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RESUMO 

Design de seguro de índice climático: uma nova abordagem para o seguro agrícola no 

Brasil 

O seguro agrícola é reconhecido como um dos mecanismos mais eficientes de proteção de 
renda na agricultura, transferindo o risco da fazenda para outros agentes e setores econômicos. O 
seguro tende a estimular o aumento da área cultivada e o uso de tecnologia, principalmente por atuar 
como garantia adicional de acesso ao crédito. No Brasil, no entanto, a massificação do seguro rural é 
limitada devido ao orçamento restrito para financiar o programa de subvenção governamental. Além 
disso, a falta de previsibilidade e garantia de recursos impede o planejamento de investimentos de 
longo prazo pelo setor privado, impõe custos aos beneficiários e gera insatisfação do público alvo. 
Esta tese visa contribuir para a expansão do seguro agrícola no Brasil por meio da pesquisa de seguro 
de índice climático, que possui menores custos administrativos e regulatórios quando comparado ao 
seguro tradicional. A ausência de validação de sinistro in loco e monitoramento de risco moral reduz 
os custos administrativos desse tipo de seguro, permitindo um seguro agrícola sem subsídio. No 
primeiro de dois artigos, exploramos a disponibilidade e a qualidade de bancos de dados públicos para 
produtividade de soja e precipitação diária no estado do Paraná, no Brasil, a fim de verificar a 
viabilidade de um produto de seguro de índice climático. Usamos a imputação múltipla por equações 
encadeadas (MICE) para preencher valores ausentes no conjunto de dados de precipitação e estudar a 
existência de padrões espaciais e temporais nos dados por meio de agrupamento hierárquico. Nossos 
resultados indicam que o Paraná preenche os requisitos de dados para um seguro de índice climático 
escalável com o uso do método MICE, e o agrupamento hierárquico é uma ferramenta eficaz no pré-
processamento de dados. O segundo artigo estuda a eficiência de uma nova abordagem de regressão, a 
regressão quantílica LASSO ponderada geograficamente (GWQLASSO) na modelagem da relação 
entre o índice climático e a produtividade de soja. O GWQLASSO permite que os coeficientes de 
regressão variem espacialmente, enquanto utiliza a informação proveniente dos locais vizinhos de 
modo a obter estimativas robustas. O componente LASSO do modelo facilita a seleção de variáveis 
explicativas relevantes. Um produto de seguro de índice climático (WII) é desenvolvido com base em 
um índice de precipitação normalizado (intervalo de 1 mês)  derivado de um conjunto de dados diários 
de precipitação para 41 estações meteorológicas (uma por município) no Estado do Paraná no período 
de 1979 a 2015. Os dados de rendimento da soja também são obtidos para estes 41 municípios de 
1980 a 2015. A eficácia do produto GWQLASSO é avaliada em comparação com uma abordagem de 
regressão quantílica clássica e um produto tradicional de seguro de rendimento utilizando-se a medida 
de risco espectral (SRM) e o semi-desvio médio. Embora o GWQLASSO tenha se mostrado tão 
eficaz quanto a regressão quantílica, ele superou o produto de seguro de rendimento, provando assim 
ser uma alternativa ao mercado de seguro agrícola no Brasil e em outros locais com dados limitados. 

Palavras-chave: Seguro agrícola; Risco sistêmico; GWQLASSO 
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ABSTRACT 

Weather index insurance design: a novel approach for crop insurance in Brazil 

Crop insurance is recognized as one of the most efficient mechanisms of income protection 
in agriculture, transferring risk from agriculture to other agents and economic sectors. Insurance tends 
to stimulate the increase of cultivated area and the use of technology, especially as it acts as an 
additional guarantee for access to credit. In Brazil, however, the massification of rural insurance is 
limited due to the restricted budget to fund government subsidization. Also, the lack of predictability 
and guarantee of resources prevents the long-term planning of investments by the private sector, 
imposes costs on the beneficiaries and generates dissatisfaction of the target public. This thesis aims to 
contribute to the expansion of crop insurance in Brazil through the research of index insurance, which 
has lower administrative and claim adjustment costs when compared to traditional insurance. The 
absence of in situ claim adjustment and moral hazard monitoring reduces the administrative costs of 
this type of insurance, permitting a subsidy free crop insurance. In the first of two articles, we explore 
the availability and quality of public databases for soybean yields and daily rainfall in the state of 
Paraná in Brazil in order to verify the feasibility of an index insurance product. We use multiple 
imputation by chained equations (MICE) to fill missing values in the rainfall dataset and study the 
existence of spatial and temporal patterns in the data by means of hierarchical clustering. Our results 
indicate that Paraná fulfills data requirements for a scalable weather index insurance with MICE and 
hierarchical clustering being effective tools in the pre-processing of data. The second article studies 
the efficiency of a novel regression approach, the geographically weighted quantile LASSO 
(GWQLASSO) in the modelling of yield-index relationship for weather index insurance products. 
GWQLASSO allows regression coefficients to vary spatially, while using the information from 
neighboring locations to derive robust estimates. The LASSO component of the model facilitates the 
selection of relevant explanatory variables. A weather index insurance (WII) product is developed 
based on 1-month SPI derived from a daily precipitation dataset for 41 weather stations in the State of 
Paraná (Brazil) for the period of 1979 through 2015. Soybean yield data are also used for the 41 
municipalities from 1980 through 2015. The effectiveness of the GWQLASSO product is evaluated 
against a classic quantile regression approach and a traditional yield insurance product using the 
Spectral Risk Measure (SRM) and the Mean Semi-deviation. While GWQLASSO proved as effective 
as quantile regression it outperformed the yield insurance product, thus proving an alternative to the 
crop insurance market in Brazil and other locations with limited data.  

Keywords: Crop insurance; Systemic risk; GWQLASSO 
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1. INTRODUCTION 

One of the flagships in the recent agricultural policy in Brazil, crop insurance has been advertised as one 

of the pillars of the 2016/2017 and 2017/2018 Agricultural and Livestock Plan (Ministério da Agricultura, Pecuária e 

Abastecimento, 2016; Ministério da Agricultura, Pecuária e Abastecimento, 2017). However, since its development in 

Brazil, this type of insurance has not achieved its intended endings with the protected area under 10% of the 

agricultural land (Ozaki, 2013). The low uptake is credited to the government insufficient investments in subsidies 

for the crop insurance program, however as noted by Oñate et al. (2016) one of the most subsidized crop insurance 

programs in Brazil, Proagro Mais, has failed to reduce uncertainty and risks. Also, as historic yields are not always 

available, insurers tend to use data provided by the Brazilian Institute of Geography and Statistics (IBGE), which are 

aggregated at the municipality level, thus pushing away high yield farmers and attracting the ones with low yields1 

(when compared to the munipality average yield). 

Relying on subsidies to increase crop insurance uptake seems not to be a good alternative as tax payers’ 

and several countries’ perception of farm subsidies worsens (Edwards, 2018). The benefits of this type of subsidy 

have shown to favor only the ones receiving it and not the entire community (Drabenstott, 2015; Babcock, 2015; 

Kirwan & Roberts, 2016). Therefore, subsidy free alternatives should be sought in order to improve the financial 

security of farmers. 

This does not mean the government should end all crop insurance programs, but improve their self-

sustainability. In this sense, one promising product is parametric insurance, which has lower premium costs when 

compared to traditional insurance. The absence of in situ claim adjustment and moral hazard monitoring greatly 

reduces the administrative costs of this type of insurance, permitting a subsidy free crop insurance (Jensen & Barrett, 

2017). Another advantage of index insurance products is the rapid and payment of indemnities, also due to the non-

existence of local loss assessment.  

The basis of index insurance development is systemic risk, one of the factors halting conventional crop 

insurance expansion. The correlation of losses among policyholders causes significant increase in the indemnities, 

renting conventional crop insurance infeasible in the long run. Given that crops are exposed to a series of 

widespread risks, such as drought, floods and windstorms it is clear that traditional crop insurance will not provide 

the adequate protection. 

In Brazil, crop insurance uptake through the Crop Insurance Subsidy Program (PSR) is almost limited to 

four states, Rio Grande do Sul, Paraná, Santa Catarina e São Paulo, which respond to 83,6% of the insurance policies 

sold (21,4%, 40,4%, 6,5% and 15,3% respectively). States in the northeast, which are subject to continuous drought 

events, and thus increased systemic risk only correspond to 0,7% (Ministério da Agricultura, Pecuária e 

Abastecimento, 2019). These statistics, in conjunction with the low area coverage, show that crop insurance is 

confined to the southern portion of Brazil. 

Aiming to contribute to the expansion of a sustainable crop insurance market in Brazil our main objective 

is to develop an weather index insurance (WII) design for the state of Paraná. This goal is divided in two essays, in 

the first one, entitled “Identifying potential regions for a precipitation index insurance product in Paraná – Brazil: a 

hierarchical clustering approach”, we evaluate if the state attends the minumum data requirements for a WII and 

search for precipitation and risk spatial patterns. In the second essay, entitled “An application of geographically 

                                                      
1 This problem is known in the insurance literature as adverse selection. 
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weighted quantile LASSO to weather index insurance design in Paraná – Brazil”, we develop an WII design using a 

novel approach, the geographically weighted quantile least absolute shrinkage and selection operator (GWQLASSO), 

and compare it to a traditional quantile regression and a yield insurance product. 

This thesis complements the existing literature not only by exploring methods to deal with missing data 

and detecting spatial patterns, but mainly through the use of a completely novel method to model the yield-index 

relationship. Also, we reinforce the effectiveness of parametric insurance in Paraná (Ozaki & Shirota, 2005), showing 

that a weather index insurance is preferable to a traditional yield insurance. 
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Abstract 

In this article we explore the availability and quality of public databases for soybean yields 
and daily rainfall in the state of Paraná in Brazil in order to verify the feasibility of an index insurance 
product. We use multiple imputation by chained equations (MICE) to fill missing values in the rainfall 
dataset and study the existence of spatial and temporal patterns in the data by means of hierarchical 
clustering. Our results indicate that Paraná fulfills data requirements for a scalable weather index 
insurance with MICE and hierarchical clustering being effective tools in the pre-processing of data. 

Keywords: Index-insurance; Hierarchical clustering; MICE 

 

2.1. Introduction 

One of the key aspects of parametric insurance design is data, especially of high quality and from a 

sustainable source. In the context of index insurance, high quality means a long, consistent and unbiased historical 

record. However, as noted in Collier et al. (2009) the data needs for a weather index insurance (WII) depends on the 

characteristics of the weather event insured. In this aspect, the behavior of the risk spatially and temporally will 

reflect on the necessary spatial and temporal resolution of data. 

Opposed to the traditional lines of insurance, parametric insurance relies on the spatial correlation of risks 

(systemic risks), so one of the first steps when designing this type of insurance is to determine the area affected by 

the event as this will indicate the necessary spatial resolution (Collier et al., 2010). Each event presents a spatial 

behavior, so the topography of the target region must be carefully studied, as a rough terrain alters weather patterns. 

Regions with a rough terrain generally indicate a low spatial correlation of weather events, thus, WII is not the best 

option of insurance in this case. 

Spatial correlation is not the only form of correlation one must account when searching for data. 

Temporal correlation is also important, as weather events tend to follow a pattern in time. Such phenomena are 

observed in South America with the occurrence of El Niño and La Niña, or in Asia with the monsoons. Data must 

have the proper temporal resolution to capture these seasonal patterns. 

mailto:vitorozaki@usp.br
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Just as important as historical weather data are historical records of loss and their cause, which will 

provide information of the impacts of different levels of the weather risk thus enabling the determination of an index 

trigger. Ideally, when developing a WII, one should be able to estimate the probability distribution function and 

correlations (presumably high) of each of these variables. 

A general benchmark for the minimum length of climatic data is 30 years (Collier et al., 2010). This value 

is used in many areas and represents the minimum number of observations necessary to estimate the central 

tendency and variance of a variable with acceptable accuracy. 

When it comes to loss distribution, the researcher is interested in the conditional distribution of losses in 

respect to each level of the index. The loss is treated as a random variable because the weather event does not 

produce the same outcome to all, the individual loss is conditional on factors such as the distance from the weather 

station, business diversification and adoption of risk mitigating procedures. This variation of outcomes is reflected in 

the dispersion of the loss distribution and is called the basis risk. A central point in WII design is to reduce basis risk 

by the correct derivation of an index and cause of loss. 

In Brazil, parametric insurance was introduced in 2017 by Swiss Re for a single large producer of corn, 

cotton and soybean in the states of Bahia, Mato Grosso and Minas Gerais. However, the literature in the subject is 

still inexistent, even the Brazilian literature in crop insurance is poor. This is due, in part, to the data scarcity which 

was mitigated in 2016 by the release of a Crop Insurance Atlas by the Brazilian Ministry of Agriculture, Livestock 

and Supply.  

Therefore, aiming to contribute to the expansion of parametric insurance in Brazil, our objective is to 

assess if the state of Paraná is suitable for this type of product, regarding the data needs and existence of yield and 

rainfall spatial patterns.  We focus on soybean as Paraná is the second largest producer in Brazil with a total of 

19,073,706 tons produced in 2017, being also the second in average yields (3,663 kg/ha in 2017). Also, this state is 

where crop insurance has its higher penetration with 14,7% of the total crop area insured via the Rural Insurance 

Premium Subsidization Program (PSR), thus a natural choice to study the feasibility of novel crop insurance 

products (MAPA, 2017).  

We first evaluate rainfall and soybean yield data length and quality, then use multiple imputation by 

chained equations (MICE) to fill missing values in the rainfall dataset and finally calculate the three-month 

standardized precipitation index (SPI) from the monthly totals. As for the yield data we first remove time trends, 

finally we use hierarchical clustering in order to identify spatial patterns.  

 

2.2. Materials and Methods 

Daily precipitation data in Brazil are available from the National Water Agency (ANA) and the National 

Institute of Meteorology (INMET), being that the former presents a more comprehensive distribution of weather 

stations in the state of Paraná. Therefore, we collected precipitation data only from ANA, spanning from 

01/06/1973 through 31/12/2015 for a total of 1163 weather stations. This series was later aggregated in monthly 

totals.  

Also, the series of annual soybean yields for each of the 399 municipalities in the state of Paraná, from 

1980 through 2016, were obtained from the National Institute of Geography and Statistics (IBGE).  
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2.2.1. Data cleaning and yield detrending 

From the initial set of 1163 weather stations and 399 municipalities we filtered the ones with 15% or less 

of missing data (Collier et al., 2009), resulting in 78 stations and 174 municipalities. Values of precipitation were 

capped at 150mm to account for measurement errors in the weather stations. 

Crop yield data are subject to changes in practices and technology, which are not of interest for this study, 

therefore we detrended yields. A linear regression was adjusted to the yield data with time as the explanatory variable, 

then the last observed yield was corrected using the model residuals for each year (Gallagher, 1987; Duarte et al., 

2018). The detrended yields are defined by the following equation: 

𝑦𝑦𝑡𝑡� = 𝑦𝑦2016� �1 +
𝑒𝑒𝑡𝑡�
𝑦𝑦𝑡𝑡�
� 

where 𝑦𝑦𝑡𝑡� , 𝑦𝑦𝑡𝑡�  𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑡𝑡�  are, respectively, the corrected yield, the fitted yield and the residual for year 𝑡𝑡, 𝑦𝑦2016�  

is the fitted yield for 2016. 

 

2.2.2. Imputation for precipitation data 

Given the existence of missing data we applied Multiple Imputation by Chained Equations (MICE), a 

method that combines imputation for multivariate data (Rubin, 1987) and Fully Conditional Specification, which was 

developed under several names, being chained equations the one implemented here using the R software (Van 

Buuren, 2000; 2010). 

While multiple imputation considers a single imputation model for each variable with missing values, the 

chained equations technique permits the use of separate and univariate imputation models for each of these variables 

(Bartlett et al. 2014). In this way, hundreds of variables may be imputed with a high degree of flexibility (He et al. 

2010). Continuous variables may be modeled through linear regression and binary variables through logistic 

regression for example (Chevret et al. 2015). However, MICE does not have the same theoretical basis as other 

methods such as multivariate normal imputation, what does not seem to be an issue (White et al. 2011).  

A natural question when using imputation methods is whether the missing rate may be too high to use 

multiple imputation methods such as MICE. Research shows that these methodologies are unbiased when data is 

missing at no higher than 50%, being unstable for higher percentages, especially if the data distribution is 

asymmetrical (Lee & Carlin 2012; Haji-Maghsoudi et al. 2013). However, this does not imply that multiple 

imputation should be discarded as it exhibits superior performance to other methods even for a 75% data loss, 

despite biased estimates (Marshall et al. 2010).  

For a partially observed random sample of the multivariate distribution P(Y|θ), completely specified by 

the vector of 𝑘𝑘 unknown parameters θ and representing the complete data 𝑌𝑌, the posterior distribution of θ and 

then the predictive distribution of 𝑌𝑌 are obtained through a Gibbs sampler of the form: 

θ1
⋆(𝑡𝑡)~P�θ1�𝑌𝑌1

(𝑜𝑜𝑜𝑜𝑜𝑜),𝑌𝑌2
(𝑡𝑡−1), … ,𝑌𝑌𝑘𝑘

(𝑡𝑡−1)� 

𝑌𝑌1
⋆(𝑡𝑡)~𝑃𝑃�𝑌𝑌1�𝑌𝑌1

(𝑜𝑜𝑜𝑜𝑜𝑜),𝑌𝑌2
(𝑡𝑡−1), … ,𝑌𝑌𝑘𝑘

(𝑡𝑡−1), θ1
⋆(𝑡𝑡)� 

⋮ 

θ𝑘𝑘
⋆(𝑡𝑡)~P�θ𝑘𝑘�𝑌𝑌𝑘𝑘

(𝑜𝑜𝑜𝑜𝑜𝑜),𝑌𝑌1
(𝑡𝑡−1), … ,𝑌𝑌𝑘𝑘−1

(𝑡𝑡−1)� 

𝑌𝑌𝑘𝑘
⋆(𝑡𝑡)~𝑃𝑃�𝑌𝑌𝑘𝑘�𝑌𝑌𝑘𝑘

(𝑜𝑜𝑜𝑜𝑜𝑜),𝑌𝑌1
(𝑡𝑡−1), … ,𝑌𝑌𝑘𝑘−1

(𝑡𝑡−1), θ𝑘𝑘
⋆(𝑡𝑡)� 
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where 𝑌𝑌𝑗𝑗𝑡𝑡 = (𝑌𝑌𝑗𝑗
(𝑜𝑜𝑜𝑜𝑜𝑜),𝑌𝑌𝑗𝑗

∗(𝑡𝑡)) is the 𝑗𝑗th imputed variable at iteration 𝑡𝑡 and 𝑌𝑌(𝑜𝑜𝑜𝑜𝑜𝑜) is the portion of 𝑌𝑌 that is 

observed. 

We chose predictive mean matching (PMM) as the imputation method within MICE given that 

precipitation is generally skewed, thus not normally distributed. Nevertheless, simulations have shown that normal 

imputation models do work with non-normal data (Graham & Schafer 1999). Imputations made through PMM 

better resemble the observed values than methods based on the normal distribution (White et al. 2011). This follows 

from the way PMM work as it uses the predicted value for a given missing value to identify similar observations. 

These identified observations are used to create a matching set is containing q matches, from which PMM then 

draws a random observation. Therefore, PMM uses the real observed values to fill the missing data and thus 

preventing extrapolation beyond the range of the data (Little 1988). 

As covariates we chose latitude, longitude, with month and year binaries to capture seasonal changes. 

With this specification, the MICE procedure assumes 𝑌𝑌 being normally distributed2 and estimates a linear multiple 

regression. This yields a 𝛃𝛃� vector of parameters (of length k), with an estimated covariance matrix 𝑽𝑽 and root mean-

squared error σ�, from fitting this model to 𝑌𝑌(𝑜𝑜𝑜𝑜𝑜𝑜).  

The next step is to draw the imputation parameters σ⋆, 𝛃𝛃⋆ from the exact joint posterior distribution of σ, 

𝛃𝛃. The parameter σ⋆is drawn as σ⋆ = σ��(𝑛𝑛obs − 𝑘𝑘)/𝑔𝑔, where 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 if the number of observed values, g is a random 

draw from a χ2 distribution with 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑘𝑘 degrees of freedom. Then, 𝛃𝛃⋆ is drawn as 𝛃𝛃⋆ = 𝛃𝛃� + σ⋆

σ�
𝒖𝒖1𝐕𝐕1/2, where 𝒖𝒖1 

is a vector of k independent random draws from a standard Normal distribution and 𝐕𝐕1/2 is the Cholesky 

decomposition of V. 

For each missing value 𝑌𝑌𝑖𝑖 with covariates 𝑿𝑿𝑖𝑖  PMM identifies the q individuals with the smallest values of 

�𝛃𝛃�𝑿𝑿𝑜𝑜 − 𝛃𝛃⋆𝑿𝑿𝑖𝑖� (𝑜𝑜 = 1, . . . ,𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜). Of these q closest individuals, one is chosen at random (𝑌𝑌ℎ’), and the imputed 

value of 𝑌𝑌𝑖𝑖 is 𝑌𝑌ℎ’. Thus, the imputed value is an observed value of Y whose prediction is closely matched by the 

perturbed prediction. 

The size of the matching set is chosen by the researcher with values like 𝑞𝑞 = 1 in leading to estimated 

standard errors that are too low and t-statistics that are too large (Morris et al. 2014). Whereas values ranging from 

𝑞𝑞 = 3 over 𝑞𝑞 = 10 showed a small advantage (Schenker & Taylor 1996; Morris et al. 2014). The size of the 

matching set is dependent on sample size and may have poor performance in small samples as the difference 

between similar observations is increased. 

PMM has shown similar performance to correctly specified parametric models and better than poorly 

specified ones characterized by non-normality (Morris et al. 2014; Schenker & Taylor 1996) and skewness (Marshall 

et al. 2010) considering that the method does not have a strong theoretical backing (Kenward & Carpenter 2007). 

Finally, for this analysis the number of repeated imputations was m=5, q=5 and the number of iterations 

was t=20. The quality of the imputations was checked using the Kolmogorov-Smirnov test in order to check 

departures from the original distribution of data (Raghunathan & Bondarenko, 2007). 

The application of MICE has been successful in several areas, including precipitation data imputation in 

Brazil by de Carvalho et al (2017).  

                                                      
2 This assumption does not affect the quality of the imputations as this regression is simply a metric for 
matching (Little, 1988).  
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2.2.3. Clustering procedures 

Prior to the application of hierarchical clustering, precipitation data was aggregated monthly and we 

calculated the standardized precipitation index (SPI) with a three-month scale, thus capturing drought events during 

the crop season (Mckee et al, 1993). We chose the Ward’s clustering method with an Euclidean distance matrix since 

it has already proved successful in defining homogenous precipitation regions in Brazil (Keller Filho, 2005). The 

optimal number of clusters was obtained through the majority rule of 30 indices, an algorithm implemented in 

Charrad et al (2014). 

 

2.3. Results and Discussion 

2.3.1. Weather station and yield data spatial distribution 

Observing the spatial distribution of weather stations with less than 15% of missing data and plotting a 

50km halo there is only a portion of the state without coverage, mainly around the city of Londrina (Figure 1). This 

result indicates an aptitude for parametric insurance at the meso and/or macro scales, targeted to cooperatives and 

other larger risk aggregators (Collier, 2010). At larger scales, weather index insurance permits the identification of 

large events and decreases the impact of basis risk. Microinsurance is possible for the municipalities with a weather 

station (78) and surrounding locations up to 15 km, however this greatly reduces the scalability of WII in Paraná. 

 

 
Figure 1. Weather stations spatial distribution (with a 50km halo) 

 

The yield data coverage is more disperse with some gaps, especially in the northwest and east portion of 

the state (Figure 2). In the northwest this lack of data reflects the characteristics of the region, with sandy soils and 

warm climate, being thus restrictive to the growth of soybean. Another reason for the low presence of soybean is the 

predominance of ranching in this region (Franchini et al, 2016). This author also notes that in the east the presence 

of soybean is limited. Nevertheless, the available data represents the bulk of soybean producers in the state with 

approximately 70% of the state total production in 2016 (IBGE, 2018).  
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Figure 2. Yield data spatial distribution 

 

2.3.2. Imputations 

According to the Kolmogorov-Smirnov test the distribution of the imputed precipitation does not differ 

from the original dataset (D = 0.005964, p-value = 0.1016), therefore the procedure did not alter the underlying 

structure of the data. This result reinforces the use of MICE as a valid imputation procedure for precipitation data in 

Brazil (de Carvalho et al, 2017). It must be noted that albeit its effectiveness, MICE should be used with caution in 

datasets with 50% or more of missing values. Also, the specification of the correct imputation model and quality of 

predictors plays a large role in the quality of the imputations (White et al, 2011). 

 

2.3.3. Precipitation clusters 

According to the majority rule, the optimal number of clusters was two, with nine votes, followed by 

three clusters with six votes (Table 1). Given that we used a different approach to the clustering methodology than 

Keller Filho et al (2005), whereas he used several statistical parameters calculated from five-day accumulated 

precipitation we only used the three-month SPI, our results do not completely match but are very similar regarding 

the characteristics of the clusters. Cluster 1 represents areas in the west, center and north of the state, with higher 

total precipitation in the year aggregate but greater variability among years. Whereas cluster 2 represents the center 

and east of Paraná, with a lower total precipitation but with less variability (Figure 3). 
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Table 1. Ideal number of clusters for each variable 

 
Variable 

Ideal number of clusters* 

0 1 2 3 5 6 7 8 10 

Votes 
Rainfall 2 1 9 6 0 1 1 2 1 
Yield 2 0 11 8 2 0 0 1 2 

Source: Authors          
*Only numbers with at least one vote are presented 
 

 
Figure 3. Precipitation clusters spatial distribution 

 

Regarding the SPI values for each month and cluster, it is interesting to observe that there is little 

difference in the median of monthly SPI, albeit statistically significant according to our cluster analysis (Figure 4). 

When carefully analyzed, it can be observed that cluster 1 has a greater number of observations in the lower ranges 

of SPI, indicating the occurrence of moderate and severe droughts. This can be explained by the greater variability in 

precipitation, and the occurrence of droughts in the north and northeast of the state as identified by Fritzsons et al 

(2011).  
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Figure 4. Monthly SPI boxplot, per cluster. 

 

When analyzing only the period in which soybeans are grown in the state, October through March, cluster 

1 presents variable conditions, as there is a surplus in precipitation during the growth and reproductive stages with a 

decrease in precipitation in the end of the growth period (Figure 5). However, there must be caution with the 

occasional occurrence of drought, which can be mitigated using irrigation or risk management products such as crop 

insurance. Despite the decrease in precipitation from January through April/May, the total precipitation in this 

period is sufficient for cultivars ranging from 450 to 700 mm of water requirements. 

 

 
Figure 5. Monthly precipitation (total) boxplot, per cluster. 

 

For Cluster 2, the opposite is observed with lower levels of precipitation from October through 

December and higher levels in January and February. However, in these areas, there is a steeper descent in 

precipitation levels, being the region adequate for cultivars requiring from 450 to 650 mm of water. It must be noted 
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that areas represented in cluster 2 have a lower variability, thus, it suffers less from drought and excessive rain 

periods (Figures 5 and 6). 

 

2.3.4. Yield clusters 

According to the majority rule, the optimal number of clusters was two, with eleven votes, followed by 

three clusters with eight votes (Table 1). Similar to the precipitation clusters we have cluster 1 representing the west 

and northwest of the state while cluster 2 comprehends the south, center and east of Paraná (Figure 6). Thus, the 

only difference from the rainfall clusters is that the yield cluster 1 has less presence in the center and south of Paraná. 

 

 
Figure 6. Yield clusters spatial distribution. 

 

Both clusters present a similar yield level from the beginning of the series through 1990 and from 2001 

onwards, however, in the period comprised between 1991 and 2000 cluster 1 has lower yields (Figure 7). Also, in 

years where losses occurred (1986, 1991, 1992, 2005, 2009, 2012), cluster 1 municipalities suffered greater losses, 

increasing cluster variability and decreasing the mean and median of the whole period (Table 2). The latter can be 

explained by the presence of municipalities in the northern portion of the state in cluster 1, as said in the previous 

section this region has sandy soils and higher temperatures, being more susceptible to drought (Franchini, 2016). 

Other researchers such as Pavan (2013) and Felema et al. (2016) also study the spatial behavior of soybean yields in 

Paraná. However, while our results agree to some measure, we refrain from making comparisons as both studies 

used only two years of data against our 37-year time series. 
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Figure 7. Soybean yields (kg/ha) time series with 95% confidence intervals, per cluster. 

 

Table 2. Yield clusters descriptive statistics. 

Cluster Mean Median Standard 
deviation 

Coefficient 
of variation 

(%) 
1 2993,46 3051,21 597,05 19,95 
2 3209,30 3282,11 533,26 16,62 

Source: Authors 
 

2.3.5. Yield and precipitation clusters relationship 

When comparing with the results found for the precipitation clusters, the need to consider other 

environmental variables is exemplified. Regardless of the precipitation cluster 2 having lower precipitation levels, 

other factors such as soil type and temperature lead to greater yields in this region. The southwest of Paraná is the 

only region with high precipitation and high yields. Intersecting the clusters would lead to a further separation, with 

three separate regions, the southeast with lower precipitation levels and high yields, the west and center with good 

precipitation levels (but with higher variability) and lower yields and the southwest as described above. These “new 

clusters” could present separate regions for the design of a weather index insurance products, with each region 

having a fine-tuned product. 

This analysis does not encompass soil and other weather variables, which are also important in the 

determination of the suitability of cultivars for each region. The northwest of Paraná presents sandy soils and higher 

temperatures, therefore, farms in this region suffer more from drought periods as these soils have a lower water 

holding capacity and the increase in temperature leads to a higher evapotranspiration. On the contrary, for the south 

portion of the state, soils are rich in clay, altitudes are higher and temperatures lower, this coupled with a low 



21 
 

variability in precipitation results in a lower risk of drought related yield losses (Lima et al., 2012; Franchini et al., 

2016). Consequently, when choosing adequate risk management strategies and in the design of crop insurance 

products, such as weather index insurance, these variables must be taken in account. 

 

2.4. Conclusion 

Verifying the availability and quality of data sources is one of the first steps when designing a weather 

index insurance product. This step is particularly difficult in large developing countries such as Brazil, where the 

weather agencies do not have the necessary funds to maintain a large net of weather stations. Given this lack of 

resources, the existing stations also suffer from missing data, a problem that generally implies in pricier insurance. In 

this paper we evaluate the quality of precipitation and yield data in Paraná-Brazil and present a proven method to 

deal with missing data.  

Despite the variability of soil and temperature conditions we find that the state of Paraná presents a great 

opportunity for index insurance based on precipitation data. There is a good coverage of suitable weather stations 

and the clusters found indicate the scalability of WII and the existence of spatially correlated weather events. The 

sharp decrease in weather stations from the original set to the filtered one is due to the lack of historical data in many 

of the stations, as the number of operational stations is around 900, thus the weather station coverage should 

improve with time.  

We also find that MICE proved a reliable method to fill gaps in precipitation data with up to 15% of 

missing observations, therefore it should be considered by insurers as an alternative to the practice of loading 

insurance premium in cases where data is not complete. This would provide a more attractive product without losing 

precision in the pure risk estimates as the method does not change the probability distribution of data. 

Our article presents a beginning of the exploration of weather index insurance design in the Brazilian 

literature, as we did not verify the economic viability of index insurance, focusing only in the technical aspects 

required for its operation. Thus, additional studies are required to determine if WII is a viable option to the crop 

insurance market in Paraná and how it compares to existing crop insurance products. 
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Abstract 

This article studies the efficiency of a novel regression approach, the geographically weighted 
quantile LASSO (GWQLASSO) in the modelling of yield-index relationship for weather index 
insurance products. GWQLASSO allows regression coefficients to vary spatially, while using the 
information from neighboring locations to derive robust estimates. The LASSO component of the 
model facilitates the selection of relevant explanatory variables. A weather index insurance (WII) 
product is developed based on 1-month SPI derived from a daily precipitation dataset for 41 weather 
stations in the State of Paraná (Brazil) for the period of 1979 through 2015. Soybean yield data are also 
used for the 41 municipalities from 1980 through 2015. The effectiveness of the GWQLASSO 
product is evaluated against a classic quantile regression approach and a traditional yield insurance 
product using the Spectral Risk Measure (SRM) and the Mean Semi-deviation. While GWQLASSO 
proved as effective as quantile regression it outperformed the yield insurance product, thus proving an 
alternative to the crop insurance market in Brazil and other locations with limited data. 

Keywords: GWQLASSO; Index-insurance; Systemic risk 

 

3.1. Introduction 

The unpredictability of climatic variations is the principal risk factor in soybean cultivation on the south 

of Brazil. Reports on indemnities paid by government risk management programs, the Program for the Guarantee of 

Agricultural and Livestock Activity (Proagro)3 and Rural Insurance Premium Subsidization Program (PSR) (MAPA, 

2015; BACEN, 2018), shows that the occurrence of droughts are the main event of loss (85% of the insured sum), 

followed by excessive rain (7.6% of the insured sum) and hail (4.2% of the insured sum). In addition, losses due to 

strong wind, excessive temperature fluctuation and flood are also mentioned. 

Crop insurance is recognized as one of the most efficient mechanisms of income protection in agriculture, 

transferring risk from agriculture to other agents and economic sectors. Insurance tends to stimulate the increase of 

cultivated area and the use of technology, especially as it acts as an additional guarantee for access to credit 

(Goodwin et al, 2004). In this sense, it not only contributes to the achievement of lower interest rates (Cai, 2016) by 

                                                      
3 Created with the objective of exempting the rural producer from the fulfillment of financial obligations in rural 
credit operations in case of income losses motivated by climatic adversities. 

mailto:vitorozaki@usp.br
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the rural producer, since the reduction of agricultural risk translates into lower credit risk, but also contributes to the 

development of financial, insurance and capital markets. As a result, it minimizes the pressure for subsidized credit 

and ex-post government financial bailout, reducing the recurring pressure for renegotiations of rural debts. 

However, the degree of penetration of agricultural insurance, considering the size and relevance of 

Brazilian agribusiness, is still insignificant. One of the reasons for the restriction of the subsidized crop insurance 

program and the massification of rural insurance in the country is the limited availability of budgetary resources to 

fund the policies. Also, the lack of predictability and guarantee of resources prevents the long-term planning of 

investments by the private sector, imposes costs on the beneficiaries and generates dissatisfaction of the target public 

(MAPA, 2017). 

The Proagro risk management program also faces difficulties, according to Oñate et al. (2016) there was 

no increase in welfare for participating farmers. Considering the fact that the pricing of Proagro does not take into 

account regional differences, only crop type and cultural management practices such as the use of irrigation 

(BACEN, 2018), we believe different approaches must be sought by the government. 

A possible alternative to overcome these issues is parametric insurance, which has lower administrative 

and regulation costs when compared to traditional insurance. The absence of in situ claim adjustment and moral 

hazard monitoring greatly reduces the administrative costs of this type of insurance, permitting a subsidy free crop 

insurance (Jensen e Barrett, 2017). Another advantage of parametric insurance is the rapid payment of indemnities. 

Parametric insurance first appeared in the pioneering written by Chakravarti (1920). After more than a 

decade studying the subject, the author developed an insurance product based on rainfall levels for Chitradurga in 

India. Indemnities were paid if total rainfall measures in the beginning of the agricultural year were 35% below 

normal. The payouts were divided in two periods, from January through July and from January through October, 

according to the production cycle. The author noted that the area should be as uniform as possible, in respect to 

rainfall, for the insurance to work properly. The premiums were calculated to be as close as possible to land tax 

value, with both premiums and indemnities depending on the land’s quality. In order to keep the farmers enrolled in 

the insurance scheme, contracts would be ranging from 5 to 10 years, so that each farmer would receive at least one 

indemnity and thus perceive the value of crop insurance (Mishra, 1995; Rao, 2011). 

Halcrow (1949) devised a different form of index insurance, based in the area-yields. The main idea was 

to develop an insurance product where indemnities would be due when the mean-yield of a uniform area fell below a 

pre-defined level (which could be defined as a proportion of the expected mean-yield). The size of the area could 

vary as long as the homogeneity of yields was maintained, and the insured farmer would select a percentage of the 

expected yield for the area.  

The main advantage of this type of insurance over the traditional crop-insurance products is the reduction 

of moral hazard4. Since the farmer could not significantly alter the area-yield, risk increasing measures are not 

economically viable. This would also lead to a reduction in deductibles and coverage levels limitation by the insurers 

(Miranda, 1991). This author also notes that adverse selection5, which is caused by information asymmetry, is 

reduced in area-yield insurance as this information is available to the general public. Adding to the advantages of this 

                                                      
4 When the insured incur in risk increasing activities or stop taking risk-mitigating actions. 
5 The inability to correctly measure farmer risk lead insurers to price the insurance incorrectly and in 

consequence to a greater proportion of high-risk farmers in their portfolio. This will ultimately lead to a market 

collapse. 
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type of insurance are the reduced administrative costs since an index-based insurance does not require individual 

assessment of yields, a major cost for traditional crop-insurance. 

Two years after the work published by Miranda (1991) a yield-based index-insurance was developed by 

the Federal Crop Insurance Corporation (FCIC) in conjunction with Skees et al. (1997). The product named Group 

Risk Plan (GRP) was expanded in 1994 and reached 70% of market participation in 1997, considering the seven 

major crops and excluding forage. An additional feature of GRP was the possibility to scale the protection (the 

product of expected yield and expected price) up to 150%. This option was intended to increase protection since 

farm and county yields are not perfectly correlated. The difference between the county-yields, the index, and the 

value of individual yields, is called basis-risk, a problem that is always present in index-based insurance. In this way, 

GRP was design to reduce basis-risk by using double exponential smoothing to forecast the central tendency of 

yields, scaling the protection and paying indemnities based on the percentage reduction of yields rather than the 

weight/volume reduction. Since yield data provided by the National Agricultural Statistics Service (NASS) are 

available only at the county level, it wasn’t possible to change the area in order to increase homogeneity of yields. 

The GRP insurance was later expanded in 1999 to cover price variations and the index turned into a 

revenue index, named the Group Risk Income Protection (GRIP). The expected price was calculated individually for 

each crop and region. Both GRP and GRIP were replaced by the Area Risk Protection Insurance Policy (ARPI) in 

2013. This new policy is formed of three insurance plans, Area Revenue Protection (ARP), Area Revenue Protection 

with Harvest Price Exclusion (ARPwHPE) and Area Yield Protection (AYP). The ARP and ARPwHPE are similar 

to the GRIP and the AYP is similar to the GRP, with the harvest price exclusion option meaning the amount 

protected will not rise if harvest prices rise (Schnitkey, 2014). 

Weather based index products were to be operated only from 2006 with the approval of flood insurance 

by the Peruvian government (Khalil et al., 2007). Following that, several studies and pilots were launched, mostly in 

developing countries (Skees et al., 2001, 2007; Giné et al., 2010; Leblois et al., 2014; Maestro et al., 2016). 

Parametric insurance in Brazil is quite limited, with only one insurer offering tailored weather index 

insurance products (Swiss Re) as of 2018. Past initiatives include a yield index product, commercialized by AgroBrasil 

(Carter et al., 2015) in the state of Rio Grande do Sul and a hypothetical yield index insurance for Castro in Paraná 

(Ozaki, 2005). 

Therefore, aiming to contribute for the expansion of parametric insurance in Brazil, we intend to assess if 

the Paraná state presents a suitable environment for this type of product. This study specifically targets soybean in 

Paraná, the second largest soybean producer in Brazil with a total of 19,073,706 tons produced in 2017, being also 

the second in average yields (3,663 kg/ha in 2017). We develop a weather index product based on the Standardized 

Precipitation Index (SPI) and analyze its hedging effectiveness against a common yield insurance. 

We also extend the work of Conradt (2015), who proposed the use of quantile regression to model the 

yield-index relationship, by applying the Geographically Weighted Quantile least absolute shrinkage and selection 

operator (GWQLASSO) (Wang, 2018) framework. Our hypothesis is that the spatial component, captured by the 

latter, plays an important role in the determination of the yield-index relationship. Also, this methodology is less data 

intensive, as it borrows information from neighboring locations. The effectiveness of our model is compared to the 

traditional yield insurance and the quantile regression approach by means of two risk measures, the Spectral Risk 

Measure (SMR) and the Mean-semideviation model. 

This article is organized as follows: in the empirical framework section, we present in detail the different 

methodologies utilized throughout the article, then in empirical application we give some context in our data base 
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and the proposed index insurance product for Paraná. Our findings and discussion are found in results and 

discussion and we finish with conclusions. 

 

3.2. Empirical Framework 

This section outlines the conceptual framework strategy used in the article. We present an overview of the 

methods used to model the yield-index relationship and to evaluate the proposed index insurance contract. 

 

3.2.1. Quantile Regression 

Quantile regression models the causal effects of covariates in different quantiles of the cumulative 

distribution function of the response variable, and therefore are an alternative approach to the usual linear regression 

methodology. That is, while the classical models are limited to the analysis of conditional mean, the quantile 

regression allows analysis throughout the conditional distribution of the response variable in the covariates. 

The quantile regression models emerged as a generalization of the absolute residual minimization method 

developed in the early 19th century. The quantile regression has long stumbled on the difficulty of estimating the 

parameters that, unlike the usual linear regression models, have no analytical formula. However, with the advent of 

computers, as well as the development of linear programming techniques, the methodology has been gaining more 

space in empirical studies and academic research. 

Let 𝑌𝑌𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛, random variables and 𝒙𝒙𝑖𝑖 ∈ ℝ𝑝𝑝 the observed vector of covariates. Consider that the 

variables 𝑌𝑌𝑖𝑖 are conditionally independent given 𝒙𝒙𝑖𝑖 ; ∀𝑖𝑖 = 1, … ,𝑛𝑛. 

Whereas the usual regression is limited to describing the relationship of 𝑌𝑌𝑖𝑖 with the covariates of the study 

under the terms of conditional methods, quantile regression is a statistical modeling technique which allows 

analyzing this relationship in any quantile τ of interest, 𝜏𝜏 ∈ [0,1]. In other words, it is a methodology capable of 

describing the function 𝑓𝑓(∙, τ) such that 

𝑄𝑄𝑌𝑌𝑖𝑖|𝒙𝒙𝑖𝑖(τ) = 𝑓𝑓(𝒙𝒙𝑖𝑖 , τ) (1) 

for all 𝜏𝜏 ∈ [0,1]. The function 𝑓𝑓(∙, 𝜏𝜏) is the systematic part of the regression model. Note that 𝑓𝑓(∙, 𝜏𝜏) may 

be different for each τ. 

An intuitive way of understanding quantile regression, which is usually presented in the area literature, is 

an analogy to classical regression models (see, for example, Koenker (2005)). 

In this case, each observed value of the response variable of the study is given by the sum of a systematic 

part, which is the quantile of order τ of 𝑌𝑌𝑖𝑖 , 𝑓𝑓(𝒙𝒙𝑖𝑖 , 𝜏𝜏) and a random error 𝜖𝜖𝑖𝑖 . This is: 

𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝒙𝒙𝑖𝑖 , τ) + 𝜖𝜖𝑖𝑖 , 

with independent and identically distributed 𝜖𝜖𝑖𝑖 . Assuming that the order τ of 𝜖𝜖𝑖𝑖 , conditional to 𝒙𝒙𝑖𝑖 , is equal 

to zero, note that the function to be modeled can be expressed as presented in (1).  

As discussed in Koenker (2005), for example, the assumption of errors identically distributed is not a 

necessary condition for adjusting the quantile regression. Unlike the classical regression methodology, the quantile 

regression models can incorporate heteroscedasticity information from independent random errors. 
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Once the concept of quantile regression has been defined, it is necessary to understand how to interpret 

the model coefficients. Consider, for example, that f(𝒙𝒙𝑖𝑖 , τ) = 𝒙𝒙𝑖𝑖𝑇𝑇𝛃𝛃(τ) for τ fixed. In this case, the interpretation of 

the parameters β(τ) is essentially the same as the linear model, being the rate of change. That is, the coefficient 

β𝑗𝑗(τ), 𝑗𝑗 = 1, … , 𝑝𝑝, can be interpreted as the rate of change in the τ quantile of the variable 𝑌𝑌 by varying in a unit the 

value of the 𝑗𝑗th covariate while maintaining the values of other variables fixed. This is, β𝑗𝑗(τ) = 𝜕𝜕𝑄𝑄𝑌𝑌|𝒙𝒙(τ)/ ∂𝑥𝑥𝑗𝑗 . 

 

3.2.2. Geographically Weighted Regression 

Geographically Weighted Regression (GWR) is an extension of the classical linear regression for the 

analysis of non-stationary spatial data. The model allows its parameters to vary spatially, without limiting the form of 

this variation. The idea of GWR is to make a local adjustment for each point in the study region based on the closest 

observations. Thus, a continuous function β𝑗𝑗(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) is created for each parameter, where (𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) are the spatial 

coordinates of the ith point. The objective of GWR is to provide non-parametric estimates of these continuous 

surfaces using the kernel function. 

The GWR model (Fotheringham et al., 2002) is presented below: 

𝑦𝑦𝑖𝑖 = β0(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) + �β𝑗𝑗(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖)𝑥𝑥𝑖𝑖𝑗𝑗
𝑗𝑗

+ ϵ𝑖𝑖 (2) 

 

ϵ𝑖𝑖 ∼ 𝑁𝑁(0,σ2). 

Note that the assumptions of the classical regression model (Normal, homoscedastic and uncorrelated 

errors) remain. However, by allowing spatial variation for the parameters, the problems of autocorrelation and 

heteroscedasticity are reduced. The persistent limitation is normality, so this model is not yet the most suitable for 

treating spatial counting data, for example. It is interesting to note that classical regression is a special case of GWR. 

This simplification occurs when there is no spatial variation in the parameters.  

Mathematically, β𝑗𝑗(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) is estimated in matrix form by: 

𝛃𝛃�(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) = (𝑿𝑿𝑇𝑇𝑾𝑾(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖)𝑿𝑿)−1𝑿𝑿𝑇𝑇𝑾𝑾(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖)𝒚𝒚 (3) 

 

where 𝜷𝜷� represents an estimate for 𝛃𝛃, and  𝑾𝑾(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) is an 𝑛𝑛 × 𝑛𝑛 matrix with elements outside the 

diagonal equal to zero and diagonal elements representing the geographical weight of each observation at point i. 

Briefly, and defining (𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) by (𝑖𝑖) the parameters in each row of the matrix of Equation (3) are estimated by: 

𝛽̂𝛽(𝑖𝑖) = (𝑿𝑿𝑻𝑻𝑾𝑾(𝑖𝑖)𝑿𝑿)−1𝑿𝑿𝑻𝑻𝑾𝑾(𝑖𝑖)𝒚𝒚 

where i represents the matrix line of Equation (2) and 𝑾𝑾(𝑖𝑖) is a diagonal matrix of spatial weights 𝑛𝑛 × 𝑛𝑛 

of the form: 

𝑾𝑾(𝑖𝑖) = �

𝑤𝑤𝑖𝑖1 0 ⋯ 0
0 𝑤𝑤𝑖𝑖2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑤𝑤𝑖𝑖𝑖𝑖

�, 

where 𝑤𝑤𝑖𝑖𝑖𝑖  is the weight given to point n in the calibration of the model for point i. 
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The estimator of Equation (3) is a weighted least square estimator but does not use a constant weight 

matrix. The weights in GWR, the values of the weighting matrix W, are calculated for each location i. In this way, 

each locality receives a different weight in the estimation in i, that is, a calibration is made for each point of interest. 

In this sense, the idea is that the weights are a measure of proximity of the observation to the point of estimation i.  

The key point of this technique is the definition of the "circle of inclusion" of observations around point 

i, or more generally, of the spatial structure. The specified circle has a radius of size h. If h is too large, then almost all 

data will be included in the estimation of 𝛽𝛽𝑗𝑗(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖), making estimates close to the standard linear regression. If h is 

too small, few observations will be included in the calibration, resulting in 𝛽𝛽𝑗𝑗(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) estimates with large standard 

errors. Finding the best h size is therefore extremely important in finding the best GWR fit. 

The weight characteristic is also relevant in the adjustment, since it can be done in a discrete or 

continuous way, as discussed by Brunsdon et al. (1998). In the discrete case, to perform the calibration some points 

are excluded according to some criterion, for example an inclusion circle with radius h, that is, for a given locality i, 

the weight 𝑤𝑤𝑖𝑖𝑖𝑖  given to locality k can be: 

𝑤𝑤𝑖𝑖𝑖𝑖 = �1,
0,

if 𝑑𝑑𝑖𝑖𝑖𝑖 < ℎ.
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

 

where 𝑑𝑑𝑖𝑖𝑖𝑖 is the distance between i and k. Or another possibility: 

𝑤𝑤𝑖𝑖𝑖𝑖 = �1,
0,
𝑖𝑖𝑖𝑖 𝑘𝑘 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑁𝑁 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑖𝑖,

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.
 

The continuous case considers that the k localities closest to the locality i have more weight in the 

estimation than more distant localities, in addition the continuous form can follow diverse distributions. In the 

Gaussian case, the  𝑤𝑤𝑖𝑖𝑖𝑖  weight can be represented by: 

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝑑𝑑𝑖𝑖𝑖𝑖2

2ℎ2
�. 

In this situation, the weight value gradually decreases with distance and can be written: 

𝑤𝑤𝑖𝑖𝑖𝑖 = �[1 − (𝑑𝑑𝑖𝑖𝑖𝑖/ℎ)2]2,
0,

if 𝑑𝑑𝑖𝑖𝑖𝑖 < ℎ.
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

 

These functions are known as "Kernel functions" or Kernels and are denoted by the letter K such as: 

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝐾𝐾(𝑑𝑑𝑖𝑖𝑖𝑖). Note that h also defines the degree of influence of each observation. The problem, then, is to 

estimate the constant h, sometimes referred to as Kernel bandwidth or smoothing parameter, which also functions as 

a variability factor of the weight curve. 

It is known that the results of GWR are relatively indifferent to the choice of Kernel function but are 

highly sensitive to the smoothing parameter of the Kernel function used (Fotheringham et al., 2002). In the more 

general case, a constant smoothing parameter for all points is efficient if the points are equally spaced. However, 

where data are not equally spaced (spatially dispersed or when areas have different sizes), a constant smoothing 

parameter might prove suitable for some, but not all, locations. This is because the estimated parameters may have 

large standard errors due to the few points used in the calibration, or in extreme cases, the estimation would not be 

possible due to the lack of variability. Thus, to reduce these problems, it is possible to use a variable smoothing 

parameter, which allows a large smoothing parameter, where the data is scattered, and a small smoothing parameter, 

where the data is more abundant. 

A solution to determine the smoothing parameter is cross-validation (CV), which was suggested by 

Cleveland (1979), for the local regression of the form: 



31 
 

𝐶𝐶𝐶𝐶 = �[𝑦𝑦𝑖𝑖 − 𝑦𝑦�≠𝑖𝑖(ℎ)]2
𝑛𝑛

𝑖𝑖=1

, (4) 

where 𝑦𝑦�≠𝑖𝑖(ℎ) is the adjusted value for point 𝑦𝑦𝑖𝑖 , omitting the observation i. When h becomes the smallest 

possible, the model is calibrated only in samples near i and not i. The value that minimizes Equation (4) is the 

optimal smoothing parameter of the cross-validation method. 

It is important to note that the weighted least squares method for the GWR produces biased estimates for 

the parameters. The bias arises because the model adjusts local regressions assuming that the surface of the 

parameters is approximately flat in the vicinity of the analyzed regression point, when in fact the parameters probably 

vary continuously in the space. On the other hand, considering that there is no spatial stationarity, the estimates of 

the global regression model will be even more biased, since it assumes that the parameter is constant in every study 

region. 

The bias of the GWR estimates, as well as the variance, will depend on the smoothing method. The 

choice of a very large smoothing parameter gives us an accurate estimate (with less variance) for the parameter, 

however, when considering more distant points in the calibration of the model, we are introducing bias in this 

estimation. The other extreme produces opposing results, that is, a small smoothing parameter produces an unbiased 

estimate, but with more variance, since it is based on a smaller sample size. 

However, Staniswalis (1989) shows that under certain conditions (such as limited log-likelihood functions 

with first, second, and third derivatives also limited, and 𝑏𝑏 → 0 when 𝑛𝑛 → ∞), estimators that maximize the local 

likelihood, in this case β𝚥𝚥� (𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖), are asymptotically normal, non-biased and consistent. 

 

3.2.3. Least Absolute Shrinkage and Selection Operator (LASSO) 

The LASSO model, originally proposed by Tibshirani (1996), aims to shrink the parameters of a 

regression model allowing some of them to assume null value. Thus, the technique simultaneously produces the 

selection of the relevant variables in the model and the estimation of their respective coefficients. The estimates are 

obtained by a model of minimization of the error in the data subject to a penalty in the norm 𝐿𝐿1 of the coefficients: 

𝜷𝜷�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
β0,β1,…,β𝑝𝑝

� �𝑦𝑦𝑖𝑖 − β0 −� β𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗
𝑝𝑝

𝑗𝑗=1
�
2𝑛𝑛

𝑖𝑖=1
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡� �β𝑗𝑗� ≤ 𝑎𝑎

𝑝𝑝

𝑗𝑗=1
(4) 

where a is the adjustment parameter that determines the intensity of the shrinkage. Written in the form of 

a Lagrangian, equation (4) takes the following form: 

𝜷𝜷�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝛽𝛽0,𝛽𝛽1,…,𝛽𝛽𝑝𝑝

� �𝑦𝑦𝑖𝑖 − 𝛽𝛽0 −� 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗
𝑝𝑝

𝑗𝑗=1
�
2𝑛𝑛

𝑖𝑖=1
+ λ� �𝛽𝛽𝑗𝑗�

𝑝𝑝

𝑗𝑗=1
 

where parameter 𝜆𝜆 ≥ 0 becomes the intensity of the shrinkage. Put in matrix format, the model is such 

that: 

𝜷𝜷�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝛃𝛃�

∥ 𝒀𝒀 − 𝑿𝑿𝛃𝛃 ∥22 + λ� �𝛽𝛽𝑗𝑗�
𝑝𝑝

𝑗𝑗=1
 

where β is the vector of parameters 𝑝𝑝 × 1,𝒀𝒀 = (𝑦𝑦𝑖𝑖 , … ,𝑦𝑦𝑛𝑛)′ is the data vector for the dependent variable, 

𝑋𝑋 is the matrix 𝑝𝑝 ×  𝑛𝑛 of data from the series of predictors and 𝜆𝜆 ≥  0 is the shrinkage parameter. 
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Thus, the shrinkage parameter 𝜆𝜆 plays a fundamental role in the model. As 𝜆𝜆 is reduced to zero or close 

to zero, 𝜆𝜆 reaches a value λ𝑂𝑂𝑂𝑂𝑂𝑂 such that the regularization term becomes insignificant and the parameters estimated 

by the LASSO method will be equivalent to those obtained by an OLS model. Otherwise, taking 𝛃𝛃�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 as the 

vector 𝑝𝑝 × 1 of estimated parameters obtained through the LASSO and 𝛃𝛃�𝑂𝑂𝑂𝑂𝑂𝑂 as the vector 𝑝𝑝 × 1 of estimated 

parameters obtained through the OLS regression, when λ = λ𝑂𝑂𝑂𝑂𝑂𝑂,𝛃𝛃�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝛃𝛃�𝑂𝑂𝑂𝑂𝑂𝑂 . As the value of λ increases, the 

regression parameters are shrunk to the case where only the intercept remains in the model, i.e. all other parameters 

are shrunk to zero.  

 

3.2.4. Geographically Weighted Quantile LASSO 

A natural extension to the GWR is the geographically weighted quantile regression (GWQR) model, 

which has the following form: 

𝑌𝑌𝑖𝑖 = 𝑿𝑿𝑖𝑖𝑇𝑇𝜷𝜷𝜏𝜏(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) + ϵτ,𝑖𝑖  

 

where 𝜖𝜖𝜏𝜏,𝑖𝑖 is the random error term, 𝜏𝜏 is the quantile of interest, 𝑌𝑌𝑖𝑖 and 𝑿𝑿𝑖𝑖𝑇𝑇 = �𝑋𝑋𝑖𝑖1, … . ,𝑋𝑋𝑖𝑖𝑖𝑖� are 

respectively, the response variable 𝑌𝑌 and the explanatory variables 𝑿𝑿1, … ,𝑿𝑿𝑝𝑝 at the geographical location 

(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖)(𝑖𝑖 = 1, … ,𝑛𝑛). 

 

If 𝜌𝜌𝜏𝜏(𝑧𝑧) = 𝑧𝑧�𝜏𝜏 − 𝐼𝐼(𝑧𝑧 < 0)� is the check loss function at quantile 𝜏𝜏 ∈ (0, 1), with 𝐼𝐼(∙) as the indicator 

function. For a location (𝑢𝑢𝑡𝑡 , 𝑣𝑣𝑡𝑡), let 𝑑𝑑𝑖𝑖𝑖𝑖 =∥ (𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) − (𝑢𝑢𝑡𝑡 , 𝑣𝑣𝑡𝑡) ∥, where ∥∙∥ is the Euclidean norm. According to 

Chen et al. (2012), the local-linear GWQR estimates of the coefficients, and their partial derivatives, are the ones that 

minimize the local weighted quantile loss function: 

 

ℒℎ(𝑢𝑢𝑡𝑡 ,𝑣𝑣𝑡𝑡) = 𝛴𝛴𝑖𝑖=1𝑛𝑛 ρτ �𝑌𝑌𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑇𝑇 �
𝜷𝜷𝜏𝜏(𝑢𝑢𝑡𝑡 , 𝑣𝑣𝑡𝑡) + 𝜷𝜷𝜏𝜏

(𝑢𝑢)(𝑢𝑢𝑡𝑡 , 𝑣𝑣𝑡𝑡)(𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑖𝑖)+. . .
. . . +𝜷𝜷𝜏𝜏

(𝑣𝑣)(𝑢𝑢𝑡𝑡 ,𝑣𝑣𝑡𝑡)(𝑣𝑣𝑡𝑡 − 𝑣𝑣𝑖𝑖)
��𝐾𝐾ℎ(𝑑𝑑𝑖𝑖𝑖𝑖)  

 

with respect to 𝛽𝛽𝜏𝜏(𝑢𝑢𝑡𝑡 ,𝑣𝑣𝑡𝑡), the partial derivatives of 𝜷𝜷𝜏𝜏(𝑢𝑢, 𝑣𝑣); 𝜷𝜷𝜏𝜏
(𝑢𝑢)(𝑢𝑢𝑡𝑡 ,𝑣𝑣𝑡𝑡) and 𝜷𝜷𝜏𝜏

(𝑣𝑣)(𝑢𝑢𝑡𝑡 , 𝑣𝑣𝑡𝑡) for a 

specified kernel function 𝐾𝐾ℎ(∙) = 𝐾𝐾(∙/ℎ)/ℎ2 and bandwidth ℎ. The latter is chosen via a cross validation procedure 

that is identical to its GWR counterpart, while the only difference is in the check loss function replacing the 

quadratic loss function. 

Applying the aforementioned LASSO method to the GWQR we have: 

 

ℒℎ,λ = ∑ ℒℎ(𝑢𝑢𝑡𝑡 ,𝑣𝑣𝑡𝑡)𝑛𝑛
𝑡𝑡=1 + ∑ �

λ1𝑗𝑗 ∥ �𝛽𝛽𝑗𝑗(𝑢𝑢1, 𝑣𝑣1), . . . ,𝛽𝛽𝑗𝑗(𝑢𝑢𝑛𝑛 , 𝑣𝑣𝑛𝑛)�𝑇𝑇 ∥ +⋯

. . . +λ2𝑗𝑗 ∥ �
𝛽𝛽(𝑢𝑢)(𝑢𝑢1, 𝑣𝑣1), . . . ,𝛽𝛽(𝑢𝑢)(𝑢𝑢𝑛𝑛 ,𝑣𝑣𝑛𝑛),
𝛽𝛽(𝑣𝑣)(𝑢𝑢1, 𝑣𝑣1), . . . ,𝛽𝛽(𝑣𝑣)(𝑢𝑢𝑛𝑛 , 𝑣𝑣𝑛𝑛)

�
𝑇𝑇

∥
�𝑝𝑝

𝑗𝑗=1 (5)  

 

where 𝝀𝝀1 = �𝜆𝜆11, … , 𝜆𝜆1𝑝𝑝�
𝑇𝑇 ∈ ℝ𝑝𝑝 and 𝝀𝝀2 = �𝜆𝜆21, … , 𝜆𝜆2𝑝𝑝�

𝑇𝑇 ∈ ℝ𝑝𝑝 are the tuning parameters. This 

combination of the GWQR technique and the lasso method, is named by Wang et al. (2018) the geographically 

weighted quantile lasso (GWQLASSO). 
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Given that both the local weighted quantile loss function and the penalty function in (5) are 

nondifferentiable at the origin, what results in the common derivative-based algorithm being unusable for obtaining 

the solution of ℒℎ,𝜆𝜆. Therefore, a quadratic approximation (Hunter and Lange, 2000) is used to approximate the local 

weighted quantile loss function, while the local quadratic approximation (Fan and Li, 2001) is used to approximate 

the penalty function and establish the iterative algorithm of the GWQLASSO. 

 

3.2.5. Spectral Risk Measures 

Traditional risk measures, such as the value at risk (VaR) and expected shortfall (ES) have some 

limitations. The two measures of risk do not explicitly consider the degree of risk aversion of the user of the method 

(Cotter & Dowd, 2010). It is implicit, when using VaR as a risk measure, that the agent has a negative risk aversion, 

whereas the choice of ES implies risk neutrality (Grootveld & Hallerbach, 2004). In the case of VaR, the negative 

risk aversion is explicit when it is verified that the agent does not weigh the losses that exceed the VaR. For ES, risk 

neutrality is illustrated by the fact that the agent weighs losses that exceeds the VaR uniformly. Therefore, Acerbi 

(2002), Dowd, Cotter and Sorwar (2008) and Cotter and Dowd (2010) argue that VaR and ES are not consistent risk 

measures when the agent using the technique has risk aversion. 

To overcome this limitation, Acerbi (2002) proposed a measure of spectral risk that is consistent when 

applied to agents with risk aversion. Thus, consider the risk measure defined by: 

𝑀𝑀𝜑𝜑 = � 𝑞𝑞𝑝𝑝
1

0
φ(𝑝𝑝)𝑑𝑑𝑑𝑑 

where 𝑞𝑞𝑝𝑝 is the quantile 𝑝𝑝 of the distribution of losses, 𝜑𝜑(𝑝𝑝) is a weight function defined in 𝑝𝑝, and 𝑝𝑝 is a 

cumulative probability interval such that 𝑝𝑝 ∈ [0,1]. 

The measure of risk 𝑀𝑀𝜑𝜑 satisfies the conditions of coherence if and only if 𝜑𝜑(𝑝𝑝) satisfies the following 

properties: 

• 𝜑𝜑(𝑝𝑝) > 0: the weights must always be non-negative. 

• ∫ 𝜑𝜑(𝑝𝑝)𝑑𝑑𝑑𝑑1
0 = 1: the sum of the weights must be equal to the unit. 

• 𝜑𝜑′(𝑝𝑝) ≥ 0: high losses are associated with weights greater than or equal to losses of smaller magnitude. 

Now, one must select a suitable risk aversion function that satisfies the above properties. Here we use the 

exponential function of risk aversion: 

 

φ(𝑝𝑝) =
𝑘𝑘𝑒𝑒−𝑘𝑘(1−𝑝𝑝)

1 − 𝑒𝑒−𝑘𝑘
 

 

where 𝑘𝑘 > 0 is the absolute risk aversion coefficient. This measure of spectral risk attributes greater 

weights to losses in the higher levels of cumulative probability distribution (the worst losses). In addition, for any 𝑑𝑑𝑑𝑑, 

the weights vary more rapidly the more risk averse the agent is. The growth rate depends on the value of 𝑘𝑘, that is, 

the more risk averse the investor, the more the weights will grow. 
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3.2.6. Mean Semi-deviation 

The standard deviation considers both the below and above average values to be equally undesirable, and 

this may not be consistent with the objectives of the farmers, as the concern is generally about losses, which become 

more serious in the case of distributions. Alternatively, we can use an indicator that considers only the dispersion of 

values on the left side of the distribution, that is, the semideviation, given by: 

 

σ𝑠𝑠𝑠𝑠𝑠𝑠 = �∑ (𝑚𝑚𝑚𝑚𝑚𝑚[0,𝑤𝑤𝑖𝑖 − 𝑤𝑤�𝑖𝑖])2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

 

where 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠 is the default semideviation of the wealth stream, 𝑤𝑤𝑖𝑖  are the wealth values generated by the 

Bayesian bootstrap procedure, and 𝑤𝑤�𝑖𝑖 is the critical point below which the farmer cares, and n is the number of 

observations. The value of 𝑤𝑤�𝑖𝑖 represents the minimum acceptable return, that is, the point at which the dispersion of 

the left distribution is measured. 

The concept of semideviation is not new, and its applications in the area of finance have emerged with 

Markowitz (1959), who in his classic book notes that the choice between the two measures depends on the 

convenience, familiarity, and differences between the portfolios produced by different metrics, among other 

pertinent characteristics. 

An important feature to be emphasized is that the numerical value of the standard deviation is at least 

equal to the semideviation. The immediate implication is that we cannot make a comparison between the standard 

deviation and the semi deviation, even though the two have equal units. 

Thus, the mean semi-deviation method is expressed by σ𝑠𝑠𝑠𝑠𝑠𝑠  and: 

𝑈𝑈𝑖𝑖𝑖𝑖 = �𝑊𝑊𝑖𝑖𝑖𝑖 − 𝐸𝐸(𝑾𝑾𝑖𝑖),
0,

if 𝑊𝑊𝑖𝑖𝑖𝑖 < 𝐸𝐸(𝑾𝑾𝑖𝑖)
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

where 𝑈𝑈𝑖𝑖𝑖𝑖 is the farmer utility and 𝐸𝐸 is the expectation operator. The exposure to adverse weather 

conditions relative to the semideviation is then measured by: 

𝑉𝑉𝑖𝑖 = 𝐸𝐸(𝑾𝑾𝑖𝑖) −
1
2
𝑘𝑘σ𝑠𝑠𝑠𝑠𝑠𝑠  

where 𝑉𝑉𝑖𝑖 is the revenue risk. A higher value of 𝑉𝑉𝑖𝑖 is conditioned to a lower level of semideviation, thus 

indicating less exposure to weather risk. 

For both risk measures we chose a 𝑘𝑘 value of 0.5 following Conradt et al (2015) and Dowd et al. (2008). 

 

3.3. Empirical Application 

3.3.1. Data cleaning and yield detrending 

We continue the analysis initiated in chapter 1 using the filtered National Water Agency (ANA) monthly 

precipitation data set. For this chapter we focused only on municipalities, in the state of Paraná, with an operational 

weather station. The time series spans from 01/10/1979 through 01/04/2015 for a total of 41 weather stations, one 
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per municipality. We also use the series of annual soybean yields for these 41 municipalities, from 1980 through 

2015, obtained from the National Institute of Geography and Statistics (IBGE).  

Crop yields were detrended using the following equation (Duarte et al., 2018): 

𝑦𝑦�𝑡𝑡,𝑖𝑖 = 𝑦𝑦�2015,𝑖𝑖 �1 +
𝑒̂𝑒𝑡𝑡,𝑖𝑖

𝑦𝑦�𝑡𝑡,𝑖𝑖
� 

where 𝑦𝑦�𝑡𝑡,𝑖𝑖 , 𝑦𝑦�𝑡𝑡,𝑖𝑖 ,𝑦𝑦�2015,𝑖𝑖 and 𝑒̂𝑒𝑡𝑡,𝑖𝑖 are, respectively, the corrected yield, the fitted yield,  the fitted yield for 

2015 and the residual for year 𝑡𝑡 and municipality 𝑖𝑖. 

 

3.3.2. Data pre-processing and clustering 

As detailed in chapter 1 we applied Multiple Imputation by Chained Equations (MICE) using the R 

software (Van Buuren, 2000). We calculated the standardized precipitation index (SPI) with a three-month scale, thus 

capturing severe drought events during the crop season (Mckee et al, 1993). We chose the Ward’s clustering method 

with an Euclidean distance matrix since it has already proved successful in defining homogenous precipitation 

regions in Brazil (Keller Filho, 2005). The optimal number of clusters was obtained through majority vote of 30 

indices, an algorithm implemented in Charrad et al (2014). 

 

3.3.3. Weather Index-insurance 

The state of Paraná is an important producer of soybean, being the second largest producer in Brazil. In 

spite of the evolution in crop technology and crop management, yields are highly susceptible to drought in some 

regions of the state, with as much of 50% of the final yields being dependent on water availability (Farias et al., 2001; 

Carmello & Sant’anna Neto, 2016). 

Our WII hypothetical product is based on the standardized precipitation index (SPI) rather than 

cumulative rainfall. We chose this approach as there is a weak correlation between monthly precipitation and yields. 

This is because water availability depends on variables other than rainfall, such as water storage capacity in the soil 

and evapotranspiration potential, which is greatly influenced by air temperature (van Lier, 2014). The option for a 

rainfall-based index is also due to the better coverage of rainfall stations in Paraná. 

The Standardized Precipitation Index (SPI) is based on the probabilities of overcoming a certain 

accumulated precipitate volume. Rainfall values are summed over several scales, for example 3, 6, 12 or 24 months, 

depending on the interest or need of the analyst. For a given month, for example, October, the 7-month SPI (SPI-7) 

is obtained from the sum of the precipitations over the seven months preceding the reference month. 

The series of data, resulting from the sum of the precipitations over the months, is then adjusted to a 

probability distribution. In the original formulation, McKee (1993) used the Gamma distribution. From the 

adjustment of the probability distribution, each element of the adjusted series is assigned a probability of non-

overrun. Each of these probabilities of non-overrun is finally associated with the corresponding quantile of the 

standard normal distribution. The quantile value of the 𝑁𝑁(0,1) associated with the probability calculated in the 

period of interest is the SPI value for the month. 

One of the advantages of using SPI, according to McKee (1993), is that SPI is only a function of 

probability. Thus, regardless of the probability distribution function to be used, the SPI can be properly calculated. 
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Other advantages are that SPI is able to characterize both dry and rainy periods, as well as the fact that it is suitable 

for any hydrological variable. However, the use of this index also has limitations. Mishra and Singh (2010) argue that 

the main one is the need for long historical records for its consistent calculation, which is not always possible 

(Weschenfelder et al., 2011). 

The relationship between SPI and soybean yields is then modeled using the GWQLASSO framework. We 

follow Conradt et al. (2015) and use a method based on the inverse function of the estimated regression to determine 

the triggers and exits of the contract. This approach permits a precise definition of the coverage level and does not 

require individual tinkering of the product parameters for each location, thus facilitating and streamlining product 

development. For our study we chose a coverage level of 100% of the expected yield. 

In preliminary assessments we found that the 1-month SPI has the highest correlation with soybean 

yields, thus we only present here the results for this index from October through March, the months that correspond 

to the planting and harvesting of soybean in most of Paraná6. 

 

3.3.4. Premium Estimation 

The insurance premium is derived from the probability distribution function (pdf) of indemnities, or an 

approximation of this distribution. In our study, we use the Historical Burn Analysis (HBA) method to approximate 

the pdf of indemnities. This method is based in actual realizations of the proposed index which are then converted in 

payouts. The average value of these payouts represents the expected loss. 

HBA is the simplest method to estimate an insurance premium, it also does not require assumptions on 

the pdf parameters, in contrast to other methods such as Historical Distribution Analysis and Monte Carlo based 

methods (Hess et al., 2005). We refrain from using these latter methods as our data is aggregated at the municipality 

level and thus it may misrepresent variability at the farm level. 

In order to provide a representative data set for the premium estimation we use the first 30 years of data 

for this part of the analysis, with the remaining six years being used for the evaluation of the methods. 

 

3.3.5. Product Evaluation 

For the product evaluation we use the values of the final wealth realizations for a hypothetical farm with 

an area of 1 ha. The only assets present in such farm are the soybean yield and the proposed weather index insurance 

contract: 

𝑊𝑊𝑖𝑖𝑖𝑖 = (1/60)𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝐼𝐼𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑖𝑖 , 

where 𝑊𝑊𝑖𝑖𝑖𝑖 is the final wealth, 𝑣𝑣 is the price paid to the farmer for each 60kg of soybean7, 𝑦𝑦𝑖𝑖𝑖𝑖 is the corrected yield, 

𝐼𝐼𝑖𝑖𝑖𝑖  is the indemnity and 𝑃𝑃𝑖𝑖  the premium, with 𝑖𝑖 being the municipality and t is the year. Final wealth realizations are 

                                                      
6 Planting and harvesting progress reports are available at the state level, with the months of October and 
March corresponding to more than 50% of the total crop area planted/harvested. These months are also 
assumed as planting and harvesting dates in Franchini et al. (2016). 
7 Considering we corrected yields we utilized the 2015 average prices of soybean provided by the Department of 
Rural Economy (DERAL) of the State Secretariat for Agriculture and Food Supply (SEAB) in Paraná. 
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calculated for farmers without insurance, thus having only the first component of the right-hand side, and for 

farmers with the WII parameters estimated by the quantile regression and the GWQLASSO. 

In order to measure the efficiency of the proposed index insurance to mitigate the risk faced by farmers 

we use two risk measures, namely the Spectral Risk Measure (SRM) and the Mean Semi-deviation, coupled with a 

Bayesian bootstrap procedure. The latter is necessary given that we only dispose of only six years of data for the 

evaluation. In this step a cross-validation (CV) method would be ideal but the computational requirements of 

GWQLASSO makes the use of CV not feasible in our case. 

The Bayesian bootstrap (Rubin, 1981) is very similar to its classical counterpart (Efron, 1979) differing 

only in how probabilities are attached to each data value. While in the classical bootstrap a 1/n, being n the sample 

size, is attributed to all n observations, in the Bayesian bootstrap the probabilities are given by a posterior distribution 

centered in 1/n but varying across replications. The main difference is in the interpretation of the results as the 

Bayesian bootstrap is a simulation of the posterior distribution of the parameter being estimated, whereas the 

classical bootstrap simulates the sampling distribution of an estimator for the parameter of interest. 

The relative risk reduction (RR) is structured to compare the risk exposure of farmers in three situations: 

the first one being a farmer with a WII insurance designed with the GWQLASSO method against a farmer without 

insurance; the second situation is a farmer with  WII insurance (designed with GWQLASSO or quantile regression); 

and a third situation for a WII insurance (designed with GWQLASSO) versus a yield insurance (YI). Thus, the 

general formula for the RR is: 

𝑅𝑅𝑅𝑅𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠 1/𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2 = 𝑅𝑅𝑅𝑅(𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1)−𝑅𝑅𝑅𝑅(𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2)
𝑅𝑅𝑅𝑅(𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2)

,  

where 𝑅𝑅𝑅𝑅 stands for the risk measurements previously described and 𝑊𝑊 for the final wealth realizations. 

In our evaluations we consider 4000 Bayesian bootstrap replications to provide better estimates of the 

relative risk reduction. The latter is also tested against a hypothesis of null relative risk reduction by means of a non-

parametric Wilcoxon test.  

 

3.4. Results and Discussion 

3.4.1. Cluster analysis 

As detailed in chapter 1, the optimal number of clusters from the precipitation data was two. These 

clusters managed to capture the different precipitation regimes identified by Keller Filho et al (2005), with cluster 1 

representing areas with higher total precipitation in the year aggregate but greater variability among years and cluster 

2 indicating areas with a lower total precipitation but with less variability. For the yield data, the optimal number of 

clusters was also two, with both clusters presenting a similar yield level from the beginning of the series through 

1990 and from 2001 onwards, however, in the period comprised between 1991 and 2000 cluster 1 has lower yields. 

Cluster 1 contains municipalities in regions prone to drought, and thus presents lower yields and higher variability. 
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3.4.2. Yield-index modelling 

We observe for the cluster representing the western and northern portions of Paraná that the December 

SPI presents the greatest impact on yields (Figures 8 and 9). Given that we assume, based on state reports8, soybean 

planting dates are beginning on October, the crop would be in the reproductive stage in December, thus, highly 

sensible to water shortage. Therefore, for the premium estimation in cluster 1 we select the December SPI as the 

index. For the central and eastern portions of the state, however, both December and February SPI are impacting 

yields, with the February SPI having a slightly higher impact and thus being the one selected as the index for cluster 

2. 

Note that these coefficients are selected based on their boxplot as GWQLASSO does not account for 

temporal structure of the data, thus assuming that all observations come from a unique point in time and resulting in 

30 coefficients for each location. Albeit this represents a limitation to the modelling, the impact is reduced as we 

used time-detrended yields and are not interested in the temporal behavior of the yield/index series, just in their 

intrinsic relationship. Also, the incorporation of the LASSO method permits a better identification of relevant 

variables, as the ones with little importance to yields rapidly converge to zero. 

The possibility to model yields at several locations simultaneously while considering the spatial structure 

of the relationship between yields and explanatory variables and also having a method to quickly dismiss 

unimportant variables present a great opportunity to WII scalability. One of the major issues of WII is its low ability 

to grow at scale as the models developed for one location may prove completely obsolete as you move away from it, 

however, with GWQLASSO one may inspect both the general significance of the explanatory variables and their 

coefficient for each location. This permits a faster screening of possible indices, along with their respective triggers 

when using the methodology detailed here and proposed in Conradt (2015). 

Another hindrance to the spread of WII is the absence of long series of yield data. The GWQLASSO 

method is less affected by this issue, as it uses information from neighboring yields in the estimation process. This 

characteristic is especially important in developing countries, which in general does not have long series of yield and 

weather data. 

                                                      
8 Available in: http://www.agricultura.pr.gov.br/modules/conteudo/conteudo.php?conteudo=32 
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Figure 8. Boxplot of the GWQLASSO coefficients for cluster 1. 

 

 
Figure 9. Boxplot of the GWQLASSO coefficients for cluster 2. 

 

The relationship between the December SPI and yields, for cluster 1, varies by more than five times when 

we compare municipalities on the west of Paraná to the ones in the center region of the state (Figure 10). This goes 

in line with the characteristics of these regions, soils to the west, mostly in the northwest, are sandy, and the climate 

is classified as Cfa, with higher temperatures in the summer, both unfavorable to soybean. These characteristics 

result in diminished yields and higher susceptibility to drought, which are translated in the coefficients for December 
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SPI. A higher variability in yields, when compared to other regions in the state, coupled with susceptibility to drought 

is also observed by Franchini et al (2016). 

The center and east of the state are classified as Cfb in Koeppen’s system. This means that these 

municipalities have lower temperatures in the summer, what benefits soybean plants. Also, the soil in these regions 

have more clay, what leads to a higher capacity to contain water and consequentially mitigate the effects of drought, 

resulting in a less pronounced relation to the index, for both cluster 1 and 2 (Figures 10 and 11).  

 
Figure 10. GWQLASSO β𝐷𝐷𝐷𝐷𝐷𝐷 coefficients spatial distribution for cluster 1. 

 
Figure 11. GWQLASSO 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 coefficients spatial distribution for cluster 2. 
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3.4.3. Weather Index Insurance premium and performance 

WII is generally associated with lower premiums, mainly due to the lack of in situ crop inspection after a 

claim is filed. Here we compare a traditional yield insurance product with a 65% coverage to our proposed WII 

product with a 100% coverage. While this comparison may not be fair to our product, as by definition a higher 

coverage means a higher premium, we found the 65% coverage level to be the most common for soybean in Paraná. 

Coverage levels above 90% are rare in Brazil and suffer from two problems, the higher premiums and the inferior 

percentage in subsidization by the government, thus they are not attractive to the farmer.  

Our results show that the index insurance may vary from half to three times the price of the common 

yield insurance. There is a tendency of pricier index insurance, compared to the yield insurance, as we move to the 

western portion of Paraná (Figure 12), what is expected as this region is more susceptible to drought. 

 
Figure 12. Ratio of GWQLASSO calculated premiums to standard yield insurance premiums. 

 

In our design we do not consider gains from scale and the spatial diversification of risk by the insurer, this 

would lead to a lesser difference between our product and the commercial product depicted here. Even so, the WII 

results in a net gain for the producer, as for both clusters and risk measurements it performs better than the yield 

insurance. The results from both risk measures indicate that both GWQLASSO and quantile regression provide 

similar risk reduction, with both being more effective than a yield insurance product with a 65% coverage level 

(Tables 3 through 6). Borrowing from results in Conradt (2015) we can also derive that GWQLASSO is superior to 

ordinary least squares. 
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Table 3. Relative risk reduction per municipality in cluster 1 according to the Spectral Risk Measure (SRM) 

Municipality 
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺   𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺/𝑄𝑄𝑄𝑄  𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺/𝑌𝑌𝑌𝑌   
2.5% Median 97.5% 2.5% Median 97.5% 2.5% Median 97.5% 

Alto Piquiri -0,1269 -0,0194 0,1459 -0,1127 -0,0056* 0,1117 -0,0691 0,0478* 0,2450 
Ampére -0,1291 -0,0150 0,1711 -0,1113 -0,0012   0,1221 -0,0816 0,0401* 0,2398 
Andirá -0,1317 0,0841 0,4253 -0,1722 0,0191* 0,2521 -0,0758 0,1470* 0,4714 
Cambará -0,1907 0,0076 0,2491 -0,1984 0,0025* 0,2538 -0,1523 0,0732* 0,3356 
Campo Mourão -0,1007 -0,0090 0,0953 -0,0927 0,0041* 0,1055 -0,0546 0,0398* 0,1621 
Céu Azul -0,1610 0,0004 0,2551 -0,1595 -0,001* 0,2099 -0,1101 0,0543* 0,2525 
Clevelândia -0,1156 -0,0077 0,1239 -0,1149 -0,0089* 0,1219 -0,0639 0,0424* 0,1830 
Coronel Vivida -0,2051 -0,0012 0,2519 -0,1915  0,0027   0,2465 -0,1703 0,0452* 0,2845 
Formosa do Oeste -0,1223 0,0513 0,3600 -0,1938 -0,0255* 0,1583 -0,0884 0,0939* 0,3761 
Foz do Iguaçu -0,2061 -0,0061 0,2812 -0,1968 -0,0007   0,2641 -0,1477 0,0468* 0,2916 
Guaraniaçu -0,0838 0,0086 0,1902 -0,1242 -0,0096* 0,1387 -0,0047 0,1035* 0,3146 
Guarapuava -0,0654 -0,0146 0,0306 -0,0536 -0,0015* 0,0517 -0,0159 0,0365* 0,0877 
Ivaiporã -0,0754 0,0101 0,0962 -0,0729  0,006* 0,0817 -0,0289 0,0664* 0,1580 
Janiópolis -0,0819 0,0148 0,1739 -0,1032 -0,0142* 0,0665 -0,0403 0,0678* 0,2515 
Mamborê -0,0609 0,0161 0,1068 -0,0766 -0,0017* 0,0708 -0,0072 0,0737* 0,1718 
Manoel Ribas -0,0960 -0,0051 0,0966 -0,0940 -0,0049* 0,0866 -0,0569 0,0423* 0,1548 
Mariluz -0,1125 0,0021 0,1730 -0,1149 0,0011* 0,1650 -0,0496 0,0722* 0,2705 
Mariópolis -0,1355 -0,0196 0,1762 -0,1117  0,001   0,1146 -0,0928 0,0255* 0,2021 
Matelândia -0,2177 -0,0355 0,2408 -0,1952 -0,0178* 0,2228 -0,1713 0,0107* 0,2166 
Nova Esperança -0,1745 -0,0164 0,1832 -0,1541 0,0047* 0,1982 -0,1191 0,0520* 0,2792 
Palmas -0,0514 0,0006 0,0545 -0,0511  0,0003   0,0556 -0,0098 0,0432* 0,1019 
Pato Branco -0,1411 -0,0264 0,1552 -0,1354 -0,0198* 0,1392 -0,0949 0,0344* 0,2290 
Pitanga -0,1261 -0,0224 0,0809 -0,1127 -0,008* 0,0985 -0,0768 0,0360* 0,1489 
Prudentópolis -0,0671 -0,0100 0,0406 -0,0643 -0,0025   0,0627 -0,0207 0,0386* 0,0914 
Quedas do Iguaçu -0,1423 -0,0341 0,1200 -0,0852 0,0212* 0,1112 -0,0926 0,0204* 0,1876 
Roncador -0,0955 -0,0026 0,1026 -0,0945 -0,0007   0,1072 -0,0466 0,0548* 0,1758 
Salto do Lontra -0,1587 -0,0316 0,1312 -0,1331 -0,0128* 0,1211 -0,1310 0,0035* 0,1887 
Santo Antônio da Platina -0,1100 0,0181 0,1963 -0,1099 0,0089* 0,1605 -0,0549 0,0811* 0,2803 
São Jorge d'Oeste -0,1958 -0,0146 0,2451 -0,1800 -0,0077* 0,2292 -0,1669 0,0148* 0,2518 
São Miguel do Iguaçu -0,1811 0,0151 0,3174 -0,2162 -0,0129* 0,2007 -0,1401 0,0603* 0,3187 
Terra Roxa -0,2323 0,0040 0,3032 -0,2307 -0,0034   0,2747 -0,1869 0,0432* 0,2877 
Tibagi -0,0546 0,0040 0,0777 -0,0510 -0,0017* 0,0481 -0,0094 0,0529* 0,1341 
Toledo -0,2095 -0,0251 0,2577 -0,1832  0,0057* 0,2260 -0,1671 0,0121* 0,2199 
Ubiratã -0,1043 -0,0065 0,0989 -0,1068 -0,0033* 0,1055 -0,0677 0,0425* 0,1584 
*Significant at the 5% significance level 
Source: Authors 
 

Given that quantile regression and GWQLASSO are similar, other characteristics must be considered 

when choosing the estimation method for a new product. While quantile regression is effective and uses less 

computational power than GWQLASSO, it may suffer in locations with less data, being that it does not incorporate 

information from neighboring sites. Also, it must be estimated for each location individually, along with the 

screening for significant explanatory variables. This is not a problem for GWQLASSO, as already said, it not only 

takes surrounding data into account, but also indicates which variables are important for the model. 
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Table 4. Relative risk reduction per municipality in cluster 1 according to the Mean Semi-deviation 

Municipality 
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺   𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺/𝑄𝑄𝑄𝑄  𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺/𝑌𝑌𝑌𝑌   

2.5% Median 97.5% 2.5% Median 97.5% 2.5% Median 97.5% 
Alto Piquiri -0,1264 -0,0063 0,1975 -0,1179 -0,0075* 0,1260 -0,0695 0,0611* 0,2836 

Ampére -0,1329 0,0027 0,2175 -0,1182 -0,0010   0,1383 -0,0803 0,0626* 0,2942 

Andirá -0,1192 0,1149 0,5029 -0,1770 0,0145* 0,2711 -0,0740 0,1663* 0,5406 

Cambará -0,2145 0,0042 0,2565 -0,2207 0,0039* 0,2835 -0,1647 0,0705* 0,3415 

Campo Mourão -0,1131 -0,0083 0,1159 -0,1062 0,0035* 0,1195 -0,0691 0,0454* 0,1772 

Céu Azul -0,1823 0,0135 0,3513 -0,1821 0,0034   0,2479 -0,1391 0,0501* 0,2829 

Clevelândia -0,1209 -0,0042 0,1430 -0,1177 -0,0021   0,1336 -0,0727 0,0500* 0,2040 

Coronel Vivida -0,2210 -0,0029 0,3084 -0,2217 -0,0002   0,2879 -0,1888 0,0433* 0,3327 

Formosa do Oeste -0,1360 0,0647 0,4381 -0,2105 -0,0324* 0,1685 -0,0956 0,1005* 0,4181 

Foz do Iguaçu -0,2108 0,0094 0,3584 -0,2213 -0,0010* 0,3078 -0,1740 0,0479* 0,3105 

Guaraniaçu -0,0795 0,0211 0,2260 -0,1127 -0,0073* 0,1362 0,0077 0,1257* 0,3703 

Guarapuava -0,0719 -0,0177 0,0360 -0,0585 -0,0012* 0,0587 -0,0217 0,0341* 0,0897 

Ivaiporã -0,0740 0,0154 0,1006 -0,0688 0,0062* 0,0830 -0,0230 0,0713* 0,1632 

Janiópolis -0,0900 0,0280 0,2251 -0,1225 -0,0184* 0,0775 -0,0409 0,0883* 0,3023 

Mamborê -0,0645 0,0197 0,1175 -0,0765 -0,0024   0,0782 -0,0064 0,0777* 0,1889 

Manoel Ribas -0,1054 -0,0015 0,1108 -0,1014 -0,0023   0,1090 -0,0597 0,0513* 0,1739 

Mariluz -0,1200 0,0115 0,2177 -0,1216 0,0068* 0,1904 -0,0566 0,0846* 0,3290 

Mariópolis -0,1422 -0,0030 0,2378 -0,1351 -0,0043* 0,1226 -0,1032 0,0394* 0,2540 

Matelândia -0,2383 -0,0270 0,2879 -0,2206 -0,0153* 0,2695 -0,2096 0,0042* 0,2616 

Nova Esperança -0,1800 -0,0154 0,2114 -0,1637 0,0031* 0,2192 -0,1216 0,0619* 0,3204 

Palmas -0,0509 0,0004 0,0562 -0,0529 0,0009   0,0563 -0,0098 0,0432* 0,1041 

Pato Branco -0,1490 -0,0101 0,1972 -0,1407 -0,0062* 0,1673 -0,0984 0,0503* 0,2741 

Pitanga -0,1350 -0,0257 0,0858 -0,1160 -0,0076* 0,1105 -0,0837 0,0336* 0,1576 

Prudentópolis -0,0706 -0,0164 0,0356 -0,0613 0,0001* 0,0714 -0,0274 0,0324* 0,0884 

Quedas do Iguaçu -0,1467 -0,0209 0,1694 -0,1007 0,0139* 0,1168 -0,1034 0,0335* 0,2417 

Roncador -0,1031 0,0001 0,1166 -0,1056 -0,0033   0,1189 -0,0498 0,0580* 0,1901 

Salto do Lontra -0,1636 -0,0222 0,1632 -0,1433 -0,0165* 0,1332 -0,1265 0,0203* 0,2314 

Santo Antônio da Platina -0,1060 0,0345 0,2447 -0,1200 0,0155* 0,1951 -0,0464 0,1032* 0,3303 

São Jorge d'Oeste -0,2115 -0,0019 0,3096 -0,2074 -0,0022* 0,2820 -0,1863 0,0238* 0,3015 

São Miguel do Iguaçu -0,1936 0,0278 0,4372 -0,2257 -0,0153* 0,2169 -0,1591 0,0621* 0,3582 

Terra Roxa -0,2673 0,0036 0,4015 -0,2827 -0,0060   0,3495 -0,2494 0,0257* 0,3068 

Tibagi -0,0538 0,0110 0,0876 -0,0578 -0,0040* 0,0493 -0,0107 0,0594* 0,1430 

Toledo -0,2288 -0,0173 0,3539 -0,2166 -0,0005   0,2440 -0,2068 0,0039   0,2347 

Ubiratã -0,1190 -0,0087 0,1096 -0,1136 -0,0044* 0,1130 -0,0768 0,0434* 0,1789 

*Significant at the 5% significance level 
Source: Authors 
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As for the public policy implications, WII has proved to be a superior alternative to basic crop insurance 

products as a yield insurance with a 65% coverage level. Considering that Oñate (2016) showed that PROAGRO, a 

risk management tool similar to a crop-credit insurance, has not increased farmers welfare and is not priced 

according to regional characteristics, we favor the expansion of government operated or funded parametric insurance 

products. A WII product could be implemented as a microinsurance policy to small farmers or as a macroinsurance 

directly to the government. The latter would also be further advantageous, as the efficiency of WII grows with scale 

(Miranda and Farrin, 2012). Several products of this type have been successfully implemented in developing 

countries such as the “Comité de Ayuda a Desastres y Emergencias Nacionales” (CADENA) program in Mexico (de 

Janvry et al, 2016) and the “Pradhan Mantri Fasal Bima Yojana” (PMFBY) index insurance scheme in India (Rathore 

et al, 2017).  

 

Table 5. Relative risk reduction per municipality in cluster 2 according to the Spectral Risk Measure (SRM) 

Municipality 
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺   𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺/𝑄𝑄𝑄𝑄  𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺/𝑌𝑌𝑌𝑌   

2.5% Median 97.5% 2.5% Median 97.5% 2.5% Median 97.5% 

Palmeira -0,0863 0,0083 0,0971 -0,0900 0,0039* 0,1028 -0,0470 0,0544* 0,1531 

Piraí do Sul -0,0359 -0,0019 0,0475 -0,0289 -0,0033* 0,0248 0,0055 0,0425* 0,0964 

Ponta Grossa -0,0427 -0,0058 0,0285 -0,0329 0,0032* 0,0444 0,0022 0,0411* 0,0782 

Porto Amazonas -0,1065 -0,0043 0,0976 -0,1010 0,0011* 0,1135 -0,0623 0,0428* 0,1542 

Rio Negro -0,0640 -0,0006 0,0623 -0,0598  0,0002   0,0665 -0,0096 0,0570* 0,1286 

São Mateus do Sul -0,0684 -0,0331 0,0048 -0,0318 -0,0045* 0,0240 -0,0160 0,0209* 0,0609 

União da Vitória -0,0705 -0,0017 0,0723 -0,0579 0,0056* 0,0690 -0,0279 0,0411* 0,1218 

*Significant at the 5% significance level 
Source: Authors 
 
Table 6. Relative risk reduction per municipality in cluster 2 according to the Mean Semi-deviation 

Municipality 
𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺   𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺/𝑄𝑄𝑄𝑄  𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺/𝑌𝑌𝑌𝑌   

2.5% Median 97.5% 2.5% Median 97.5% 2.5% Median 97.5% 

Palmeira -0,0993 0,0032 0,0995 -0,0994  0,0014   0,1127 -0,0543 0,0502* 0,1535 

Piraí do Sul -0,0330 0,0061 0,0579 -0,0309 -0,0034* 0,0268 0,0111 0,0513* 0,1083 

Ponta Grossa -0,0435 -0,0056 0,0304 -0,0338 0,0060* 0,0504 -0,0003 0,0422* 0,0815 

Porto Amazonas -0,1155 -0,0058 0,1047 -0,1101 0,0013* 0,1335 -0,0773 0,0422* 0,1638 

Rio Negro -0,0657 -0,0009 0,0679 -0,0607 0,0007   0,0704 -0,0114 0,0576* 0,1330 

São Mateus do Sul -0,0620 -0,0289 0,0096 -0,0310 -0,0045* 0,0229 -0,0112 0,0261* 0,0685 

União da Vitória -0,0757 0,0013 0,0812 -0,0664 -0,0012   0,0696 -0,0323 0,0444* 0,1291 

*Significant at the 5% significance level 
Source: Authors 
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3.5. Conclusion 

Despite the efforts by the central government, crop insurance is yet to take off in Brazil. Inconsistent 

budget, information asymmetry and moral hazard are some of the issues that crippled the program and continue to 

impede its expansion. In this sense, parametric insurance may present an alternative to the local insurance market. 

Thus, aiming to foster the growth of parametric insurance in Brazil and contribute to the development of this type of 

insurance throughout the globe we design a WII product by using a novel approach to model the yield-index 

relationship, the GWQLASSO. This methodology compounds the flexible modelling and robustness of quantile 

regression with the spatial component of geographically weighted regression and variable selection prowess of the 

LASSO method. 

We test our assumptions using a crop insurance application in Paraná, Brazil. The 36 years long time 

series of precipitation and soybean yield data are split in design and evaluation sets, with the latter having only six 

years of data and thus requiring the use of Bayesian bootstrap to improve the reliability of results. To measure the 

ability of WII to reduce risk, when compared to yield insurance and between yield modelling approaches, we use two 

different risk measures, the Spectral Risk Measure and the Mean Semi-deviation.  

Regarding the performance of WII in Paraná our findings indicate that index insurance is superior to a 

65% coverage yield insurance in 41 municipalities of the state, despite being up to three times more expensive than 

this product. However, the GWQLASSO approach proved as effective as the regular quantile regression as a 

hedging tool. The latter may seem as a discouragement to the use of a more complex model, nevertheless, some of 

the characteristics of GWQLASSO (less data intensive and simpler conjoint variable selection) argue in its favor.  

Future studies are needed to confirm the viability of WII in other regions and crops throughout the 

country. Also, regardless of our efforts to mitigate the effect of the level of aggregation in the crop yield data and 

lack of precise planting dates, these may lead to a loss of accuracy in product design that is unacceptable in a 

commercial environment. Therefore, tighter cooperation between risk bearers and insurance researchers and product 

developers is needed. 
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APPENDIX 

 

APPENDIX A. Crop insurance in Brazil 

Crop insurance in Brazil is operated both by the government and the private sector. Proagro, a kind of 

public insurance, is a program linked to the contracting of rural credit administered by the Central Bank, not covered 

by the legislation and regulations pertaining to the insurance sector, although in practice it has insurance 

characteristics. This program aims to relieve the farmer from the payment of rural credit operations whose discharge 

has been rendered unfeasible by the occurrence of natural phenomena that have interfered in agricultural and 

livestock production. The classic insurance mechanisms are operated by private companies as insurers, reinsurers and 

brokers, in a competitive competitive market. The regulation and supervision of this sector is done by the CNSP - 

National Council of Private Insurance and SUSEP - Superintendence of Private Insurance. 

Proagro was established through Law No. 5.969, on December 11, 1973, with the primary objective to 

exempt the farmer from financial obligations related to credit operations that were made impossible to settle by the 

occurrence of natural phenomena, pests and diseases affecting crops, livestock or herds. The program ensures the 

discharge of loans contracted via rural credit. The administration pertains to the Central Bank and covers up to 

100% of the credit granted by a financial institution. 

Later, on October 13, 2009, Proagro's structure was modified again, through Law No. 12.058. This 

amendment introduced the program named Proagro Mais, aimed for family farming. With this, Proagro serves both 

large-scale, business and family agriculture with up to four fiscal modules. The main objective of the program was 

also to exonerate producers from financial obligations related to rural credit, fully or partially, in the face of natural 

phenomena, pests or diseases that affect herds and plantations, as well as to indemnify the own resources invested 

producers in the event of claims. The difference in coverage between the two segments of producers is that Proagro 

covers the agricultural credit, while Proagro Mais covers agricultural costs and investment costs, in addition to the 

latter guaranteeing a minimum income. Proof of losses is made by the financial institution, based on a technical 

valuation report issued by a qualified professional. 

Adhesion to Proagro is formalized when rural credit is contracted, considering the limits of funding for 

each of the crops. To participate in the program, among other requirements, farmers must comply with the agro-

climatic risk zoning (ZARC) of the Ministry of Agriculture, Livestock and Food Supply and pay a fee called an 

additional contribution, fixed in percentage terms, on the total nominal value of the credit taken. 

The private rural insurance history in Brazil began in 1954, when agricultural insurance was 

institutionalized, through Law No. 2.168, in order to protect harvests and herds. This law established that the 

Brazilian Reinsurance Institute (IRB), previously created by Decree-Law No. 1.186 of April 3, 1939, would operate 

as a reinsurer and retrocedent, organize and direct a consortium of insurers, establishing the scope and conditions of 

reinsurance operations, for each type of agricultural insurance. The same act exempted federal taxes and fees from 

insurance operations. The Decree-Law also established the crop insurance stability fund with the purpose of 

guaranteeing the stability of the operations, covering the additional coverage of the catastrophic risks, allowing the 

gradual adjustment of the premiums and contributing to the improvement of insurance. Since its inception, the fund 

has sought to use funds to reimburse the retrocessionaires of IRB-Brazil Re, the administrator of the fund's 

resources, with the amounts exceeding the maximum allowable losses for agricultural insurance operations. 

In order to develop the agricultural insurance market, a joint stock company was created called National 

Agricultural Insurance Company (Companhia Nacional de Seguro Agrícola). Law No. 2.168 provided for the 
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establishment of another stabilization fund that would be tied to the company, aiming at maintaining the level of 

premiums on a reasonable basis and attending to catastrophe. The regulation of Law No. 2.168 was made by Decree 

No. 35.370, dated April 12, 1954, establishing that the operation of agricultural insurance operations would be 

exercised by the National Agricultural Insurance Company or other private insurance companies governed under the 

provisions of Decree-Law No. 2.063, dated March 7, 1940, the legal framework for private insurance operations 

carried out by corporations, mutuals or cooperatives. Law No. 2.168 was succeeded by decrees defining the criteria, 

general conditions and prizes for specific agricultural activities, namely: cattle raising, wheat, vine, rice, herbaceous 

cotton and small crop of multiple crops, crop harvest and livestock of equidae. Thus, for thirteen years, until the 

dissolution of the National Agricultural Insurance Company, through the publication of Decree-Law No. 73, federal 

crop insurance operated as described. 

The current legal framework for private insurance is still based on Decree-Law 739, when the National 

Private Insurance System was established, consisting of the National Council of Private Insurance (CNSP), 

Superintendence of Private Insurance (SUSEP), reinsurers, companies authorized to operate in private insurance and 

authorized brokers. Decree-Law No. 73 defined the roles and limits of action of each of the constituents, as well as 

of the CNSP itself, whose main competences are to establish the guidelines and norms of the private insurance 

policy, regulate the constitution, organization, operation and supervision of the parties subordinated to the Decree-

Law, as well as the application of the penalties envisaged, to establish indexes and technical conditions on tariffs, 

investments and equity relations to insurance companies, lay down the general characteristics of insurance contracts, 

to establish the general norms of accounting and statistics for insurers, delimit the capital of insurers and reinsurers, 

establish the general guidelines for reinsurance operations, discipline co-insurance operations, to prescribe the criteria 

for the constitution of insurers, setting the legal and technical limits of insurance operations, to discipline insurance 

brokerage and the profession of broker, regulate the installation of insurance scholarships and to establish the 

conditions for the constitution and extinction of self-regulating entities of the brokerage market, as well as to 

regulate their administration and exercise of disciplinary power. 

The CNSP is chaired by the Minister of Finance and has as members the Superintendent of SUSEP, 

representatives of the Ministries of Justice and Social Security, the Central Bank of Brazil and the Brazilian Securities 

and Exchange Commission. The deliberations of the CNSP on specific purposes must be taken by listening to the 

relevant advisory committee. Insurance for the rural sector, therefore, must pass through the Rural Consultative 

Committee of the National Council of Private Insurance. 

SUSEP is an autarchic entity, jurisdiction of the Ministry of Finance, with administrative and financial 

autonomy. The mission of SUSEP, as executor of the policy emanating from the CNSP, is to oversee the 

constitution, organization, operation and operations of insurance companies. Specifically, according to article 36 of 

Decree-Law No. 73, SUSEP is responsible for processing applications for authorization, for constitution, operation, 

merger, expropriation, reverse split, transfer of share control and reform of the statutes of the insurers, to issue 

instructions and issue circulars concerning the regulation of insurance operations, to establish conditions of policies, 

plans of operations and tariffs to be used compulsorily by the insurance market, to approve the limits of operations 

of insurance companies, in accordance with the criterion established by CNSP, to examine and approve the 

conditions of special coverages, as well as to fix the applicable taxes, to authorize the movement and release of the 

assets and amounts insured as a guarantee of technical reserves and tied capital, to supervise the implementation of 

accounting and statistical standards established for insurers, to supervise the operations of the insurers regarding 

compliance with the legislation and apply the applicable penalties, to proceed with the liquidation of insurance 
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companies that have canceled the authorization to operate in the country, and to organize their services and execute 

their budget. 

The CNSP has a broader mandate, aiming at establishing the guidelines of the functioning structure of the 

private insurance market in Brazil. On the other hand, SUSEP deals with the operational actions of control and 

market surveillance, that is, the execution of policies, regulation and monitoring of the activities of insurance 

companies, reinsurers and brokers. 

Decree No. 60.459, of March 13, 1967, regulated by Decree-Law No. 73, assigned important tasks to 

SUSEP, regarding the approval of new insurance contracts. According to article 8, insurers interested in marketing a 

new insurance contract should send it to SUSEP for analysis of the terms of the agreement, as well as the 

corresponding actuarial technical notes. The superintendency is empowered to request supplementary information, 

to determine changes, to promote the suspension of all or part of the conditions and technical actuarial notes, as well 

as to instruct insurers to include mandatory clauses in the general insurance conditions. It should be noted that the 

actuarial technical notes presented by the insurers should explain the pure premium, the loading, the interest rate and 

all other parameters related to the measurement of risk and aggregate costs. 

The minimum premiums approved by SUSEP must be adopted by insurance companies for the purposes 

of calculating technical reserves and reinsurance, and the Superintendency may also approve actuarial technical notes 

for calculating provisions proposed by insurance companies for each specific case. 

SUSEP is empowered to publish studies on benchmark premium rates calculated by scientific or 

insurance market entities in order to establish adequate actuarial bases for existing risk conditions and may require 

that such rates be used for the calculation of provisions techniques. 

Through Decree-Law No. 73, in addition to the dissolution of the CNSA and its incorporation into the 

structure of the Ministry of Agriculture, the rural insurance stability fund (FESR) was created, incorporating the crop 

insurance stability fund and the stabilization fund, instituted in 1954, as described. The purpose of the FESR is to 

ensure the stability of rural insurance operations and to cover supplementary coverage of the risks of catastrophe. 

The resources are managed by IRB-Brasil Re and the proceeds come from the maximum allowable surplus as 

income from rural insurance operations and from credits made by the Federal Government to cover operational 

deficiency. 

CNSP Resolution No. 46, of February 12, 2001, defines the FESR administration and control by its 

manager. The first point of this resolution is that by amendment introduced by CNSP Resolution 50 of September 3, 

2001, the FESR will only guarantee the stability of operations of the agricultural modality that guarantees to the 

producer indemnification for damages caused to the insured crops, covering exclusively the expenses of direct 

costing of periodic crops and the budget of maintenance expenses of permanent. The FESR can also be used for 

livestock, aquaculture, forestry and rural lending for private financial institutions. 

Insurers interested in operating the FESR must submit to the fund manager an operations plan with 

regions and cultures which will be included in the reinsurance program. The FESR guarantee is subject to the 

approval by SUSEP of the contractual conditions and technical actuarial note of the rural insurance modality for 

each year. Resolution No. 46 establishes that the approval of the actuarial technical note is conditioned to the 

presentation of the reinsurance coverage. 

In order to stimulate private insurance contracting by rural producers, the federal government has created 

a policy in which percentages ranging from 35% to 45% of the insurance premium are paid by MAPA, depending on 
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the crop or species to be insured. This program was established by Law No. 10.823 of December 19, 2003, and is 

regulated by Decree No. 5.121, of June 29, 2004. 

For the management of the subsidy policy, the Interministerial Rural Insurance Steering Committee 

(CGSR) was created, which is responsible for approving and disseminating the percentages on the rural insurance 

premium and the maximum amounts of the economic subsidy, the specific operational conditions, the crops and 

animal species covered by the program, the regions to be covered by the intended benefit, the technical conditions to 

be met by the beneficiaries and the proposal of the Triennial Rural Insurance Plan or its annual adjustments, 

providing for the guidelines and conditions for granting the economic subsidy. 

In addition, it is the responsibility of the committee to implement the benefit provided by law, encourage 

the creation of pilot projects by insurers, including new crops, animal species and types of coverage, establish 

guidelines and coordinate the development of methodologies and the dissemination of studies and statistical data to 

assist the development of rural insurance as an agricultural policy instrument and establish financial limits for the 

subsidy, per beneficiary and area unit. 

The CGSR is composed by one member from the Ministry of Agriculture, Livestock and Supply who will 

preside, one from the Ministry of Finance, one from the Ministry of Planning, Budget and Management, one from 

the Ministry of Agrarian Development, one from SUSEP, one from the Agricultural Policy Secretariat of MAPA and 

one from the National Treasury Secretariat of the Ministry of Finance. 

The PSR is under the legislation of the CNSP and the participation of the insurers is conditioned to the 

analysis and approval by SUSEP of its insurance products and the previous acceptance of the norms of the program, 

by registering with the Executive Secretariat of the CGSR. Decree 5.121 established the need to publish a Triennial 

Rural Insurance Plan (PTSR). 

The PTSR includes general guidelines of the subsidy policy, specifying the regions, crops and animal 

species that are the object of the grant, the eligible insurance lines, as well as the definition of the risks covered, 

parameters and contractual provisions required, percentages and amounts of subsidy to the rural insurance premium, 

the financial limits per beneficiary or area unit, an estimate of the overall contribution of resources and the evolution 

of the financial flow during the years of validity and the dates of its validity, especially the deadline for settlement of 

financial obligations with the insurance companies, before the end of the MAPA exercise. 

In practice, the operationalization of the PSR consists in MAPA paying a percentage of the premium to 

insurance companies that have carried out subsidized rural insurance operations, which are obliged to reduce the 

premium collected from the beneficiaries, for their insurance products, by an amount equal to the value of the grant. 

The coordination and monitoring of the application of the program resources is carried out by the CGSR. 

A relevant obligation created under the program, which contributes to the reduction of accidents, is that 

the contracting of temporary crop insurance is carried out in accordance with the ZARC and, in its absence, with 

other agroclimatic zoning of official institutions at the discretion of the CGSR. The loss ratio tends to be reduced 

because the zoning must obligatorily consider probabilistic criteria in the delimitation of planting dates and crop 

risks. To be reimbursed, the insurers qualified in the PSR who have carried out operations that can be subsidized, 

send to the Executive Secretariat of the CGSR the information and documents required to prove the value of the 

subsidy, within the term and form contained in the program regulation. The financial obligations assumed by the 

Union, under the program, must be settled with insurers in the same rural insurance contracting exercise. 
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The modalities supported by the economic subsidy to the premium are agriculture, livestock, aquaculture 

and forestry. The risks covered are those approved by SUSEP, provided that within the said modalities which are 

beneficiary of the subsidy. 

The rural producer may receive the subsidy up to the limit of R$ 72,000.00, for more than one crop, 

provided that the sum does not exceed the limit. The producers can receive the subsidy for the other modalities 

independently, with an extra limit of R$ 24,000.00 for each of the livestock, aquaculture and forest modalities. 

Cumulatively, the maximum eligible subsidy per producer, individual or legal entity, in compliance with the Union, is 

R$ 144,000.00. 
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