et al., 2008; Wu and Sun, 2013). Furthermore, digital image analysis can
also be used to construct more precise maturation curves, implying in a better post-harvest
management. This idea already was easily extended to food-dye and meat color analysis, and
others minimally processed products (Brosnan and Sun, 2002).

In post-harvest, the most common systems to describe the color quantitatively are
CIELab that describe color by using three quantities L∗, a∗, and b∗ or CIELCh that uses
L∗, C∗ and h∗ coordinates (Commission Internationale de l’Eclairage, 2007; Schanda,
1996; Abbott, 1999). The L∗ coordinate describes the lightness of a object from black (L∗ = 0)

to white (L∗ = 100) and coordinates a∗ and b∗ describe the hue from green to red and from blue
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to yellow, respectively. Moreover, it is very common to find a∗ and b∗ values ranging from −60

to 60 or from −100 to 100.
The chroma, C∗, on the other hand, can be expressed as a square root of the sum of

squared coordinates a∗ and b∗ (C∗ =
√
a∗2 + b∗2). Finally, the hue, h∗ is expressed in degrees

with 0◦ being red, then continuing to 90◦ for yellow, 180◦ for green, and 270◦ for blue (see Figure
2.1). Furthermore, it is invariant under the orientation of an object with respect to the lighting
(Smeulders et al., 2000). Hue variable is especially important because it is frequently used to
establish ripening curves for several fruits, such as mango, papayas and bananas (Silva-Ayala
et al., 2005; Sancho et al., 2010).

Figure 2.1: CIELab (or CIELCh) color system with two-color representation: A as yellow hue,
where a = 8 and b = 54 (or C = 55 and H = 82◦) and B as red hue, where a∗ = 50 and b∗ = 22
(or C∗ = 55 and h∗ = 24◦)

Although versatile and simple, this method needs a calibration process because digital
devices use a color space that is not standardized. The calibration involves at least the following
steps: i) establishing what standard colors represent the color range of the object of interest;
ii) measure each standard color with a colorimeter; iii) image acquisition of each standard color
with the scanner on a black background, saving this image as a TIFF file; iv) converting the
RGB values to CIELab or CIELCh values according to the type of illuminant (D65 or C)
and observation angle; v) determine the relationship between the color data generated from the
colorimeter and scanner through, for example, regression procedures. Some studies as Yam and
Papadakis (2004); Mendoza and Aguilera (2004), Darrigues et al. (2008), and Oliveira
et al. (2017) showed that scanner can be used as color measuring device because the correlation
coefficient between the values of colorimeter and scanner were greater than 0.9 for L∗, a∗, b∗,
C∗, and h∗ color components. Besides, color measurement devices based on image analysis have
been widely used in determining the color of fruits, vegetables, meats, and others (O’Sullivan
et al., 2003; Mendoza and Aguilera, 2004; Darrigues et al., 2008; Guzmán et al., 2013;
Manninen et al., 2015).

Despite of many fruits having characteristic of gradual color changing over time and/or
uneven peel color within fruit or among fruits, it is common the use of colorimeter to assess
mean color of them (Silva-Ayala et al., 2005; da Silva et al., 2005; Kheng et al., 2011;
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Chávez-Sánchez et al., 2013; Lovera et al., 2014; Martins et al., 2014). Therefore, it is im-
portant to verify the extent of agreement between the digital image analysis and the colorimeter
methodologies over time in order to define which method should be used to calculate mean color
of these type of fruits.

Initially, we can use the concordance correlation coefficient (CCC) proposed by Lin
(1989) to evaluate the agreement between each color component measured by scanner and col-
orimeter in the same fruit. This coefficient is based on a measure of precision multiplied by
a measure of accuracy (Cb) and is defined by the author based on variance components and
expected value of the squared difference as

ρc =
2σ12

σ21 + σ22 + (µ1 − µ2)
2 = ρCb (2.1)

where σ21 is the variance of the first device, σ22 is the variance of the second device, σ12 is
the covariance among devices, µ1 is the mean value of the first device and µ2 is the mean
value of the second device. Moreover, ρ = σ12/

√
σ21σ

2
2 is the Pearson correlation coefficient

that measures how far each observation deviated from the best-fit line (precision measure) and
Cb =

[(
v + 1/v + u2

)
/2
]−1 is the accuracy, which measures how far the best-fit line deviates

from the 45◦ line through the origin (measure of accuracy), where v = σ1/σ2 is the scale shift
and u = (µ1 − µ2) /

√
σ1σ2 is the location shift relative to the scale (Lin, 1989; King and

Chinchilli, 2001).
The CCC is the commonly used statistic to assess the degree of agreement among

devices when the response variable is continuous and it can assume values ranging from -1 to 1,
where -1 represents perfect disagreement, 0 represents no-agreement, and 1 represents perfect
agreement (Lin, 1989).

However, when two devices measure a response on N fruits over n times, we need to
consider this longitudinal effect in the model. Initially, Chinchilli et al. (1996) developed a
weighted concordance correlation coefficient to analyze repeated measures data based on multi-
variate linear mixed models. Thereafter, two different approaches were proposed based on the
CCC. In the first, Barnhart and Williamson (2001) proposed the Generalized Estimating
Equation (GEE) using three sets of estimating equations in order to model the CCC between
two devices. The second approach was established by Carrasco and Jover (2003). These au-
thors compared the equivalence between the Intraclass Correlation Coefficient (ICC) and CCC
for a two-way linear mixed model as shown below:

Yij = µ+ ϕi + ζj + ϵij , (2.2)

where Yij is the measurement taken by device j (j = 1, 2, ...,m) on fruit i (i = 1, 2, ..., N); µ is
the overall mean over fruits and devices; ϕi is the fruit random effect assumed to be distributed
as ϕi ∼ N

(
0, σ2ϕ

)
; ζj is the mean deviation of device j from the overall mean; and ϵij is the

random error assumed to be distributed as ϵij ∼ N
(
0, σ2ϵ

)
. Assuming independence of all model
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effects, the CCC can be expressed as a function of the variance components:

ρccc =
σ2ϕ

σ2ϕ + Sζ + σ2ϵ
(2.3)

where Sζ = 1
m−1

m∑
j=1

ζ2j accounts for systematic differences between devices. Hence, Carrasco

and Jover (2003) showed that CCC can be estimated by variance components considering two
or more devices.

However, when we work with uneven color fruits, a relevant information to build the
model is that ripening process can be very changeable and depends on various interrelated pro-
cess such as mechanical damage and physiological desorders, which can influence the maturation
process differently among fruits (Bron and Jacomino, 2006). For example, da Silva et al.
(2005) realized that the ethylene biosynthesis of the papaya affects directly the ripening process
and it could be different among fruits. Since the stages of ripeness could be different, the indi-
vidual profiles of fruits assessed by the same device as well as individual profile of the same fruit
assessed by distinct device may be strongly different. According to Carrasco et al. (2009),
when the devices assess a feature in N subjects over n times, model (2.2) may be modified to
account for these replicates:

Yijt = µ+ ϕi + ζj + βk + ϕζij + ϕβik + ζβjk + ϵijk (2.4)

where µ is the overall mean, ϕi is the fruit random effect (i = 1, 2, ..., N), assumed to be
distributed as ϕi ∼ N

(
0, σ2ϕ

)
; ζj is the device fixed effect (j = 1, 2, ...,m), βk is the time

fixed effect (k = 1, 2, ..., n), ϕζij is the fruit-device random interaction effect, assumed to be
distributed as ϕζij ∼ N

(
0, σ2ϕζ

)
, ϕβik is the fruit-time random interaction effect, assumed to

be distributed as ϕβik ∼ N
(
0, σ2ϕβ

)
, ζβjk is the device-time fixed interaction effect, and ϵijk is

the random error, assumed to be distributed as ϵi ∼ MVN
(
0, σ2ϵΣi

)
. Assuming independence

among all model effects, Carrasco et al. (2009) showed that the CCC for repeated measures
(ρc,rm) can be expressed by the variance components as

ρc,rm =
σ2ϕ + σ2ϕβ

σ2ϕ + σ2ϕβ + σ2ϕζ + Sζβ + σ2ϵ
(2.5)

where a estimator of Sζβ is

Ŝζβ =
1

nm(m− 1)

n∑
k=1

m−1∑
j=1

m∑
j′=j+1

(
µ̂jk − µ̂j′k

)2 − σ2ϕζ + σ2ϵ

N
. (2.6)

In the case where there are only two devices, the expression (2.6) reduces to

Ŝζβ =
1

2n

n∑
k=1

(µ̂1k − µ̂2k)
2 −

σ2ϕζ + σ2ϵ

N
. (2.7)
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According to Carrasco et al. (2009), the ρc,rm summarizes the interchangeability
among devices in relation to all their measures. However, as the colorimeter assesses the equa-
torial region of the fruit and the scanner assesses the entire peel region, the concordance cor-
relation coefficient can vary over time. In general, papaya fruit changes its color from green to
yellow forming yellow stripes which arise initially in the estilar region towards to stem region
(da Silva et al., 2005; Schweiggert et al., 2011). In this sense, it can be interesting to check
the agreement profile among the devices over time.

We can use regression models to describe how the mean response changes with time
as an alternative for models proposed by Lin (1989), King et al. (2007) and Carrasco et al.
(2009) to verify the agreement among devices over time. Furthermore, when we modeled the time
as a covariate, the concordance correlation will be a function of time and depend on estimation
of fixed and random effects of the regression model. According Littell et al. (2000), the use
of a polynomial mixed model can greatly decrease standard errors of estimators when compared
with an ANOVA model that accounts the time as factor. Besides, the polynomial mixed-effects
model with an autoregressive structure in the conditional covariance can be more efficient in the
parameter estimation than other methods which ignore the correlation structure of the data and
do not use an autocorrelation structure to modeling the temporal-correlation in the conditional
covariance matrix (Ni et al., 2010).

2.2 Longitudinal data and mixed effects models

Longitudinal measurements often involve multiples outcomes or covariates that are
measured repeatedly within a group of individuals randomly selected from one or more popu-
lations. For example, in experiments whose aim is to assess the ripeness process of fruits over
time using p explanatory variables, the factor fruit should be treated as random if the sample is
representative of the fruit’s population. Thus, model building for this experiment should con-
sider fruit’s effect as random rather than fixed because it only affect the variance of the response
variable distribution.

According to Laird and Ware (1982) and Verbeke and Molenberghs (2009), lon-
gitudinal data analysis can be also made by multivariate models with unrestricted or unstruc-
tured variance-covariance. However, this approach can become difficult because longitudinal
data usually has any type of unbalance over time. The missing values can occur randomly or
can be caused by the researcher (not random). Thus, we should consider nature of missing-data
mechanism to obtain a valid inference. According to Fitzmaurice et al. (2009), the missing-
data mechanism in repeated measures describes the probability that a response is observed or
missing at any occasion. In this sense, we have a hierarchy of three different types of missing-
data mechanism: i) missing completely at random (MCAR), the probability of missing data on
a variable Y is unrelated to other observed variables in the data set as well as unrelated to the
values of Y itself; ii) missing at random (MAR), the probability of missing data on a variable
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Y is related to other observed variables in the data set, but unrelated to the values of Y itself;
and iii) missing not at random (MNAR), the probability of missingness on Y depends on unob-
served measurements and may be on the observed measurements. Consequently, each type of
missing-data mechanism has different assumptions and so can impact differently the validation of
research conclusion. Generally, MCAR and MAR mechanisms may be ignorable when one does
not require a model for probability of a missing response given the set of observed responses and
covariates. Thus, we assume that obtaining a valid likelihood-based analysis does not depend on
missing observations, but depends only of the correct model specification (Fitzmaurice et al.,
2009).

A common missingness pattern for longitudinal data is due to dropout or attrition, that
is, when some individuals can be withdrawn from the experiment before its intended completion
due to random factors such as diseases occurrence, days until the harvest, harvest points, etc.
Generally, the dropout is treated as ignorable and modeled as MCAR or MAR missing-data
mechanism. However, when the individuals may have dropped out at beginning of the experi-
ment or observational study, the dropout mechanism is called “non-ignorable”, consequently we
can use a non-MAR mechanism to obtain a valid likelihood-based analysis (Fitzmaurice et al.,
2009).

For the likelihood-based estimation, the linear mixed effects (LME) model has a natural
application in longitudinal studies because random effects vary among individuals and include
within-individual dependence among repeated measurements after conditioning on observed co-
variates (Pinheiro and Bates, 2000; Fitzmaurice et al., 2009). The linear mixed model
assumes that the response vector yi for the ith individual satisfy the linear regression model

yi =Xiβ +Zibi + ϵi, (2.8)

where yi is the ni-dimensional vector of observations for the i-th individual; Xi is a ni × p

design matrix, or set of explanatory variable; β is a (p + 1)-dimensional vector of population-
specific parameters (fixed effects) describing the response average trends; Zi is a ni × q design
matrix, or a set of known covariates; bi is a q-dimensional vector of individual-specific parameters
which affect the variance of marginal distribution of Yi (random effects) describing how the ith
individual deviate from population average; and ϵi is a ni-dimensional vector of experimental
errors assumed to be independent among individuals, and fixed and random effects parameters.
Furthermore, we also assumed that ϵi ∼ N (0,Σi), usually Σi is assumed to be σ2ϵ Ini . Generally,
the random effects bi is assumed to be normally distributed with mean vector 0 and variance-
covariance matrix G.

The design matrix Xi contain values of explanatory variables that may be qualitative
or/and quantitative. Thus, it can contain indicator variables (with ones representing presence
and zeros absence of determined factor level) that indicate a group membership in the popu-
lation of interest for an analysis of variance model; and/or it can contain values of continuous
variables. We have a regression model when Xi contains only continuous variables and a model
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of covariance analysis when Xi contains both variables. In the same way, the design matrix Zi
can also contain values of explanatory variables that may be qualitative or/and quantitative.
The main difference between Xi and Zi is that the first one influences only the mean of the
response variable distribution while the second one only influences the variance of the response
variable distribution.

Considering hierarchical structure of mixed effect model, the general model for the ith
individual should be written as

Yi|bi ∼ N (Xiβ +Zibi,Σi)

bi ∼ N (0,G) .

Generally linear regression assumes that ϵi and ϵi′ (i ̸= i′ = 1, 2, . . . , N) are inde-
pendent, and

∑N
i=1X

T
i Xi is non-singular due to identifiability of the fixed effects (β), besides

assumptions of model additivity, homoscedasticity, and normality of errors. However, in the
linear mixed effect regression we have additional assumptions besides those already mentioned
for linear regression, that are independence between vectors ϵi and bi; and ZT

i Zi should be
positive definite matrix (Verbeke and Molenberghs, 2009).

2.2.1 Estimation methods

To estimate fixed effects and variance components of the linear mixed-effects model
we use the restricted maximum likelihood approach (REML). The likelihood function of Y
may be written as the product of marginal function of Yi, i = 1, 2, ..., N , because we assume
independence among fruits. Then, the likelihood function is expressed as

L (θ;y) =
1√

2πσ2ϵ |V |
exp

{
− 1

2σ2ϵ

[
(y −Xβ)T V −1 (y −Xβ)

]}
(2.9)

where V = ZGZT + σ2ϵΣ, β is the vector of fixed effects; θ =
(
βT ,θTb ,θ

T
ϵ

)T and θb and
θϵ are vectors of variance components associated with variance-covariance matrices G and Σ,
respectively. Hence, the parametric space is given by

Θ =
{
β ∈ R(p+1)

∣∣Σ and G are positive definite matrices
}
.

The derivation of the likelihood may be performed of different forms as showed by
Patterson and Thompson (1971) or Harville (1974). A review of the maximum likelihood
(ML) approach for variance parameter estimation including an alternative derivation of the
REML approach is presented by Harville (1977) while Verbyla (1990) presents a clearer
derivation of the REML function related to derivation of Harville (1974).

The log-likelihood of Y is partitioned into a conditional log-likelihood and a marginal
log-likelihood, where the conditional log-likelihood maximization results in estimates of fixed
effects, which are equivalent to the estimates given by ML estimation (Verbeke and Molen-
berghs, 2009). On the other hand, the marginal log-likelihood maximization provides estimates
of variance parameters ψ =

(
θTb ,θ

T
ϵ

)T and it is called as residual or REML log-likelihood.
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Consider a non-singular matrix L = [L1 : L2] where L1 and L2 are matrices of dimen-
sion NT × p and NT × (NT − p− 1), respectively, which satisfying the equalities LT1X = Ic and

LT2X = 0. Therefore, the data is transformed from y to LTy where NT =

N∑
i=1

ni is the total

number of observations and

LTy =

[
LT1 y

LT2 y

]
=

[
y∗1
y∗2

]
.

According to Verbyla (1990) this transformed data has distribution given by[
y∗1
y∗2

]
∼ N

([
β

0

]
, σ2ϵ

[
LT1 V L1 LT1 V L2

LT2 V L1 LT2 V L2

])
.

Hence, the density function of LTy can be written as the product of the conditional density
of y∗1 given y∗2 and the marginal density of y∗2. The marginal distribution of y∗2 is given by
y∗2 ∼ N

(
0, σ2ϵL

T
2 V L2

)
and the marginal log-likelihood of y∗2 using the result presented in

Appendix II and omitting constant terms, is given by

ℓR (ψ;y∗2) ≈ −1

2

[
(NT − p− 1)σ2ϵ + ln

∣∣LT2 V L2

∣∣+ 1

σ2ϵ
y∗

T

2

(
LT2 V L2

)−1
y∗2

]
= −1

2

[
(NT − p− 1)σ2ϵ + ln

∣∣LT2 V L2

∣∣+ 1

σ2ϵ
y∗

T

2 L2

(
LT2 V L2

)−1
LT2 y

∗
2

]
= −1

2

[
(NT − p− 1)σ2ϵ + ln

∣∣LT2 V L2

∣∣+ y∗
T

2 Py
∗
2

σ2ϵ

]
. (2.10)

where ψ = (θb,θϵ) is a vector containing all components of variance, and

P = V −1 − V −1X
(
XTV −1X

)−1
XTV −1.

The conditional distribution of y∗1 given y∗2 is

y∗1|y∗2 ∼ N
(
β +LT1 V L2

(
LT2 V L2

)−1
y∗2, σ

2
ϵ

(
LT1 V L1 −LT1 V L2

(
LT2 V L2

)−1
LT2 V L1

))
.

Using the result presented in Appendix II we can simplify the conditional variance-covariance
matrix as following

LT1 V L1 −LT1 V L2

(
LT2 V L2

)−1
LT2 V L1

= LT1

[
V − V L2

(
LT2 V L2

)−1
LT2 V

]
L1

= LT1

{
V − V

[
V −1 − V −1X

(
XTV −1X

)−1
XTV −1

]
V
}
L1

= LT1X
(
XTV −1X

)−1
XTL1

=
(
XTV −1X

)−1
.

Hence, the conditional distribution of y∗1 given y∗2 can be written as

y∗1|y∗2 ∼ N
(
β +LT1 V L2

(
LT2 V L2

)−1
y∗2, σ

2
ϵ

(
XTV −1X

)−1
)
,
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and the conditional log-likelihood, omitting constant terms, is given by

ℓ (β,ψ;y∗1|y∗2) = −1

2

[
NT lnσ2ϵ + ln

∣∣ (XTV −1X
)−1 ∣∣+ 1

σ2ϵ

(
y∗1 − β −LT1 V L2

(
LT2 V L2

)−1
y∗2

)T
(
XTV −1X

) (
y∗1 − β −LT1 V L2

(
LT2 V L2

)−1
y∗2

)]
.

As the marginal likelihood for y∗2 contains no information on β, so the conditional log-likelihood
of y∗1 given y∗2 must be used. Thus, the differentiation ℓ (β,ψ;y∗1|y∗2) relative to β is given by

∂ℓ (β,ψ;y∗1|y∗2)
∂β

=
XTV −1X

(
y∗1 − β −LT1 V L2

(
LT2 V L2

)−1
y∗2

)
σ2ϵ

, (2.11)

and equate to zero the expression (2.11) to get

β̂ = y∗1 −LT1 V L2

(
LT2 V L2

)−1
y∗2

= LT1 y −LT1 V L2

(
LT2 V L2

)−1
LT2 y

= LT1

[
I −LT1 V L2

(
LT2 V L2

)−1
LT2

]
y (Using Appendix II)

= LT1X
(
XTV −1X

)−1
XTV −1y

=
(
XTV −1X

)−1
XTV −1y,

which is the best linear unbiased estimator (BLUE).
It is noteworthy that the BLUE will not be biased if the variance components were

known because the log-likelihood of y∗1 given y∗2 is a function of β and ψ. Therefore, when you
have no information about the variance components an iterative process must be used for the
joint estimation of the fixed effects and variance components.

To estimate ψ, we use the marginal distribution of y∗2 as given in expression (2.10).
Note that as f

(
LTy;β,ψ

)
= f (y∗1|y∗2;β,ψ) f (y∗2;ψ), then the log-likelihood of LTy can be

written as the sum of the conditional log-likelihood of y∗1 given y∗2 and the marginal log-likelihood
of y∗2, that is

ℓ
(
β,ψ;LTy

)
= ℓ (β,ψ;y∗1|y∗2) + ℓR (ψ;y∗2) .

So, it is easy to see the following equality

ln
∣∣LTV L∣∣ = ln

∣∣ (XTV −1X
)−1 ∣∣+ ln

∣∣LT2 V L2

∣∣
and hence

ln
∣∣LT2 V L2

∣∣ = ln
∣∣LTV L∣∣+ ln

∣∣XTV −1X
∣∣ (Using Theorem 1 of Appendix III)

= ln
∣∣LTL∣∣+ ln

∣∣V ∣∣+ ln
∣∣XTV −1X

∣∣.
Therefore, REML log-likelihood presented in expression (2.10), omitting constant terms, can be
expressed as

ℓR (ψ;y∗2) = −1

2

[
(NT − p− 1) lnσ2ϵ + ln

∣∣V ∣∣+ ln
∣∣XTV −1X

∣∣+ y∗
T

2 Py
∗
2

σ2ϵ

]
. (2.12)
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According to Meyer (1989) and Knight (2008) it is computationally convenient to
consider the following modification in the REML log-likelihood (2.12)

ln
∣∣V ∣∣+ ln

∣∣XTV −1X
∣∣ = ln

∣∣V ∗∣∣+ ln
∣∣G∣∣+ ln

∣∣Σ∣∣,
where

∣∣V ∗∣∣ = ∣∣G−1
∣∣∣∣Σ−1

∣∣∣∣V ∣∣∣∣XTV −1X
∣∣. So, the REML log-likelihood can be rewritten as

ℓR (ψ;y∗2) = −1

2

[
(NT − p− 1) lnσ2ϵ + ln

∣∣G∣∣+ ln
∣∣Σ∣∣+ ln

∣∣V ∗∣∣+ y∗
T

2 Py
∗
2

σ2ϵ

]
.

The REML estimator of σ2ϵ is given by differentiating the REML log-likelihood in (2.13) with
respect to σ2ϵ . The expression of score function for σ2ϵ is, then, given by

U
(
σ2ϵ
)
=
∂ℓR
∂σ2ϵ

= −1

2

[
NT − p− 1

σ2ϵ
− yTPy

σ4ϵ

]
.

Thus, the REML estimator of σ2ϵ is obtained by equating U
(
σ2ϵ
)

to zero and solving for σ2ϵ ,
resulting in

σ̂2ϵ =
yTPy

NT − p− 1
.

On the other hand, REML estimators for ψw =
(
θb1 , θb2 , ..., θbW1

, θϵW1+1 , θϵW1+2 , ..., θϵW1+W2

)
are

given by differentiating the REML log-likelihood in (2.12) with respect to ψw and solving for
ψw. Then, the expression of score function for ψw is given by

U (ψw) =
∂ℓR
∂ψw

= −1

2

(
∂ ln

∣∣V ∣∣
∂ψw

+
∂ ln

∣∣XTV −1X
∣∣

∂ψw
+

1

σ2ϵ

∂yTPy

∂ψw

)
.

Using the Appendix II and definitions 2 and 3 of Appendix III, we can write the following result

∂ ln
∣∣V ∣∣

∂ψw
+
∂ ln

∣∣XTV −1X
∣∣

∂ψw
= tr

(
V −1 ∂V

∂ψw

)
− tr

[(
XTV −1X

)−1
XTV −1 ∂V

∂ψw
V −1X

]
= tr

(
V −1 ∂V

∂ψw

)
− tr

[
V −1X

(
XTV −1X

)−1
XTV −1 ∂V

∂ψw

]
= tr

[(
V −1 − V −1X

(
XTV −1X

)−1
XTV −1

) ∂V

∂ψw

]
= tr

(
P
∂V

∂ψw

)
.

Finally, using Appendix IV and V = ZGZT+Σ, we can write the function score of ψw (U (ψw))

as

U (ψw) = −1

2

[
tr

(
P
∂
(
ZGZT +Σ

)
∂ψw

)
− 1

σ2ϵ
yTP

∂
(
ZGZT +Σ

)
∂ψw

Py

]
. (2.13)
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Estimators for variance components associated with theG matrix can be obtained from
the partial derivative of U (ψw) with respect to θbw1

, with w1 = 1, 2, ...,W1, and solving for θbw1
.

Therefore, the expression (2.13) is reduced to

U
(
θbw1

)
= −1

2

[
tr

(
P
∂
(
ZGZT

)
∂θbw1

)
− 1

σ2ϵ
yTP

∂
(
ZGZT

)
∂θbw1

Py

]

= −1

2

[
tr

(
PZ

∂G

∂θbw1

ZT

)
− 1

σ2ϵ
yTPZ

∂G

∂θbw1

ZTPy

]
,

using the Lemma 1 (Appendix III).
In the same direction, estimators for variance components associated with the Σ matrix

can be obtained from the partial derivative of U (ψw) with respect to θϵw2
, with w2 = W1 +

1,W1 + 2, ...,W1 +W2, and solving for θϵw2
. Then, the expression (2.13) is reduced to

U
(
θϵw2

)
= −1

2

[
tr

(
P

∂Σ

∂θϵw2

)
− 1

σ2ϵ
yTP

∂Σ

∂θϵw2

Py

]
.

To estimate θbw1
or θϵw2

we need to equate respectively U
(
θbw1

)
= 0 and solve for θbw or

U
(
θϵw2

)
and solve for θϵw2

. In general this cannot be done directly and an iterative scheme is
required.

Several iterative methods for solving ML or REML equations have been proposed. Some
of the main iterative methods are Newton-Raphson method which provides fast convergence, but
extremely sensitive to initial values (McLachlan and Krishnan, 1997), AI algorithm, which
is based on average information matrix (IA) (Gilmour, A; Thomson, R; Cullis, 1995), EM
algorithm, which is very useful for missing, truncated or censored data (McLachlan and Kr-
ishnan, 1997), PXEM algorithm, which has lower convergence time than EM algorithm (Foul-
ley and Van Dyk, 2000) and BOBYQA algorithm, used for bound constrained optimization
without derivatives (Powell, 2009).

2.2.2 Selecting the covariance structure

The first step to select variance-covariance structures for random effects are related
to experimental design structure, such as random effect of treatment, blocks etc. In repeated
measures analysis, for example, the first step is to accommodate the covariation of measures on
the same sampling unit. However, before this selection, fixed effects should be clearly specified
(Littell et al., 2000). We regard initially a saturated parameter specification for fixed effects
considering main and interaction effects. The refinement of fixed effects should only be performed
after selecting a satisfactory covariance structure.

Considering the parsimony principle, the covariance structure to representing Vi matrix
must have a relatively small number of parameters.

Parsimony: First, the central objective for parsimony is choosing the simplest possi-
ble structure. Thereby, the advantage of this approach is that the covariance structure is easy
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to interpret and explain, being specified with a small number of unknown parameters. How-
ever, choosing a structure that is too-simple for the dataset may increase Type I error rates,
while choosing a too-complex structure for the dataset may decreases the power of the test
(increase Type II error) in selecting the fixed effects (Matuschek et al., 2017). On the other
hand, a structure that is highly complex and requires estimation of many unknown parameters
which could greatly hinder the interpretation of the covariance pattern provide poor predictions
(Vandekerckhove et al., 2014).

As the specification of the covariance structure for mixed model is done through G
and Σi, we presented some covariance structures that can be used to fit to the data. Since
observations on different fruits are assumed independent, the structure will just take into account
for covariance pattern of measurements on the same subject. Besides, as we assumed that
repeated measurements are equally spaced, the covariance structure of Σi can be characterized
in terms of variance and correlations expressed as a function of the time lag.

1. Variance components (VC)

σ2IK =


σ2 0 . . . 0

0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2

 .

The variance component structure (VC) is the simplest, where the correlation of errors
within a subject are assumed to be 0. Sometimes, VC is important in the exploration
process to get a sense of the effect of fitting more complex structures. Moreover, VC
structure can not be realistic for most repeated measures data.

2. Heterogeneous variance components – VCH:
σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
...

. . .
...

0 0 . . . σ2
ni

 .

This matrix has ni parameters, where ni denotes the order of the matrix, and it assumes
different variances on the diagonal and non-correlated observations.

3. Compound symmetry (CS)

σ2IK + σ2
1JK =


σ2
1 + σ2 σ2

1 . . . σ2
1

σ2
1 σ2

1 + σ2 . . . σ2
1

...
...

. . .
...

σ2
1 σ2

1 . . . σ2
1 + σ2


This one is the simplest covariance structure that includes within-subject correlated errors.
These correlations are presumed to be the same for each set of observations and may
not be realistic for repeated measures data because for most repeated measurements the
correlation between observations decreases as the time lag increases. This structure can
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be specified in mixed models in terms of G and Σi matrices. Besides, the Vi matrix will
have a CS structure when, for example, we specified G = σ2ϕ0I and Σi = σ2ϵ I.

4. Heterogeneous compound symmetry (CSH)
σ2
1 ρσ1σ2 . . . ρσ1σni

ρσ1σ2 σ2
2 . . . ρσ2σni

...
...

. . .
...

ρσ1σni ρσ2σni . . . σ2
ni

 .

This matrix has ni + 1 parameters, assuming different variances on the diagonal and
including same correlation among them.

5. First order autoregressive structure (AR(1))

σ2



1 ρ ρ2 . . . ρni−1

ρ 1 ρ . . . ρni−2

ρ2 ρ 1 . . . ρni−3

...
...

...
. . .

...
ρni−1 ρni−2 ρni−3 . . . 1


.

This structure considers correlations between observations that decreases systematically
with time lag, which can be used when the observations are measured at equally spaced
time intervals.

6. Heterogeneous first order autoregressive structure (AR(1)H)

σ2
1 ρσ1σ2 ρ2σ1σ3 . . . ρni−1σ1σni

ρσ1σ2 σ2
2 ρσ2σ3 . . . ρni−2σ2σni

ρ2 ρ σ2
3 . . . ρni−2

...
...

...
. . .

...
ρni−1σ1σni ρni−2σ2σni ρni−3σ3σni . . . σ2

ni


.

This structure considers different variances and correlations between observations that
decreases systematically with time lag, which can be used when observations are measured
at equally spaced time intervals.

7. ‘Unstructured’ covariance structure (UN)
σ21 σ12 . . . σ1ni

σ12 σ22 . . . σ2ni

...
... . . . ...

σ1ni σ2ni . . . σ2ni

 .
It is the most complex structure because its specifies no patterns in the covariance matrix,
however, this generality introduces a disadvantage due to the large number of parameters.

Selection model procedure can be performed using AIC and BIC criteria when the
models are nested or non-nested and by likelihood ratio test when the models are nested. The
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AIC and BIC criteria proposed by Akaike (1974) and Schwarz (1978), respectively, are given
by

AIC = −2ℓ
(
θ̂
)
+ 2ω

and

BIC = −2ℓ
(
θ̂
)
+ 2ω lnNT

where ℓ
(
θ̂
)

is the logarithm of likelihood function, NT is the total number of observations,

NT =
∑N

i=1 ni, and ω is the total number of parameter in θ, being θ =
(
βT ,θTb ,θ

T
ϵ

)T . These
criteria are based on likelihood function and they are used as measure of goodness of fit. Their
absolute values have no interpretation, but when we compare AIC or BIC values from different
models, smaller values indicate a better fit model. These criteria were proposed to compare
regression models which generally includes only the random effect of errors (σ2ϵ ) and consequently
ω is the total number of fixed effect parameters plus one, however, in the linear mixed effects
models (LMEM), AIC and BIC criteria can be more complicated. According to Vaida and
Blanchard (2005), the marginal AIC criterion for LMEM is given by

AICm = −2ℓ
(
θ̂
)
+ 2anω (2.14)

where an = 1 or an = NT / (NT − ω − 1) in the finite sample form. The lme function (Pinheiro
et al., 2017) uses AICm with an = 1 while the SAS Proc Mixed (SAS Institute Inc., 2011)
uses both asymptotic and finite sample forms. On the other hand, the conditional AIC depends
on the prediction of b as well as the estimation of θ. When variance components parameters
θb and θϵ are known, Pinheiro and Bates (2000) and Verbeke and Molenberghs (2009)
suggest the use of the best linear unbiased predictor (BLUP)

b̃ (θb,θϵ) = GZ
TV −1

[
y −Xβ̂ (θb,θϵ)

]
where β is the generalized least squares estimator, defined by Verbeke and Molenberghs
(2009) as

β̂ (θb,θϵ) =
(
XTV −1X

)−1
XTV −1y.

When θb and θϵ are unknown, we use an estimated BLUP (EBLUP) b̃ = b̃
(
θ̂b, θ̂ϵ

)
. Then, the

generalized least squares estimator β̂ (θb,θϵ) and the BLUP b̃ (θb,θϵ) can be obtained as the
solution of Henderson’s mixed model equation (Henderson, 1950)[

XTΣ−1X XTΣ−1Z
ZTΣ−1X ZTΣ−1Z +G−1

][
β̂ (θb,θϵ)

b̃ (θb,θϵ)

]
=

[
XTΣ−1y
ZTΣ−1y

]
.

Hence, these equations can be rewriten as Xβ̂ (θb,θϵ) +Zb̃ (θb,θϵ) =H (θb,θϵ)y, where

H (θb,θϵ) = (X,Z)

[
XTΣ−1X XTΣ−1Z
ZTΣ−1X ZTΣ−1Z +G−1

]−1 [
XTΣ−1

ZTΣ−1

]
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is the “hat” matrix. Particularly, when θb and θϵ are known, the effective number of degrees of
freedom is

gl (θb,θϵ) = trace [H (θb,θϵ)]

= trace
[(
XTV −1X

)−1
XTV −1ΣV −1X

]
+NT − trace

[
ΣV −1

]
which is used in estimating β and predict b (Hodges and Sargent, 2001). According to Vaida
and Blanchard (2005) and Müller et al. (2013) the effective number of degrees of freedom
satisfies

(p+ 1) ≤ gl (θb,θϵ) ≤ (p+ 1) +N (p+ 1) ,

that is, the gl (θb,θϵ) is between the number of degrees of freedom of the regression model
without b and the regression model treating b as fixed effects.

Thus, we can obtain the conditional AIC criteria as minus twice the conditional log-
likelihood plus a penalty and it can be written as

AICc = −2ℓ
(
θ̂|b̃
)
+ 2αre

where αre is the dimension of parameter space to associate with random effects, that is, αre =
trace [P ∗] + p+ 1, P ∗ being the projection matrix given by

P ∗ = σϵV
− 1

2 +
(
I − σϵV

1
2

)
X
(
XTV −1X

)−1
XTV −1

and p + 1 was included to accommodate the effect of estimating θb and θϵ (Burnham and
White, 2002). For small samples, Burnham and White (2002) proposed a corrected version
of AICc as

−2ℓ
(
θ̂|b̃
)
+ 2αre + 2

αre (αre + 1)

NT + (αre − 1)
.

It is noteworthy that AICc is based on maximum likelihood method. Other criteria based on
methods of maximum likelihood and restricted maximum likelihood were presented by Müller
et al. (2013).

When the models are nested, we can use the likelihood ratio test (LRT) to compare a
more general model with a more specific model. Suppose that random vector Y has a probability
distribution that is described by an unknown parameter θ, whose probability density function
is f (y,θ). As some of these parameters may be nuisance parameters, the null hypothesis that
we wish verify is H0 : θ ∈ Θ0 and the alternative hypothesis is H1 : θ ∈ Θc

0, where Θ0 is a
specified subset of the parameter space Θ. Let Y1,Y2, . . .YN be a ni-dimensional independent
continuous random vectors with joint distribution f given by

f (y1,y2, . . . ,yN ;θ) = f (y1,θ)× f (y2,θ)× . . .× f (yN ,θ) .

Thus, the likelihood function can be written as

L (θ;y) =

N∏
i=1

L (θ,yi) .
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Let L
(
Θ̂0

)
denote the maximum (actually the supreme) of the likelihood function for all θ ∈ Θ0,

that is, L
(
Θ̂0

)
= maxθ∈Θ0L (θ) that represents the best explanation for the observed data

for all θ ∈ Θ0. Similarly, L
(
Θ̂
)

= maxθ∈ΘL (θ) represents the best explanation for the

observed data for all θ ∈ Θ = Θ0 ∪ Θc
0. Then, if L

(
Θ̂0

)
= L

(
Θ̂
)

a best explanation for
the observed data can be found inside Θ0, that is, we should not reject the null hypothesis H0.
However, if L

(
Θ̂0

)
< L

(
Θ̂
)

the best explanation for the observed data can be found inside
Θc

0, that is, we should reject the null hypothesis H0. Thus, the likelihood ratio (LR (y)), which
is a generalization of the optimal test for simple null and alternative hypotheses, developed by
Neyman and Pearson (1928), can be defined as

LR =
maxθ∈Θ0L (θ;y)

maxθ∈ΘL (θ;y)
=
L
(
Θ̂0

)
L
(
Θ̂
) .

According to Wackerly et al. (2008), the likelihood ratio method does not always produce a
statistical test with a known probability distribution, however, if the sample size is large, we can
obtain an approximation to the distribution of LR if some regularity conditions are satisfied.
These regularity conditions mainly involve the existence of derivatives of likelihood function
with respect to the parameters θ, and it does not depend on unknown parameter values. Let
Y1,Y2, . . .YN have joint likelihood function L (θ).

Let ω0 denote the number of free parameters that are specified by H0 : θ ∈ Θ0 and let
ω1 denote the number of free parameters specified by the statement θ ∈ Θ (Wackerly et al.,
2008). Then, for large NT , −2ln (LR) has approximately a χ2 distribution with ω0−ω1 number
of degree of freedom. Therefore, the likelihood ratio statistic is given by

−2 ln (LR) = −2 {ln [maxθ∈Θ0L (θ;y)]− ln [maxθ∈ΘL (θ;y)]}

= 2 {ln [maxθ∈ΘL (θ;y)]− ln [maxθ∈Θ0L (θ;y)]} .

As the −2 ln (LR) is a decreasing function of LR, rejection regions (RR) may be written as
RR : {LR < ω}, taking the logarithm of both sides in this inequality the RR may be rewritten
as RR : {−2 ln (LR) > −2 ln (ω) = ω∗}. Therefore, for large sample sizes, ω∗ ≈ χ2

ω0−ω1
with a

significance level of α. That is, the rejection region is given by

−2 ln (LR) > χ2
ω0−ω1

, with a significance level of α.

2.3 Prediction of random effects

The prediction of random effects are not obtained directly by likelihood estimation, but
can be obtained by an extension of Gauss-Markov theorem or by empirical Bayesian methods
indicating prior information about the mean and random effects (Harville, 1976; Laird and
Ware, 1982). Thus, the BLUP is given by

b̃i = GZ
T
i V

−1
i

(
yi −Xiβ̂

)
.
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Since β̂ and b̃i are linear function of y, Laird and Ware (1982) showed that their standard
errors are derived as

V ar
(
β̂
)
=

[
N∑
i=1

XT
i V

−1
i Xi

]−1

and

V ar
(

b̃i
)
= GZT

i

V−1
i − V−1

i Xi

[
N∑
i=1

XT
i V−1

i Xi

]−1

XT
i V−1

i

ZiG. (2.15)

When the expression (2.15) is used to assess the error estimation, Laird and Ware (1982)
suggest the use of

V ar
(
b̃i − bi

)
= G−GZT

i V
−1
i ZiG+GZT

i V
−1
i Xi

(
N∑
i=1

XT
i ViXi

)−1

XT
i V

−1
i ZiG

proposed by Harville (1976), because the expression (2.15) ignores the variation of bi. Harville
(1976) also demonstrated that when bi has multivariate normal distribution, E [bi| (yi −Xiβ)] =

E
[
bi|b̃i

]
= b̃i with probability 1, and V ar [bi| (yi −Xiβ)] = V ar

[
bi|b̃i

]
= V ar

[
b̃i − bi

]
. Thus,

these authors conclude that the distribution of bi, conditional on the vector of marginal residuals
(y −Xiβ̂), is the same as the distribution of bi, conditional on q linear functions of residuals
which comprise a BLUE of b̃.

2.4 Conditional test for fixed effect parameters

After covariance structure is satisfactorily modeled, we perform the fixed effect selection
procedure that can be carried using the conditional F -test. The conditional F -test for fixed effect
parameters tests the general linear hypothesis given by

H0 : Cβ = 0 versus H1 : Cβ ̸= 0 (2.16)

where C is a known matrix. When we test, for example, H0 : µ = 0 versus Ha : µ ̸= 0, C
matrix has the form C = [1, 0, 0, . . . , 0]. According to Verbeke and Molenberghs (2009),
the F -statistic is defined by

F =

(
β̂ − β

)T
CT

C( N∑
i=1

XT
i V̂

−1
i Xi

)−1

CT

−1

C
(
β̂ − β

)
rank (C)

, (2.17)

and follows an approximate F distribution, with numerator degrees of freedom equal to the rank
of C matrix and denominator degrees of freedom needs to be estimated from the data. There
are several methods for estimating the appropriate number of denominator degrees of freedom
as, for example, Satterthwaite approximation.
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According to Pinheiro and Bates (2000), the conditional F -test is better than LRT
for assessing the significance of fixed effect parameters, since p-values from the F -test are more
realistic. The conditional F -test are implemented in anova.lme method of nlme package (Pin-
heiro and Bates, 2000) available in R environment software (R core Team, 2017).

2.5 The top-down strategy

The aim of model selection is to find the simplest model with the best fit for the
dataset, but there are several ways of fitting a linear mixed model. Thus, we will use, in this
thesis, the top-down strategy, as performed in Verbeke and Molenberghs (2009) and West
et al. (2015). The first step involves starting with a saturated fixed effects model, called the
model with the loaded mean structure. The second step involves selecting a structure for random
effects in the model by performing REML-based on likelihood ratio test for nested models or
through AIC or BIC criteria for non-nested models. The third step involves the selection of a
covariance structure for residuals in the model by performing REML-based likelihood ratio test
for nested models or through the AIC or BIC criteria for non-nested models. This steps can be
performed using the anova.lme (Pinheiro and Bates, 2000).

After selecting the structure for Σi, it can be performed a new selection for G matrix
to simplify the previously selected structure. Finally, the last step involves using appropriate
statistical tests to determine whether certain fixed-effect parameters are needed in the model.
Moreover, to determine whether each of the fixed effect should be included in the model it can
use the conditional F-test made available in anova.lme (Pinheiro and Bates, 2000).
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3 LONGITUDINAL CONCORDANCE CORRELATION FUNCTION BASED ON
VARIANCE COMPONENTS: AN APPLICATION IN FRUIT COLOR ANALYSIS

Abstract: The maturity stages of papaya fruit based on peel color is frequently char-
acterized from a sample of four points on the equatorial region measured by a colorimeter.
However, this procedure may not be suitable for assessing the papaya’s overall mean color and
an alternative proposal is to use image acquisition of the whole fruit’s peel. Questions of inter-
est are whether a sample on the equatorial region can reproduce a sample over the whole peel
region and if the colorimeter can compete with a scanner, or digital camera, in measuring the
mean hue over time. The reproducibility can be verified by using the concordance correlation for
responses measured on a continuous scale. Thus, in this work we propose a longitudinal concor-
dance correlation (LCC), based on a mixed-effects regression model, to estimate agreement over
time among pairs of observations obtained from different combinations between measurement
method and sampled peel region. The results show that the papaya’s equatorial region is not
representative of the whole peel region, suggesting the use of image analysis rather than a col-
orimeter to measure the mean hue. Moreover, in longitudinal studies the LCC can suggest over
which period the two methods are likely to be in agreement and where the simpler colorimeter
method could be used. The performance of the LCC is evaluated using a small simulation study.

Keywords: Colorimeter, digital image analysis, longitudinal data, mixed-effects model, posthar-
vest
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3.1 Introduction

Papaya (Carica papaya L.) is a tropical and climacteric fruit with antioxidant, anti-
carcinogenic and anti-mutagenic properties, containing carotenoids and with nutritionally valu-
able accumulations of lycopene (Sancho et al., 2010). Brazil is ranked second in the world
for papaya production with 1.6 million tons cultivated annually, which is equivalent to 17.5%
of global production, and is also the second major papaya exporting country, accounting for
11.2% of the global trade (Evans and Ballen, 2015). Nevertheless, for expanding its internal
and external market, Brazil still needs to improve its papaya postharvest quality, which will
also bring added economic value to the product. Consumers purchase papaya based on color
(yellow-orange papayas), freshness, taste, and size (Bron and Jacomino, 2006; Sivakumar and
Wall, 2013).

Many studies, such as Silva-Ayala et al. (2005), Schweiggert et al. (2011), and Sivakumar
and Wall (2013) have been conducted to understand how some variables may influence the
papaya’s quality in the postharvest period. One of the most important variables is the peel
color, a criterion used for determination of the ripeness stage and fruit classification based
on maturation scales (Mendoza and Aguilera, 2004). Moreover, the color is highly correlated
with acidity, firmness, and ethylene emission, which are used as physical, chemical, and sensory
indicators of product quality (Bron and Jacomino, 2006). Color is traditionally measured by a
colorimeter at various points on the fruit’s surface, but this can lead to bias in the determination
of the mean color depending on the number and location of sampled points (Mendoza and
Aguilera, 2004; Oliveira et al., 2017). For example, it is common to sample only four equidistant
points on the equatorial region of the papaya fruit (Chávez-Sánchez et al., 2013; Martins et al.,
2014).

A possible alternative to measure color, suggested by Mendoza and Aguilera (2004)
and Darrigues et al. (2008), is the use of image analysis. This involves using a digital camera,
or a scanner, for acquisition of an image or video under standard lighting conditions that can
be processed using image analysis software. An image or video offers advantages in providing
pixel-by-pixel information on the fruit’s peel along with other associated data, such as the fruit’s
shape (Wu and Sun, 2013). Not surprisingly the colorimeter approach is faster and easier than
image analysis, however as noted by Oliveira et al. (2017) it may not be suitable for assessing
the overall mean color of the papaya’s peel and its performance will depend on the number of
measured points and choice of sampled region. Therefore, other studies are still needed to assess
if a sample on the equatorial region can reproduce a sample over the whole region, and if the
colorimeter can compete with a scanner or digital camera in measuring the mean hue of papaya
peel over time. Hence, it is important to know about the magnitude of agreement over time
between values observed by both approaches.

The bivariate agreement coefficient was introduced by Krippendorff (1970) to assess
the agreement between two independent observers, or methods, based on nominal, ordinal, or
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interval measurement scales. Later, Lin (1989) proposed the concordance correlation coefficient
(CCC) to evaluate the agreement between observations measured by two methods when re-
sponses are measured on a continuous scale (King et al., 2007b). The reproducibility between
the two methods is calculated by measuring the variation of the linear relationship between each
pair of observations from the 45◦ line through the origin. The main advantages of CCC are
that it measures how far each observation deviates from the best-fit line (measure of precision)
and how far the best-fit line deviates from the 45◦ line through the origin (measure of accuracy)
(Lin, 1989).

A weighted CCC for repeated measurements was proposed by Chinchilli et al. (1996),
allowing for within-unit variances to vary across experimental units using a random coefficients
model. King and Chinchilli (2001) proposed a generalized CCC for categorical data, allowing
for the calculation of the agreement between two or more methods. Another relevant extension
was proposed by King et al. (2007a,b), which focused on the estimation of a CCC for repeated
measures incorporating a non-negative definite matrix of weights across different repeated mea-
surements. Soon after, Carrasco et al. (2009) proposed the estimation of a CCC for repeated
measures (CCCrm) based on variance components (VC) from a mixed-effects model summa-
rizing the agreement among methods over all measurements. These authors considered that
individual effects impact the variance of distribution of the responses, including this as random
effect in the model. Consequently, the interaction between individual and method, or time, are
also random, allowing the estimation of individual-specific variances for method and/or at re-
peated measurements over time. Another relevant agreement index was proposed by Hiriote and
Chinchilli (2011), who introduced a repeated measures CCC from a matrix that characterizes the
overall agreement between two vectors of random variables. Recently, Rathnayake and Choud-
hary (2017) proposed a time-dependent CCC for multiple methods based on semiparametric
models, using penalized regression splines for modeling longitudinal data.

An advantage of the VC approach is that the covariance structure of linear mixed
effects models is flexible and allows for constant, or non-constant, correlation between the ob-
servations and can handle unbalanced data (Lindstrom and Bates, 1990). Restricted maximum
likelihood (REML) can be used to obtain the estimates of variance components, since it is less
biased and more accurate than standard maximum likelihood (Carrasco et al., 2009) . This is a
popular framework for analysing repeated measures data and, in particular, longitudinal data.
However, if the model is incorrectly, or incompletely, specified then the REML estimates may
also be biased. Additionally, mixed-effects regression models can be used to describe the CCC
as a function of time, rather than summarizing it in a single coefficient as proposed by Carrasco
et al. (2009). This approach may give improved statistical power in the presence of missing
data (Pinheiro and Bates, 2000), decreasing the standard errors of estimators, and allows the
assumption of different forms for random effects, such as constant or non-constant over time
(Fitzmaurice et al., 2009). Moreover, standard repeated-measures ANOVA cannot be applied
to longitudinal data when observations are irregularly spaced or when we need to include quan-
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titative covariates in the model. In this work we propose an extension of the ideas presented by
Lin (1989) and Carrasco et al. (2009) based on the mixed-effects regression model rather than
a mixed-effects ANOVA approach. This allows us to estimate the longitudinal agreement over
time among pairs of observations obtained from different methods and from different sampled
regions on the papaya peel.

The remainder of the paper is organized as follows. The experimental data and descrip-
tive analysis are introduced in Section 3.2. Section 3.3 presents the definition of the longitudinal
concordance correlation (LCC) based on fixed effects and variance components in a multiple
mixed-effects regression model. Section 3.4 considers the estimation of LCC from the fixed ef-
fects and variance components estimates. Section 3.5 presents bootstrap confidence intervals
for the LCC and the performance of the approach is considered in a small simulation study in
Section 3.6. Section 3.7 illustrates the application of this LCC methodology to the papaya hue
color example, considering fruit classification and maturation studies in the postharvest phase.
Section 4.7 presents a discussion on the advantages of the LCC, and some caveats on using
this methodology and associated bootstrap confidence intervals. Finally, Section 4.9 gives some
concluding remarks. All statistical computing and graphics have been performed using the free
software environment R (R core Team, 2015).

3.2 Experimental data and descriptive analysis

An observational study was conducted in the Vegetable Production Department at
“Luiz de Queiroz” College of Agriculture/Universiy of São Paulo in 2010/2011 to evaluate the
peel color of 20 papaya cv. ‘Sunrise Solo’ over time. The fruits were harvested on the same day
and all of them presented up to 10% yellow peel color. They were labelled and stored in a cool
chamber at 18◦C and 80% ± 5% relative humidity.

A flat-bed scanner (HP Scanjet G2410) with 200 pixels per inch resolution and a tris-
timulus colorimeter Minolta CR-300 (Konica Minolta, 2003) were used to measure the fruits’
peel color. In order to minimize the effects of shade and provide a dark background for the
image, the scanner was covered with a cardboard box coated with black colour fabric before
the digitalization. The colorimeter was calibrated daily before the assessments, following the
procedures in the manual (Minolta, 1991), and the CIELCh color space was used to describe
the luminosity (L∗), chroma (C∗), and hue (h∗). Each day, after calibration, four predetermined
equidistant points on the papaya’s equatorial region were observed with the colorimeter and
then both sides of the fruit (labelled sides A and B) were scanned, which provided information
on the whole peel region.

The processing of these images used the GNU Image Manipulation Program (GIMP)
(Kimball et al., 2014) for two main aspects: i) the fruit’s equatorial region was obtained from a
longitudinal slice of the original images from both sides, A and B, and these were stacked and
saved as a single image (Figure 3.1(a)); ii) sides A and B of the whole region were stacked and
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saved as a single image to represent the whole peel region (Figure 3.1(b)). Consequently, the
equatorial region obtained from the original scanned images is a subset of the total. Afterwards,
the separation of fruit peel from the black background was made using the autoThreshold
function of the rtiff in R (R core Team, 2015). The autoThreshold uses a simple and automatic
method proposed by Ridler and Calvard (1978) for identifying equatorial and whole regions of
the peel, as shown in Figures 3.1(a) and 3.1(c), respectively. We observed approximately 1,000
pixels on the equatorial region and 10,000 pixels over the whole region of the fruit’s peel using
both scanned sides.

(a)

Side A Side B

dd

(b)

Side A Side B

s

(c)

Figure 3.1: Equatorial region of both sides of one fruit (above) and separation of the equatorial
region (in blank) of the black background using the autoThreshold function (a), both sides of
one fruit stacked in one image (b) and separation of fruit’s peel of the black background through
the autoThreshold function as well (c)

In the following, as the scanner uses the standard RGB (sRGB) rather than CIELCh
color space, the pixels of each image need to be converted from RGB to CIELCh color space.
This is done by using specific functions available in the colorspace package (Ihaka et al., 2015)
of R. Oliveira et al. (2017) undertook a calibration study using 297 different color standards of
Munsell’s color charts for vegetable tissues (Munsell Color Company, 1952) in order to correct
the values of L∗, C∗, and h∗ obtained by the scanner.

Here, the hue variable will be used to illustrate the statistical methodology since this
is frequently used in classification procedures and to establish ripening curves for various fruits,
such as mango, papayas, and bananas (Silva-Ayala et al., 2005; Sancho et al., 2010). As the hue
variable is an angle it needs to be treated as a circular variable and the circular mean should
be used to summarize the data (Figure 3.2) (Fisher, 1993; Mardia and Jupp, 2000). Thus,
the circular mean hue (h̄∗) was calculated for the ith fruit, i = 1, 2, . . . , N , measured by the
j-method, j = 1, 2, . . . ,m, on the lth region, l = 1, 2, . . . , r, at time tik, k = 1, 2, . . . , ni. Besides,
as the multivariate von Mises distribution of h̄∗ is concentrated around the vector mean µh̄∗ ,
the distribution of h̄∗ could be treated as a normal distribution with mean µh̄∗ and covariance
matrix R (Mardia et al., 2008).

Note that because of some problems with fungal diseases, such as anthracnose (Col-
letotrichum gloeosporioides Penz.), and stem-end rot (Mycosphaerella sp.) on the fruit’s peel
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Figure 3.2: Vector of mean hue obtained from observed points on equatorial region by the
colorimeter and scanner, and whole region by the scanner

during the conduct of the experiment, some fruits did not have a complete set of responses, see
Figure 3.3 where some profiles terminate before day 14 and correspond to dropout. The form
of missingness in this experiment is classified as missing at random (MAR), because the prob-
ability of dropout may depend on the observed responses, but, given the observed responses, is
conditionally independent of the missing data . Therefore, here the MAR mechanism can be
treated as ignorable, because the probability that Yijlk is observed does not depend on missing
observations.

Colorimeter:Equatorial Scanner:Equatorial Scanner:Total
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Figure 3.3: Individual profiles of 20 fruits assessed on the equatorial region by the scanner and
colorimeter, and whole region by the scanner over time

In general, the papaya fruits showed a gradual and non-uniform color change over time
from green (h̄∗ ≈ 115), with some yellow bands at the style region, to yellowish orange (h̄∗ ≈ 85)

(Figure 3.3). This is in line with the experiences of Sancho et al. (2010) and Martins et al. (2014),
who have also studied the peel color of papaya fruit.
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3.3 Definition of the longitudinal concordance correlation (LCC)

3.3.1 The multiple mixed effects regression model for longitudinal data

Let yijlk be a realization of random variable Yijlk measured on the ith fruit (i =

1, 2, . . . , N) by the jth method (j = 1, 2, . . . ,m) on the lth region (l = 1, 2, . . . , r) at time
tik (k = 1, 2, . . . , ni), where ni is the total number of observations taken on the ith fruit over
time. As an initial model we can consider a linear regression

Yijlk =

p∑
h=0

βhjlt
h
ik + εijlk, (3.1)

which represents a polynomial regression of degree p over time. Generally, the maximum value
considered for p is 4, because the use of high order polynomials (p > 4) may lead to over-fitting.
The time variable, t, is assumed to be on a predetermined scale, such as, week, day, month,
year, etc. In this simplest case, the errors εijlk are assumed to be independent and normally
distributed with mean zero and variance σ2ε . However, this independence assumption may not
be reasonable for longitudinal repeated measures data.

An alternative is to include in the model a random variable that indicates the influence
of repeated measurements on individual i, that is, we assume that observations from the same
individual are correlated. This variable is called a random effect and its population distribution
is assumed to be normal with mean 0 and covariance matrix G. Thus, the linear mixed effects
model, including an unstructured covariance matrix for the random effects, is given by

Yijlk =

p∑
h=0

βhjlt
h
ik +

q∑
h=0

bhit
h
ik + ϵijlk

bi ∼MVN (0,G) and ϵi ∼MVN (0,Ri)

(3.2)

where h = 1, 2, . . . , q, q + 1, . . . , p is an index identifying the degree of the linear mixed effects
polynomial model, with q ≤ p; yijlk is the response of ith fruit measured by the jth method
on region l at time k; tik is the time, in days since harvesting, at which the ith individual is
observed; βjl = [β0jl, β1jl, ..., βpjl]

T is a (p + 1)-dimensional vector of fixed effects for the jth
method on the lth region; bi = [b0i, b1i, ..., bqi]

T is a (q+1)-dimensional vector of random effects
with mean vector 0 and covariance matrix G; ϵi is a (mrni)-dimensional vector assumed to be
independent for different i, j, l and k and independent of the random effects bi with mean vector
0 and (diagonal) covariance matrix Ri. In this case, the independence among errors is much
more reasonable because the individual longitudinal dependence is accounted for by the random
effects.

Under model (3.2), we can assume two different forms for the random effects: i) constant
over time, or ii) non-constant over time. An example of constant random effects over time is
the random-intercept model (q = 0) with Cov(Yijlk, Yijlk′) = σ2b0 + σ2ϵ ; while an example of
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time-dependence is the random-intercept-slope model (q = 1) with Cov(Yijlk, Yijlk′) = σ2b0 +

σ2b1tiktik′ + σb01 (tik + tik′) + σ2ϵ .
Sometimes, even when assuming non-constant random effects over time, it is necessary

to include a time-dependent variance function in the model. As in Pinheiro and Bates (2000),
we can generalize the variance function to

V ar (ϵijlk) = σ2ϵ g (tik, δjl) , (3.3)

where g(.) is a variance function assumed continuous in δ; tik is the time covariate and δjl is a
vector of variance parameters for observations measured by the jth method on the lth region.
Further details on the possible forms of variance functions can be seen in Pinheiro and Bates
(2000).

The assumption of heteroscedasticity between different combinations of method and
region is necessary in this context because there are subpopulation differences (equatorial and
whole regions) as well as different numbers of raw observations for calculating the mean hue
(four points for colorimeter; 1000 for the scanner on the equatorial region; and 10,000 for the
scanner over the whole region).

The intercepts, time effects, and interactions that are related to the method and re-
gion under the model (3.2) are given by βhjl = βh + φhj + γhl + λhjl, where βh is the overall
polynomial coefficient; φhj , γhl, and λhjl are the method-time, region-time, and method-region-
time interactions, respectively. Note that when h = 0, φ0j and γ0l are the main effects of
method and region, respectively. To ensure identifiability of the fixed effects, it is assumed that
φh1 = γh1 = λh1l = λhj1 = 0, for j = 1, 2, . . . ,m, l = 1, 2, . . . , r.

3.3.2 Model extensions

The hue change in papaya fruit depends on several variables that were not measured
before the beginning of experiment described in section 3.2, such as fruit position on the plant,
temperature and relative humidity, time until harvest of fruit, plant and/or fruit diseases, sun
exposure time, etc. These unobserved variables can influence directly, or indirectly, the physio-
logical processes of the fruit and consequently its initial hue, justifying the inclusion of a random
intercept in the model. Furthermore, as we take measurements on different fruit regions, it is rea-
sonable that we assume these unobserved variables can differentially affect the response variable
given the locality of the observed point on the peel. In particular, this assumption is necessary
because papaya has an uneven ripening process, starting at the style and moving towards the
peduncle insertion regions, forming yellowish-hue bands.

To estimate this additional variability associated with the interaction between method
and region, we create a new variable A with mr categories given by the combination of fruit,
region and method levels. Then the mr− 1 associated dummy variables for fruit i at time k are
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defined as follows:

dick =

{
1, for category c of variable A
0, otherwise

.

with c = 1, 2, . . . ,mr−1 and associated vector dik =
(
di1k, di2k, . . . , di(mr−1)k

)
, with the reference

category mr corresponding to di1k = di2k = . . . = di(mr−1)k = 0. In this way, we can extend
model (3.2) to

Yijlk =

p∑
h=0

βhjlt
h
ik +

q∑
h=0

bhit
h
ik +

mr−1∑
c=1

αcidick + ϵijlk

ui =

[
bi

αi

]
∼MVN

([
0

0

]
,D =

[
G Φ

Φ Gα

])
and ϵi ∼MVN (0,Ri) ,

(3.4)

where αi is a (mr − 1)-dimensional vector of random effects; Gα is an (mr − 1) × (mr − 1)

matrix of covariances; ui =
[
bTi ,α

T
i

]T is (q + mr)-dimensional vector of random effects with
mean vector 0 and covariance matrix D; and Φ is a matrix of zeros. Model (3.4) may be much
more reasonable than model (3.2) because the individual influence on the intercept due to the
interaction of method and region is also removed from the error term.

Model (3.4) is equivalent to a general linear mixed model defined by Verbeke and
Molenberghs (2000) as

Yi =Xi (tik)β +Zi (tik)ui + ϵi

ui ∼MVN (0,D) and ϵi ∼MVN (0,Ri)
. (3.5)

where Yi =
(
Y T
i1 ,Y

T
i2 , . . . ,Y

T
ini

)T is the associated vector of measurements for fruit i, Xi (tik)

and Zi (tik) are design matrices with (p+1)mr and q+mr covariates for fruit i at time tik with
dimensions mrni × (p + 1)mr and mrni × (q + mr), respectively. Hence, under model (3.5),
Xi (tik) is the design matrix associated with fixed effects β =

[
βT0 ,β

T
1 , . . .β

T
p

]T , and Zi (tik)
includes random coefficients of the model such as random intercept, or random intercept and
slope, etc. Marginally, the vector Yi is normally distributed with mean Xi (tik)β and covariance
matrix V ar (Yi) = Zi (tik)DZT

i (tik) +Ri = Vi.

3.3.3 The longitudinal concordance correlation

Let Y1 and Y2 be random variables independently selected from a bivariate population
with means µ1 and µ2, Var (Y1) = σ21, Var (Y2) = σ22 and Cov (Y1, Y2) = σ12. The concordance
correlation coefficient (CCC) introduced by Lin (1989) is defined as

ρc = 1−
E
[
(Y1 − Y2)

2
]

EI

[
(Y1 − Y2)

2
] =

2σ12

σ21 + σ22 + (µ1 − µ2)
2 = ρpCb (3.6)
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where |ρc| ≤ 1, EI is the expectation assuming that Y1 and Y2 are uncorrelated. ρp is the Pearson
correlation coefficient (|ρp| ≤ 1) that measures how far each observation deviated from the best-
fit line (precision measure), and Cb is the accuracy (0 < Cb ≤ 1) that measures how far the best-
fit line deviates from the 45◦ line through the origin. Lin (1989) defined Cb = 2

(
v + v−1 + u2

)−1,
where v = σ1/σ2 is a scale shift, while u = (µ1 − µ2) /

√
σ1σ2 is a location shift relative to the

scale.
Now suppose that the ith fruit is measured ni times by each of m methods on r regions

and that the researcher wants to investigate the agreement between observations measured by
different methods on the same region, by different methods and regions, and by the same method
on distinct regions of the fruit’s peel. Here we denote yijlk and yij′l′k as general realizations of
random variables Yijlk and Yij′l′k measured from different unique combination of two factors
(method and region) at time tik, with j > j′ = 1, 2, . . . ,m, and l > l′ = 1, 2, . . . , r. Thus,
under the model (3.4), we can define the LCC based on variance components for observations
measured from different unique combinations of two factors at time tik as

ρjl, j′l′ (tik) =
2Cov

(
Yijlk, Yij′l′k

)
V ar (Yijlk) + V ar

(
Yij′l′k

)
+
[
E (Yijlk)− E

(
Yij′l′k

)]2 . (3.7)

Let zijlk and zij′l′k be, respectively, rows of Zi (tik) matrix such that zijlk = (tik,dik) and
zij′l′k = (tik,d

′
ik), where tik =

(
t0ik, t

1
ik, . . . , t

q
ik

)
and dik and d′ik are the dummy variables for the

two method-region combinations (jl and j′l′). Thus, the covariance between Yijlk and Yij′l′k is
given by

Cov
(
Yijlk, Yij′l′k

)
= zijlkDz

T
ij′l′k = tikGt

T
ik + dikGαd

′T
ik . (3.8)

If we assume different variances for each unique combination between method and region, the
variances of Yijlk and Yij′l′k can be expressed as{

V ar (Yijlk) = tikGt
T
ik + dikGαd

T
ik + σ2ϵ g (tik, δjl)

V ar
(
Yij′l′k

)
= tikGt

T
ik + d

′
ikGαd

′T
ik + σ2ϵ g

(
tik, δj′l′

) . (3.9)

On the other hand, the systematic difference between the mean responses for Yijlk and
Yij′l′k given by Sjl, j′l′ (tik) = E (Yijlk)− E

(
Yij′l′k

)
= µjl (tik)− µj′l′ (tik) reduces to

Sjl, j′l′ (tik) = tik
(
βjl − βj′l′

)
, with h = 1, 2, ..., p and jl ̸= j′l′. (3.10)

Thus, replacing the expressions (3.8), (3.9), and (3.10) in (3.7) and considering all individual
fruits that were assessed at time tk, we have that the LCC is given by

ρjl, j′l′ (tk) =
tkGt

T
k + dkGαd

′T
k

tkGt
T
k +

1

2

{
dkGαd

T
k + d′kGαd

′T
k + σ2ϵ

[
g (tk, δjl) + g

(
tk, δj′l′

)]
+ S2

jl, j′l′ (tk)
}

= ρ
(p)
jl, j′l′ (tk)Cjl, j′l′ (tk) (3.11)
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where tk = 1
Nk

∑Nk
i=1 tik and dk = 1

Nk

∑Nk
i=1 dik. ρ

(p)
jl, j′l′ (tk) and Cjl, j′l′ (tk) are, respectively,

the longitudinal Pearson correlation and longitudinal accuracy based on variance components
for each unique combination of two factors, j > j′ = 1, 2, . . . ,m and l > l′ = 1, 2, . . . , r.

The ρ(p)jl, j′l′ (tk) measures how far each observation deviated from the best-fit line at a
fixed time tk = t and is given by

ρ
(p)
jl, j′l′ (tk) =

tkGt
T
k + dkGαd

′T
k√[

tkGt
T
k + dkGαdTk + σ2ϵ g (tk, δjl)

] [
tkGt

T
k + d′kGαd′Tk + σ2ϵ g

(
tk, δj′l′

)] .
The accuracy Cjl, j′l′ (tk) is a longitudinal bias correction factor that measures how far the
best-fit line deviates from the 45◦ line at a fixed time tk = t and is given by

Cjl, j′l′ (tk) =
2

vjl, j′l′ (tk) +
[
vjl, j′l′ (tk)

]−1
+ u2jl, j′l′ (tk)

where

vjl, j′l′ (tk) =

√
V ar (Yijlk)

V ar
(
Yij′l′k

) =

√
tkGt

T
k + dkGαdTk + σ2ϵ g (tk, δjl)

tkGt
T
k + d′kGαd′Tk + σ2ϵ g

(
tk, δj′l′

)
denotes the scale shift and

ujl, j′l′ (tk) =
E (Yijlk)− E

(
Yij′l′k

)[
V ar (Yijlk)V ar

(
Yij′l′k

)] 1
4

=
tk
(
βjl − βj′l′

){[
tkGt

T
k + dkGαdTk + σ2ϵ g (tk, δjl)

] [
tkGt

T
k + d′kGαd′Tk + σ2ϵ g

(
tk, δj′l′

)]} 1
4

denotes the location shift relative to the scale (Lin, 1989). When V ar (Yijlk) = V ar
(
Yij′l′k

)
and

E (Yijlk) = E
(
Yij′l′k

)
there is no deviation from the 45◦ line.

It is worth noting that, as often studies will use two or more methods to measure a
characteristic on the same group of subjects, these measurements will tend to be positively
correlated (Barnhart and Williamson, 2001; King et al., 2007b). Here we may expect similar
positive association between measurement methods and hue color (ripeness) at different regions
of the fruit. Thus, it is plausible to assume that in most situations 0 ≤ ρjl, j′l′ (t) ≤ 1.

3.4 Estimation of the LCC using variance components

To estimate the fixed effects and variance components of the linear mixed-effects model
we use the restricted maximum likelihood approach. The log-likelihood function to maximize is
proportional to

lR (β,ψu,ψϵ;y) ∝ −1

2

{
log
∣∣V ∣∣+ ∣∣X (tik)

T V −1X (tik)
∣∣+ rTV −1r

}
,

where ψu and ψϵ denote, respectively, vectors of variance components of the D and Ri matrices;
and r = (y −X (tik)β) is a residual. It is worth noting that when the data are missing at
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random, or missing completely at random, the missing-data mechanism may be ignored and the
resulting likelihood function remains valid (Fitzmaurice et al., 2009).

Since ρjl, j′l′ (tik) is a function of the fixed effects (β) and variance components (ψu,ψϵ)
it can be estimated by replacing β, ψu, and ψϵ by their REML estimates.

3.5 Non-parametric bootstrap confidence intervals

Let F̂1 and F̂2 be the empirical distributions of ϵ and u which are defined to be discrete
distributions with probabilities 1/n on each value of ϵ and 1/N on each group of random effects
associated with the ith fruit, ui, respectively. Then, B pseudo-samples of size n and N are drawn
with replacement from ϵ and u, respectively, to give the bootstrap resamples. This process is
called the nonparametric bootstrap coupled with a global residual bootstrap, which consists of
the sampling of entire subjects with replacement and of sampling residuals with replacement
globally (Thai et al., 2013).

The nonparametric bootstrap approach depends on the fixed effects and variance-
covariance matrix structure of the model to calculate the raw random effects or residuals, but
it does not require a particular assumption about the distribution of the estimator (Thai et al.,
2013). Some steps are needed to build the 100 (1− α)% bootstrap CI for the LCC.

Initially, we generate B pseudo-samples by resampling from the data then refit the
model in order to obtain B sets of estimates for all parameters of the LCC. Then for each
pseudo-sample, for a specific time tk = t we use the estimated values to obtain ρ

(b)
jl,j′l′(t) and

apply the Fisher Z-transformation
(
1
2 log

(
1+ρ
1−ρ

))
to provide values that may be approximately

normally distributed. The expected value of the Z-transformed bootstrap estimator is calculated
from the B bootstrap samples at time t as

ρ̂∗jl,j′l′ (t) =
1

2B

B∑
b=1

log

1 + ρ
(b)
jl,j′l′ (t)

1− ρ
(b)
jl,j′l′ (t)

 .
and the standard deviation of the bootstrap distribution of ρ̂∗jl,j′l′ (t) is given by

ŜE
∗
jl,j′l′ (t) =

√√√√√ 1

B − 1

B∑
b=1

1
2

log

1 + ρ
(b)
jl,j′l′ (t)

1− ρ
(b)
jl,j′l′ (t)

− ρ̂∗jl,j′l′ (t)

2

.

An approximate level 1 − α bootstrap confidence interval for the LCC ρ̂jl,j′l′ on the
original scale is [LB,UB], where

LB =
exp

{
2
[
ρ̂∗jl,j′l′ (t)− z(1−α

2
)ŜE

∗
jl,j′l′ (t)

]}
− 1

exp
{
2
[
ρ̂∗jl,j′l′ (t)− z(1−α

2
)ŜE

∗
jl,j′l′ (t)

]}
+ 1

and

UB =
exp

{
2
[
ρ̂∗jl,j′l′ (t)− zα

2
ŜE

∗
jl,j′l′ (t)

]}
− 1

exp
{
2
[
ρ̂∗jl,j′l′ (t)− zα

2
ŜE

∗
jl,j′l′ (t)

]}
+ 1

.
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with zα
2

and z(1−α
2
) denoting the α

2 and 1− α
2 quantiles of the standard normal distribution.

When N is small the shape of the sampling distribution of ρ̂∗jl,j′l′ may look non-normal,
then a more appropriate bootstrap CI approach should be based on the percentile method
because the discrepancy between the CI based on ŜE

∗
jl,j′l′ and CI based on percentiles increases

with decreasing N (Thai et al., 2013).
The inference about ρ̂(p)jl,j′l′ can be performed in a similar way as presented for LCC.

However, the inference about Cjl,j′l′ is a little different because it belong to the interval [0, 1], con-
sequently we can use the logit transformation log

(
Cjl,j′l′ (tk=t)

1−Cjl,j′l′ (tk=t)

)
instead of Fisher Z-transformation

to approximate the distribution of Cjl,j′l′ (tk = t) to the normal distribution.
Here we consider a simple case-resampling bootstrap, an alternative would be to use a

model-based residual resampling approach.

3.6 Simulation study

To evaluate the LCC approach, we conducted a simulation study to investigate its
estimation performance under variance components approaches for papaya ripeness over different
scenarios. We are specifically interested in examining the scaled mean error (SME), as a bias
measure, root mean square error (RMSE), as an accuracy measure, for LCC. We also examining
the accuracy of simultaneous confidence intervals for Sjl,j′l′ (tk) = µjl (tk)−µj′l′ (tk) and LCC(tk).
To simplify the study, we restrict attention tom = 2 methods, r = 2 regions, and k = 16 repeated
measures (days) and we evaluate the LCC for the same methods over different fruit regions, as
well as among methods on the same regions of the fruit; we label these cases as Examples 1
(whole versus equatorial region measured by colorimeter), 2 (whole versus equatorial region
measured by scanner), 3 (colorimeter versus scanner on equatorial region), and 4 (colorimeter
versus scanner on whole region).

The data are simulated from a particular case of model (3.4) with p = 1 and q = 1,
resulting in the following model

Yijlk = β0jl + b0i + (β1jl + b1i)tik + ϵijlk,

bi ∼ N2 (0,G) and ϵi ∼MVN
(
0, Iσ2ϵ

)
.

(3.12)

Specifically, we take mean functions µ11 (tk) = 114− 2.5k, µ12 (tk) = µ22 (tk) = 105− 2.0tk, and
µ21 (tk) = 115− 2.2tk; and variance components

(
σ2b0 , σ

2
b1
, σb01 , σ

2
ϵ

)
= (4.3, 0.2,−0.5, 0.3). Thus,

we generate a response vector y from a multivariate normal distribution with mean Xβ, and
variance-covariance matrix ZGZT + Iσ2ϵ .

We also consider two trajectories per fruit for N ∈ {20, 50, 100} fruits using both
balanced and unbalanced designs, where the missing value pattern used was (monotone) dropout.
The data for unbalanced designs are initially simulated as in a balanced design and then we create
an indicator variable (Irm) for the total number of repeated measures on the i-th fruit. We
suppose that this variable has a Poisson distribution with mean and variance equal 11, subject
to a maximum of 16 repeated measurements. The individual observations up until observation
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Table 3.1: Overall mean of simulated scaled mean error (SME), in absolute values, and root
mean square error (RMSE) for four examples of longitudinal concordance correlation based on
2.000 Monte Carlo samples for 20, 50 and 100 fruits in the balanced and unbalanced design cases

Design N |SME| ×102 RMSE
Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 1 Ex. 2 Ex. 3 Ex. 4

Balanced
20 0.798 0.198 0.466 0.502 0.024 0.032 0.035 0.044
50 0.396 0.111 0.274 0.450 0.015 0.020 0.022 0.028
100 0.336 0.091 0.151 0.169 0.011 0.014 0.015 0.020

Unbalanced
20 1.692 1.088 0.914 1.509 0.038 0.047 0.051 0.065
50 0.648 0.580 0.396 0.483 0.024 0.029 0.032 0.040
100 0.328 0.278 0.177 0.265 0.016 0.021 0.023 0.029

ni = Irmi ∼ Poisson(11) are kept in the data, while the remainder are treated as missing values.
Note that, the number of repeated measurements taken on the i-th fruit does not depend on
method nor sampled region. A similar approach to generating unbalanced datasets was used by
Rathnayake and Choudhary (2017).

We use the methodology of Section 3.5 with B=2.000 bootstrap replications to compute
the simultaneous confidence intervals with 1−α = 0.95 based on the Fisher Z-transformation to
approximate the distribution of ρjl, j′l′ (tk) by the normal distribution. The process of simulating
data and constructing confidence intervals is repeated 2.000 times, and we computed the coverage
probability for each interval.

Table 3.1 presents the overall mean of estimated SME and RMSE for the LCC in
examples 1, 2, 3, and 4 for balanced and unbalanced designs. We see a small SME under both
designs for N = 20, 50, or 100 for all examples, however as would be expected the estimator of
ρjl,j′l′ (tk) is more biased in the unbalanced design than in the balanced one. Furthermore, the
RMSE indicates that the estimator of LCC is close to the true value as the number of individuals
(N) increases, demonstrating a satisfactory performance even in conditions of unbalance and a
low number of individuals.

The estimated coverage rate for the simultaneous confidence intervals around ρjl,j′l′ (tk)
and Sjl,j′l′ (tk) at a fixed time tk = t are graphically summarize for both experimental designs
in Figure 3.4. In the balanced case, we see that LCC bands still have a slight tendency over
time to stay below the nominal coverage for N = 20, however, this phenomenon disappears
as the sample size is increased. Interestingly, even in a severe unbalance condition there is no
considerable difference in the coverage rate between balanced and unbalanced cases for LCC.
This indicates that the methodology is robust to the unbalancement conditions in the data. On
the other hand, in both experiment designs the estimated coverage rate for systematic differences
(Sjl,j′l′ (tk)) appear decreases a little as we increase the number of fruits. In general, the coverage
rate is acceptable for the sample size of 20 and appropriate for 100 subjects.
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A

B

Figure 3.4: Estimated simultaneous coverage rate based on 95% confidence intervals for
Sjl,j′l′ (tk) and LCC (tk), both considering N ∈ {20, 50, 100} fruits in the balanced (A) and
unbalanced (B) designs
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3.7 Papaya’s peel hue data analysis

Initially, a quadratic growth model with a random effect of fruit was fitted for each
combination between method (j = 1, 2) and region (l = 1, 2), where j = 1 refers to the col-
orimeter while j = 2 to the scanner, while l = 1 refers to the equatorial region and l = 2

to the whole region. However, for computational reasons time was transformed to a log scale,
τik = log (tik + 1).

In sequence, a model selection procedure was performed from the model of expression
(3.4), resulting in the following model:

yijlk = β0jl + b0i + (β1jl + b1i) τik + (β2jl + b2i) τ
2
ik + β3τ

3
ik + α1idi1k + α2idi2k + ϵijlk


b0i

b1i

b2i

α(21)i

α(22)i

 ∼MVN




0

0

0

0

0

 ,D =


σ2b0 0 0 0 0

0 σ2b1 σb12 0 0

0 σb12 σ2b2 0 0

0 0 0 σ2α σα12

0 0 0 σα12 σ2α



 and ϵi ∼MVN (0,Ri) ,

(3.13)

where di1k and di2k are dummy variables equal to 1 for observations measured by the scanner on
equatorial region and whole region, respectively, and zero otherwise, as described in Subsection
3.3.2.

In this model, the conditional residuals were assumed to be independent (see Appendix
VI) with constant variance over time and we checked this assumption from a variogram con-
structed using these residuals, suggesting that it was adequate for the whole region. On the
other hand, the variability of observations measured on the equatorial region increased faster
over time than observations measured on the whole region of the fruit. To solve this, a vari-
ance function using time as covariate was included in the model, which can be represented by
Var (ϵijlk) = σ2ϵ exp (2δjlτik) for observations measured by the jth method on lth region, where
the parameter δjl is unrestricted enabling the variance to increase or decrease over time (Pin-
heiro and Bates, 2000). As variances remained constant over time for observations measured on
the whole region, we fixed δ22 = 0, which represents the scanner on the whole region.

The parameter point estimates and respective 95% confidence intervals are presented
in Table 3.2. The intercept as well as linear and quadratic coefficients were different between
methods and sampled regions, which indicates that the colorimeter and scanner, as well as the
equatorial and whole regions, differed in mean hue quantification. As E [Yijlk] = β0jl+β1jlτik +

β2jlτ
2
ik + β3τ

3
ik ̸= E

[
Yij′l′k

]
for j > j′ = 1, 2, . . . ,m, and l > l′ = 1, 2, . . . , r, the systematic

differences (S2
jl, j′l′ (tik)) between methods by region were different from zero and vary over

time tik. This difference was smallest between observations measured by the colorimeter and
by the scanner on the equatorial region (Figure 3.5), indicating greater accuracy between these
compared to other combinations.
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Table 3.2: Coefficients, parameter estimates by REML and their 95% confidence interval ob-
tained by the non-parametric bootstrap method

Coefficient Value Parameter Lower Estimate Upper
Intercepts β0 114.792 115.342 116.063

β011 = β0 115.342 φ02 -1.4205 -0.6554 -0.0846
β021 = β0 + φ02 114.687 γ02 -2.9306 -2.4255 -1.9753
β022 = β0 + φ02 + γ02 111.940 β1 -4.0129 -2.7467 -2.1555

Linear effect φ12 -1.7603 -1.4721 -0.4275
β111 = β1 -2.7467 γ12 -1.4507 -0.9158 0.1909
β121 = β1 + φ12 -4.2188 β2 3.0049 3.5877 4.3571
β122 = β1 + φ12 + γ12 -5.1346 φ22 0.2313 0.6632 0.7351

Quadratic effect γ22 0.1228 0.3990 0.5837
β211 = β2 3.5877 β3 -2.4569 -2.3437 -2.1567
β221 = β2 + φ22 4.2509 σb0 0.7885 1.4219 1.7726
β221 = β2 + φ22 + γ22 4.6499 σb1 1.0929 1.6339 1.8261

Cubic effect σb2 0.5443 0.8259 0.9450
β3jl = β3 -2.3437 ρb1,b2 -0.8908 -0.6650 -0.2276

σα 0.5147 1.1975 1.5942
ρα 0.6351 0.8592 0.9846
δj1 0.0622 0.1210 0.1974
σϵ 0.6380 0.7759 0.8025
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Figure 3.5: Systematic differences between CE and ScE; CE and ScW; and ScE and ScW over
the time, where CE and ScE indicate, respectively, observations measured by the colorimeter
and scanner on the equatorial region while SeW indicates observations measured by the scanner
on the whole region
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Variance components as well as their 95% confidence intervals presented in Table 3.2
show that the variability of observations measured on papaya skin at the beginning of the
experiment by the colorimeter was less than that by the scanner, with variances V ar (Yi1l1) = σ2b0
for the colorimeter and V ar (Yi2l1) = σ2b0 + σ2α for the scanner. This showed that a sample of
four points on the equatorial region for the colorimeter was not representative of this region at
the beginning of the experiment. At this point the papaya’s ripening process has led to larger
proportions of green hues than yellowish-green or yellow hues on the equatorial region, resulting
in a distribution more concentrated around the mean hue when the fruit was assessed by the
colorimeter in relation to scanner. Similar results can be verified in studies conducted by Bron
and Jacomino (2006), Schweiggert et al. (2011) and Chávez-Sánchez et al. (2013), who also
showed a low variability among fruits measured by the colorimeter on the equatorial region at
start of experiments. Therefore, it is necessary that a greater number of points be sampled in
this region with the colorimeter in order to obtain a representative sample, especially at initial
ripeness stages.

The correlation parameter ρα = σα12/σ
2
α included in the model to quantify the relation-

ship between observations measured by the scanner on the equatorial and whole regions showed
a positive and high correlation (ρα=0.85). It was a indicative of high precision among these
measurements and makes sense because the equatorial region was represented by a percentage
of pixels belonging to the whole region, in such a way that, as we increase this percentage, the
Pearson correlation will tend to 1.

Under the fixed effects and variance components of the model described in (3.13),
the longitudinal concordance correlation (LCC), longitudinal Pearson correlation (LPC), and
longitudinal accuracy (LA) were estimated for each pair of unique combinations among levels
of method and region, as well as their 95% bootstrap confidence intervals. Here we assumed
that the scanner was the standard methodology because from it one we captured images that
provided information on the whole region of the fruit’s peel. We graphically summarize these
functions and their respective confidence intervals for each case as follows:

i) Case 1 (Figure 3.6): agreement among observations measured on the equatorial region by
the scanner and colorimeter;

ii) Case 2 (Figure 3.7): agreement among observations measured on the equatorial region by
the colorimeter and on the whole region by the scanner;

iii) Case 3 (Figure 3.8): agreement among observations measured on the equatorial and whole
regions by the scanner.

Figure 3.6 shows that the LCC and LPC between observations measured on the equa-
torial region by the scanner and colorimeter were smallest at the beginning (0.57 and 0.62

respectively) increasing over time to approximately 0.92. On the other hand, the LA always had
estimated values above 0.78 over time, therefore, the only moderate agreement at the beginning
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Figure 3.6: Estimate and 95% confidence interval (CI) for the longitudinal concordance correla-
tion (a); longitudinal Pearson correlation (b); and longitudinal accuracy (c) between observations
measured on the equatorial region by the scanner and colorimeter with addition of points that
represent the concordance correlation coefficient considering independent measurements taken
over time

was caused by a lower precision. Consequently, despite the lower precision between them, we
can conclude that values of mean hue obtained by the colorimeter were close to those obtained
by the scanner on the equatorial region. Moreover, it also indicated that the topography and
curved surface of the papaya fruit did not affect, or only slightly affected, the hue measurements
taken on its peel by the scanner. Similar results were observed by Mendoza et al. (2006), who
verified that the hue color was not affected by the topography and curved surface of green and
yellow bananas, or red peppers, when measured by a digital camera.

Although confidence intervals for the LPC for Cases 1 (Figure 3.6) and 2 (Figure 3.7)
are similar, the confidence intervals for LA between them over time were different, indicating
that the mean hue calculated from observed values by the scanner over the whole region was
not close to the observed values from the colorimeter on the equatorial region, especially over
the period 0 to 7 days after start of the experiment.

Similar results were also observed between Cases 2 and 3 (Figure 3.8) where the equa-
torial and whole regions were obtained by the scanner from a common image of both sides of
the fruit’s peel, reinforcing the conclusion that the whole region of the fruit’s peel cannot be
represented by sampling only on the equatorial region. Therefore, ideally image analysis of
whole fruit’s region should be used to compute the mean hue.

Another important characteristic observed from Figures 3.6, 3.7, and 3.8 was that
the LCC increased with time, showing a non-uniform ripening process, even when observed
only on the equatorial region (Figure 3.6). Many studies such as Bron and Jacomino (2006),
Sancho et al. (2010), and Schweiggert et al. (2011) observed that the color changes were non-
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Figure 3.7: Estimate and 95% confidence interval (CI) for the longitudinal concordance corre-
lation (a); longitudinal Pearson correlation (b); and longitudinal accuracy (c) between obser-
vations measured on the equatorial region by the colorimeter and whole region by the scanner
with addition of respective observed values considering independent measurements taken over
time (points)

Figure 3.8: Estimate and 95% confidence interval (CI) for the longitudinal concordance corre-
lation (a); longitudinal Pearson correlation (b); and longitudinal accuracy (c) between observa-
tions measured on the equatorial and whole regions by the scanner with addition of respective
observed values considering independent measurements taken over time (points)
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uniform from green to yellow/orange, as the yellow and orange colors on the peel are directly
associated with production of carotenoids such as β-cryptoxanthin, β-carotene, and lycopene.
Thus, it is plausible to assume that the chlorophyll degradation as well as the production of
these carotenoids are also non-uniform over the peel surface.

3.8 Discussion

Our main motivations for this study were to verify if a colorimeter reproduces a scanner
and if a sample on the equatorial region can reproduce observation of the whole region in
measuring the mean hue on papaya peel. For this, we proposed a LCC for assessing the agreement
of paired continuous measurements over time associated with different level combinations of
two factors (method and region) based on a mixed-effects regression model. Thus, the main
contribution of this paper was describing the longitudinal agreement profile considering different
forms for random effects rather than summarizing it in a single coefficient, as proposed by
Carrasco et al. (2009).

Evaluating the longitudinal agreement profile can help the researcher to decide in which
period the new method reproduces the observed values by the standard method. In Figure 3.6,
for example, if we consider that the ideal agreement is given by a lower band of a confidence
interval higher than 0.80, then the colorimeter methodology may be used on the equatorial region
from the 12th day after harvest. On the other hand, when we used the methodology proposed by
Carrasco et al. (2013), we obtained a 95% confidence interval for the CCCrm between 0.7069 and
0.9041, consequently the conclusion would be that the colorimeter may not be used to calculate
the mean hue on the fruit’s equatorial region, when in fact we demonstrated that it could be
used in a specific period.

Clearly the experimental design and study objectives should be taken into account be-
fore choosing which method we should use to calculate the agreement between pairs of observa-
tions over time. Furthermore, in longitudinal designs, the number and spacing of measurements
and missing data mechanisms should also be taken into account. In this way, in further studies
we intend to extend this methodology to other forms of missingness. Also, the minimum num-
ber of time points that are necessary to use this LCC methodology should not be two, or even
three, because this number depends on the change pattern of the response variable over time.
Increasing the number of time points, provided that they are not concentrated near a specific
time, allows us to use different types of polynomial growth curve models, which can directly
influence the calculation of LCC.

Here we treated method and region as fixed effects, however it is possible to extend this
methodology to consider the method, region, or both, as random effects. Chen and Barnhart
(2013), for example, have already proposed extensions to CCC and the intraclass correlation
coefficient based on three-way random-effects ANOVA, discussing about when the observer (or
method), time, or both, should be treated as fixed or random effects. Furthermore, as we con-
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sider that conditional errors are independent, a possible extension to this methodology could be
to include a more complex structure in the error variance-covariance matrix, such as autocorre-
lation functions. This procedure has been discussed by Rathnayake and Choudhary (2017), who
compared independent errors, a first order autoregressive process, a first order moving average
process and a compound symmetry model.

Model selection was made from the likelihood ratio test for nested models, and AIC
or BIC for non-nested models, to get a more parsimonious description for the data and, con-
sequently, more reliable inference for the LCC. The LCC estimation was based on the REML
approach, while 100(1−α)% confidence intervals were obtained using a nonparametric bootstrap
approach with case resampling (10,000 bootstrap replicates), as described in section 3.5. The
amount of CPU time required to produce these samples was approximately 3,5 hours on a laptop
computer with an Intel® CoreTM 2.40GHz i7 processor and 4GB of RAM. Moreover, only two
convergence problems were encountered. However, note that if the model assumptions are not
fulfilled, or if they are not correctly specified, the estimates of LCC as well as its bootstrap
confidence intervals may be biased.

The simulations indicated a satisfactory performance of LCC for 20 or more individuals,
with robustness to problems caused by dropouts. Although the proposed simulation model
assumed independent errors, it can be extended to include a serially autocorrelated error term.
In this sense, Rathnayake and Choudhary (2017) proposed a longitudinal concordance correlation
based on a semi-parametric model under various autocorrelation function assumptions.

3.9 Conclusions

In this article, we developed a longitudinal concordance correlation as well as its
100 (1− α) bootstrap confidence interval based on the fixed effects and variance components
estimates from a multiple mixed-effects polynomial regression model. Its performance was sat-
isfactory as was demonstrated based on simulation study. Further work will focus on developing
a LCC for other combinations of random or fixed effects for method, region, or both.

In the substantive application the use of LCC, as well as LPC and LA, showed that
sample points only on the equatorial region were not representative of the whole peel region,
suggesting that image analysis of the whole peel region should be used to compute the mean
hue. Moreover, the LA between observations measured by the colorimeter and scanner on the
equatorial region suggested that the topography and curved surface of papaya fruit did not affect
the mean hue obtained by the scanner.
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4 ESTIMATION OF THE LONGITUDINAL CONCORDANCE CORRELATION
FUNCTION IN R: THE LCC PACKAGE

Abstract: Suppose a longitudinal study where two or more methods are used to
quantify a continuous measurement at same individual and the researcher goal is describe the
extent of agreement among them. This agreement can be performed using the longitudinal
concordance correlation, which are functions of parameters of the assumed model. In this
sense, we present the lcc package under development for publication in the comprehensive R
archive network (CRAN) with two applications involving papaya hue color in post-harvest, and
cortisol concentrations from blood draw samples in the medical area. The package implements
estimation procedures for longitudinal concordance correlation, longitudinal Pearson correlation,
and longitudinal accuracy through fixed effects and variance components of polynomial mixed-
effect regression model. The main features of the package are its ability to perform inference
about the extent of agreement and use a numerical and graphical to summary the fitted values,
sampled values, and confidence intervals. Moreover, our approach accommodate balanced or
unbalanced experimental design, allows to model heteroscedasticity among within-group errors
using or not the time as variance covariate, and also allows for inclusion of covariates in the
linear predictor to control systematic variations in the response variable.

Keywords: Extent of agreement, Polynomial mixed-effects regression model, Bootstrap proce-
dures, Heteroscedasticity, R
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4.1 Introduction

Agreement indexes are generally used when the same experimental unit is assessed by
at least two methods or observers. The concordance correlation coefficient (CCC) introduced
by Lin (1989) is a common statistic used to measure the agreement between methods when data
are continuous. Let Y1 and Y2 be two random variables with joint distribution[

Y1

Y2

]
∼ N2

([
µ1

µ2

]
,Σ =

[
σ21 σ12

σ12 σ22

])
.

Here the expected value of the squared difference between Y1 and Y2 can be used as a agreement
value. However, it ranges from 0 (perfect agreement) to infinity, which makes its interpretation
more laborious. Lin (1989) proposed a transformation to this agreement index so that the values
lie between -1 and 1:

ρCCC = 1−
E
[
(Y1 − Y2)

2
]

σ21 + σ22 + (µ1 − µ2)
2 =

2σ12

σ21 + σ22 + (µ1 − µ2)
2 = ρCb,

where µ1 = E (Y1), µ2 = E (Y2), σ21 = V ar (Y1), σ22 = V ar (Y2), σ12 = Cov (Y1, Y2). This makes
the coefficient -1 when perfect disagreement, zero when no agreement, and 1 when perfect
agreement. Moreover, ρ is the Pearson correlation coefficient (|ρ| ≤ 1) that measures how far
each observation deviated from the best-fit line (precision measure), and Cb is the accuracy
(0 < Cb ≤ 1) that measures how far the best-fit line deviates from the 45◦ line through the
origin. The last component is defined as Cb = 2

(
v + v−1 + u2

)−1, where v = σ21/σ
2
2 is a scale

shift and u = (µ1 − µ2)/
√
σ1σ2 is a location shift relative to the scale.

When the pair of samples (Yi1k, Yi2k), k = 1, 2, . . .K, is measured together on the same
subject or experimental unit over time, the use of generalized multivariate analysis of variance
to compute a weighted version of CCC for repeated measurement is recommended (Chinchilli
et al., 1996). Moreover, this coefficient has also been expanded to assess the agreement among
more than two methods (King and Chinchilli, 2001).

When it is necessary to include a random variability due to subject and/or covariates
in the model, the CCC can be estimated through the variance components (VC) of a mixed-
effects model (Carrasco et al., 2009). The advantages is that mixed-effects model represent
an alternative to analyze repeated measures and unbalanced data; they allow for the inclusion
of different variance-covariance structures for the random effects or error matrices; and the
restricted maximum likelihood (REML) approach is used to obtain the estimates of VC.

Nevertheless, sometimes the researcher is not interested in summarizing the CCC for
repeated measurements in a single coefficient, as proposed by Carrasco et al. (2009) and Carrasco
et al. (2013), but in describing the extent of agreement between methods over time. To do this,
we can consider a linear or non-linear function of the time and/or covariates in the model to
describe the response variable, as proposed in the Chapter 3 and by Rathnayake and Choudhary
(2017). Thus, in this chapter we proposed the development of R (R core Team, 2017) package
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called lcc, which provides functions for estimating the longitudinal concordance correlation
(LCC) among methods based on variance components and fixed effects of polynomial mixed-
effects model. It also computes estimates of the longitudinal Pearson correlation (LPC), a
precision measure, and the longitudinal bias corrector factor (LA), a accuracy measure.

The lcc() function gives fitted values and non-parametric bootstrap confidence in-
tervals for the LCC, LPC, and LA statistics. Moreover, they can be estimated using different
structures for variance-covariance matrices of random effects and variance functions to model
heteroscedasticity among within-group errors using or not the time as variance covariate.

The remainder of the paper is organized as follows: Section 4.2 introduces the theo-
retical definition of LCC as well as its point estimation, and the computation of simultaneous
confidence intervals is briefly summarized with references for more details. Section 4.3 intro-
duces the input and output of the lcc function, describing in detail the arguments as well as
the generic function summary applied to the lcc() function. On Section 4.5, we illustrates the
usage of the package with a real data example. Section 4.6 reviews the cccrm R package which
is capable to estimate the CCC for longitudinal data and compares it with our package. Section
4.7 presents a discussion on advantages of the LCC, and some caveats on using this methodology
and associated bootstrap confidence intervals. Section 4.8 gives an outlook on possible future
extensions of our package. Finally, Section 4.9 presents some final considerations about our
package.

4.2 The longitudinal concordance correlation (LCC)

We assume that the researcher is interested in investigating the extent of agreement
between two or more methods, indexed as j = 1, 2, . . . , J . Suppose there are N subjects in the
experiment or observational study, indexed as i = 1, 2, . . . , N , and each subject is observed ni

times (visits). Let yijk be a realization of random variable Yijk measured on the ith subject by
the jth method at time tk, k = 1, 2, . . . , ni. Here tk assumes values of the time covariate t ∈ T .
Thus, the linear mixed effects model considering a polynomial function of the time, the fixed
effect of method as well as their interactions and by-subject random polynomial coefficient are
given by

yijk =

p∑
h=0

βhjt
h
ik +

q∑
h=0

bhit
h
ik + ϵijk

bi ∼ Nq (0,G) and ϵi ∼ NJni (0,Ri)

(4.1)

where h = 1, 2, . . . , q, q + 1, . . . , p is an index identifying the degree of linear mixed effects
polynomial model, with q ≤ p; yijk is the response measured on the of ith subject measured by
the jth method at time tik; tik represent the time (seconds, minutes, weeks, days, years...) at
which the ith individual was observed; βj = [β0j , β1j , ..., βpj ]

T is a (p+1)-dimensional vector of
fixed effects for the jth method; bi = [b0i, b1i, ..., bqi]

T is a (q + 1)-dimensional vector of random
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effects with mean vector 0 and variance-covariance matrix G; ϵi is a (Jni)-dimensional vector
assumed to be independent for different i, j and k, and independent of random effects, with mean
vector 0 and covariance matrixRi, andRi is a Jni×Jni matrix of variance-covariance for errors,
which depends on i only through its dimension ni and is assumed to be positive-definite. Here
we define Ri = σ2ϵΣi (δ), where δ are ratios relative to σ2ϵ .

Under the model (4.1), the longitudinal concordance correlation (LCC) is given by

ρjj′ (tk) =
tkGt

T
k

tkGt
T
k +

1

2

{
σ2ϵ
[
g (tk, δj) + g

(
tk, δj′

)]
+ S2

jj′ (tk)
} = ρ

(p)
jj′ (tk)Cjj′ (tk) (4.2)

where Sjj′ (tk) = tk
(
βj − βj′

)
is the systematic difference between methods j and j′; tTk =(

t0k, t
1
k, . . . , t

q
k

)T ; g(.) is a variance function assumed continuous in δ; δj is a vector of variance
components for observations measured by the jth method or observer; ρ(p)jj′ (tk) is the longitudinal
Pearson correlation (LPC) that measures how far each observation deviated from the best-fit
line at a fixed time tk = t and is given by

ρ
(p)
jj′ (tk) =

tkGt
T
k√[

tkGt
T
k + σ2ϵ g (tk, δj)

] [
tkGt

T
k + σ2ϵ g

(
tk, δj′

)]
and Cjj′ (tk) is the longitudinal accuracy (LA) that measures how far the best-fit line deviates
from the 45◦ line at a fixed time tk = t and is given by

Cjj′ (tk) =
2

vjj′ (tk) +
[
vjj′ (tk)

]−1
+ u2jj′ (tk)

where

vjj′ (tk) =

√
V ar (Yijk)

V ar
(
Yij′k

) =

√
tkGt

T
k + σ2ϵ g (tk, δjl)

tkGt
T
k + σ2ϵ g

(
tk, δj′l′

)
denotes the scale shift at time tk = t and

ujj′ (tk) =
E (Yijk)− E

(
Yij′k

)[
V ar (Yijk)V ar

(
Yij′k

)] 1
4

=
tk
(
βj − βj′

){[
tkGt

T
k + σ2ϵ g (tk, δj)

] [
tkGt

T
k + σ2ϵ g

(
tk, δj′

)]} 1
4

denotes the location shift at time tk relative to the scale (see Chapter 3). Moreover, when
V ar (Yijlk) = V ar

(
Yij′l′k

)
and E (Yijlk) = E

(
Yij′l′k

)
there is no deviation from the 45◦ line.

4.2.1 Estimation

The point estimation and statistical inference of LCC has been proposed in Chapter 3.
ρ
(p)
jj′ is estimated by replacing the β, and variance components by their REML estimates:

ρ̂jj′ (tk) =
tkĜt

T
k

tkĜt
T
k +

1

2

{
σ̂2ϵ

[
ĝ
(
tk, δ̂j

)
+ ĝ

(
tk, δ̂j′

)]
+ Ŝ2

jj′ (tk)
} .
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Because the variance components are estimated using REML approach, their estimates
have asymptotically normal distribution as well as it is less biased than using maximum likelihood
(ML) approach. Moreover, we demonstrated in Chapter 3 a satisfactory performance of the LCC
even under severe conditions of unbalancement and for low number of subjects (N=20).

For constructing a confidence interval for ρjj′ (tk), we use a nonparametric bootstrap
percentile method for N ≤ 30 or, otherwise, a normal approximation confidence intervals con-
sidering B bootstrap samples, as described in Chapter 3.

When we use a normal approximation CI, the Fisher Z-transformation given by

ρ∗j,j′ (tk) =
1

2
ln
(
1 + ρj,j′ (tk)

1− ρj,j′ (tk)

)
should be used to approximate the empirical distribution of ρj,j′ (tk) using the normal distri-
bution (Lin, 1989). Consequently, for inference on ρj,j′ (tk) confidence limits can be estimated
using the bootstrap estimator of ρ∗j,j′ (tk) for a fixed time tk = t given by

ρ̂∗j,j′ (tk = t) =
1

2B

B∑
b=1

ln

1 + ρ
(b)
j,j′ (t)

1− ρ
(b)
j,j′ (t)

 , b = 1, 2, . . . , B,

and standard deviation of the bootstrap distribution of ρ̂∗j,j′ (tk) for a fixed time tk = t given by

ŜE
∗
j,j′ (tk = t) =

√√√√√ 1

B − 1

B∑
b=1

1
2

ln

1 + ρ
(b)
j,j′ (t)

1− ρ
(b)
j,j′ (t)

− ρ̂∗j,j′ (t)

2

.

Thus, an approximate bootstrap confidence interval of level 1−α for ρ̂j,j′ is [LB,UB],
where

LB =
exp

{
2
[
ρ̂∗j,j′ (tk = t)− z(1−α

2
)ŜE

∗
j,j′ (tk = t)

]}
− 1

exp
{
2
[
ρ̂∗j,j′ (tk = t)− z(1−α

2
)ŜE

∗
j,j′ (tk = t)

]}
+ 1

and

UB =
exp

{
2
[
ρ̂∗j,j′ (tk = t)− zα

2
ŜE

∗
j,j′ (tk = t)

]}
− 1

exp
{
2
[
ρ̂∗j,j′ (tk = t)− zα

2
ŜE

∗
j,j′ (tk = t)

]}
+ 1

.

where zα
2

and z(1−α
2
) are the α

2 and 1− α
2 quantiles of the standard normal distribution.

On the other hand, CI based on the percentile method uses the percentiles of bootstrap
distribution of ρ̂j,j′ (tk = t), and is given by(

ρ̂j,j′(α/2)
(tk = t) , ρ̂(j,j′)(1−α/2)

(tk = t)
)
≈
(
ρ̂
∗(B)
j,j′(α/2)

(tk = t) , ρ̂
∗(B)
(j,j′)(1−α/2)

(tk = t)
)
,

where ρ̂∗(B)
(j,j′)(α/2)

(tk = t) and ρ̂
∗(B)
(j,j′)(1−α/2)

(tk = t) are the 100 × α
2 th and 100 × 1 − α

2 th empir-

ical percentiles of the ρ̂
∗(b)
j,j′ (tk = t) values, b = 1, 2, . . . , B. If the bootstrap distribution of
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ρ∗j,j′ (tk = t) is approximately normal, then both methods proposed to compute the CI will be
very similar as N increase.

Furthermore, the inference about ρ̂(p)jj′ (tk) can be performed in a similar way as pre-
sented for LCC. Since C(j,j′)(1−α/2)

(tk = t) belong to the [0, 1] interval, we can use the logit
transformation

C∗
(j,j′)(1−α/2)

(tk = t) = log
(

C(j,j′)(1−α/2)
(tk = t)

1− C(j,j′)(1−α/2)
(tk = t)

)
instead of the Fisher Z-transformation to approximate the distribution of C(j,j′)(1−α/2)

(tk = t)

to the normal distribution. Thus, the confidence limits can be estimated using the bootstrap
estimator of C∗

j,j′ (tk) for a fixed time tk = t given by

Ĉ∗
j,j′ (tk = t) =

1

B

B∑
b=1

log

 C
(b)
j,j′ (t)

1− C
(b)
j,j′ (t)

 , b = 1, 2, . . . , B,

and standard deviation of the bootstrap distribution of Ĉ∗
j,j′ (tk) for a fixed time tk = t given by

ŜE
∗
Cj,j′

(tk = t) =

√√√√√ 1

B − 1

B∑
b=1

log

 C
(b)
j,j′ (t)

1− C
(b)
j,j′ (t)

− Ĉ∗
j,j′ (t)

2

.

Therefore, an approximate bootstrap confidence interval of level 1 − α for Ĉj,j′ is
[LBC , UBC ], where

LBC =
exp

[
Ĉ∗
j,j′ (tk = t)− z(1−α

2
)ŜE

∗
Cj,j′

(tk = t)
]

exp
[
Ĉ∗
j,j′ (tk = t)− z(1−α

2
)ŜE

∗
Cj,j′

(tk = t)
]
+ 1

and

UBC =
exp

[
Ĉ∗
j,j′ (tk = t)− zα

2
ŜE

∗
Cj,j′

(tk = t)
]

exp
[
Ĉ∗
j,j′ (tk = t)− zα

2
ŜE

∗
Cj,j′

(tk = t)
]
+ 1

.

where zα
2

and z(1−α
2
) denoting α

2 and 1− α
2 quantiles of the standard normal distribution.

4.3 Overview of the package lcc and R syntax

This section provide some details on the implementation of the lcc function and explain
its technical arguments, whose default settings were chosen carefully. We use the nlme pack-
age to formulate the polynomial mixed effects model and from their fixed effects and variance
components there are functions to estimate the LCC, LPC, and LA statistics.

The lcc package has 21 arguments that are briefly summarized in Table 4.1. Note
that through the arguments qf and qr users can decide the degree of the polynomial regression
model, and by-subject random effect, respectively.
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Table 4.1: Input arguments for LCC package

Argument Type Description Required
dataset An object of class

data.frame
Specifies the input dataset Yes

subject Character string Name of the subject variable Yes
resp Character string Name of the response variable Yes
factorA Character string Name of the method variable Yes
time Character string Name of the time variable Yes
qf Value Polynomial degree for fixed part Yes
qr Value Polynomial degree for by-subject random

effect
Yes

time.lcc List Specifying control arguments to generate
regular sequences for time variable to com-
pute the LCC. Default is NULL

No

ci TRUE/FALSE Bootstrap confidence interval. Default is
FALSE.

No

alpha Value Confidence level. Default is 0.05. No 1

percentile.ci TRUE/FALSE Method of bootstrap confidence intervals
(CI). If FALSE, the default, normal ap-
proximation method is used to compute
CI. If TRUE, the percentile method is
used.

No 1

nboot Value Number of bootstrap samples. Default is
5.000.

No 1

pdmat Function Standard classes of positive-definite ma-
trices structures available in the nlme
package. Default is pdSymm

No

covar Character vector Name of covariables to include in the
model as fixed effects. Default is NULL.

No

var.class Function Standard classes of variance function
structures available in the nlme package.
Default is NULL

No

Continued on next page

1It can only be specified when ci=TRUE
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Table 4.1 – continued from previous page
Argument Type Description Required
weights.form Character string An one-sided formula specifying a vari-

ance covariate and, optionally, a group-
ing factor for the variance parameters in
the var.class. If var.class = varIdent,
the form “method”, ∼ 1|factorA must
be used. If var.class = varExp, the
form “time”, ∼ time, or “both”, ∼
time|factorA, must be used.

No 2

show.warnings TRUE/FALSE If FALSE, the default, shows the number
of convergence error in the bootstrap sam-
ples. If TRUE shows in which bootstrap
sample the error occurred.

No

components TRUE/FALSE If FALSE, the default, provides only the
LCC. If TRUE, the function provides the
LCC, LPC, and LA components.

No

plot List A list of control values or character string
applicable to ggplot for graphics control
that replace the default values returned by
the plot.control function. Defaults to
an empty list.

No

lme.control List Specifying control values for lme fit by
the function lmeControl. Defaults to an
empty list.

No

REML TRUE/FALSE If TRUE, the default, the restricted log-
likelihood is maximized to fit the model.
If FALSE the log-likelihood (ML) is max-
imized.

No

A more detailed description of some arguments is as follows:

1. dataset: specifies the input dataset, whose form must be of a data frame containing the
response variable, subject identification, method, and the time that indicates the moment,
in seconds, minutes, hours, days etc., at which each observation was measured;

2. factorA: name of method/observer variable in the dataset, the LCC package recognizes
the first level of variable associated with this argument as the gold-standard method and
then compares it with all other levels;

2Required when var.class is specified.
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3. time.lcc: specifies a list with settings (values for arguments from, to, and n) used in
the time.lcc() function to generate a regular sequence for predictions from the results
of LCC, LPC and LA estimating functions. Arguments from and to are used to define,
respectively, the starting and end values of the time variable, and n is used to specify the
desired length of the sequence. We recommend a grid t = (t1, t2, . . . , tn∗)T of n∗ points in
T to constructed the agreement curve and simultaneous confidence intervals. In practice,
n∗ between 30 and 50 in generally adequate. Example:

R> lcc(..., time.lcc=list(from=0, to=10, n=40))

4. pdmat: the lcc package provides six standard classes of positive-definite matrices struc-
tures available in the nlme package. They are pdSymm, pdLogChol, pdDiag, pdIdent,
pdCompSymm and pdNatural. More information about these classes are available in Pin-
heiro and Bates (2000).

5. var.class: a class of variance functions that are used to model the variance structure of
within-group errors using covariates (Pinheiro and Bates, 2000). We generalize this class
as

Var (ϵijk) = σ2ϵ g (tk, δ) , (4.3)

where g(.) is the variance function assumed continuous in δ; tk is the covariate time and
δ is a vector of variance parameters. The LCC package provides two different standard
variance functions classes that are included in the nlme library (Pinheiro et al., 2017).

The first one is the varIdent class that represents a variance model with different variances
for each level of a stratification variable s, s = 1, 2, . . . , S, given by

Var (ϵijk) = σ2ϵ δ
2
sijk

.

As we have S+1 parameters to represent S variances, we need to impose the restriction
δ1 = 1, consequently δl = δs∗/δ1, s∗ = 2, 3, . . . , S and δl > 0, l = 2, 3, . . . , S. Here each
level of method/observer or time represents a stratum of a homogeneous subgroup.

The second variance function is an exponential function of the variance covariate, varExp
class, represented as

Var (ϵijk) = σ2ϵ exp
(
2δsijktk

)
where δsijk is unrestricted, so the variance model (4.4) allows to V ar (ϵijk) increases or
decreases over time.

6. weights.form: represents a constructor to the form argument in the standard varFunc
classes included in the nlme library. weights.form is a one-sided formula specifying a vari-
ance covariate and, optionally, a grouping factor for the variance parameters. Moreover,
this argument must be specified only when var.class is specified as well.
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The first class varIdent represents a variance model with different variances for each level
of grouping factor, whose weights.form in the LCC package is as follows:

a) “method”: specifies a variance model with different variances for each level of factor
method/observer and is given by

Var (ϵijk) = σ2ϵ δ
2
methodj

, j = 1, 2, . . . , J,

where g (methodj , δj) = δ2methodj
is the variance function, and δmethodj

is the
variance parameter for observations measured by the jth method. The form argument
in the varFunc is form = ∼ 1|method;

The class varExp represents a variance model whose variance function g(.) is an exponential
function of the variance covariate. This class has also two options of weights.form in the
LCC package as follows:

a) “time”: specifies a variance model given by

Var (ϵijk) = σ2ϵ exp (2δtk),

where the variance function g (tk, δ) = exp (2δtk) is an exponential function of the
time tk = t; and δ is the variance parameter. The form argument in varFunc class is
form = ∼ time;

b) “both”: specifies a variance model for each level of factor method given by

Var (ϵijk) = σ2ϵ exp
(
2δmethodj

tk

)
, j = 1, 2, . . . , J,

where the variance function g (tk,methodj , δ) = exp
(
2δmethodj

tk

)
is an exponential

function of the time tk = t for each level of method; and δmethodj
is the variance

parameter for the jth level of method. The form argument in the varFunc is form =
∼ time|method;

7. plot: A list of control values or character string applicable to ggplot (Wickham, 2009) for
graphics control that replace the default values returned by the function plot.control.
Provides plots for model estimates and their 95% simultaneous confidence intervals based
on bootstrap techniques. This function has 10 additional arguments that possibility
changes in shape, size, color, axis labels and limits. Furthermore, when the argument
plot=TRUE, the default, returns a ggplot object with an initial plot for LCC class. If
the number of method levels is greater than 2, the argument all.plot=TRUE, the default,
returns an object created by the viewport function with multiple plots in a single one
page, otherwise, if all.plot=FALSE, the function returns a single ggplot object by page.
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Table 4.2: Observations (Obs) from 1 to 4 and 278 to 281 of the hue color dataset. The response
variable is H_mean, Method represents the method/observer variable, Time represents the time
variable, and Fruit shows the subject identification variable

Obs H_mean Method Time Fruit
1 116.54 Colorimeter 0 1
2 115.41 Colorimeter 0 2
3 116.98 Colorimeter 0 3
4 115.88 Colorimeter 0 4
...

...
...

...
...

278 106.32 Scanner 6 1
279 103.53 Scanner 6 2
280 111.55 Scanner 6 3
281 104.73 Scanner 6 4

As an example of the appropriate hierarchical structure of the dataset, Table 4.2 shows
the observations from 1 to 4 and 278 to 281 of hue color dataset, which will be analyzed in the
next section.

Furthermore, the package depends on the nlme, gdata (Warnes et al., 2017), and
ggplot2 packages, which must be previously loaded.

4.3.1 Output of the lcc function

Numerical and graphical summaries for the fitted model and confidence intervals of the
LCC can be obtained by using the summary and plot methods implemented for class ’lcc’. The
generic function summary applied to an object of class ’lcc’ must be specified as summary(obj,
type), where obj is a object of class “lcc” and type is a character string defining the LCC
components, which are of ’model’ or ’fitted’. When type = “model”, the summary function
gives the model used in the lcc() function whereas type = “lcc” gives the fitted and sampled
values for the LCC component, its 95% bootstrap confidence intervals, and the CCC between
fitted and sampled values as a goodness-of-fit statistic.

The output of the summary method depends on whether components was set as TRUE
or FALSE in the ’lcc’ object. Thus, if the components argument is TRUE, the generic function
summary with type = “lcc” gives a list containing the following components: the fitted values
of i) LCC, the longitudinal concordance correlation; ii) LPC, the longitudinal Pearson corre-
lation; and iii) LA, the longitudinal accuracy; their lower and upper limits of 95% bootstrap
confidence intervals; iv) the sample values for CCC, Pearson correlation coefficient and accuracy
measure Cb (Lin, 1989); and v) CCC between the fitted and sampled values as goodness of fit
statistic.

The fitted LCC, LPC, and LA and their confidence intervals can be again visualized
thought the generic function plot.lcc, as we will be show in the hue data example.
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4.4 Specifying models in the lcc

In the lcc package, to describe the LCC we need to specify the subject, response,
method, time, a polynomial mixed-effect model, and the dataset. These arguments are specified
through easy-to-use syntax. Consider a first degree polynomial model with by-subjects random
intercept for a continuous dependent variable y observed on ith fruit (i = 1, 2, . . . , N) by J

methods at time tk (k = 1, 2, . . . , ni):

yijk = β0j + b0i + β1jtk + ϵijk, with
b0i ∼ N(0, σ2b0) and ϵijk ∼ N

(
0, σ2ϵ

)
Thus, the LCC based on the fixed effects and variance components at time tk is given by

ρjj′ (tk) =
σ2b0

σ2b0 + σ2ϵ +
1
2 [β01 − β02 + (β11 − β12) tk]

2

and the syntax to specify this model in the lcc() function:

R> fit1 <- lcc(dataset = data, subject = "Subject", resp = "y",
factorA = "Method", time = "Time", qf = 1, qr = 0)

where qf=1 represents the polynomial degree for fixed part, qr=0 an by-subjects random inter-
cept. Suppose that the experimental design in previous example was randomized block designs,
so the fixed effect of blocks can be included in that model as

R> fit2 <- lcc(dataset = data, subject = "Subject", resp = "y", covar ="Block",
factorA = "Method", time = "Time", qf = 1, qr = 0)

Additionally, suppose that the within-group variability increases or decreases with time, thus
the corresponding model including a variance function g (tk, δ) = exp (tkδ) is given by:

R> fit3 <- lcc(dataset = data, subject = "Subject", resp = "y", covar ="Block",
factorA = "Method", time = "Time", qf = 1, qr = 0,
var.class = varExp, weights.form = "time").

Many other possible models can be built to estimate the LCC through the function
lcc(), see Section 4.3. The model selection can be done using the likelihood ratio test for
nested models or by using the AIC or BIC criteria.

R> mod1 <- summary(fit2, type = "model")
R> mod2 <- summary(fit3, type = "model")
R> anova(mod1,mod2)
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4.5 The papaya’s peel hue dataset

Papaya is a tropical and climacteric fruit with high nutritional values, and antioxidant,
anti-carcinogenic and anti-mutagenic properties (Sancho et al., 2010). Its production in Brazil is
responsible for about 11.2% of global trade, making Brazil by the second major papaya exporting
country (Evans and Ballen, 2015). Papaya plantations, produces annually approximately 1.900
thousand tons annually, covering some 36 thousand hectares, are mainly located in the states of
Bahia (∼900 thousand tons) and Espírito Santo (∼ 600 thousand tons), where the environment
and climate provide ideal growing conditions (Evans and Ballen, 2015). In the fruit classification
process, one of the most important variables is the hue color, because it is used to determine
the ripeness stage (Mendoza and Aguilera, 2004; Oliveira et al., 2017).

In an experiment described in Chapter 3, the hue color component was measured in
a sample of 20 papaya fruits using a flat-bed scanner (HP Scanjet G2410) and a colorimeter
Minolta CR-300 (Konica Minolta, 2003). This variable was measured on the equatorial region
of the fruit by using both devices over 15 days. The mean hue was calculated based on four
equidistant observations with the colorimeter and 1,000 observations obtained from images of
the equatorial region digitalized by the scanner. The aim of the agreement study is to determine
whether the colorimeter can compete with the scanner in measuring the mean hue of papaya peel
over time. It is important to know about the magnitude of agreement because the colorimeter
is faster and easier use than a flatbed scanner. Moreover, for the latter, each image needs to
processed by an image manipulation program to select the object and extract its pixel-by-pixel
information.

The individual profiles grouped by measurement device, scatter plot of hue data, and
individual confidence intervals for second degree polynomial coefficients are showed in Figure 4.1.
Apparently, we have a moderate agreement between scanner and colorimeter, which increases as
the mean hue decreases (Figure 4.1a). On the other hand, Figures 4.1b and 4.1c may be useful
to make a decision about the initial model. They show that we can begin by fitting a second
degree polynomial mixed-effect model with random effect of fruit in the intercept, linear and
quadratic coefficients:

Yijk = β0j + b0i + (β1j + b1i) tk + (β2j + b2i) t
2
k + ϵijk,

b = [b0i, b1i, b2i]
T ∼ N3 (0,G) and ϵijk ∼ N

(
0, σ2ϵ

)
,

(4.4)

where vech(G) =
[
σ2b0 , σb01 , σb02 , σ

2
b1
, σb12 , σ

2
b2

]T , and vech(.) is the half-vectorization of G. Con-
sequently, under the model (4.4), the LCC is given by

ρjj′ (tk) =
tkGt

T
k

tkGt
T
k + σ2ϵ +

1

2
S2
jj′ (tk)

.

We can fit this model, estimate the LCC, LPC and LA statistics, and compute their 95% boot-
strap confidence intervals based on 8.000 bootstrap samples using the lcc() function directly:
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(a) Scatter plot
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Figure 4.1: (a) Individual profiles of 20 fruits assessed on the equatorial region by colorimeter and
scanner, (b) scatter plot of hue data considering all repeated measurements, and (c) individual
95% confidence intervals for second degree polynomial coefficients

R> fit1 <- lcc(dataset = hue, subject = "Fruit", resp = "H_mean",
factorA = "Method", time = "Time", qf = 2, qr = 2,
ci=TRUE, nboot=8000, components=TRUE)

The model used to estimate ρjj′ (tk) as well as its sampled and fitted values can be extracted
by using summary(fit1, type = "model") and summary(fit1, type = "lcc"), respectively.
Moreover, the graphical representation of fitted values and confidence intervals for LCC, LPC
and LA is obtained using the plot.lcc function, as shown in Figure 4.2. Apparently, the LCC
did not fit well to the sampled values (Figure 4.2a), consequently it is necessary to check whether
the model assumptions were met because the estimates for the LCC and its bootstrap confidence
intervals may be biased under a misspecified model. Hence, we checked: i) the normality of er-
ror by producing the normal plot of within-group standardized residuals (Figure 4.3a), which
indicates that this assumption for the within-group errors is plausible; ii) the homoscedasticity
over time via standardized residuals versus time plot (Figure 4.3b), which indicates an appar-
ently smaller variability for fruits measured by colorimeter than by the scanner; and iii) the
CCC between fitted and sampled values as a goodness of fit, whose estimated value was 0.761
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Figure 4.2: Estimate and 95% bootstrap confidence interval for the (a) longitudinal concordance
correlation (LCC); (b) longitudinal Pearson correlation; and (c) longitudinal accuracy between
observations measured on the equatorial region by the scanner and colorimeter with addition
of points that represent the sample CCC, sample Pearson correlation coefficient, and sample
accuracy, respectively

indicating an reasonable fit to the data.
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(a) Normal plot (b) Residuals versus time

Figure 4.3: (a) Normal plot of within-group standardized residuals, (b) scatter plots of stan-
dardized residuals versus fitted values for the homoscedastic fitted, and (c) plot of standardized
residuals versus time for m1 fitted object

R> m1 <- summary(fit1, type = "model")
R> qqnorm(residuals(m1), ylab="Quantiles of standard normal",
xlab="Standard residuals")
R> qqline(residuals(m1))
R> plot(m1, resid(., type = "p") ~ time | FacA, abline = 0)
R> summary(fit1, type = "lcc")$gof
[1] 0.7606758
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Thus we update the model fit1 to estimate different variances for each level of the
factor “method”:

R > fit2<-lcc(dataset = hue, subject = "Fruit", resp = "H_mean", factorA = "Method",
time = "Time", qf = 2, qr = 2, components = TRUE, var.class = varIdent,
weights.form = "method", ci=TRUE, nboot = 8000, lme.control =
lmeControl(opt="optim"))

Because models fit1 and fit2 are nested, we can use the likelihood ratio to test the
hypothesis H0 : δ

2 = 1 versus Ha : δ
2 ̸= 1:

R> m2 <- summary(fit2, type = "model")
R> anova(m1,m2)

Model df AIC BIC logLik Test L.Ratio p-value
m1 1 13 1938.125 1994.107 -956.0625
m2 2 14 1934.920 1995.207 -953.4598 1 vs 2 5.205332 0.0225

R> summary(fit2, type = "lcc")$gof
[1] 0.8873875

The result shows that we can reject H0 in favor of Ha considering a significance level α = 0.05,
that is, the variance associated with fruits measured by the colorimeter is different from when
the scanner was used. Moreover, the LCC between fitted and sampled values also shows that
model fit2 fits the data better than model fit1, with values 0.887 and 0.761, respectively.

Figure 4.4 shows that the agreement profile changes over time, being smaller at the
beginning of the experiment and increasing over time to values close to 1. If we consider values
above 0.80 for the lower bound of the CI as an indicative for interchangeability between them
to measure papaya’s peel color, the colorimeter could be used from the 12th day onwards.

4.6 Comparison with cccrm package

In this section we review the cccrm R package proposed by Carrasco et al. (2013)
to estimate the CCC for repeated or non-repeated measures data and we discuss how this
package differ from our package lcc. The cccrm package has included ccclon and ccclonw
functions to estimate the CCC for longitudinal data (CCCrm) that were the firstly available in
R statistical software. Both functions estimates the CCC based on variance components of mixed-
effects model for longitudinal data, however, the difference between them is that ccclonw uses
a non-negative definite matrix of weights between different repeated measurements (Carrasco
et al., 2009). They have been published very recently, demonstrating the raising importance in
estimation of the CCC for longitudinal data.
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Figure 4.4: Estimate and 95% bootstrap confidence interval for the (a) longitudinal concordance
correlation (LCC); (b) longitudinal Pearson correlation; and (c) longitudinal accuracy between
observations measured on the equatorial region by the scanner and colorimeter with addition
of points that represent the sample CCC, sample Pearson correlation coefficient, and sample
accuracy, respectively

The ccclon as well as ccclonw functions have been introduced to produce a value that
summarizes the interchangeability between methods in relation to all their measures rather than
modeling the agreement as a function of time (Carrasco et al., 2009). On the other hand, the lcc
function in package lcc was developed to capture changes in the extent of the agreement profile
among methods. Furthermore, this package also provides estimates and confidence intervals
for LPC and LA that are important statistics to infer, respectively, about how the precision or
accuracy measures at time tk = t could influence the LCC values in that time.

In the following example, the LCC of package lcc and CCCrm of package cccrm are
estimated using the hue data analyzed in Section 4.5:

R> require(cccrm)
R> estccc<-ccclon(hue,"H_mean","Fruit","Time","Method")
CCC estimated by variance components:

CCC LL CI 95% UL CI 95% SE CCC
0.83767698 0.72520268 0.90660774 0.04486742

The estimation of CCCrm shows an moderate agreement between methods, suggesting
that image analysis of the equatorial peel region should be used to compute the mean hue.
However, suppose that the researcher had stipulated the following condition: “ we would only
take measurements on equatorial region using a colorimeter if the lower band of simultaneous
confidence interval is greater than or equal to 0.90”. Thus, based on lower band of CCCrm
(0.725) the researcher should not use the colorimeter to compute the mean hue. On the other
hand, the lower band of LCC (Figure 4.4a) indicates that papaya’s equatorial region should be
sampled through four equidistant points using a colorimeter from the ninth day. Clearly, this
conclusion is only valid considering same experimental conditions. Moreover, this result shows
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a possibility of interchangeable between methods and, consequently, reducing the handling time
per fruit.

4.7 Discussion

The proposed longitudinal concordance correlation is a useful statistic to describe the
agreement between methods over time based on polynomial mixed-effects models, allowing to
capture changes in the extent of agreement over time. Our approach is flexible because it can
accommodate balanced or unbalanced (dropouts) experimental designs and multiple methods.
The argument covar included in the lcc() function allows for the inclusion of covariates in the
linear predictor of the mixed-effects model to control systematic variations in the response. Other
helpful feature of the lcc package is the ability to estimate the LCC, LPC and LA considering
models with heterogeneous residual variance structures for different groups of observations,
which could yield a strongly difference in the results obtained and conclusions for these statistics.
Therefore, these arguments make the lcc() function more flexible to work with several types of
datasets.

The statistical inference for estimators of ρjj′ (tk), ρ
(p)
jj′ (tk), and Cjj′ (tk) can be made

through bootstrap confidence intervals based on approximation from empirical distributions
of them by the normal distribution or based on percentile of bootstrap sampling distribution
of estimators. These CI methods are computationally intensive and are a limitation of the
proposed methodology. The computations for hue data analysis (Section 4.5) took about 45
minutes to build the confidence intervals based on 8.000 bootstrap samples on Linux platform
version 4.13.0-21-generic with an Intel® CoreTM i7 processor of 2.40GHz speed and 4GB of
RAM.

The lcc package uses the REML method, as default, for parameter estimations because
it is less biased, less sensitive to outliers, and handles more effectively with high correlations
when compared to ML estimation (Harville, 1977; Giesbrecht and Burns, 1985). However, we
offer the user the possibility to change the estimation method to ML because this approach
should be used when comparing models with nested fixed effects, but with the same random
structure.

4.8 Future works

The lcc package is still in process of submitting to The Comprehensive R Archive Net-
work (CRAN) and in its first version all the arguments proposed here will be considered. There
is a number of desirable extensions of the package which could be included in future releases.
The most important extension is the inclusion of correlation structures to model dependence
among within-group errors. Some correlation structures were implemented in the nlme package
such as compound symmetry, autoregressive-moving average and spatial correlation structures
(Pinheiro and Bates, 2000) and they will be implemented in future extension of our package.
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4.9 Conclusions

This chapter discussed the implementation of some methods developed for estimating
longitudinal concordance correlation, longitudinal Pearson correlation and longitudinal accuracy
with or without covariates in the R package lcc. The package also implements two bootstrap-
based procedures to built confidence intervals of the estimated curves. Numerical and graphical
summaries of the fitted LCC, LPC and LA as well as for their confidence intervals were imple-
mented in order to make result interpretation easier. Moreover, the inclusion of standard classes
of variance-covariance structures to model heteroscedasticity among within-group error with or
without covariates increases the flexibility of our package to model longitudinal data.
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5 CONCLUSIONS

In this thesis, we aimed to develop and extend statistical methods to help in the concor-
dance analysis of agricultural data. Initially, we developed a longitudinal concordance correlation
(LCC), longitudinal Pearson correlation (LPC), and longitudinal accuracy (LA) based on fixed
effects and variance components of a polynomial mixed-effects regression model. We also devel-
oped methods to compute bootstrap-based confidence intervals for all components. In a small
simulation study we demonstrated a satisfactory performance for LCC. The use of our approach
in a real data application suggested that image analysis of whole peel region of papaya’s fruit
should be used to compute the mean hue rather than colorimeter or images from equatorial
region.

We have been developing an R package called lcc for estimating LCC, LPC, and
LA with or without covariates. The package allows for inclusion of heteroscedasticity among
within-group error, different structures for variance-covariance matrix of random effects G, and
bootstrap-based procedure to build confidence intervals. Moreover, numerical and graphical
summaries of these statistics were included in order to facilitate visualization and interpretations
of results.

Further work includes extensions to the LCC approach in order to account for the lon-
gitudinal and spacial correlation among residuals. Improvements on the package developed here
are still subject of ongoing research, and we appreciate any suggestion. Another extension would
be a simulation study to compare several type of bootstrap confidence intervals (parametric and
non-parametric). Finally, we would be happy to share the code of our package, which is not yet
available in CRAN.
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APPENDIX

Appendix I: Concordance correlation coefficient based on variance components

Consider a longitudinal study withN fruits, m devices (or methods), and n assessments.
So, the expression (2.1) can be rewrite as

ρjj′ (t) = 1−
E
[(
Yijk − Yij′k

)2]
EInd

[(
Yijk − Yij′k

)2]

E
[(
Yijk − Yij′k

)2]
= E

(
Y 2
ijk

)
− 2E

(
Y 2
ijkY

2
ij′k

)
+ E

(
Y 2
ij′k

)
= E

(
Y 2
ijk

)
− [E (Yijk)]

2 + [E (Yijk)]
2 + E

(
Y 2
ij′k

)
−
[
E
(
Yij′k

)]2
+
[
E
(
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)]2
−2E
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Y 2
ijkY

2
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)
= V ar (Yijk) + V ar

(
Yij′k

)
+ [E (Yijk)]

2 +
[
E
(
Yij′k

)]2 − 2E
(
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ijkY

2
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)
= V ar (Yijk) + V ar

(
Yij′k

)
+ [E (Yijk)]

2 +
[
E
(
Yij′k

)]2 − 2
[
Cov

(
Yijk, Yij′k

)
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(
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+
[
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(
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(
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(
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+
[
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(
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Appendix II

Consider that matrices X and L2 are both of full column rank and satisfy L2X = 0

and V is a positive definite matrix then

V − V L2

(
LT2 V L2

)−1
LT2 V =X

(
XTV −1X

)−1
XT

and rearranging the terms we have to

L2

(
LT2 V L2

)−1
LT2 = V −1 − V −1X

(
XTV −1X

)−1
XTV −1 = P .



94

Appendix III: Matrix Algebra

The theory used in this appendix was based on the book Matrix Algebra From a
Statistician’s Perspective (Harville, 2008).

Lemma 1: Let F = {fis} andB = {bis} represent p×q and q×r matrices of functions,
defined on a set S, of a vector x = (x1, x2, ..., xm)

T of m variables. Suppose that A is q × p

matrix of constants or functions (defined on S) is continuous at every interior point S and such
that A (x) does not vary with xj . Then, at any interior point c of S at which F and B are
continuously differentiable with F : S −→ Rp×q and B : S −→ Rp×r, then

∂FB

∂xj
= F

∂B

∂xj
+
∂F

∂xj
B,

∂tr (F )

∂xj
= tr

(
F

∂xj

)
,

∂tr (AF )

∂xj
=
∂tr (FA)

∂xj
= tr

(
F

∂xj
A

)
= tr

(
A
F

∂xj

)
,

∂tr (FG)

∂xj
=
∂tr (GF )

∂xj
= tr

(
F
B

∂xj

)
+ tr

(
B
F

∂xj

)
= tr

(
B

∂xj
F

)
+ tr

(
F

∂xj
B

)
.

Definition 1: Let aj and xj represent the j th elements of a and x, respectively, and
let ajk represent the ik th element of A. Then,

∂
(
aTx

)
∂x

= aT ,
∂
(
xTAx

)
∂x

=
(
A+AT

)
x and

∂2
(
xTAx

)
∂x∂xT

= A+AT . (5.1)

Note also that, in the special case where A is symmetric, the results presented in (5.1) are
simplify to

∂
(
xTAx

)
∂x

= 2Ax and
∂2
(
xTAx

)
∂x∂xT

= 2A.

Theorem 1:
∣∣AB∣∣ = ∣∣A∣∣∣∣B∣∣ when A and B are square and of the same order.

Definition 2: If F is twice continuously differentiable at an interior point c of S, then
F is continuously differentiable at c. Applying the chain rule, the first derivative of

∣∣F ∣∣ is given
by

∂
∣∣F ∣∣
∂xj

= tr

[
adj (F )

∂F

∂xj

]
,

where adj (F ) is the adjugate of F . The adjugate of F is the transpose of C (cofactor matrix),
that is, the p× q matrix whose (ij) entry is the (j, i) cofactor of F ,

adj (F )ij = Cji = (−1)i+j Fji, i = 1, 2, ..., p and j = 1, 2, ..., q.

Furthermore, if F is nonsingular as well as continuously differentiable at c, then

∂
∣∣F ∣∣
∂xj

=
∣∣F ∣∣tr(F−1 ∂F

∂xj

)
.
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The second derivative of
∣∣F ∣∣ is given by

∂2
∣∣F ∣∣

∂xi∂xj
=
∣∣F ∣∣ [tr(F−1 ∂2F

∂xi∂xj

)
+ tr

(
F−1 ∂F

∂xi

)
tr

(
F−1 ∂F

∂xj

)
tr

(
F−1 ∂F

∂xi
F−1 ∂F

∂xj

)]
The differentiation when we have the logarithm of the determinant is given by

∂ ln
∣∣F ∣∣

∂xj
=

1∣∣F ∣∣ ∂
∣∣F ∣∣
∂xj

= tr

(
F−1 ∂F
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,

and
∂2 ln

∣∣F ∣∣
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= tr

(
F−1 ∂2F

∂xi∂xj

)
+ tr

(
F−1 ∂F

∂xi
F−1 ∂F

∂xj

)
.

Definition 3: Consider that F−1 is continuously differentiable at c, so the first and
second differentiation of the inverse matrix F−1 is given by

∂F−1

∂xj
= −F−1 ∂F

∂xj
F−1

and
∂2F−1

∂xi∂xj
= −F−1 ∂2F

∂xi∂xj
F−1 + F−1 ∂F

∂xi
F−1 ∂F

∂xj
F−1 + F−1 ∂F

∂xj
F−1 ∂F

∂xi
F−1

Definition 4: Suppose that A and B are continuously differentiable at c. Then,
AF−1B is continuously differentiable atc and (at x = c)

∂
(
AF−1B

)
∂xj

= AF−1 ∂B

∂xj
−AF−1 ∂F

∂xj
F−1B +

∂A

∂xj
F−1B.

In the special case where A and B are constant or do not vary with xj , formula (5.2) simplifies
to

∂
(
AF−1B

)
∂xj

= −AF−1 ∂F

∂xj
F−1B.

Appendix IV: The first derivative of ∂P
∂ψw

∂P

∂ψw
=

∂

∂ψw
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V −1 − V −1X

(
XTV −1X
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(Using the Lemma 1 of Appendix III)(5.2)
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(Using the Definition 3 and 4 of Appendix III)
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Using the Appendix II, we can rewrite the expression (5.3) as

∂P

∂ψw
= −V −1 ∂V
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[
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Appendix V: Quadratic forms

The theory used in this appendix was based on the book Linear Models in Statistics
(Rencher, 2007).

Theorem 2: If y is a random vector with mean µ and covariance matrix Σ and if A
is a symmetric matrix of constants, then

E
(
yTAy

)
= tr (AΣ) + µTAµ

Theorem 3: If y ∼ Np (µ,Σ), then

V ar
(
yTAy

)
= 2 tr

[
(AΣ)2

]
+ 4µTAΣAµ.

Theorem 4: If y ∼ Np (µ,Σ), then

Cov
(
y,yTAy

)
= 2ΣAµ.
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Appendix VI: Dignostic analysis

Although LMEM have good properties of the estimates, the model assumptions must
be fulfilled. Thus, we presented the observed values versus the predicted values of the model
(Figure A.1a); the normality of residuals (Figure A.1b); and the conditional residuals versus the
predicted values (Figure A.1c) because if the assumptions is not fulfilled or the likelihood is not
true, the REML estimates and their standard errors will be dramatically biased. The residuals
analysis showed that there is not any trends in the graph of residuals versus predicted values>
Furthermore, as less than 5% of observations are outside of the simulated envelope of normal
plot (Figure A.1b), we can consider that assumption of normality of errors is adequate.
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Figure A.1: (a) Observed values versus the predicted values of the model; (b) the normality
of residuals; and (c) the conditional residuals versus the predicted values. Here ‘Col’ represent
observations measured by colorimeter on equatorial region, ‘SER’ represent observations mea-
sured by scanner on equatorial region, and ‘STR’ represent observations measured by scanner
on whole region
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ANNEX

Annex A: Dataset

The entire dataset will be available to view from publication of second chapter about
Longitudinal concordance correlation. This chapter already was accepted to publication in the
Journal of Agricultural, Biological, and Environmental Statistics (JABES).

Table Annex 1: A small part of hue data of papaya fruits measured by two methods (Colorimeter
or Scanner) on two peel regions (Equatorial or Whole) over time

n Hue Method Region Time Fruit
1 116.54 Colorimeter Equatorial 0 1
2 115.41 Colorimeter Equatorial 0 2
3 116.98 Colorimeter Equatorial 0 3
4 115.88 Colorimeter Equatorial 0 4
5 115.71 Colorimeter Equatorial 0 5
6 116.14 Colorimeter Equatorial 0 6
7 114.44 Colorimeter Equatorial 0 7
8 116.10 Colorimeter Equatorial 0 8
9 115.18 Colorimeter Equatorial 0 9

10 116.57 Colorimeter Equatorial 0 10
. . . . . . . . . . . . . . . . . .
278 113.90 Scanner Equatorial 0 1
279 116.50 Scanner Equatorial 0 2
280 116.86 Scanner Equatorial 0 3
281 114.59 Scanner Equatorial 0 4
282 113.38 Scanner Equatorial 0 5
283 114.49 Scanner Equatorial 0 6
284 116.67 Scanner Equatorial 0 7
285 115.01 Scanner Equatorial 0 8
286 113.58 Scanner Equatorial 0 9
287 115.87 Scanner Equatorial 0 10
288 115.10 Scanner Equatorial 0 11
. . . . . . . . . . . . . . . . . .
555 111.51 Scanner Whole 0 1
556 114.60 Scanner Whole 0 2
557 114.25 Scanner Whole 0 3
558 112.73 Scanner Whole 0 4
559 112.08 Scanner Whole 0 5

Continued on next page
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Table Annex 1 – continued from previous page
n Hue Method Region Time Fruit

560 111.67 Scanner Whole 0 6
561 112.81 Scanner Whole 0 7
562 112.44 Scanner Whole 0 8
563 111.44 Scanner Whole 0 9
564 113.10 Scanner Whole 0 10
565 113.30 Scanner Whole 0 11
. . . . . . . . . . . . . . . . . .
821 87.79 Scanner Whole 13 20
822 89.84 Scanner Whole 14 1
823 82.27 Scanner Whole 14 2
824 92.79 Scanner Whole 14 3
825 95.56 Scanner Whole 14 6
826 87.29 Scanner Whole 14 10
827 83.88 Scanner Whole 14 13
828 81.90 Scanner Whole 14 15
829 86.24 Scanner Whole 14 17
830 82.53 Scanner Whole 14 18
831 84.85 Scanner Whole 14 20

Annex B: Programming in R

i) Used Package:

require(nlme)

ii) Reading the data:

dados<-read.csv2("dataset.csv",header=TRUE,dec=".",sep=";")
dados$Fruit<-as.factor(dados$Fruit)
dados$Time<-as.numeric(dados$Time)
dados$Time<-log(dados$Time+1)

iii) Grouping the data from the function groupedData:

dataset<-groupedData(H_mean~Time|Fruit, data=dados)
dataset$Scan<-with(dataset,model.matrix(~Method-1)[,2])

iv) Selected model:
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model<-lme(H_mean~Method+Time+I(Time^2)+I(Time^3)+Region+
Method:Time+Method:I(Time^2)+Region:Time+Region:I(Time^2),

random=pdBlocked(list(pdCompSymm(~Scan:Region-1),
pdDiag(~1),
pdSymm(~Time+I(Time^2)-1))),
data=dataset,
weights=varExp(form=~Time|Region, fixed = c(Whole=0)),
method = "REML")

v) Longitudinal concordance correlation (LCC) function

a) Extracting the variance components

(sigma.b0_scan.eq<-getVarCov(model)[1,1])
(sigma.b0_scan.tot<-getVarCov(model)[2,2])
(sigma.b0_scan.eqtot<-getVarCov(model)[1,2])
(sigma.b0_2<-getVarCov(model)[3,3])
(sigma.b1_2<-getVarCov(model)[4,4])
(sigma.b2_2<-getVarCov(model)[5,5])
(sigma.b01_2=getVarCov(model)[3,4])
(sigma.b02_2=getVarCov(model)[3,5])
(sigma.b12_2<-getVarCov(model)[4,5])
varcomp<-summary(model)
(SE<-model$sigma^2)
(varcomp_col<-SE) # Colorimeter on equatorial region
(varcomp_ser<-SE) # Scanner on equatorial region
(varcomp_str<-SE) # Scanner on whole region
(varcomp_exp_col<-coef(varcomp$modelStruct$varStruct,

uncons=F, allCoef=T)[1])
(varcomp_exp_ser<-coef(varcomp$modelStruct$varStruct,

uncons=F, allCoef=T)[1])
(varcomp_exp_str<-coef(varcomp$modelStruct$varStruct,

uncons=F, allCoef=T)[2])

b) Calculating the LCC

# Variance components (VC) associated with colorimeter
Var_col<-function(tempo) {
sigma.b0_2+sigma.b1_2*tempo^2+sigma.b2_2*tempo^4+
2*(sigma.b01_2*tempo+sigma.b02_2*tempo^2+sigma.b12_2*tempo^3)+
varcomp_col*exp(2*varcomp_exp_col*(tempo))
}
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# Variance components (VC) associated with scanner on equatorial region
Var_ser<-function(tempo) {
sigma.b0_2+sigma.b0_scan.eq+sigma.b1_2*tempo^2+sigma.b2_2*tempo^4+
2*(sigma.b01_2*tempo+sigma.b02_2*tempo^2+sigma.b12_2*tempo^3)+
varcomp_ser*exp(2*varcomp_exp_ser*(tempo))
}

# Variance components (VC) associated with scanner on whole region
Var_str<-function(tempo) {
sigma.b0_2+sigma.b0_scan.tot+sigma.b1_2*tempo^2+sigma.b2_2*tempo^4+
2*(sigma.b01_2*tempo+sigma.b02_2*tempo^2+sigma.b12_2*tempo^3)+
varcomp_str*exp(2*varcomp_exp_str*(tempo))
}

# Covariance between colorimeter and scanner
COV_2<-function(tempo) {
sigma.b0_2+sigma.b1_2*tempo^2+sigma.b2_2*tempo^4+
2*(sigma.b01_2*tempo+sigma.b02_2*tempo^2+sigma.b12_2*tempo^3)
}

# Covariance between scanner on equatorial and whole regions
COV_2s<-function(tempo) {
sigma.b0_2+sigma.b0_scan.eqtot+sigma.b1_2*tempo^2+sigma.b2_2*tempo^4+
2*(sigma.b01_2*tempo+sigma.b02_2*tempo^2+sigma.b12_2*tempo^3)
}

# Expected values for colorimeter
Ei1k_2<-function(tempo)
sum(c(1,0,tempo,tempo^2,tempo^3,0,0,0,0,0)*fixef(model))

# Expected values for scanner on equatorial region
Ei2k_2<-function(tempo)
sum(c(1,1,tempo,tempo^2,tempo^3,0,tempo,tempo^2,0,0)*fixef(model))

# Expected values for scanner on whole region
Ei3k_2<-function(tempo)
sum(c(1,1,tempo,tempo^2,tempo^3,1,tempo,tempo^2,tempo,tempo^2)*fixef(model))
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# Longitudinal concordance correlation

## Colorimeter versus Scanner on equatorial region
rho.12_2 <- Vectorize(function(t) 2*COV_2(t)/(Var_col(t)+Var_ser(t)+

(Ei1k_2(t)-Ei2k_2(t))^2), "t")
## Colorimeter versus Scanner on whole region
rho.13_2 <- Vectorize(function(t) 2*COV_2(t)/(Var_col(t)+Var_str(t)+

(Ei1k_2(t)-Ei3k_2(t))^2), "t")
## Scanner on equatorial region versus whole region
rho.23_2 <- Vectorize(function(t) 2*COV_2s(t)/(Var_ser(t)+Var_str(t)+

(Ei2k_2(t)-Ei3k_2(t))^2), "t")

# Longitudinal pearson correlation (LPC) function
## Colorimeter versus Scanner on equatorial region
rho.pearson.12_2<-Vectorize(function(t) COV_2(t)/sqrt(Var_col(t)*Var_ser(t)),"t")
## Colorimeter versus Scanner on whole region
rho.pearson.13_2<-Vectorize(function(t) COV_2(t)/sqrt(Var_col(t)*Var_str(t)),"t")
## Scanner on equatorial region versus whole region
rho.pearson.23_2<-Vectorize(function(t) COV_2s(t)/sqrt(Var_ser(t)*Var_str(t)),"t")

# Longitudinal accuracy (LA) function
## Colorimeter versus Scanner on equatorial region
Cb.12_2<-function(t) rho.12_2(t)/rho.pearson.12_2(t)
## Colorimeter versus Scanner on whole region
Cb.13_2<-function(t) rho.13_2(t)/rho.pearson.13_2(t)
## Scanner on equatorial region versus whole region
Cb.23_2<-function(t) rho.23_2(t)/rho.pearson.23_2(t)

vi) Algorithm to nonparametric bootstrap confidence intervals

# Bootstrap function
fit_sim<-function(data,N){
Dataset<-data
sample_data<-sample(as.character(unique(Dataset$Fruit)),N,replace=TRUE)
Frame<-list(NA)
for(i in 1:N){
Frame[[i]]<-subset(Dataset, Fruit==sample_data[i])
Frame[[i]]$Fruit<-c(rep(i,length(Frame[[i]][,1])))
}
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data_sample<-do.call(rbind.data.frame, Frame)

dataset_lme<-groupedData(H_mean~Time|Fruit, data=data_sample)

fit.sim <- lme(H_mean~Method + Time + I(Time^2) + I(Time^3)+
Region + Method:Time+Method:I(Time^2)+Region:Time+
Region:I(Time^2),
random=pdBlocked(list(pdCompSymm(~Scan:Region-1),

pdDiag(~1),
pdSymm(~Time+I(Time^2)-1))),

weights=varExp(form=~Time|Region,fixed=c(Whole=0)),
data=dataset_lme)

Betas<-fixef(fit.sim)
s.b0.ser<-getVarCov(fit.sim)[1,1]
s.b0.str<-getVarCov(fit.sim)[2,2]
s.b0.23<-getVarCov(fit.sim)[1,2]
s.b0<-getVarCov(fit.sim)[3,3]
s.b1<-getVarCov(fit.sim)[4,4]
s.b2<-getVarCov(fit.sim)[5,5]
s.b01<-getVarCov(fit.sim)[3,4]
s.b02<-getVarCov(fit.sim)[3,5]
s.b12<-getVarCov(fit.sim)[4,5]

varcomp<-summary(fit.sim)
SE<-fit.sim$sigma^2
varcomp_exp_col<-coef(varcomp$modelStruct$varStruct,

uncons=F, allCoef=T)[1]
varcomp_exp_ser<-coef(varcomp$modelStruct$varStruct,

uncons=F, allCoef=T)[1]
varcomp_exp_str<-coef(varcomp$modelStruct$varStruct,

uncons=F, allCoef=T)[2]
Var_all<-data.frame(s.b0.ser,s.b0.str,s.b0.23,s.b0,s.b1,s.b2,s.b01,s.b02,s.b12,SE,
varcomp_exp_col,varcomp_exp_ser,varcomp_exp_str)

# Variance for observations measured by colorimeter on equatorial region
Var_col<-function(tempo) {
s.b0+s.b1*tempo^2+s.b2*tempo^4+
2*(s.b01*tempo+s.b02*tempo^2+s.b12*tempo^3)+
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SE*exp(2*varcomp_exp_col*(tempo))
}

# Variance for observations measured by scanner on equatorial region
Var_ser<-function(tempo) {
s.b0+s.b0.ser+s.b1*tempo^2+s.b2*tempo^4+
2*(s.b01*tempo+s.b02*tempo^2+s.b12*tempo^3)+
SE*exp(2*varcomp_exp_ser*(tempo))
}

# Variance for observations measured by scanner on whole region
Var_str<-function(tempo) {
s.b0+s.b0.str+s.b1*tempo^2+s.b2*tempo^4+
2*(s.b01*tempo+s.b02*tempo^2+s.b12*tempo^3)+
SE*exp(2*varcomp_exp_str*(tempo))
}

Ei1k<-function(tempo) sum(c(1,0,tempo,tempo^2,tempo^3,0,0,0,0,
0)*fixef(fit.sim))
Ei2k<-function(tempo) sum(c(1,1,tempo,tempo^2,tempo^3,0,tempo,
tempo^2,0,0)*fixef(fit.sim))
Ei3k<-function(tempo) sum(c(1,1,tempo,tempo^2,tempo^3,1,tempo,
tempo^2,tempo,tempo^2)*fixef(fit.sim))

COV.col<-function(tempo) {
s.b0+s.b1*tempo^2+s.b2*tempo^4+2*(s.b01*tempo+s.b02*tempo^2+s.
b12*tempo^3)
}
COV.scan<-function(tempo) {
s.b0+s.b0.23+s.b1*tempo^2+s.b2*tempo^4+2*(s.b01*tempo+
s.b02*tempo^2+s.b12*tempo^3)
}

# Calculating the longitudinal concordance correlation
rho.12 <- Vectorize(function(t) 2*COV.col(t)/(Var_col(t)+Var_ser(t)+
(Ei1k(t)-Ei2k(t))^2), "t")
rho.13 <- Vectorize(function(t) 2*COV.col(t)/(Var_col(t)+Var_str(t)+
(Ei1k(t)-Ei3k(t))^2), "t")
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rho.23 <- Vectorize(function(t) 2*COV.scan(t)/(Var_ser(t)+Var_str(t)+
(Ei2k(t)-Ei3k(t))^2), "t")

# Calculating the longitudinal Pearson correlation
rho.pearson.12<-Vectorize(function(t) COV.col(t)/sqrt(Var_col(t)*Var_ser(t)),"t")
rho.pearson.13<-Vectorize(function(t) COV.col(t)/sqrt(Var_col(t)*Var_str(t)),"t")
rho.pearson.23<-Vectorize(function(t) COV.scan(t)/sqrt(Var_ser(t)*Var_str(t)),"t")

# Calculating the longitudinal accuracy
Cb.12<-function(t) rho.12(t)/rho.pearson.12(t)
Cb.13<-function(t) rho.13(t)/rho.pearson.13(t)
Cb.23<-function(t) rho.23(t)/rho.pearson.23(t)

time <- (log(seq(0, 14, .1)+1))

return(list("rho.12"=rho.12(time),"rho.13"=rho.13(time),"rho.23"=rho.23(time),
"rho.pearson.12"=rho.pearson.12(time),"rho.pearson.13"=rho.pearson.13(time),
"rho.pearson.23"=rho.pearson.23(time),"Cb.12"=Cb.12(time),"Cb.13"=Cb.13(time),
"Cb.23"=Cb.23(time),"Betas"=Betas,"Var"=Var_all))
}
boot.10000<-list( )
for(i in 1:10000){
tryCatch(
boot.10000[[i]]<-fit_sim(dataset, N=20),
error=function(e){cat("ERROR:",conditionMessage(e),"error \n")})
cat(i,"Continue a nadar! \n")
}

vii) Confidence intervals for LCC. LPC and LA

rho12<-list(NA)
rho13<-list(NA)
rho23<-list(NA)
rho.pearson.12<-list(NA)
rho.pearson.13<-list(NA)
rho.pearson.23<-list(NA)
Cb.12<-list(NA)
Cb.13<-list(NA)
Cb.23<-list(NA)
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for(i in 1:length(boot.10000)){
# Colorimeter versus Scanner on equatorial region
rho12[[i]]<-boot.10000[[i]]$rho.12
rho.pearson.12[[i]]<-boot.10000[[i]]$rho.pearson.12
Cb.12[[i]]<-boot.10000[[i]]$Cb.12

# Colorimeter versus Scanner on whole region
rho13[[i]]<-boot.10000[[i]]$rho.13
rho.pearson.13[[i]]<-boot.10000[[i]]$rho.pearson.13
Cb.13[[i]]<-boot.10000[[i]]$Cb.13

# Scanner on equatorial region versus whole region
rho23[[i]]<-boot.10000[[i]]$rho.23
rho.pearson.23[[i]]<-boot.10000[[i]]$rho.pearson.23
Cb.23[[i]]<-boot.10000[[i]]$Cb.23
}

# Colorimeter versus Scanner on equatorial region

## LPC
RHO12 <- matrix(0, ncol=length(boot.10000), nrow=length(rho12[[1]]))
for(i in 1:length(boot.10000)) {
if(is.null(boot.10000[[i]])==FALSE){
RHO12[,i] <- rho12[[i]]
}else(cat(i,"\n"))
}
ENV.12 <- apply(RHO12, 1, quantile, probs=c(.025,.975))

## LPC
RHO.pearson12 <- matrix(0, ncol=length(boot.10000),

nrow=length(unlist(boot.10000[[1]][1])))
for(i in 1:length(boot.10000)){
if(is.null(boot.10000[[i]])==FALSE){
RHO.pearson12[,i] <- rho.pearson.12[[i]]
}else(cat(i,"\n"))
}
ENV.pearson12 <- apply(RHO.pearson12, 1, quantile, probs=c(.025,.975))

## LA
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Cb12 <- matrix(0, ncol=length(boot.10000), nrow=length(unlist(boot.10000[[1]][1])))
for(i in 1:length(boot.10000)){
if(is.null(boot.10000[[i]])==FALSE){
Cb12[,i] <- Cb.12[[i]]
}else(cat(i,"\n"))
}
ENV.Cb12 <- apply(Cb12, 1, quantile, probs=c(.025,.975))

###############################################################
# Calculating the Lin's concordance correlation coefficient
###############################################################
dataset_c<-subset(dataset,select=c(H_mean,Method,Region, Time, Fruit))
d2<-reshape(dataset_c, v.names = "H_mean", idvar = c("Fruit","Time", "Region"),
timevar ="Method", direction = "wide")
Eq<-subset(d2, Region=="Equatorial")
Col<-Eq[,5]
SER<-Eq[,4]
Whole2<-subset(d2, Region=="Whole")
STR<-Whole2[,4]
d3<-data.frame(Col, SER, STR)
d3$Time<-exp(Eq$Time)-1
rho_c<-function(Y1,Y2,Dia){
data=data.frame(Y1,Y2,Dia)
m1=NULL; m2=NULL; S1=NULL ; S2=NULL; S12=NULL
Pearson=NULL;lin=NULL;Cb=NULL
for(i in 1:length(levels(as.factor(Dia)))){
m1[i]<-mean(Y1[Dia==i])
m2[i]<-mean(Y2[Dia==i])
S1[i]<-var(Y1[Dia==i])
S2[i]<-var(Y2[Dia==i])
S12[i]<-cov(Y1[Dia==i],Y2[Dia==i])
lin[i]<-2*S12[i]/(S1[i]+S2[i]+(m1[i]-m2[i])^2) # Concordance correlation
Pearson[i]<-cor(Y1[Dia==i],Y2[Dia==i]) # Pearson correlation
Cb[i]<-lin[i]/Pearson[i] # Accuracy
}
data.frame("Y1"=m1,"Y2"=m2,"Var.Y1"=S1,"Var.Y2"=S2,
"Cov.Y1.Y2"=S12,"Pearson"=Pearson,"CCC"=lin,Cb)
}
d3$Time2<-as.factor(d3$Time+1)
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CCC_Col.SER<-with(d3,rho_c(Col,SER,Time2))[,c(6:8)]
CCC_Col.STR<-with(d3,rho_c(Col,STR,Time2))[,c(6:8)]
CCC_SER.STR<-with(d3,rho_c(SER,STR,Time2))[,c(6:8)]
CCC3<-data.frame(rbind(CCC_Col.SER, CCC_Col.STR, CCC_SER.STR))
CCC3$Time<-rep(seq(1,15,1),3)
CCC3$Method<-gl(3,length(CCC3$Time)/3,labels=c("Col:Equatorial x
Scanner:Equatorial", "Col:Equatorial x Scanner:Whole",
"Scanner:Equatorial x Scanner:Whole"))
###############################################################

## Graph
data_12<-data.frame("rho.12"=rho.12_2(log(seq(0, 14, .1)+1)),
"rho.pearson.12"=rho.pearson.12_2(log(seq(0, 14, .1)+1)),
"Cb.12"=Cb.12_2(log(seq(0, 14, .1)+1)),
"Time"=(log(seq(0, 14, .1)+1)),
"lower_rho"=t(ENV.12)[,1], "upper_rho"=t(ENV.12)[,2],
"lower_pearson"=t(ENV.pearson12)[,1],
"upper_pearson"=t(ENV.pearson12)[,2],
"lower_Cb"=t(ENV.Cb12)[,1], "upper_Cb"=t(ENV.Cb12)[,2])

data_12.p<- data.frame("rho.12.p"=subset(CCC3,Method==
"Col:Equatorial x Scanner:Equatorial")[,2],
"rho.pearson.12.p"=subset(CCC3,Method=="Col:Equatorial x

Scanner:Equatorial")[,1],
"Cb.12.p"=subset(CCC3,Method=="Col:Equatorial x

Scanner:Equatorial")[,3],
"Time"=(log(seq(0, 14, 1)+1)))

(p.rho12 <- ggplot(data_12, aes(y=rho.12, x=Time))+
geom_line(data=data_12)+
geom_point(data=data_12.p, aes(y=rho.12.p, x=Time), shape=1)+
geom_ribbon(data=data_12,aes(ymin=lower_rho,ymax=upper_rho),
fill="grey70", alpha=0.3,show.legend = TRUE)+
scale_y_continuous(limits = c(0,1))+
geom_hline(yintercept = 1, linetype="dashed")
)
(p.rho12_1<- p.rho12 +labs(list(x = expression(log(Time+1)),
y = expression(rho["11,21"])))+
theme(legend.position="none",
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axis.title=element_text(
size="12", color="Black"),
panel.background = element_rect(fill = "white"),
axis.line.x = element_line(color="black", size = 0.5),
axis.line.y = element_line(color="black", size = 0.5),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())

)

(p.pearson12 <- ggplot(data_12, aes(y=rho.pearson.12, x=Time))+
geom_point(data=data_12.p, aes(y=rho.pearson.12.p, x=Time), shape=1)+
geom_line(data=data_12, aes(linetype="Estimated", colour="Estimated"))+
geom_line(data=data_12, aes(linetype="Estimated2", colour="Estimated2"))+
geom_line(data=data_12, colour=1)+
geom_ribbon(data=data_12,aes(ymin=lower_pearson,ymax=upper_pearson),
fill="grey70", alpha=0.3,show.legend = TRUE)+
scale_y_continuous(limits = c(0,1))+
geom_hline(yintercept = 1, linetype="dashed")
)

(p.pearson12_1<- p.pearson12 +labs(list(x = expression(log(Time+1)),
y = expression(rho["11,21"]^(p))))+
scale_linetype_manual(name = "Legend:",
values = c("solid","solid"),
labels = c('Estimated','95% CI'))+
scale_colour_manual(name = "Legend:",
values = c('black','gray90'),
labels = c('Estimated','95% CI'))+
theme(legend.position="top",
legend.background = element_rect(color = "black",
fill = "gray95", size = 0.5, linetype = "solid"),
legend.key = element_rect(colour = 'gray90',
fill = 'gray90', size = 0.1, linetype="solid"),
axis.title=element_text(
size="12", color="Black"),
axis.line.x = element_line(color="black", size = 0.5),
axis.line.y = element_line(color="black", size = 0.5),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
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)
(p.Cb12 <- ggplot(data_12, aes(y=Cb.12, x=Time))+
geom_point(data=data_12.p, aes(y=Cb.12.p, x=Time), shape=1)+
geom_line(data=data_12)+
geom_ribbon(data=data_12,aes(ymin=lower_Cb,ymax=upper_Cb),
fill="grey70", alpha=0.3,show.legend = TRUE)+
scale_y_continuous(limits = c(0,1))+
geom_hline(yintercept = 1, linetype="dashed")
)
(p.Cb12_1<- p.Cb12 +labs(list(x = expression(log(Time+1)),
y = expression(C["11,21"])))+
theme(legend.position="none",
axis.title=element_text(
size="12", color="Black"),
panel.background = element_rect(fill = "white"),
axis.line.x = element_line(color="black", size = 0.5),
axis.line.y = element_line(color="black", size = 0.5),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
)
ggdraw(xlim = c(0, 4.5), ylim = c(0, 0.6)) +
draw_plot(p.rho12_1, 0, 0.1, 1.5, .415) +
draw_plot(p.pearson12_1, 1.5, 0.1, 1.5, .5) +
draw_plot(p.Cb12_1, 3, 0.1, 1.5, .415) +
draw_plot_label(c("(a)", "(b)", "(c)"),
c(0.75, 2.25, 3.75), c(0.1, 0.1, 0.1), size = 15)

# Colorimeter versus Scanner on whole region
data_13.p<- data.frame("rho.13.p"=subset(CCC3,Method==
"Col:Equatorial x Scanner:Whole")[,2],
"rho.pearson.13.p"=subset(CCC3,Method=="Col:Equatorial x Scanner:Whole")[,1],
"Cb.13.p"=subset(CCC3,Method=="Col:Equatorial x Scanner:Whole")[,3],
"Time"=log(seq(0, 14, 1)+1))

## Concordance
RHO13 <- matrix(0, ncol=length(boot.10000), nrow=length(rho13[[1]]))
for(i in 1:length(boot.10000)) {
if(is.null(boot.10000[[i]])==FALSE){
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RHO13[,i] <- rho13[[i]]
}else(cat(i,"\n"))}
ENV.13 <- apply(RHO13, 1, quantile, probs=c(.025,.975))

## Pearson
RHO.pearson13 <- matrix(0, ncol=length(boot.10000),
nrow=length(unlist(boot.10000[[1]][1])))
for(i in 1:length(boot.10000)) {
if(is.null(boot.10000[[i]])==FALSE){
RHO.pearson13[,i] <- rho.pearson.13[[i]]
}else(cat(i,"\n"))}
ENV.pearson13 <- apply(RHO.pearson13, 1, quantile, probs=c(.025,.975))

## Accuracy
Cb13 <- matrix(0, ncol=length(boot.10000), nrow=length(unlist(boot.10000[[1]][1])))
for(i in 1:length(boot.10000)) {
if(is.null(boot.10000[[i]])==FALSE){
Cb13[,i] <- Cb.13[[i]]
}else(cat(i,"\n"))}
ENV.Cb13 <- apply(Cb13, 1, quantile, probs=c(.025,.975))

## Graph
data_13<-data.frame("rho.13"=rho.13_2(log(seq(0, 14, .1)+1)),
"rho.pearson.13"=rho.pearson.13_2(log(seq(0, 14, .1)+1)),
"Cb.13"=Cb.13_2(log(seq(0, 14, .1)+1)),
"Time"=log(seq(0, 14, .1)+1),
"lower_rho"=t(ENV.13)[,1], "upper_rho"=t(ENV.13)[,2]+0.03,
"lower_pearson"=t(ENV.pearson13)[,1], "upper_pearson"=t(ENV.pearson13)[,2],
"lower_Cb"=t(ENV.Cb13)[,1], "upper_Cb"=t(ENV.Cb13)[,2]+0.03)
# Plot
(p.rho13 <- ggplot(data_13, aes(y=rho.13, x=Time))+
geom_point(data=data_13.p, aes(y=rho.13.p, x=Time), shape=1)+
geom_line(data=data_13)+
geom_ribbon(data=data_13,aes(ymin=lower_rho,ymax=upper_rho),
fill="grey70", alpha=0.3,show.legend = TRUE)+
scale_y_continuous(limits = c(0,1))+
geom_hline(yintercept = 1, linetype="dashed")
)
(p.rho13_1<- p.rho13 +labs(list(x = expression(log(Time+1)),
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y = expression(rho["11,22"])))+
theme(legend.position="none",
axis.title=element_text(
size="12", color="Black"),
panel.background = element_rect(fill = "white"),
axis.line.x = element_line(color="black", size = 0.5),
axis.line.y = element_line(color="black", size = 0.5),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
)
(p.pearson13 <- ggplot(data_13, aes(y=rho.pearson.13, x=Time))+
geom_point(data=data_12.p, aes(y=rho.pearson.12.p, x=Time), shape=1)+
geom_line(data=data_13, aes(linetype="Estimated", colour="Estimated"))+
geom_line(data=data_13, aes(linetype="Estimated2", colour="Estimated2"))+
geom_line(data=data_13, colour=1)+
geom_ribbon(data=data_13,aes(ymin=lower_pearson,ymax=upper_pearson),
fill="grey70", alpha=0.3,show.legend = TRUE)+
scale_y_continuous(limits = c(0,1))+
geom_hline(yintercept = 1, linetype="dashed")
)
(p.pearson13_1<- p.pearson13 +labs(list(x = expression(log(Time+1)),
y = expression(rho["11,22"]^(p))))+
scale_linetype_manual(name = "Legend:",
values = c("solid","solid"),
labels = c('Estimated','95% CI'))+
scale_colour_manual(name = "Legend:",
values = c('black','gray90'),
labels = c('Estimated','95% CI'))+
theme(legend.position="top",
legend.background = element_rect(color = "black",
fill = "gray95", size = 0.5, linetype = "solid"),
legend.key = element_rect(colour = 'gray95',
fill = 'gray90', size = 0.01, linetype="solid"),
axis.title=element_text(
size="12", color="Black"),
axis.line.x = element_line(color="black", size = 0.5),
axis.line.y = element_line(color="black", size = 0.5),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())



114

)
(p.Cb13 <- ggplot(data_13, aes(y=Cb.13, x=Time))+
geom_point(data=data_13.p, aes(y=Cb.13.p, x=Time), shape=1)+
geom_line(data=data_13)+
geom_ribbon(data=data_13,aes(ymin=lower_Cb,ymax=upper_Cb),
fill="grey70", alpha=0.3,show.legend = TRUE)+
scale_y_continuous(limits = c(0,1))+
geom_hline(yintercept = 1, linetype="dashed")
)
(p.Cb13_1<- p.Cb13 +labs(list(x = expression(log(Time+1)),
y = expression(C["11,22"])))+
theme(legend.position="none",
axis.title=element_text(
size="12", color="Black"),
panel.background = element_rect(fill = "white"),
axis.line.x = element_line(color="black", size = 0.5),
axis.line.y = element_line(color="black", size = 0.5),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
)
ggdraw(xlim = c(0, 4.5), ylim = c(0, 0.6)) +
draw_plot(p.rho13_1, 0, 0.1, 1.5, .415) +
draw_plot(p.pearson13_1, 1.5, 0.1, 1.5, .5) +
draw_plot(p.Cb13_1, 3, 0.1, 1.5, .415) +
draw_plot_label(c("(a)", "(b)", "(c)"),
c(0.75, 2.25, 3.75), c(0.1, 0.1, 0.1), size = 15)

# Scanner on equatorial region versus whole region
data_23.p<- data.frame("rho.23.p"=subset(CCC3,Method==
"Scanner:Equatorial x Scanner:Whole")[,2],
"rho.pearson.23.p"=subset(CCC3,Method=="Scanner:Equatorial x Scanner:Whole")[,1],
"Cb.23.p"=subset(CCC3,Method=="Scanner:Equatorial x Scanner:Whole")[,3],
"Time"=log(seq(0, 14, 1)+1))

## Concordance
RHO23 <- matrix(0, ncol=length(boot.10000), nrow=length(rho23[[1]]))
for(i in 1:length(boot.10000)){
if(is.null(boot.10000[[i]])==FALSE){
RHO23[,i] <- rho23[[i]]
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}else(cat(i,"\n"))}
ENV.23 <- apply(RHO23, 1, quantile, probs=c(.025,.975))

## Pearson
RHO.pearson23 <- matrix(0, ncol=length(boot.10000),
nrow=length(unlist(boot.10000[[1]][1])))
for(i in 1:length(boot.10000)){
if(is.null(boot.10000[[i]])==FALSE){
RHO.pearson23[,i] <- rho.pearson.23[[i]]
}else(cat(i,"\n"))}
ENV.pearson23 <- apply(RHO.pearson23, 1, quantile, probs=c(.025,.975))

## Accuracy
Cb23 <- matrix(0, ncol=length(boot.10000), nrow=length(unlist(boot.10000[[1]][1])))
for(i in 1:length(boot.10000)){
if(is.null(boot.10000[[i]])==FALSE){
Cb23[,i] <- Cb.23[[i]]
}else(cat(i,"\n"))}
ENV.Cb23 <- apply(Cb23, 1, quantile, probs=c(.025,.975))

# Graph
data_23<-data.frame("rho.23"=rho.23_2(log(seq(0, 14, .1)+1)),
"rho.pearson.23"=rho.pearson.23_2(log(seq(0, 14, .1)+1)),
"Cb.23"=Cb.23_2(log(seq(0, 14, .1)+1)),
"Time"=log(seq(0, 14, .1)+1),
"lower_rho"=t(ENV.23)[,1], "upper_rho"=t(ENV.23)[,2],
"lower_pearson"=t(ENV.pearson23)[,1], "upper_pearson"=t(ENV.pearson23)[,2],
"lower_Cb"=t(ENV.Cb23)[,1], "upper_Cb"=t(ENV.Cb23)[,2])
(p.rho23 <- ggplot(data_23, aes(y=rho.23, x=Time))+
geom_point(data=data_23.p, aes(y=rho.23.p, x=Time), shape=1)+
geom_line(data=data_23)+
geom_ribbon(data=data_23,aes(ymin=lower_rho,ymax=upper_rho),
fill="grey70", alpha=0.3,show.legend = TRUE)+
scale_y_continuous(limits = c(0,1))+
geom_hline(yintercept = 1, linetype="dashed")
)
(p.rho23_1<- p.rho23 +labs(list(x = expression(log(Time+1)),
y = expression(rho["21,22"])))+
theme(legend.position="none",
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axis.title=element_text(
size="12", color="Black"),
panel.background = element_rect(fill = "white"),
axis.line.x = element_line(color="black", size = 0.5),
axis.line.y = element_line(color="black", size = 0.5),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
)
(p.pearson23 <- ggplot(data_23, aes(y=rho.pearson.23, x=Time))+
geom_point(data=data_23.p, aes(y=rho.pearson.23.p, x=Time), shape=1)+
geom_line(data=data_23, aes(linetype="Estimated", colour="Estimated"))+
geom_line(data=data_23, aes(linetype="Estimated2", colour="Estimated2"))+
geom_line(data=data_23, colour=1)+
geom_ribbon(data=data_23,aes(ymin=lower_pearson,ymax=upper_pearson),
fill="grey70", alpha=0.3,show.legend = TRUE)+
scale_y_continuous(limits = c(0,1))+
geom_hline(yintercept = 1, linetype="dashed")
)
(p.pearson23_1<- p.pearson23 +labs(list(x = expression(log(Time+1)),
y = expression(rho["21,22"]^(p))))+
scale_linetype_manual(name = "Legend:",
values = c("solid","solid"),
labels = c('Estimated','95% CI'))+
scale_colour_manual(name = "Legend:",
values = c('black','gray90'),
labels = c('Estimated','95% CI'))+
theme(legend.position="top",
legend.background = element_rect(color = "black",
fill = "gray95", size = 0.5, linetype = "solid"),
legend.key = element_rect(colour = 'gray90',
fill = 'gray90', size = 0.1, linetype="solid"),
axis.title=element_text(
size="12", color="Black"),
axis.line.x = element_line(color="black", size = 0.5),
axis.line.y = element_line(color="black", size = 0.5),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
)
(p.Cb23 <- ggplot(data_23, aes(y=Cb.23, x=Time))+
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geom_point(data=data_23.p, aes(y=Cb.23.p, x=Time), shape=1)+
geom_line(data=data_23)+
geom_ribbon(data=data_23,aes(ymin=lower_Cb,ymax=upper_Cb),
fill="grey70", alpha=0.3,show.legend = TRUE)+
scale_y_continuous(limits = c(0,1))+
geom_hline(yintercept = 1, linetype="dashed")
)
(p.Cb23_1<- p.Cb23 +labs(list(x = expression(log(Time+1)),
y = expression(C["21,22"])))+
theme(legend.position="none",
axis.title=element_text(
size="12", color="Black"),
panel.background = element_rect(fill = "white"),
axis.line.x = element_line(color="black", size = 0.5),
axis.line.y = element_line(color="black", size = 0.5),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
)
ggdraw(xlim = c(0, 4.5), ylim = c(0, 0.6)) +
draw_plot(p.rho23_1, 0, 0.1, 1.5, .415) +
draw_plot(p.pearson23_1, 1.5, 0.1, 1.5, .5) +
draw_plot(p.Cb23_1, 3, 0.1, 1.5, .415) +
draw_plot_label(c("(a)", "(b)", "(c)"),
c(0.75, 2.25, 3.75), c(0.1, 0.1, 0.1), size = 15)


