• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
Documento
Autor
Nome completo
Andressa do Carmo Gigante
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2017
Orientador
Banca examinadora
Milan, Luis Aparecido (Presidente)
Leandro, Roseli Aparecida
Saraiva, Erlandson Ferreira
Título em português
Modelos de mistura para dados com distribuições Poisson truncadas no zero
Palavras-chave em português
Algoritmo EM adaptado
Métodos de agrupamento ou segmentação
Mistura de Poissons truncadas no zero
Modelo de mistura
Variável truncada no zero
Resumo em português
Modelo de mistura de distribuições tem sido utilizado desde longa data, mas ganhou maior atenção recentemente devido ao desenvolvimento de métodos de estimação mais eficientes. Nesta dissertação, o modelo de mistura foi utilizado como uma forma de agrupar ou segmentar dados para as distribuições Poisson e Poisson truncada no zero. Para solucionar o problema do truncamento foram estudadas duas abordagens. Na primeira, foi considerado o truncamento em cada componente da mistura, ou seja, a distribuição Poisson truncada no zero. E, alternativamente, o truncamento na resultante do modelo de mistura utilizando a distribuição Poisson usual. As estimativas dos parâmetros de interesse do modelo de mistura foram calculadas via metodologia de máxima verossimilhança, sendo necessária a utilização de um método iterativo. Dado isso, implementamos o algoritmo EM para estimar os parâmetros do modelo de mistura para as duas abordagens em estudo. Para analisar a performance dos algoritmos construídos elaboramos um estudo de simulação em que apresentaram estimativas próximas dos verdadeiros valores dos parâmetros de interesse. Aplicamos os algoritmos à uma base de dados real de uma determinada loja eletrônica e para determinar a escolha do melhor modelo utilizamos os critérios de seleção de modelos AIC e BIC. O truncamento no zero indica afetar mais a metodologia na qual aplicamos o truncamento em cada componente da mistura, tornando algumas estimativas para a distribuição Poisson truncada no zero com viés forte. Ao passo que, na abordagem em que empregamos o truncamento no zero diretamente no modelo as estimativas apontaram menor viés.
Título em inglês
Mixture models for data with zero truncated Poisson distributions
Palavras-chave em inglês
Clustering methods
EM algorithm
Mixture model
Zero truncated Poissons mixture
Resumo em inglês
Mixture models has been used since long but just recently attracted more attention for the estimations methods development more efficient. In this dissertation, we consider the mixture model like a method for clustering or segmentation data with the Poisson and Poisson zero truncated distributions. About the zero truncation problem we have two emplacements. The first, consider the zero truncation in the mixture component, that is, we used the Poisson zero truncated distribution. And, alternatively, we do the zero truncation in the mixture model applying the usual Poisson. We estimated parameters of interest for the mixture model through maximum likelihood estimation method in which we need an iterative method. In this way, we implemented the EM algorithm for the estimation of interested parameters. We apply the algorithm in one real data base about one determined electronic store and towards determine the better model we use the criterion selection AIC and BIC. The zero truncation appear affect more the method which we truncated in the component mixture, return some estimates with strong bias. In the other hand, when we truncated the zero directly in the model the estimates pointed less bias.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-01-31
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.