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Resumo

Nós propomos métodos Bayesianos para selecionar e estimar diferentes tipos

de modelos de mistura que são amplamente utilizados em Genética e Biologia

Molecular. Especificamente, propomos métodos direcionados pelos dados para

selecionar e estimar um modelo de mistura generalizado, que descreve o modelo

de mistura usual (independente) e o de primeira ordem numa mesma estrutura,

e modelos de mapeamento de QTL com dados independentes e familiares. Para

agrupar genes através de modelos de mistura, nós propomos três métodos Bayesianos

não-paramétricos: o processo de Dirichlet aninhado que possibilita agrupamento

de distribuições e, um algoritmo preditivo recursivo e outro Bayesiano não-

paramétrico exato para agrupar dados de alta dimensão. Analisamos e comparamos

o desempenho dos métodos propostos e dos procedimentos tradicionais de seleção

e estimação de modelos e agrupamento de dados em conjuntos de dados simulados

e reais. Os métodos propostos são mais flex́ıveis, aprimoram a convergência dos

algoritmos e apresentam estimativas mais precisas em muitas situações. Além disso,

nós propomos procedimentos para estimar o genótipo não observável dos QTLs e

de pais faltantes e melhorar a probabilidade Mendeliana de herança genética do

genótipo dos descendentes através da estrutura condicional de independência entre

as variáveis. Também sugerimos aplicar medidas de diagnóstico para verificar a

qualidade do ajuste dos modelos de mapeamento de QTLs.
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Abstract

We propose Bayesian methods for selecting and estimating different types of

mixture models which are widely used in Genetics and Molecular Biology. We

specifically propose data-driven selection and estimation methods for a generalized

mixture model, which accommodates the usual (independent) and the first-order

(dependent) models in one framework, and QTL (quantitative trait locus) mapping

models for independent and pedigree data. For clustering genes through a

mixture model, we propose three nonparametric Bayesian methods: a marginal

nested Dirichlet process (NDP), which is able to cluster distributions and, a

predictive recursion clustering scheme (PRC) and a subset nonparametric Bayesian

(SNOB) clustering algorithm for clustering big data. We analyze and compare

the performance of the proposed methods and traditional procedures of selection,

estimation and clustering in simulated and real data sets. The proposed methods are

more flexible, improve the convergence of the algorithms and provide more accurate

estimates in many situations. In addition, we propose methods for estimating

nonobservable QTLs genotypes and missing parents and improve the Mendelian

probability of inheritance of nonfounder genotype using conditional independence

structures. We also suggest applying diagnostic measures to check the goodness of

fit of QTL mapping models.

viii



Keywords: Mixture models; data-driven Bayesian methods; nonparametric

Bayesian methods; QTL mapping; clustering distributions; clustering big data;

pedigree data; gene interaction.



Contents

List of Figures xiv

List of Tables xvi

1 Introduction 1

1.1 Genetic background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Proposals and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Generalized mixture model 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Generalized mixture model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Updating the number of components K . . . . . . . . . . . . . . . . . . . 11

2.3.2 Transition between independent and first-order mixture models . . . . . 14

2.3.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Mixture of dependent binomial distributions . . . . . . . . . . . . . . . . 16

2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Simulated data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.2 Rolling thumbtacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.3 Number of diagnosed cases of diabetes . . . . . . . . . . . . . . . . . . . 22

2.6 Use of the first-order mixture model in Genetics and Molecular Biology 24

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

x



2.8 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8.1 Validity of split-merge acceptance probability . . . . . . . . . . . . . . . 26

2.8.2 Validity of dependence order acceptance probability . . . . . . . . . . . . 26

2.8.3 Additional mixing and statistical convergence diagnostics of simulated

data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8.4 Generalized mixture of multinomial distributions . . . . . . . . . . . . . 27

2.8.5 R codes to carry out DDRJ . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 QTL mapping as a mixture model 46

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Model for quantitative traits . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 DDRJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Simulated data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.2 Bone mineral density data set . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6.1 Conditional a posteriori distribution of parameters . . . . . . . . . . . . 65

3.6.2 Additional information about the RJ and DDRJ chains of simulated data

sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6.3 R codes to carry out DDRJ . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 QTL mapping model checking 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Bayesian model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Checking the bone mineral density QTL mapping model . . . . . . . . . 94

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



5 A model for QTL mapping of pedigree data 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Model for quantitative traits of pedigree data . . . . . . . . . . . . . . . . 101

5.2.1 Transmission probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.2 Missing founder’s parents . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.1 Algorithm DDRJ for pedigree data . . . . . . . . . . . . . . . . . . . . . 110

5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6.1 R codes to carry out DDRJ . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6.2 Codes used to simulate data sets in SimPed . . . . . . . . . . . . . . . . 140

6 A marginal NDP – clustering distributions 142

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2 Nested Dirichlet process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 The a posteriori simulation for the marginal NDP . . . . . . . . . . . . 146

6.3.1 Gibbs sampling transition probabilities . . . . . . . . . . . . . . . . . . . 146

6.3.2 Transition probabilities for distributional clusters . . . . . . . . . . . . . 147

6.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4.1 Marginal NDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4.2 Clustering distributions by k-means . . . . . . . . . . . . . . . . . . . . . 151

6.5 Clustering DMR genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.7 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.7.1 R codes to carry out marginal NDP in simulated data set . . . . . . . . . 157



7 Big data clustering using mixture model 172

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.1.1 Clustering methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.1.2 Big data clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.2 Predictive recursion clustering (PRC) . . . . . . . . . . . . . . . . . . . . 176

7.2.1 Predictive recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.2.2 Merging similar components and removing order dependence . . . . . . . 178

7.2.3 PRC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.3 Subset nonparametric Bayesian (SNOB) . . . . . . . . . . . . . . . . . . . 180

7.3.1 Clustering each shard and estimating local clusters . . . . . . . . . . . . 181

7.3.2 Estimating global clusters . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.5 Clustering genes by their GE-GE interactions . . . . . . . . . . . . . . . 188

7.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.5.2 PRC results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.5.3 SNOB results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.7 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.7.1 R codes to carry out PRC for simulated data set . . . . . . . . . . . . . . 192

7.7.2 R codes to carry out SNOB for simulated data set . . . . . . . . . . . . . 200

8 Conclusions 214

Bibliography 216



List of Figures

2.1 Number of diagnosed cases of diabetes by ages (per 1000 population). . . . . . . 23

2.2 The a posteriori probability estimate of P (St = 1|y, s−t,θ,p0,P, K) . . . . . . . 25

3.1 Trace plot of K for σ = 0.5 : (A) RJ sequence and (B) DDRJ sequence. . . . . . 59

3.2 Trace plot of K for σ = 1.0 : (A) RJ sequence and (B) DDRJ sequence. . . . . . 59

3.3 Trace plot of K for σ = 1.5 : (A) RJ sequence and (B) DDRJ sequence. . . . . . 59

4.1 Diagnostic measures of goodness of fit: (A) normal probabilistic plot of a

posteriori mean of studentized residuals; (B) the a posteriori distribution of

studentized residuals versus iterations plot; (C) the a posteriori distribution of

studentized residuals versus predicted values plot; (C) index plot of ICPO; (D)

index plot of global influence; (E) index plot of normalized importance weight

variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Diagnostic measures of goodness of fit: (A) normal probabilistic plot of a

posteriori mean of studentized residuals; (B) the a posteriori distribution of

studentized residuals versus iterations plot; (C) the a posteriori distribution of

studentized residuals versus predicted values plot; (C) index plot of ICPO; (D)

index plot of global influence; (E) index plot of normalized importance weight

variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Pedigree represented by a DAG. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 DAG for a family of a pair of parents and their offspring. . . . . . . . . . . . . . 103

xiv



5.3 Position (M) of the first estimated QTL when σ = 2. . . . . . . . . . . . . . . . 113

6.1 Simulation truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2 Panel (A) shows the simulation truth for cluster membership by plotting I(si =

sj) (black for equality). Panel (B) plots the a posteriori probabilities p̄ij = p(si =

sj | y) (black for p̄ij = 1, white for 0). . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3 Estimated F̂k = E(Fk | y). Compare with Figure 6.1. . . . . . . . . . . . . . . . 152

6.4 Histograms of GE-GE interactions for four genes. The inference goal is to group

all J genes into clusters with similar distributions of GE-GE interactions. . . . . 154

6.5 The a posteriori co-clustering probability p̄ij = p(si = sj | y) for DMR genes.

Numbers under each cluster in the diagonal represent clusters’ label. . . . . . . . 155

6.6 Estimated cluster-specific distributions F̂k = E(Fk | y). . . . . . . . . . . . . . . 156

7.1 PRC clusters. Each boxplot shows the distribution of the respective quantile

across all genes in the cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.2 SNOB clusters. Each boxplot shows the distributions of the respective quantile

across all genes in the cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



List of Tables

2.1 Effective sample size of K sequence in DDRJ and RJ chains. . . . . . . . . . . . 20

2.2 DDRJ a posteriori probability for dependence structure of the model. The

highest probability of each situation is in boldface type. . . . . . . . . . . . . . . 20

2.3 DDRJ a posteriori probability for the number of components K. Higher

probabilities are in boldface type. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 RJ a posteriori probability for the number of componentsK. Higher probabilities

are in boldface type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 DDRJ and RJ a posteriori probability for the number of components K. . . . . 22

2.6 The a posteriori probability for the number of components K. . . . . . . . . . . 24

2.7 Estimates and 95% credibility intervals for diagnosed diabetes rates. . . . . . . . 24

2.8 IAT of K sequence in DDRJ and RJ chains. . . . . . . . . . . . . . . . . . . . . 27

2.9 Acceptance rate of split-merge proposals. . . . . . . . . . . . . . . . . . . . . . . 27

2.10 Acceptance rate of dependence order proposals in DDRJ chains. . . . . . . . . . 27

2.11 The a posteriori probability for dependence structure of the model obtained by

DDRJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.12 The a posteriori probability for the number of components K obtained by DDRJ. 29

2.13 Misclassification table of true and estimated s when mt = 50 and P1. . . . . . . 29

2.14 Misclassification table of true and estimated s when mt = 50 and P3. . . . . . . 29

2.15 Misclassification table of true and estimated s when mt = 100 and P1. . . . . . . 30

2.16 Misclassification table of true and estimated s when mt = 100 and P3. . . . . . . 30

xvi



3.1 ESS of K sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 The a posteriori probability for K. . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 The a posteriori estimates of the models parameters. . . . . . . . . . . . . . . . 61

3.4 MIM estimates of the parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 DDRJ a posteriori probability for K in each chromosome. . . . . . . . . . . . . 63

3.6 DDRJ estimates and 95% credibility intervals of parameters. . . . . . . . . . . . 64

3.7 Effective sample size of RJ and DDRJ chains. . . . . . . . . . . . . . . . . . . . 69

4.1 Point estimates and 95% credibility intervals for parameters. . . . . . . . . . . . 94

4.2 The a posteriori probabilities for K in each chromosome without atypical

observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Estimates and 95% credibility interval for QTLs’ location without atypical

observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Estimates and 95% credibility interval for parameters of model with 5 QTLs and

without outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Values of s∗pik for each combination of lpik , lppik and lmpik considering heterozygous

father. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Transmission probabilities when rt ≈ 1/2 ≈ rt+1. . . . . . . . . . . . . . . . . . . 106

5.3 The a posteriori probability for K. . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5 Estimates and standard errors of variance components models. . . . . . . . . . . 113

5.4 The a posteriori estimates for models. . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Parameters of the true distributions used to simulate the data set, where w

represents the component weight. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2 Misclassification table of true and estimated clusters of ỹ. . . . . . . . . . . . . . 153
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Chapter

1

Introduction

Mixture models have been applied in many research areas since they describe data coming

from a mixture of subpopulations that cannot be adequately modeled by any standard

parametric family of distributions. In Genetics and Molecular Biology, specifically, mixture

models generalize some important models used for identifying groups of homogeneous segments,

genes or proteins, mapping quantitative trait locus (QTL) or clustering genes.

The hidden Markov model (HMM), for example, has been widely used to describe

homogeneous segments (Boys & Henderson, 2002, 2004; Boys et al., 2000; Churchill, 1989, 1992;

Muri, 1998; Zuanetti, 2006), detect and align remotely homologous sequences that provide

information about the protein’s function, structure or evolution (Gough et al., 2001; Lee et al.

, 2009; Söding, 2005) and impute missing genotype of QTLs or single nucleotide polymorphism

(SNPs) in DNA sequencing (Broman, 2006; Druet & Georges, 2010; Kang et al., 2010). The

HMM can be written as a mixture model with first-order dependence and the usual independent

mixture model is a particular case of the first-order mixture model (Meira, 2014).

QTL mapping models, used for locating regions associated with quantitative traits in the

genome, can also be characterized as an independent or dependent mixture model according

to the relative relationship among individuals. A phenotype is usually modeled as a linear

function of the additive and dominance effects of the QTL genotypes and several methods have

been developed to estimate the position and characterization of QTLs.

In addition, mixture models are used for clustering observations. Fraley & Raftery (2002,

2007); Fraley et al. (2012) describe and review methodological framework for data clustering

using mixture models. However, most of the model-based clustering methods or deterministic

1



clustering schemes fail for big data, due to computational constraints and the need to access

all data simultaneously.

The relevant issues in estimating mixture models are identifying the number of components,

estimation of parameters and clustering the observations according to the component they

belong. Therefore, Bayesian inference arises as an attractive alternative since it combines

parameters estimation, model selection and clustering in a powerful way and carry out them

jointly. The reversible jump (RJ) (Green, 1995; Green & Richardson, 2001; Richardson & Green,

1997) is the usual Markov chain Monte Carlo (MCMC) method for selecting and estimating a

mixture model and clustering the observations.

The most important characteristic in the MCMC is that it mixes well, i.e., that it moves

around the possible models and associated parameter spaces rather easily, and quickly finds its

stationary distribution. Improving the existing MCMC estimation methods to obtain better

mixing, accuracy, faster convergence and capability to deal with big data has been a topic of

research for many authors.

1.1 Genetic background

Geneticists and molecular biologists have aimed at locating regions associated with

quantitative traits (or phenotype as, for example, eye color, weight, affected/normal, etc) in

the genome. These chromosomal regions are known as QTLs and the QTL mapping model has

been an important method for identifying genetic causes of diseases or other characteristics of

living beings.

For a given individual, one chromosome in each pair derives from the DNA of his mother

and the other from the DNA of his father. A specific segment of chromosome is known as a

locus and we typically refer to the individual’s DNA at this locus as its gene. Different variants

of a gene are called alleles and pair of alleles (AA, Aa or aa) is referenced as the genotype. If

both alleles are of the same type, we say the genotype is homozygous otherwise heterozygous.

QTLs effects may be divided into three components:

• additive effect: results from the direct action of each allele in the chromosomes;

• dominance effect: results from the combined action of alleles in chromosomes in the same

locus (intra-locus interaction); and

• epistasis: results from the combined action of alleles at different loci (inter-locus

interaction).

As the location in the genome of a QTL is unknown, we can use the genetic markers for

identifying and mapping QTLs’ locations. The location of markers are known and specified

through the linkage map. The genotype of genetic markers is also known.
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1.1 Genetic background

In a genetic linkage map, the distance between two loci is estimated by the recombination

fraction between them. The recombination fraction r between two loci is defined as the

probability that genes segregating to the gamete at these loci come from different parental

chromosomes. For loci close together, r is approximately 0 and, when loci are far away, r tends

to be 1/2, indicating that the loci are segregating independently. That is, under assumptions

of the meiosis model for most diploid species, r ranges from 0 to 1/2.

There are several link functions between the genetic distance and the recombination fraction.

Among them, stands out the Haldane function (Haldane, 1919) defined as

r = 1−exp(−2dH)
2

or dH = −1
2

ln(1− 2r),

where dH −→ ∞ when r −→ 0.5. The distance measure is usually specified in centiMorgans

(cM) or Morgans (M).

1.2 Proposals and structure

In this thesis, the main subject of study is the mixture models. We consider different types

of mixture models, all of them widely used in Genetics and Molecular Biology, and propose more

efficient Bayesian methods for selecting and estimating the best fitting model and clustering

the observations.

First, we describe a generalized mixture model which accommodates the usual (independent)

and first-order (dependent) models in one framework and propose an efficient and accurate

data-driven reversible jump (DDRJ) to implement the model selection and model fitting. The

procedure is able to select between independent and first-order mixture models and estimates

the number of components in the mixture. The update of the number of components is made

by splitting and merging moves avoiding arbitrary transformations of current parameters. This

simplifies the methodology and accelerates the search procedure of the best fitting model, since

more suitable and efficient candidates for changing the dimension are generated using the data.

We also propose a birth-death-merge DDRJ for multiple QTL mapping. It simulates a more

likely location for a new QTL using the available data, chooses a QTL to be excluded according

to its importance in the current model or merges the effects of two consecutive QTLs if their

genotype are correlated. Consequently, candidates are more likely to be accepted and the space

of possible models are easily explored. The merge movement of consecutive QTLs is efficient

under tested conditions to avoid identification of false QTLs. In addition, we briefly describe

some Bayesian statistics used for model checking and propose using them to check the goodness

of fit of a QTL mapping model.

Considering QTL mapping model for pedigree data, we suggest a model which describes

the dependence structure among individuals and variables through conditional independence

structures. The proposed model considers that the segregation of a gene in a locus depends on

Mendelian segregation and also is correlated with genotypes of flanking markers (at left and

3



1.2 Proposals and structure

at right). The assumption of linked genotypes of nearby loci is desirable because the chance

of a genetic recombination through meiosis process is low and the genotype of flanking loci is

informative and improves the model which considers sole the Mendel probability of inheritance

for parents’ genotypes. We also extend the DDRJ for mapping QTLs of independent individuals

to estimate the number, positions, additive and dominance effects of QTLs in pedigree data.

The proposed DDRJ methods also have the advantage of providing intervalar estimates with

information about the uncertainty of estimates. Usual methods generally provide only point

estimates or asymptotic confidence intervals for big samples.

We also discuss clustering for distributions of gene-gene interactions through mixture

models. The aim is inference on groups of genes that are similar in terms of the distribution

of their interactions with other genes. We use a nested Dirichlet process a priori (NDP)

(Rodriguez et al., 2008) for the desired grouping of distributions. We show how inference in

the NDP can be implemented exactly, rather than the approximate inference based on finite

truncations that is used in the original NDP. The proposed MCMC scheme clarifies the nature

of the NDP as a prior for nested clustering.

For clustering big data, we propose two nonparametric mixture model-based methods. The

first scheme is an incremental clustering algorithm called predictive recursion clustering (PRC).

It is based on a predictive recursion algorithm by Newton et al. (1998), which is usually applied

to approximate the a posteriori mean of a DP (Dirichlet process) mixture model. We use the

terms of the mixture approximation to define clusters and add a step to allocate observations to

the cluster that maximizes the marginal a posteriori after all observations have been included

in the model. It is an approximate method that avoids a full MCMC a posteriori simulation.

The second method is a distributed computing algorithm called subset nonparametric Bayesian

(SNOB) clustering. It is an exact method that divides the data into smaller groups, referred to

as shards, across multiple machines and identifies local clusters. In a second step, we combine

the local clusters to determine global clusters in a MapReduce or Hadoop framework. The

method is simulation exact, in the sense that the global clusters are built on the basis of a

probability model for the full original data.

This thesis is organized as follows. The first section of each chapter shows a bibliographic

review and discuss in more details the problem studied in the specific chapter. Chapter 2

describes a generalized mixture model, details the Bayesian methodology for this model and

proposes the data-driven procedure for selecting and estimating it. This chapter also specifies

the methodology for a binomial mixture model and shows RJ and DDRJ performance on

simulated and real data sets. Chapter 3 writes a model for independent quantitative traits

as a mixture model and proposes a specific DDRJ for model selection and estimation. It also

analyzes the performance of the DDRJ and compare it with the RJ performance in simulated

and real data sets. In Chapter 4, we describe some Bayesian diagnostic measures for evaluating

the goodness of fit and show how to use them in a QTL mapping problem. We apply the
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1.2 Proposals and structure

suggested measures to evaluate an estimated QTL mapping model for a real data set. Chapter

5 proposes a model for quantitative traits in pedigree data using the conditional independence

structure among variables and individuals. This chapter also analyzes the performance of

the method and compares it with the usual mixed variance component model performance in

simulated data sets. In Chapter 6, we briefly define the NDP and propose the MCMC algorithm

to estimate a marginal NDP. We present a simulated example to illustrate the performance of

NDP in clustering histograms with same features of GE coefficients distributions. We apply the

marginal NDP to cluster the coefficients distributions of DNA mismatch repair (DMR) genes

and compare the NDP results with results under a k-means method, which is a widely used

deterministic method for clustering. In Chapter 7, we discuss the predictive recursion algorithm

of Newton et al. (1998) and develop the PRC method for clustering big data. We also proposes

the SNOB method and applies both methods in two benchmark data sets and one simulated

data set to explore the performance of both schemes in clustering big data. We compare their

performance with DP-means, DBSCAN, SUGS and EM clustering. In addition, we cluster the

gene data set using the two proposed methods. Finally, we show conclusions in Chapter 8.
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Chapter

2

Generalized mixture model 1

In this chapter, we present a generalization of the usual (independent) mixture model

to accommodate a Markovian first-order mixing distribution. We propose the data-driven

reversible jump, a Markov chain Monte Carlo (MCMC) procedure, for estimating the a

posteriori probability for each possible model in a model selection procedure beyond estimating

the corresponding parameters.

Simulated data sets modeling through the proposed method shows excellent performance

in the convergence of the MCMC, model selection and precision of parameters estimates.

The proposed method is also easier to implement as it is not necessary to define arbitrary

deterministic transformations to perform transdimensional moves as in the case of usual

reversible jump. We apply the proposed method to analyze USA diabetes incidence data sets.

2.1 Introduction

One of the challenges in Epidemiology is to study the disease occurrence patterns and

evolution trying to understand the differences between different periods of time or groups of

people and identify causes and work with preventive policies. In situations of heterogeneous

data sets, mixture models have been applied to classification, clustering and describe differences

in trajectory among subgroups of independent and longitudinal data.

Two relevant issues in estimating mixture models are identifying the number of components

and the estimation of parameters. The identification of the number of components is basically

a model selection issue. The usual methods to select the number of components are the

expectation-maximization (EM) algorithm (Dempster et al., 1977) combined with a model

1This chapter is based on the manuscript “A generalized mixture model applied to diabetes incidence data”
accepted for publication (Zuanetti & Milan, To appear b).
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selection criterion such as Akaike’s information criterion (AIC), Bayesian information criterion

(BIC), among others (McLachlan & Peel, 2004) and Bayesian methods combined with estimating

procedures such as the reversible jump (RJ) (Green, 1995; Green & Richardson, 2001; Richardson

& Green, 1997).

Both EM and RJ usually show convergence and accuracy problems. The EM algorithm

shows dependence of the final solution on the starting values and convergence to a local

maximum and the RJ may have difficulties moving between different models.

Improving the existing Markov chain Monte Carlo (MCMC) estimation methods to obtain

more accuracy and faster convergence has been a topic of research for many authors. Tierney

& Mira (1999) modify the basic Metropolis-Hastings algorithm allowing a second attempt to

update the current state in case of rejection of the first proposal. Green & Mira (2001) extend

this strategy to RJ. The evaluation of the acceptance probability to ensure the reversibility of

the process is also an obstacle to making complete use of the idea in terms of both efficiency

and range of problems to which it can be applied. Brooks et al. (2003) propose procedures

to draw the random variables which complete the parametric space in RJ and improve the

acceptance probability. Pandolfi et al. (2014) propose a generalization of the multiple-try

Metropolis algorithm which consists of drawing several proposals at each step and randomly

choosing one of them on the basis of weights that may be arbitrarily chosen. All these proposals

refer to the usual (independent) mixture model.

Fan et al. (2009) use a marginal density estimator to settle the distribution from which the

between-model proposals are drawn in an RJ algorithm. They avoid difficulties in specifying

the deterministic functions and the associated proposal distribution, but the resulting class

of proposal distributions requires moderate computational effort. Jain & Neal (2004), Jain &

Neal (2007) and Saraiva & Milan (2012) use data-driven MCMC methods to estimate a mixture

model considering independent variables and obtain better convergence and accuracy. By data-

driven MCMC, we mean that the observed data is used to define the proposal distribution (Jain

& Neal, 2004; Saraiva & Milan, 2012).

First-order mixture models, also known as hidden Markov models (HMMs; Rabiner, 1989;

Rabiner & Juang, 1986; Zucchini & MacDonald, 2009), have been applied to study longitudinal

data sets mainly to identify homogeneous segments in DNA sequencing (Boys & Henderson

, 2002, 2004; Boys et al., 2000; Muri, 1998), as well as detect and align multiple DNA sequences

providing information about a protein function, structure or evolution (Gough et al., 2001; Lee

et al., 2009; Söding, 2005) and disease progression (Jackson et al., 2003).

Considering a first-order mixture model, Visser et al. (2010) propose estimating the model

using EM and the forward-backward algorithm with a fixed number of components and selecting

the number of components using model selection criteria. Robert et al. (2000) propose

selecting and estimating a first-order mixture model jointly through RJ. Despite testing different

deterministic functions and hyperparameter values, they note that the mixing of MCMC is not
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as good as expected. Shi et al. (2002) propose a birth-death MCMC to estimate first-order

models where parameters associated with the new component are drawn from an arbitrary

density and then the observations are reallocated. Spezia (2010) estimates the number of

components through RJ and then runs another MCMC with a fixed number of components to

estimate the parameters.

We describe a generalized mixture model which accommodates the usual (independent) and

the first-order (dependent) models in one framework and propose an efficient and accurate

data-driven reversible jump (DDRJ) to implement the model selection and model fitting. The

procedure is able to select between independent and first-order mixture models and estimates

the number of components in the mixture. The method may also identify the best fitting

distribution if it is required although this is not our focus here. The update of the number

of components is made by splitting and merging moves avoiding arbitrary transformations of

parameters. Finally, we apply the DDRJ to diabetes data incidence and verify possible changes

in the diabetes incidence over the last three decades. We also compare the trajectory of age

groups.

The chapter is organized as follows: Section 2.2 describes the first-order mixture model and

independent model in one framework; Section 2.3 proposes the data-driven MCMC algorithm;

Section 2.4 specifies the methodology for a mixture of binomial distributions directing it to

epidemiological data; and in Section 2.5, the DDRJ is applied to the simulated data sets

comparing its performance with the RJ. It is also applied to data from Beckett and Diaconis

(1994) and USA incidences of diabetes data; Section 2.6 shows the use of the first-order mixture

model in Genetics and Molecular Biology. Finally, we conclude with a discussion in Section 2.7

and appendices in Section 2.8.

2.2 Generalized mixture model

In this section, we briefly describe the generalized mixture model which accommodates the

independent and first-order mixture models (HMMs) in the same framework.

Let S = (S1, S2, ..., ST ) be a Markov chain, where St ∈ {1, 2, ..., K} for t = 1, 2, ..., T ,

Pr (St = st|St−1 = st−1, ..., S1 = s1) = Pr (St = st|St−1 = st−1) = pst−1st

for t = 2, 3, ..., T and Pr (S1 = s1) = p0s1 . Let Y = (Y1, Y2, ..., YT ) be a sequence of random

variables with density given by fYt|St=k(yt) = fYt(yt|θk) with k ∈ {1, 2, ..., K} and θk the

parameters of the probability distribution associated to the k-th state of St.

The model has the following conditional independence structures:

St ⊥ {S1, Y1, ..., St−2, Yt−2, Yt−1}|St−1 and Yt ⊥ {S1, Y1, ..., St−1, Yt−1}|St

for t = 2, 3, ..., T .

For a fixed value K, the parameters of the model are
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2.2 Generalized mixture model

1. p0 = (p01, ..., p0K) the initial probability for S, where p0k = Pr(S1 = k), k = 1, 2, .., K;

2. P = {pjk} the transition matrix of S, where pjk = Pr(St+1 = k|St = j), j, k = 1, 2, ..., K;

and

3. θ = (θ1, ...,θK) the parameters of the distribution associated to each state of St.

The joint distribution of Y and S is

fY,S(y, s|θ,p0,P) =
T∏
t=1

pst−1stfYt (yt|θst) , (2.1)

where ps0s1 = p0s1 .

As S is nonobservable, the marginal distribution of Y is

fY(y|θ,p0,P) =
∑

s

fY,S(y, s|θ,p0,P) =
K∑

s1=1

. . .
K∑

sT=1

T∏
t=1

pst−1stfYt (yt|θst)

=
K∑

s1=1

ps0s1fY1 (y1|θs1) . . .
K∑

sT=1

psT−1sT fYT (yT |θsT )

=
T∏
t=1

K∑
st=1

pst−1stfYt (yt|θst) (2.2)

which characterizes each variable Yt as a mixture of K distributions (Meira, 2014).

If S = (S1, S2, ..., ST ) is a sequence of independent variables,

Pr (St = st|St−1 = st−1) = Pr (St = st) = pst

where t = 1, ..., T and
∑K

st=1 pst = 1. The marginal distribution of Y is

fY(y|θ,p) =
∑

s

fY,S(y, s) =
K∑

s1=1

. . .

K∑
sT=1

T∏
t=1

pstfYt (yt|θst)

=
T∏
t=1

K∑
st=1

pstfYt (yt|θst) (2.3)

which is the independent mixture model, a special case of the first-order mixture model (2.2)

(Meira, 2014).

The likelihood function for θ, P and p0 is

L(θ,p0,P|y, s) =
T∏
t=1

pst−1stfYt (yt|θst) =
K∏
k=1

{(
K∏
j=0

p
njk
jk

)(
T∏
t=1

fYt (yt|θst)
I(St=k)

)}
, (2.4)
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2.2 Generalized mixture model

where n0k = I (S1 = k) and njk =
∑T−1

t=1 I (St = j, St+1 = k) is the observed number of

transitions from component j to component k for j, k = 1, ..., K.

2.3 Bayesian approach

Considering the number of components K unknown and pj’s and θk’s independent, for

j = 0, 1, ..., K and k = 1, ..., K, the joint a priori distribution for parameters θ, p0, P and K is

π(θ,p0,P, K) = π(K)π(p0|K)π(P|K)π(θ|K)

= π(K)

(
K∏
k=0

π(pk|K)

)(
K∏
k=1

π(θk)

)
. (2.5)

Assume

1. K ∼ Uniform(1, 2, ..., Kmax), where Kmax is a specified maximum value of K;

2. pj|K ∼ Dirichlet(γj1, ..., γjK) for j = 0, ..., K and where γjK > 0 are known

hyperparameters; and

3. θk, for k = 1, ..., K, are independent a priori and π(θ|K) =
∏K

j=1 π(θk).

We propose a data-driven MCMC scheme to select and estimate model (2.1). The DDRJ

is implemented by three steps: in the first step, the current values of parameters are updated

using a Gibbs sampling procedure; in the second step, the number of components of the mixture

model is updated using a split-merge move; and in the third step, we evaluate the transition

between independent and first-order dependent models. These steps are described as follows.

Combining the likelihood function in eq. (2.4) and the a priori distribution, we obtain

the conditional a posteriori distributions from which the basic Gibbs sampling moves are

implemented.

The parameters p0 and pk are updated from the conditional distributions

p0|(K,y, s,P,θ) ∼ Dirichlet(γ01 + n01, ..., γ0K + n0K) and

pk|(K,y, s,P−pk ,p0,θ) ∼ Dirichlet(γk1 + nk1, ..., γkK + nkK),

for k = 1, ..., K.

St’s are simulated from their conditional a posteriori distribution given by

Pr(St = k|y,S−t = s−t, · · · ) = Pr(St = k|Yt = yt, St−1 = st−1, St+1 = st+1, · · · )

=
Pr(St = k, Yt = yt, St+1 = st+1|St−1 = st−1, · · · )

Pr(Yt = yt, St+1 = st+1|St−1 = st−1, · · · )

=
pst−1kfYt(yt|θk)pkst+1∑K
k=1 pst−1kfYt(yt|θk)pkst+1

, (2.6)
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where · · · represents (θ,p0,P, K), ps0k = p0k, pkST+1
= 1 and fYt(yt|θk) is the

density of Yt associated to the k-th component of St. Therefore, St|(y, s−t, · · · ) ∼
multinomial(1, (δt1, ..., δtK)), where δtk = Pr(St = k|y, s−t, · · · ).

2.3.1 Updating the number of components K

Transdimensional moves to update the number of components are implemented by split and

merge procedures. The split breaks a component into two components increasing K by one and

the merge joins two components decreasing K by one unity.

Let x = (K,P,p0,θ) be the current state with K components and x∗ = (K∗,P∗,p∗0,θ
∗) the

state of the proposed movement where signal ∗ denotes either a split or a merge. The proposed

movement is accepted according to Metropolis-Hastings probability Ψ(x∗|x) = min(1, A∗),

where

A∗ =
L(θ∗,p∗0,P

∗, K∗|y, s∗)
L(θ,p0,P, K|y, s)

π(θ∗,p∗0,P
∗, K∗)

π(θ,p0,P, K)

q(x|x∗)
q(x∗|x)

, (2.7)

and q(·|·) is the proposal distribution from which we draw the proposed movement.

The procedure of choosing a split or a merge move is described by the following two steps:

1. Choose a pair of observations, t1 and t2, using the discrete uniform(1, ..., T ) distribution

without replacement.

2. If st1 = st2 , both observations belong to the same component and a split is proposed.

Otherwise, if st1 6= st2 , a merge of the components indicated by st1 and st2 is proposed.

The probability of choosing a merge movement of components st1 and st2 is

dst1st2 =
2nst1nst2
T (T − 1)

, (2.8)

where nsti =
∑T

t=1 I(st = sti) is the number of observations allocated to component sti , i = 1, 2.

A split of component st∗ = st1 = st2 is chosen with probability

bst∗ =
nst∗ (nst∗ − 1)

T (T − 1)
, (2.9)

where nst∗ =
∑T

t=1 I(st = st∗) is the number of observations allocated to component st∗ . Note

that bst∗+dst1st2 is not necessarily 1 since when K > 1, there are K!(K−1)! pairs of components

to be merged and K components to be split and one move among these possibilities is chosen.

Split

In a split of component st∗ we redistribute its observations to the two new components and

simulate parameters for them. Let ssp = (ssp1 , ..., s
sp
T ) be the configuration of S after the split.
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2.3 Bayesian approach

1. Reallocating observations: For t = 1, ..., T do

• If t = t1, allocate yt1 to the (K + 1)-th component, sspt1 = K + 1.

• If t = t2, keep yt2 in the same component, sspt2 = st2 .

• For the remaining observations in the splitting component, st = st∗ , allocate yt

to component K + 1 with probability Prsspt1
(t) or keep it in component st∗ with

probability 1− Prsspt1 (t). Prsspt1
(t) is chosen arbitrarily.

• if st 6= st∗ , keep yt in the same component, sspt = st.

The new configuration ssp of S has probability

Pr(ssp|s) =
∏

t:sspt =sspt1

Prsspt1
(t)

∏
t:sspt =sspt2

(
1− Prsspt1 (t)

)
, (2.10)

where Prsspt1
(t1) = 1 and Prsspt1

(t2) = 0. When Prsspt1
(t) = 1/2, for t /∈ {t1, t2}, this

probability simplifies to

Pr(ssp|s) =

(
1

2

)n
s
sp
t1

+n
s
sp
t2

−2

. (2.11)

2. Drawing parameters of the new components: Conditional on S = ssp, draw

candidate-values xsp = (K + 1,Psp,psp0 ,θ
sp) from their conditional a posteriori

distributions. Moving from θ to θsp we just update θsspt1
and θsspt2

, the parameters of

components which have their configuration changed.

The proposal distribution of a split is

q(xsp|x) = bst∗Pr(s
sp|s)π

(
θsspt1
|y, ssp, K + 1,Psp,psp0 ,θ

sp
−θ

s
sp
t1

)
× π

(
θsspt2
|y, ssp, K + 1,Psp,psp0 ,θ

sp
−θ

s
sp
t2

)
π (psp0 |y, ssp, K + 1,Psp,θsp)

×
k+1∏
j=1

π
(
pspj |y, ssp, K + 1,Psp

−pspj
,psp0 ,θ

sp
)
, (2.12)

where π (·|·) is the conditional a posteriori distributions used to draw the candidate-values.

The acceptance probability for the split move is Ψ(xsp|x) = min(1, Asp), where Asp is given
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by equation (2.7) as the product of the likelihoods ratio

L(θsp,psp0 ,P
sp, K + 1|y, ssp)

L(θ,p0,P, K|y, s)
=

∏
t:sspt =sspt1

fYt

(
yt|θsspt1

) ∏
t:sspt =sspt2

fYt

(
yt|θsspt2

)
∏

t:st=st∗

fYt
(
yt|θst∗

)
K+1∏
k=1

(
K+1∏
j=0

psp
n
sp
jk

jk

)
K∏
k=1

(
K∏
j=0

p
njk
jk

) ,

(2.13)

the a priori distributions ratio

π(θsp,psp0 ,P
sp, K + 1)

π(θ,p0,P, K)
=

(∏K+1
j=0

(
Γ(
∑K+1
k=1 γjk)∏K+1

k=1 Γ(γjk)

∏K+1
k=1 p

sp
γjk−1

jk

))
π(θsspt1

)π(θsspt2
)(∏K

j=0

(
Γ(
∑K
k=1 γjk)∏K

k=1 Γ(γjk)

∏K
k=1 p

γjk−1

jk

))
π(θst∗ )

(2.14)

and the proposal distributions ratio

q(x|xsp)
q(xsp|x)

=
2nsspt1

nsspt2

nst∗ (nst∗ − 1)
(

1
2

)n
s
sp
t1

+n
s
sp
t2

−2

×
π
(
θst∗ |y, s, K,P,p0,θ−θst∗

)
π

(
θsspt1
|y, ssp, K + 1,Psp,psp0 ,θ

sp
−θ

s
sp
t1

)
π

(
θsspt2
|y, ssp, K + 1,Psp,psp0 ,θ

sp
−θ

s
sp
t2

)
×

π (p0|y, s, K,P,θ)
∏K

j=1 π
(
pj|y, s, K,P−pjp0,θ

)
π (psp0 |y, ssp, K + 1,Psp,θsp)

∏K+1
j=1 π

(
pspj |y, ssp, K + 1,Psp

−pspj
,psp0 ,θ

sp
) . (2.15)

If γjk = 1 for k = 1, ..., K and j = 0, 1, ..., K the a priori distributions ratio simplifies to

π(θsp,psp0 ,P
sp, K + 1)

π(θ,p0,P, K)
=

(K!)KK+1π(θsspt1
)π(θsspt2

)

π(θst∗ )
. (2.16)

Merge

In a merge movement, we join the observations of two selected components and draw the

parameters of this new component. Let smg be the configuration of S after a merge. The merge

of components st1 and st2 is implemented by the following procedure.

1. Joining observations: For t = 1, ..., T do

• If st < max(st1 , st2), do smgt = st.

• If st = max(st1 , st2), do smgt = min(st1 , st2).

• If st > max(st1 , st2), do smgt = st − 1.
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2.3 Bayesian approach

The probability of this new configuration smg = (smg1 , ..., smgT ) is

Pr(smg|s) = 1. (2.17)

2. Drawing parameters of the new component: Conditional on S = smg, draw a

new set of parameters xmg = (K − 1,Pmg,pmg0 ,θmg) from their conditional a posteriori

distributions. Moving from θ to θmg we only update θsmgt∗ , the parameters of the

component whose configuration changed.

The proposal distribution of a merge is given by

q(xmg|x) = dst1st2π

(
θsmgt∗ |y, s

mg, K − 1,Pmg,pmg0 ,θmg−θ
s
mg
t∗

)
π (pmg0 |y, smg, K − 1,Pmg,θmg)

×
K−1∏
j=1

π
(
pmgj |y, smg, K − 1,Pmg

−pmgj
,pmg0 ,θmg

)
, (2.18)

where π (·|·) is the conditional a posteriori distribution for each parameter.

The acceptance probability of merging is Ψ(xmg|x) = min(1, Amg), where Amg = 1/Asp.

Note that the probability of proposing a split from x is the same as being in state xmg and

proposing a split, q(xsp|x) = q(x|xmg), and analogously q(xmg|x) = q(x|xsp).
If we first split the state x, giving xsp, and then combine the components st1 and st2 we

can recover x and state x is likely to be recovered after a split process of xmg. Also note

that a proposed movement is built without defining any arbitrary deterministic function or

sampling arbitrary random variables. The proposed step is a special case of reversible jump

when parameters of the proposed model are drawn from the proposal distribution and the

Jacobian is equal to 1. More details are provided in the appendices of this chapter.

2.3.2 Transition between independent and first-order mixture models

In this section we propose a move to update the dependence order of the model. Let

x0 = (K,p,θ) be an independent mixture model of K components, where p = (p1, ..., pK) and

pk = Pr(St = k) for k = 1, ..., K. Let x1 = (K,P,p0,θ) be a first-order mixture model of

K components as described in Section 2.2. Transitions between these models are drawn using

the conditional a posteriori distributions of p or p0 and P which are the modified parameters

when we move from x0 and x1 maintaining K fixed. The proposed move is evaluated through

the Metropolis-Hastings procedure.

The acceptance probability for moving from x1 to x0 is Ψ(x0|x1) = min(1, A0), where

A0 =
L(θ,p, K|y, s)

L(θ,p0,P, K|y, s)

π(p|K)

π(p0,P|K)

q(x1|x0)

q(x0|x1)
, (2.19)
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2.3 Bayesian approach

L(θ,p0,P, K|y, s) is given by (2.4); L(θ,p, K|y, s) =
K∏
k=1

{
pnkk

(∏T
t=1 fYt (yt|θst)

I(St=k)
)}

is

the likelihood function of independent model and nk =
T∑
t=1

I(St = k) for k = 1, ..., K

is calculated using the current configuration of S; π(p|K) is the a priori distribution

for p (a Dirichlet(γ1, ..., γK)); π(p0,P|K) is the a priori distribution for p0 and P

defined in Section 2.3; q(x0|x1) and q(x1|x0) are given by the conditional a posteriori

distribution of the corresponding model, π(p|y, s, K,θ)=Dirichlet(γ1 + n1, ..., γK + nK) and

π(p0|y, s, K,P,θ)
∏K

j=1 π(pj|y, s, K,p0,P−pj ,θ), respectively.

The acceptance probability for moving from x0 to x1 is Ψ(x1|x0) = min(1, A1), where

A1 = 1/A0.

Note that transitions between the independent and first-order mixture models are easily

built and evaluated using only the current state of the MCMC. The proposed step is also a

special case of reversible jump where the Jacobian is equal to 1. More details are available in

the appendices of this chapter.

2.3.3 Algorithm

The DDRJ is specified by the following steps:

1. Initialize K and s = {s1, ..., sT} such that st ∈ {1, ..., K}, for t = 1, ..., T .

2. Sample θk, for k = 1, ..., K, from its conditional a posteriori distribution.

3. Sample pj, for j = 0, ..., K, from its conditional a posteriori distribution.

4. Data-driven split-merge: Update K

For b = 1, ..., B do

(a) Sample two observations, t1 and t2, and decide between split or merge.

(b) Build the candidate for s∗ and sample candidate-values x∗.

(c) Accept the proposal with probability Ψ(x∗|x), where ∗ is either sp or mg.

i. If a split is accepted, do K(b) = K(b−1) + 1 and consider xsp.

ii. If a merge is accepted, do K(b) = K(b−1) − 1 and consider xmg.

iii. If no move is accepted, do K(b) = K(b−1) and consider x.

5. Update st, for t = 1, ..., T , from a multinomial(1, (δt1, ..., δtK(b))), where

δtk = Pr(St = k|y, s−t, K(b),P,p0,θ).

6. Update θk, for k = 1, ..., K(b), from its conditional a posteriori distribution.

7. Update pj, for j = 0, ..., K(b), from its conditional a posteriori distribution.
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2.3 Bayesian approach

8. Move between dependent and independent models with K(b) components as described in

Section 2.3.2.

The a priori distribution and likelihood function are invariant under permutation of the

component labels. See Dahl (2006) for methods details about non identifiable parameters in

mixture models, also called label switching.

2.4 Mixture of dependent binomial distributions

Now we apply the method to a mixture of binomial distributions although it can be adapted

to a mixture of other distribution. In the next section, we will use this particular case to analyze

the number of diagnosed cases of diabetes.

Consider Yt|St = k ∼ binomial(mt, θk), t = 1, 2, ..., T and k ∈ {1, 2, ..., K}, where mt is

known and 0 < θk < 1.The likelihood function is

L(θ,p0,P, K|y, s,m) =
K∏
k=1


(

K∏
j=0

p
njk
jk

)
T∏
t=1

((
mt

yt

)
θytk (1− θk)mt−yt

)I(St=k)


=

{
T∏
t=1

(
mt

yt

)}{
K∏
k=1

θ

∑
t:st=k

yt

k (1− θk)
∑

t:st=k

(mt−yt)
(

K∏
j=0

p
njk
jk

)}
, (2.20)

where m = {m1, ...,mT} and θ = {θ1, ..., θK}.
Assume beta(αk, βk) as a priori distribution for θk, k = 1, ..., K, with known

hyperparameters αk > 0 and βk > 0. θk and θk′ are supposed to be independent for k 6= k′.

The joint a posteriori distribution for θ, p0, P and K is given by

π(θ,p0,P, K|y, s,m) ∝ L(θ,p0,P, K|y, s,m)π(θ,p0,P, K)

∝

{
K∏
k=1

θ

∑
t:st=k

yt+αk−1

k (1− θk)
∑

t:st=k
(mt−yt)+βk−1

(
K∏
j=0

p
njk+γjk−1

jk

)}
(2.21)

and the conditional a posteriori distribution for θk is

θk| (θ−θk ,p0,P, K,y, s,m) ∼ beta

( ∑
t:st=k

yt + αk,
∑

t:st=k

(mt − yt) + βk

)
, for k = 1, ..., K.
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2.4 Mixture of dependent binomial distributions

The likelihoods ratio for the split proposal is

L(θsp,psp0 ,P
sp, K + 1|y, ssp,m)

L(θ,p0,P, K|y, s,m)
=

2∏
i=1

θ
∑

t:s
sp
t =s

sp
ti

yt

sspti

(
1− θsspti

) ∑
t:s
sp
t =s

sp
ti

(mt−yt)


θ

∑
t:st=st∗

yt

st∗

(
1− θst∗

) ∑
t:st=st∗

(mt−yt)

×

K+1∏
k=1

(
K+1∏
j=0

psp
n
sp
jk

jk

)
K∏
k=1

(
K∏
j=0

p
njk
jk

) , (2.22)

the a priori distributions ratio is

π(θsp,psp0 ,P
sp, K + 1)

π(θ,p0,P, K)
=

(∏K+1
j=0

(
Γ(
∑K+1
k=1 γjk)∏K+1

k=1 Γ(γjk)

∏K+1
k=1 p

sp
γjk−1

jk

))
(∏K

j=0

(
Γ(
∑K
k=1 γjk)∏K

k=1 Γ(γjk)

∏K
k=1 p

γjk−1

jk

))

×

2∏
i=1

 1

B

(
α
s
sp
ti

,β
s
sp
ti

)θαsspti −1

sspti

(
1− θsspti

)β
s
sp
ti

−1


1

B(αst∗ ,βst∗ )
θ
αst∗−1
st∗

(
1− θst∗

)βst∗−1
(2.23)

and the proposal distribution ratio is

q(x|xsp)
q(xsp|x)

=
2nsspt1

nsspt2

nst∗ (nst∗ − 1)
(

1
2

)n
s
sp
t1

+n
s
sp
t2

−2

×

1

B

 ∑
t:st=st∗

yt+αst∗ ,
∑

t:st=st∗
(mt−yt)+βst∗

 θ
∑

t:st=st∗
yt+αst∗ −1

st∗ (1−θst∗ )

∑
t:st=st∗

(mt−yt)+βst∗ −1

2∏
i=1


1

B

 ∑
t:s
sp
t =s

sp
ti

yt+αs
sp
ti

,
∑

t:st=st∗
(mt−yt)+βsspti


θ

∑
t:s
sp
t =s

sp
ti

yt+αs
sp
ti

−1

s
sp
ti

(
1−θ

s
sp
ti

) ∑
t:st=st∗

(mt−yt)+βsspti
−1



×

(∏K
j=0

(
Γ(
∑K
k=1 njk+γjk)∏K

k=1 Γ(njk+γjk)

∏K
k=1 p

njk+γjk−1

jk

))
(∏K+1

j=0

(
Γ(
∑K+1
k=1 nspjk+γjk)∏K+1

k=1 Γ(nspjk+γjk)

∏K+1
k=1 p

sp
n
sp
jk

+γjk−1

jk

)) . (2.24)

The acceptance probability for the split moves is Ψ(xsp|x) = min(1, Asp), where Asp is given
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2.4 Mixture of dependent binomial distributions

by the product of equations (2.22), (2.23) and (2.24),

Asp =

(∏K+1
j=0

(
Γ(
∑K+1
k=1 γjk)∏K+1

k=1 Γ(γjk)

))(∏K
j=0

(
Γ(
∑K
k=1 njk+γjk)∏K

k=1 Γ(njk+γjk)

))
(∏K

j=0

(
Γ(
∑K
k=1 γjk)∏K

k=1 Γ(γjk)

))(∏K+1
j=0

(
Γ(
∑K+1
k=1 nspjk+γjk)∏K+1

k=1 Γ(nspjk+γjk)

)) B
(
αst∗ , βst∗

)
2∏
i=1

B
(
αsspti

, βsspti

)

×

2∏
i=1

B

 ∑
t:sspt =sspti

yt + αsspti
,
∑

t:st=st∗

(mt − yt) + βsspti


B

( ∑
t:st=st∗

yt + αst∗ ,
∑

t:st=st∗

(mt − yt) + βst∗

) 2nsspt1
nsspt2

nst∗ (nst∗ − 1)
(

1
2

)n
s
sp
t1

+n
s
sp
t2

−2 . (2.25)

Consider γjk = 1, αk = 1 and βk = 1 for k = 1, ..., K + 1 and j = 0, 1, ..., K + 1 in

order to obtain vague a priori distributions. The acceptance probability for the split moves is

Ψ(xsp|x) = min(1, Asp), where

Asp =

KK+1K!

(∏K
j=0

(
Γ(
∑K
k=1 njk+1)∏K

k=1 Γ(njk+1)

))
(∏K+1

j=0

(
Γ(
∑K+1
k=1 nspjk+1)∏K+1

k=1 Γ(nspjk+1)

))
2∏
i=1

B

 ∑
t:sspt =sspti

yt + 1,
∑

t:st=st∗

(mt − yt) + 1


B

( ∑
t:st=st∗

yt + 1,
∑

t:st=st∗

(mt − yt) + 1

)

×
2nsspt1

nsspt2

nst∗ (nst∗ − 1)
(

1
2

)n
s
sp
t1

+n
s
sp
t2

−2 (2.26)

and B(·, ·) denotes the beta function.

In order to deal with label switching, we relabel the components at each MCMC iteration

such that θ1 < θ2 < · · · < θK .

2.5 Applications

We apply DDRJ and RJ for the first-order model proposed by Robert et al. (2000) in

simulated data sets, including a well-studied data set from Beckett & Diaconis (1994), and

the real USA diabetes incidence. We consider a mixture of binomial distributions and set

hyperparameters γjk = 1, γk = 1, αk = 1 and βk = 1 for k = 1, ..., K + 1 and j = 0, 1, ..., K + 1

in order to obtain vague a priori distributions. Simulations have not shown sensitivity of the

proposed method for the choice of different vague a priori distributions.

To carry out the RJ procedure, we define deterministic functions of current parameters

to increase or reduce the dimension of the current model trying to keep the same stationary

distribution of P. When the proposal matrix Psp does not have the features of a transition

matrix, the proposal is rejected automatically. Depending on the defined deterministic

functions, the calculation of the Jacobian is not trivial. As the RJ scheme does not have a high
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rejection rate of transdimensional moves (see RJ acceptance probabilities in the appendices

of this chapter), we do not consider the refinements commented in Section 2.1 to improve its

transdimensional moves acceptance. See Zuanetti & Milan (2015) for details about the RJ

scheme carried out in this section.

Despite DDRJ having the additional step to select the best dependence order of the model,

the DDRJ and RJ computational times are similar. We implement DDRJ and RJ methods

in R language. R is a free software environment for statistical computing and graphics and

more details are found on the following homepage: https://www.r-project.org. The DDRJ

R codes for estimating a mixture of binomial distributions are available in the appendices of

this chapter.

2.5.1 Simulated data sets

We consider a mixture of K = 4 binomial distributions with success probability θ1 = 0.15,

θ2 = 0.25, θ3 = 0.50 and θ4 = 0.85, respectively, in a sequence of T = 120 observations.

We simulate 12 distinct data sets varying mt and P to verify the performance of DDRJ and

RJ in different situations. Despite DDRJ and RJ do not require that all mt’s be equal, we

fix mt =10, 50 or 100 for each data set and choose P1 = {pjk = 1/K; ∀j, k} (independent

mixture model), P2 = {pkk = 0.30, pjk = 0.70/(K − 1); k = 1, ..., K, j 6= k} (low probability

of mixture components are the same successively), P3 = {pkk = 0.50, pjk = 0.50/(K − 1); k =

1, ..., K, j 6= k} (moderate probability of mixture components are the same successively) or

P4 = {pkk = 0.75, pjk = 0.25/(K − 1); k = 1, ..., K, j 6= k} (high probability of mixture

components are the same successively) to sample S.

We run B = 55000 iterations for DDRJ and RJ, discard the first 5000 iterations and consider

one draw for every 10 elements of the sequence. For each situation and method, we simulate

two sequences with different starting points to check the convergence of the algorithm. One

chain is initialized with K = 1 and the other with K = 10 and an independent model in DDRJ

scheme. The results of both sequences are very similar indicating convergence of the chains

and that the methods are not sensitive to the starting point. Here we show the results of

sequences with starting point K = 1. The RJ algorithm does not include the step of selecting

the dependence structure of the model since using arbitrary deterministic transformations to

move between dependent and independent models hinders the convergence of the RJ algorithm.

The trace plots for all the chains show no concerns about convergence in both cases.

We verify the convergence of the DDRJ and RJ sequences by the trace plots of K, effective

sample size (ESS) (Kass et al., 1998) and integrated autocorrelation time (IAT) of the sequences.

ESS is the number of effectively independent draws from a posteriori distribution. Large

discrepancy between the ESS and the simulation sample size indicates poor mixing, i.e., the

method needs a large number of steps to scan the parametric space. Table 2.1 shows ESS for RJ

and DDRJ K sequences. We observe that ESS of DDRJ sequences is always higher than ESS of
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RJ sequences indicating a better mixing of DDRJ. IAT is a MCMC diagnostic which estimates

the number of autocorrelated samples, on average, required to produce one independent drawn

sample. The method with the lowest IAT is the most efficient. The IAT values of RJ and DDRJ

K sequences are shown in the appendices of this chapter. Acceptance rates of transdimensional

moves are also shown in the appendices of this chapter.

Table 2.1: Effective sample size of K sequence in DDRJ and RJ chains.

Method
mt

10 50 100
P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

RJ 39 50 80 128 50 29 51 42 26 26 67 101
DDRJ 319 319 218 211 182 168 301 147 187 190 301 444

Table 2.3 shows DDRJ a posteriori probability for the dependence structure of the model.

The a posteriori probability is the relative frequency of occurrence of each model in the

simulated sequence. DDRJ correctly identifies the first-order model as the most suitable for the

data sets simulated from P3 and P4 and the independent model for P1. For P2, DDRJ identifies

the independent model as the most suitable and this may be explained by the closeness of the

transition matrix rows.

Table 2.2: DDRJ a posteriori probability for dependence structure of the model. The highest
probability of each situation is in boldface type.

Model
mt

10 50 100
P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

Independent 0.77 0.88 0.10 0.00 0.96 0.93 < 0.01 0.00 0.94 0.90 0.00 0.00
First-order 0.23 0.12 0.90 1.00 0.04 0.07 > 0.99 1.00 0.06 0.10 1.00 1.00

Table 2.2 shows DDRJ a posteriori probability for K of the most suitable model. The

a posteriori probability for K is the relative frequency of each value of K in the simulated

sequence. The DDRJ has a good performance to identify K = 4 when mt ≥ 50 for all the

considered transition matrices. For mt = 10, the first and second components are estimated as

a single component. In this case, the number of trials (mt = 10) is not big enough to distinguish

θ1 = 0.15 and θ2 = 0.25. We note that for independent models (P1) higher values of mt are

necessary to identify the real number of components.

Table 2.4 shows the a posteriori probability for K obtained by RJ. First-order RJ only

identifies K = 4 when mt = 100 and P3 or P4. In cases of independent models or small values

of mt, some values of K have similar a posteriori probability and we cannot clearly identify the

selected model. Comparing Tables 2.2 and 2.4, it can be observed that DDRJ is more accurate

to identify the true model than the RJ for the simulated cases.
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Table 2.3: DDRJ a posteriori probability for the number of components K. Higher probabilities
are in boldface type.

K
mt

10 50 100
P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

2 0.44 0.12 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.44 0.67 0.63 0.75 0.46 0.25 0.00 0.00 0.00 0.01 0.00 0.00
4 0.10 0.18 0.30 0.14 0.43 0.53 0.80 0.84 0.76 0.67 0.90 0.96
5 0.02 0.03 0.06 0.02 0.10 0.19 0.18 0.16 0.21 0.27 0.09 0.04
≥ 6 0.00 0.00 0.01 0.00 0.01 0.03 0.02 0.00 0.03 0.05 0.01 0.00

Table 2.4: RJ a posteriori probability for the number of components K. Higher probabilities
are in boldface type.

K
mt

10 50 100
P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

2 0.04 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.19 0.08 0.11 0.39 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.21 0.20 0.34 0.38 0.20 0.13 0.31 0.50 0.00 0.03 0.60 0.81
5 0.23 0.27 0.33 0.16 0.33 0.25 0.38 0.43 0.03 0.18 0.27 0.17
6 0.16 0.23 0.14 0.05 0.29 0.30 0.21 0.05 0.18 0.28 0.11 0.02
≥ 7 0.17 0.21 0.08 0.01 0.11 0.32 0.10 0.02 0.79 0.51 0.02 0.00

DDRJ estimates and credibility intervals for θ and P are well estimated in all cases. When

mt = 100 and P3 or P4, RJ and DDRJ estimates of θ and P are very similar.

We also apply DDRJ to analyze independent and first-order mixtures of K = 5 multinomial

distributions with 10 possible events. A description of the data sets and results are available in

the appendices of this chapter. Under those high-dimension simulated situations, DDRJ also

shows a good performance in selecting and estimating the best model.

2.5.2 Rolling thumbtacks

We apply DDRJ and first-order RJ methods in Beckett & Diaconis (1994) data set. This

is a well-studied example with binomial observations. They generated binary strings from rolls

of common thumbtacks and considered that a 1 was scored if the tack landed point up and a 0

was recorded if the tack landed point down. The actual data arose from 12 different tacks, 2

flickers and 10 surfaces. Each tack was flicked 9 times and Yt represents the number of ups out

of mt = 9 flips for t = 1, ..., 320. A spectral analysis of the data rejected the ordinary iid model

of rolling. As in Liu (1996) and Newton et al. (1998), we assume that conditioned on a certain

tack, the results of the 9 different flips are independent and a binomial model is adequate.
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Liu (1996) and Newton et al. (1998) analyze this data set using a nonparametric Bayesian

model for independent observations and they identified bimodality in the predictive distribution.

Two modes were 0.52 and 0.79. A possible explanation for this might be that the tack data

were produced by two people with some systematic differences in their flipping. Liu (1996)

comments that this characteristic would rarely be identified by a regular parametric analysis

using beta-binomial a priori distribution.

We run DDRJ and first-order RJ B = 55000 iterations, discard the first 5000 iterations and

consider one draw for every 10 elements of the sequence. The chains are initialized with K = 1

and independent models in DDRJ.

DDRJ a posteriori probabilities for the independent and first-order model are 0.348 and

0.652, respectively. Therefore the first-order model fits better to the data than the independent

model assumed in the nonparametric Bayesian analysis. A possible explanation for this result

might be that the data is ordered by flickers and the number of ups are dependent as Beckett

& Diaconis (1994).

Table 2.5 shows the DDRJ and RJ a posteriori probability for the number of components K

considering a first-order model. In concordance with Liu (1996), DDRJ identifies K = 2. The

estimates of the success probabilities (a posteriori average) and their 95% credibility interval

are 0.51(0.44, 0.57) and 0.79(0.73, 0.84). The RJ method does not clearly clearly the value of

K since the a posteriori probability for K = 2, 3 and 4 are all nearly the same. The ESS of

DDRJ and RJ chain is 92 and 57, respectively, which indicates a better mixing for the DDRJ

method.

Table 2.5: DDRJ and RJ a posteriori probability for the number of components K.
K DDRJ RJ
2 0.69 0.22
3 0.25 0.28
4 0.05 0.27
≥ 5 0.01 0.23

2.5.3 Number of diagnosed cases of diabetes

The incidence of diabetes has increased in recent years. From 1980 through 2013, the

incidence of diagnosed diabetes increased in adults aged 18-44 years, 45-64 years and 65-79

years and has become one of the greatest public health concern.

The data we are analyzing is available on the following website: http://www.cdc.gov/

diabetes/statistics/incidence/fig3.htm. The sequence of the yearly number of diagnosed

cases of diabetes in the USA per 1000 population, from 1980 through 2013 (T = 34),

is a realization of Y, where Yt|St = k ∼ binomial(mt = 1000, θk), t = 1, 2, ..., 34 and

k ∈ {1, 2, ..., K}, mt is known and 0 < θk < 1. We assume the number of diagnosed cases has

a binomial distribution instead of another distribution such as Poisson or a negative binomial
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Figure 2.1: Number of diagnosed cases of diabetes by ages (per 1000 population).

since the number of trials is known (mt = 1000) and we expect the variance of the number

of diagnosed cases is lower than its mean inside a homogeneous period of time. Madden &

Hughes (1995), Kranz (2003) and Rothman et al. (2008) show other cases where the binomial

distribution or beta-binomial model is preferred to analyze the incidence of a disease.

Figure 2.1 shows the sequences of the number of diagnosed cases of diabetes by ages. It

shows that from 1980 through 2013 the incidence of diagnosed diabetes increased for all adult

ages. In the last three years, it has decreased, probably as a result of preventive policies.

Ages ranges from 45-64 and 65-79 seem to have similar probabilities of diagnosing new cases of

diabetes in the analyzed period.

We run DDRJ B = 55000 iterations, discard a burn in of the first 5000 iterations and select

one every 10 values of the sequence for each age. The chains are initialized with K = 1 and

the independent model. Convergence diagnostics identified no reason for concern.

The first-order mixture model fits better to the data than the independent mixture model.

Table 2.6 shows the a posteriori probabilities for K by age, conditional on the first-order model.

We observe the maximum probability at K = 2 and conclude that for the analyzed period, there

are two different levels of probability of diagnosing diabetes for all ages. For ages in the 45-64

interval, we note that the model with K = 3 has a moderate frequency (0.40) indicating that

this group is more heterogeneous than the other groups.

23



2.5 Applications

Table 2.6: The a posteriori probability for the number of components K.
K 18− 44 45− 64 65− 79
2 0.99 0.60 0.92
3 0.01 0.40 0.08
4 0.00 < 0.004 < 0.001

The estimates of the two incidence probability and their 95% credibility intervals are

presented in Table 2.7. We note the probability of diagnosing new cases of diabetes almost

doubled for all age groups in the period. At the of 45− 64 and 65− 79, the diabetes incidence

are similar. At the ages of 18-44, the incidences are lower than in the other ages.

Table 2.7: Estimates and 95% credibility intervals for diagnosed diabetes rates.
Rate 18-44 45-64 65-79
θ1 0.02(0.01− 0.02) 0.07(0.06− 0.09) 0.07(0.06− 0.10)
θ2 0.04(0.03− 0.04) 0.12(0.12− 0.13) 0.12(0.12− 0.13)

Analyzing the differences in trajectory of age subgroups, we estimate the expected value of

S. Figure 2.2 shows the estimates of a posteriori probability of the first binomial distribution by

age groups. We observe that the model clearly detected a change in incidence in the analyzed

period. For subgroups 18-44 and 45-65, the diabetes incidence increased after 2000. For the

ages of 65-79, the incidence has been higher since 1992.

2.6 Use of the first-order mixture model in Genetics and

Molecular Biology

We apply the proposed method to the number of diagnosed cases of diabetes. In addition, the

first-order mixture model is widely used in Genetics and Molecular Biology. A DNA sequence

y = {y1, y2, ..., yT}, for example, can be thought of as a realization of the observable sequence of

random variables where yt ∈ {a, c, g, t} ≡ {1, 2, 3, 4}, for t = 1, 2, ..., T , and where Yt|St = k ∼
multinomial(1,θk = (θk1, θk2, θk3, θk4)). The letters represent the four nucleic acids or bases:

adenine, cytosine, guanine and thymine.

Suppose there are K types of homogeneous segments in this DNA sequence. The

nonobservable sequence of these spatial oriented homogeneous segments is a realization of the

nonobservable Markov chain S = {S1, S2, ..., ST}, where St ∈ {1, 2, ..., K}, for t = 1, 2, ..., T . A

DNA sequence can be modeled as a first-order multinomial mixture model and the methodology

proposed in this section can be applied to select and estimate the best model. Details and

applications of using a first-order mixture model to analyze DNA sequences are found in

Churchill (1992), Churchill (1989), Muri (1998), Boys & Henderson (2004), Boys & Henderson

(2002), Boys et al. (2000), Zuanetti (2006) and Zuanetti & Milan (To appear a).
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Figure 2.2: The a posteriori probability estimate of P (St = 1|y, s−t,θ,p0,P, K)
.

The first-order mixture model is also used to input missing genotype in QTL mapping

(Broman, 2006) and identity-by-descent (IBD) estimation along a chromosome (Abney, 2008;

Brown et al., 2012; Druet & Farnir, 2011).

2.7 Discussion

We describe a generalization of the mixture model which accommodates the independent

(usual) and first-order dependent mixture model (HMM) in one framework. We propose the

data-driven reversible jump as a tool for model selection and estimation of the model.

Simulations show better performance of DDRJ to identify the most suitable model and

estimate its parameters in situations where usual methods do not select the best model.

DDRJ also shows good results analyzing Beckett & Diaconis (1994) data set where other

beta-binomial parametric methods (RJ, for example) cannot work very well. In addition to

properly estimate the number of components, DDRJ identifies the first-order model as the best

model to describe Beckett & Diaconis (1994) data set.

We apply the generalized mixture model to the yearly USA diabetes incidence data. We

observe the incidence increasing after 2000 for 18-64 ages. For the ages of 65-79, the incidence

has increased from 1992.

One of the most interesting aspects of the proposed method is that it is applicable for

selecting and estimating a wide variety of models, the simple usual mixture model (independent
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model) and the hidden Markov model (first-order mixture model), including cases of time series

and change point models. The method can also accommodate more than one distribution for

the observable variable, all participating in the model selection procedure.

Here we only use conjugate a priori distributions. However the method works well for

nonconjugate distributions. In these cases, it may be necessary changing some Gibbs sampling

to Metropolis-Hastings steps to simulate values from the conditional a posteriori distributions

of parameters.

2.8 Appendices

2.8.1 Validity of split-merge acceptance probability

Consider a split move from state x = (K,P,p0,θ) to xsp = (K + 1,Psp,psp0 ,θ
sp). Let

λ =
(
P,p0,θst∗

)
, u =

(
Psp,psp0 ,θsspt1

,θsspt2

)
be auxiliary variables of the transition x → xsp,

λsp =
(
Psp,psp0 ,θsspt1

,θsspt2

)
and usp =

(
P,p0,θst∗

)
be auxiliary variables of the transition

xsp → x which represents a merge move.

In the way we propose the DDRJ algorithm to update the number of components K, the

transition x→ xsp involves a deterministic map h(λ,u) = (usp,λsp) where the proposal density

of u = λsp does not depend on λ and h(·, ·) is one-to-one function with unity Jacobian.

Therefore, the acceptance probability of the split move is defined as (2.7) and the proposed

DDRJ method to update the number of components K is a special case of reversible jump

algorithm. The proposed chain is ergodic and its convergence to the desirable invariant

distribution is guaranteed.

2.8.2 Validity of dependence order acceptance probability

Consider a transdimensional move from an independent model x0 = (K,p,θ) to a first-order

model x1 = (K,P,p0,θ). Let u0 = (P,p0) be auxiliary variables of the transition x0 → x1 and

u1 = p be auxiliary variables of the transition x1 → x0.

In the way we propose the DDRJ algorithm to update the dependence order of the model,

the transition x0 → x1 involves a deterministic map g(p,u0) = (u1, (P,p0)) where the proposal

density of u0 = (P,p0)) does not depend on p and g(·, ·) is one-to-one function with unity

Jacobian. Therefore, the acceptance probability of the transition x0 → x1 is defined as (2.19)

and the proposed scheme is another special case of reversible jump algorithm. The convergence

of proposed chain to the desirable invariant distribution is guaranteed.

2.8.3 Additional mixing and statistical convergence diagnostics of simulated

data sets

Table 2.8 shows integrated autocorrelation time (IAT) measure for RJ and DDRJ K

sequences. DDRJ shows lower IAT than RJ in all tested situations confirming the better
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mixing of DDRJ sequences.

Table 2.8: IAT of K sequence in DDRJ and RJ chains.

Method
mt

10 50 100
P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

RJ 64 49 31 19 49 86 49 59 96 96 37 24
DDRJ 7 7 11 11 13 14 8 17 13 13 8 5

Table 2.9 and 2.10 shows the acceptance rates of split-merge proposals and dependence

order, respectively.

Table 2.9: Acceptance rate of split-merge proposals.

Method
mt

10 50 100
P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

RJ 0.918 0.834 0.824 0.927 0.520 0.374 0.411 0.187 0.150 0.285 0.318 0.194
DDRJ 0.014 0.013 0.008 0.005 0.008 0.008 0.004 0.002 0.005 0.006 0.002 0.002

Table 2.10: Acceptance rate of dependence order proposals in DDRJ chains.
mt

10 50 100
P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

0.21 0.091 0.081 0.001 0.044 0.046 0.001 0.001 0.044 0.077 0.001 0.001

2.8.4 Generalized mixture of multinomial distributions

We apply the proposed MCMC method to a mixture of multinomial distributions in order

to analyze the performance of DDRJ in selecting and estimating higher-dimensional mixture

models.

Assume Yt = (Yt1, ..., YtL)|St = k ∼ multinomial(mt,θk = (θk1, ..., θkL)), for t =

1, 2, ..., T and k ∈ {1, 2, ..., K} and where mt =
∑L

l=1 ytl and
∑L

l=1 θtl = 1. We consider a

conjugate Dirichlet(αk1, · · · , αkL) as a priori distribution for θk, k = 1, ..., K, with known

hyperparameters αkl > 0. θk and θk′ are supposed to be independent for k 6= k′.

In order to simulate data sets, we consider a mixture of K = 5 multinomial distributions

with events probabilities θ1 = (0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10), θ2 =

(0.05, 0.15, 0.05, 0.15, 0.05, 0.15, 0.05, 0.15, 0.05, 0.15), θ3 = (0.15, 0.05, 0.15, 0.05, 0.15, 0.05, 0.15,

0.05, 0.15, 0.05), θ4 = (0.025, 0.025, 0.025, 0.025, 0.40, 0.40, 0.025, 0.025, 0.025, 0.025) and θ5 =

(0.10, 0.25, 0.05, 0.0375, 0.0375, 0.05, 0.0375, 0.30, 0.0375, 0.10) respectively, in a sequence of T =

500 observations. The events probabilities of first three components are similar and usually it

is hard to identify all of them.
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We simulate 4 distinct data sets combining two values of mt and two transition matrices

P to verify the performance of DDRJ in different situations of high dimension. We fix mt =

50 or 100 for each data set and choose P1 = {pjk = 1/K;∀j, k} (independent mixture model)

and P3 = {pkk = 0.50, pjk = 0.50/(K − 1); k = 1, ..., K, j 6= k} (first-order mixture model with

moderate probability of mixture components are the same successively) to sample S. We set

hyperparameters γjk = 1, γk = 1 and αkl = 1 for k = 1, ..., K + 1, j = 0, 1, ..., K + 1 and

l = 1, ..., L which represents vague a priori distributions.

Considering these values of hyperparameters, the acceptance probability for the split moves

is Ψ(xsp|x) = min(1, Asp), where

Asp =

KK+1K!(L− 1)!

(∏K
j=0

(
Γ(
∑K
k=1 njk+1)∏K

k=1 Γ(njk+1)

))
(∏K+1

j=0

(
Γ(
∑K+1
k=1 nspjk+1)∏K+1

k=1 Γ(nspjk+1)

)) Γ(
∑L
l=1mst∗+1)∏L

l=1 Γ(mst∗+1)

2∏
i=1

Γ

(∑L
l=1msspti

+1

)
∏L
l=1 Γ

(
m
s
sp
ti

+1

)

×
2nsspt1

nsspt2

nst∗ (nst∗ − 1)
(

1
2

)n
s
sp
t1

+n
s
sp
t2

−2 . (2.27)

We run DDRJ B = 30000 iterations, discard the first 5000 iterations and consider one

draw for every 5 elements of the sequence. We start each MCMC chain with K = 1 and an

independent mixture model. We evaluate the convergence of the chains through trace plots.

The a priori distribution and likelihood function are invariant under permutation of the

component labels. In order to deal with label switching, we relabel the components at each

MCMC iteration such that θ11 ≤ θ21 ≤ · · · ≤ θK1, θ12 ≤ θ22 ≤ · · · ≤ θK2 and so on.

Table 2.11 shows DDRJ a posteriori probability for the dependence structure of the model.

A posteriori probability is calculated as the relative frequency of each dependence order in the

sequence. The DDRJ correctly identifies the first-order model as more suitable for all data set

simulated from P3 and independent model for P1.

Table 2.11: The a posteriori probability for dependence structure of the model obtained by
DDRJ.

Model
mt

50 100
P1 P3 P1 P3

Independent 1.00 0.00 1.00 0.00
First-order 0.00 1.00 0.00 1.00

Table 2.12 shows DDRJ a posteriori probability for K of the most suitable model in each

situation. A posteriori probability for K is calculated as the relative frequency of each value of

K in the sequence. We observe, under simulated conditions, DDRJ has a good performance to

identify K = 5 when mt = 100. When mt = 50, the number of trials are not enough for DDRJ
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identifies the component 1 whose events probabilities are the average of the probabilities of

similar components 2 and 3. Components 2 and 3 (which also have similar events probabilities),

4 and 5 are very well identified.

Table 2.12: The a posteriori probability for the number of components K obtained by DDRJ.

K
mt

50 100
P1 P3 P1 P3

4 1.00 1.00 0.00 0.246
5 0.00 0.00 1.00 0.754

The misclassification table of s for each situation are shown in Tables 2.13, 2.14, 2.15 and

2.16. The estimated st, for t = 1, ..., T , is the component which maximizes P (St|y, s−t,θ,p, K)

in an independent model or P (St|y, s−t,θ,p0,P, K) in a first-order model. When the

components’ label of estimated st is switched compared with true estimated st, we relabel

estimated st and choose the labels’ permutation which minimize misclassification rate. We

observe that members of component 1 are allocated in components 2 and 3 when mt = 50

which it is expected since events probabilities of component 1 are close to events probabilities

of components 2 and 3. Members of components 2, 3, 4 and 5 when mt = 50 and of all the

components when mt = 100 are very well identified.

Table 2.13: Misclassification table of true and estimated s when mt = 50 and P1.

True s
Estimated s

1 2 3 4
1 28 71 0 1
2 89 0 0 1
3 0 99 0 0
4 0 0 118 0
5 0 0 0 93

Table 2.14: Misclassification table of true and estimated s when mt = 50 and P3.

True s
Estimated s

1 2 3 4
1 57 34 0 0
2 107 0 0 0
3 0 100 0 0
4 0 0 118 0
5 1 0 0 83
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Table 2.15: Misclassification table of true and estimated s when mt = 100 and P1.

True s
Estimated s

1 2 3 4 5
1 99 0 1 0 0
2 0 90 0 0 0
3 1 0 98 0 0
4 0 0 0 118 0
5 0 0 0 0 93

Table 2.16: Misclassification table of true and estimated s when mt = 100 and P3.

True s
Estimated s

1 2 3 4 5
1 90 0 1 0 0
2 0 107 0 0 0
3 0 0 100 0 0
4 0 0 0 118 0
5 0 0 0 0 84

Here we don’t show estimates and credibility intervals for parameters θ, p, p0 and P since

we have, depending on situation, at least 49 parameters. However, estimates are very close to

true values and credibility intervals are short.

2.8.5 R codes to carry out DDRJ

In this section, we show DDRJ R codes for a simulated data set.

#

# mixture of K binomials distributions

#

################### useful functions

#

rDiric<-function(a){

X<-rgamma(length(a),a,1)

Y<-X/sum(X)

Y}

#

rmultinomial<-function(p){

u<-runif(1)

P<-cumsum(p)

val<-sum(P<u)+1

val}
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#

somaYt<-function(Y,C,k){

Ta<-length(Y)

somaYij<-c(rep(0,k))

for (j in 1:k){

for (i in 1:Ta){

if(C[i]==j) somaYij[j]<-somaYij[j]+Y[i]}}

somaYij}

#

contank<-function(C,k){

Ta<-length(C)

nj<-rep(0,k)

for (j in 1:k){

for (i in 1:Ta){

if(C[i]==j) nj[j]<-nj[j]+1}}

nj}

#

contanjk<-function(C,k){

Ta<-length(C)

nji<-matrix(0,k,k)

for (j in 1:k){

for (i in 1:k){

for (l in 1:(Ta-1)){

if(C[l]==j & C[l+1]==i) nji[j,i]<-nji[j,i]+1}}}

nji}

#

contan0k<-function(C1,k){

n0<-rep(0,k)

n0[C1]<-1

n0}

#

posttetak<-function(alfa,beta,somayi,somaniyi){

tetak<-rbeta(1,(alfa+somayi),(beta+somaniyi))

tetak}

#

postpj<-function(gama,njk){

gamav<-rep(gama,length(njk))

pj<-rDiric(gama+njk)
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pj}

#

postSj<-function(P,teta,yt,nt,sta,stp){

K<-nrow(P)

probst<-numeric(K)

for (i in 1:K) probst[i]<-exp(log(P[i,stp])+log(P[sta,i])+log(dbinom(yt, nt,

teta[i])))

probst<-probst/sum(probst)

st<-rmultinomial(probst)}

#

postSjind<-function(P,teta,yt,nt){

K<-length(P)

probst<-numeric(K)

for (i in 1:K) probst[i]<-exp(log(P[i])+log(dbinom(yt, nt, teta[i])))

probst<-probst/sum(probst)

st<-rmultinomial(probst)}

#

postS1<-function(P,P0,teta,y1,n1,stp){

K<-nrow(P)

probst<-numeric(K)

for (i in 1:K) probst[i]<-exp(log(P[i,stp])+log(P0[i])+log(dbinom(y1, n1,

teta[i])))

probst<-probst/sum(probst)

st<-rmultinomial(probst)}

#

postST<-function(P,teta,yT,nT,sta){

probst<-numeric()

K<-nrow(P)

for (i in 1:K) probst[i]<-exp(log(P[sta,i])+log(dbinom(yT, nT, teta[i])))

probst<-probst/sum(probst)

st<-rmultinomial(probst)}

#

propind<-function(katual,vetorY, vetorc, vetorNt, alfa, beta, gama, teta){

Nij0<-matrix(contank(vetorc,katual),nrow=katual,ncol=katual,byrow=TRUE)

vet.prob<-postpj(gama,Nij0[1,])

MT<-matrix(vet.prob,katual,katual,byrow=TRUE)

P0<-vet.prob

T<-length(vetorY)
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Snovo<-numeric(T)

for (t in (1:T)) Snovo[t]<-postSjind(MT[1,],teta,vetorY[t],vetorNt[t])

list(MT,Snovo,teta,P0,0)}

#

propdepend<-function(katual,vetorY, vetorc, vetorNt, alfa, beta, gama, teta){

Nij0<-contanjk(vetorc,katual)

N1j0<-contan0k(vetorc[1],katual)

MT<-matrix(0,katual,katual)

for (j in (1:katual)) MT[j,]<-postpj(gama,Nij0[j,])

P0<-postpj(gama,N1j0)

T<-length(vetorY)

Snovo<-numeric(T)

Snovo[1]<-postS1(MT,P0,teta,vetorY[1],vetorNt[1],vetorc[2])

for (t in (2:(T-1))) Snovo[t]<-postSj(MT,teta,vetorY[t],

vetorNt[t],Snovo[t-1],vetorc[t+1])

Snovo[T]<-postST(MT,teta,vetorY[T],vetorNt[T],Snovo[T-1])

list(MT,Snovo,teta,P0,1)}

#

probaceitdepend<-function(alfa,beta,gama,vetorY,vetorNt,vetorCind,

vetorCpo,teta,P0,Ppo,Pind){

#

### acceptance probability of being in a first-order

### model and transit to an independent model

#

veroind<-0

veropo<-0

T<-length(vetorY)

K<-length(teta)

Nij1<-contanjk(vetorCpo,K)

N1j1<-contan0k(vetorCpo[1],K)

Nijt1<-rbind(N1j1,Nij1)

Nk0<-contank(vetorCind,K)

for (t in 1:T){

veroind<-veroind+dbinom(vetorY[t],vetorNt[t],teta[vetorCind[t]],log=TRUE)

veropo<-veropo+dbinom(vetorY[t],vetorNt[t],teta[vetorCpo[t]],log=TRUE)}

veroind<-veroind+sum(Nk0*log(Pind))

for (i in 1:nrow(Nijt1)) veropo<-veropo+sum(Nijt1[i,]*log(rbind(P0,Ppo)[i,]))

vero<-veroind-veropo
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#

prio<--K*lgamma(K)

#

Nij0<-contanjk(vetorCind,K)

N1j0<-contan0k(vetorCind[1],K)

Nijt0<-rbind(N1j0,Nij0)+gama

Nk1<-contank(vetorCpo,K)+gama

b1<-lgamma(sum(Nk1))

b2<-sum(lgamma(Nk1))

b3<-b4<-0

for (i in 1:nrow(Nijt0)){

b3<-b3+lgamma(sum(Nijt0[i,]))

b4<-b4+sum(lgamma(Nijt0[i,]))}

post1<-b3-b4-b1+b2

#

Nijt0<-Nijt0-gama

Nk1<-Nk1-gama

a1<-sum(Nk1*log(Pind))

a2<-0

for (i in 1:nrow(Nijt0)) a2<-a2+sum(Nijt0[i,]*log(rbind(P0,Ppo)[i,]))

post2<-a2-a1

#

postSpo<-0

probst<-numeric(K)

for (i in 1:K) probst[i]<-exp(log(P0[i])+log(Ppo[i,vetorCind[2]])+

dbinom(vetorY[1],vetorNt[1],teta[i],log=TRUE))

probst<-probst/sum(probst)

postSpo<-postSpo+log(probst[vetorCpo[1]])

for (t in 2:(T-1)){

for (i in 1:K) probst[i]<-exp(log(Ppo[vetorCpo[t-1],i])+log(

Ppo[i,vetorCind[t+1]])+dbinom(vetorY[t],vetorNt[t],teta[i],log=TRUE))

probst<-probst/sum(probst)

postSpo<-postSpo+log(probst[vetorCpo[t]])}

for (i in 1:K) probst[i]<-exp(log(Ppo[vetorCpo[T-1],i])+dbinom(vetorY[T],

vetorNt[T],teta[i],log=TRUE))

probst<-probst/sum(probst)

postSpo<-postSpo+log(probst[vetorCpo[T]])

#
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postSind<-0

probst<-numeric(K)

for (t in 1:T){

for (i in 1:K) probst[i]<-exp(log(Pind[i])+dbinom(vetorY[t],

vetorNt[t],teta[i],log=TRUE))

probst<-probst/sum(probst)

postSind<-postSind+log(probst[vetorCind[t]])}

#

post3<-postSpo-postSind

#

PA<-exp(vero+prio+post1+post2+post3)

PA}

#

propmerge<-function(katual,vetorY, vetorc, vetorNt, alfa,

beta, gama, pos1, pos2, teta, depend){

#

#

############## merge both components

componentes<-sort(c(vetorc[pos1],vetorc[pos2]))

vetorcnovo<-vetorc

Ta<-length(vetorc)

for (i in 1:Ta){

if (vetorc[i]==componentes[2]) vetorcnovo[i]<-componentes[1]

if (vetorc[i]>componentes[2]) vetorcnovo[i]<-vetorc[i]-1}

K<-katual-1

#

############ sample theta for the new component

a<-sum(vetorY[vetorcnovo==componentes[1]])

b<-sum(vetorNt[vetorcnovo==componentes[1]])

tetanovo<-teta

tetanovo[componentes[1]]<-posttetak(alfa,beta,a,(b-a))

for (j in (componentes[2]:katual)) tetanovo[j]<-teta[j+1]

tetanovo<-tetanovo[1:K]

#

################### sample P e P0

if (depend==1){

N<-contanjk(vetorcnovo,K)

N0<-contan0k(vetorcnovo[1],K)
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MTnovo<-matrix(0,K,K)

for (j in (1:K)) MTnovo[j,]<-postpj(gama,N[j,])

P0novo<-postpj(gama,N0)} else{

N0<-contank(vetorcnovo,K)

N<-matrix(N0,nrow=K,ncol=K,byrow=TRUE)

vet.prob<-postpj(gama,N[1,])

MTnovo<-matrix(vet.prob,K,K,byrow=TRUE)

P0novo<-vet.prob}

#

list(K,vetorcnovo,tetanovo,MTnovo,P0novo,a,b,N,N0)}

#

propsplit<-function(katual, vetorY, vetorc, vetorNt, alfa, beta,

gama, pos1, pos2, teta, depend){

#

K<-katual+1

#

################ split one component in two

componente<-vetorc[pos1]

vetorcnovo<-vetorc

Ta<-length(vetorc)

for (i in 1:Ta){

if (vetorc[i]==componente){

aux<-runif(1)

if (aux<0.5) vetorcnovo[i]<-componente else vetorcnovo[i]<-K}}

vetorcnovo[pos1]<-componente

vetorcnovo[pos2]<-K

#

############## sample theta for the new components

tetanovo<-teta

a<-sum(vetorY[vetorcnovo==componente])

b<-sum(vetorNt[vetorcnovo==componente])

tetanovo[componente]<-posttetak(alfa,beta,a,(b-a))

a1<-sum(vetorY[vetorcnovo==K])

b1<-sum(vetorNt[vetorcnovo==K])

tetanovo<-c(tetanovo,posttetak(alfa,beta,a1,(b1-a1)))

#

################ sample P e P0

if (depend==1){
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N<-contanjk(vetorcnovo,K)

N0<-contan0k(vetorcnovo[1],K)

MTnovo<-matrix(0,K,K)

for (j in (1:K)) MTnovo[j,]<-postpj(gama,N[j,])

P0novo<-postpj(gama,N0)} else {

N0<-contank(vetorcnovo,K)

N<-matrix(N0,nrow=K,ncol=K,byrow=TRUE)

vet.prob<-postpj(gama,N[1,])

MTnovo<-matrix(vet.prob,K,K,byrow=TRUE)

P0novo<-vet.prob}

#

list(K,vetorcnovo,tetanovo,MTnovo,P0novo,a,b,a1,b1,N,N0)}

#

probaceit<-function(alfa,beta,sytsi,sntytsi,sytsisp,sntytsisp,

sytsjsp,sntytsjsp,gama,N,Nsp,nsisp,nsjsp,nsi){

#

### acceptance probability of a split proposal

#

a<-(-lbeta(alfa+sytsi,beta+sntytsi))+lbeta(alfa+sytsisp,beta+

sntytsisp)+lbeta(alfa+sytsjsp,beta+sntytsjsp)

#

b1<-b2<-b3<-b4<-0

for(j in 1:nrow(Nsp)){

a1<-a2<-a3<-a4<-0

for (i in 1:ncol(Nsp)){

a1<-a1+gama

a2<-a2+gama+Nsp[j,i]

a3<-a3+lgamma(gama)

a4<-a4+lgamma(gama+Nsp[j,i])}

b1<-b1+lgamma(a1)-a3

b2<-b2+lgamma(a2)-a4}

for(j in 1:nrow(N)){

c1<-c2<-c3<-c4<-0

for (i in 1:ncol(N)){

c1<-c1+gama

c2<-c2+gama+N[j,i]

c3<-c3+lgamma(gama)

c4<-c4+lgamma(gama+N[j,i])}
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b3<-b3+lgamma(c1)-c3

b4<-b4+lgamma(c2)-c4}

b<-b1-b3+b4-b2

#

c<-log(2*nsisp*nsjsp)-(log(nsi*(nsi-1))+(nsisp+nsjsp-2)*log(1/2))

#

PA<-exp(a+b+c)

PA}

#

# perform DDRJ to a mixture of 4 binomials distributions

#

#################

# Simulation 1. Nt=100 and p_{kk}=0.30

#################

set.seed(1111)

#

Kverd<-4

T<-120

Pbin<-c(0.15,0.25,0.50,0.85)

Y<-numeric()

minNt<-100

maxNt<-100

Nt<-round(runif(T, min = minNt, max = maxNt))

Ptrans<-matrix(c(0.30,0.70/3,0.70/3,0.70/3,0.70/3,0.30,0.70/3,0.70/3,

0.70/3,0.70/3,0.30,0.70/3,0.70/3,0.70/3,0.70/3,0.30),4,4,byrow=TRUE)

Sverd<-numeric()

Sverd[1]<-1

for (i in 2:T) Sverd[i]<-rmultinomial(Ptrans[Sverd[i-1],])

for (i in 1:length(Sverd)) Y[i]<-rbinom(1,Nt[i],Pbin[Sverd[i]])

#

alfa<-1

beta<-1

gama<-1

#

############# starting points

#

S<-rep(1,T)

K<-max(S)
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dependencia<-0

#

Ktotal<-numeric()

dependtotal<-numeric()

indSpMgtotal<-numeric()

indrejtotal<-numeric()

indrejdeptotal<-numeric()

vetordep<-numeric()

vetorK<-numeric()

vetorteta<-numeric()

vetorS<-numeric()

vetorP<-numeric()

#

a0<-somaYt(Y,S,K)

b0<-somaYt(Nt,S,K)

teta<-numeric()

for (j in (1:K)) teta[j]<-posttetak(alfa,beta,a0[j],(b0[j]-a0[j]))

#

if (dependencia==1){

Nij0<-contanjk(S,K)

N1j0<-contan0k(S[1],K)

MT<-matrix(0,K,K)

for (j in (1:K)) MT[j,]<-postpj(gama,Nij0[j,])

P0<-postpj(gama,N1j0)}

if (dependencia==0){

N1j0<-contank(S,K)

Nij0<-matrix(N1j0,nrow=K,ncol=K,byrow=TRUE)

vet.prob<-postpj(gama,Nij0[1,])

MT<-matrix(vet.prob,K,K,byrow=TRUE)

P0<-vet.prob}

#

amostrasfin<-5000

burnin<-5000

saltos<-10

AmostrasTotal<-burnin+amostrasfin*saltos

#

library(compiler)

enableJIT(3)
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#

for (int in (1:AmostrasTotal)){

cat(’\n’, int)

############# dependence order proposal

#

if (K>1){

if (dependencia==1){

candidato<-propind(K,Y,S,Nt,alfa,beta,gama,teta)

probava<-probaceitdepend(alfa,beta,gama,Y,Nt,candidato[[2]],

S,teta,P0,MT,candidato[[4]])}

if (dependencia==0){

candidato<-propdepend(K,Y,S,Nt,alfa,beta,gama,teta)

probava<-1/probaceitdepend(alfa,beta,gama,Y,Nt,S,candidato[[2]],

teta,candidato[[4]],candidato[[1]],MT[1,])}

#

#### evaluate the acceptance of dependence proposal

#

aux2<-runif(1)

if (aux2>=probava){

indrejdeptotal[int]<-1

dependtotal[int]<-dependencia}

if (aux2<probava){

indrejdeptotal[int]<-0

dependencia<-candidato[[5]]

dependtotal[int]<-dependencia

MT<-candidato[[1]]

P0<-candidato[[4]]

S<-candidato[[2]]

#

for (atu in 1:10){ # update model 10 times after accepting the

# dependence proposal

Snovo<-numeric()

if (dependencia==1){

Snovo[1]<-postS1(MT,P0,teta,Y[1],Nt[1],S[2])

for (t in (2:(T-1))) Snovo[t]<-postSj(MT,teta,Y[t],Nt[t],Snovo[t-1],S[t+1])

Snovo[T]<-postST(MT,teta,Y[T],Nt[T],Snovo[T-1])} else {

for (t in (1:T)) Snovo[t]<-postSjind(MT[1,],teta,Y[t],Nt[t])}

S<-Snovo
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#

a0<-somaYt(Y,S,K)

b0<-somaYt(Nt,S,K)

teta<-numeric()

for (j in (1:K)) teta[j]<-posttetak(alfa,beta,a0[j],(b0[j]-a0[j]))

#

if (dependencia==1){

Nij0<-contanjk(S,K)

N1j0<-contan0k(S[1],K)

MT<-matrix(0,K,K)

for (j in (1:K)) MT[j,]<-postpj(gama,Nij0[j,])

P0<-postpj(gama,N1j0)} else {

N1j0<-contank(S,K)

Nij0<-matrix(N1j0,K,K,byrow=TRUE)

P0<-postpj(gama,Nij0[1,])

MT<-matrix(P0,K,K,byrow=TRUE)}}}}

#

############## proposal of split-merge step

#

posicao<-sort(sample(seq(1,T), 2, replace = FALSE))

pos1<-posicao[1]

pos2<-posicao[2]

#

if(S[pos1]==S[pos2]) indSpMgtotal[int]<-0 else indSpMgtotal[int]<-1

# indSpMgtotal[int]=0 is split, se indSpMgtotal[int]=1 is merge

#

if (indSpMgtotal[int]==1) candidato<-propmerge(K,Y,S,Nt,alfa,beta,gama,pos1,

pos2,teta,dependencia) else

candidato<-propsplit(K,Y,S,Nt,alfa,beta,gama,pos1,pos2,teta,dependencia)

#

########### evaluate the acceptance of split-merge proposal

#

if (indSpMgtotal[int]==0){

sytsi<-a0[S[pos1]]

sntytsi<-(b0[S[pos1]]-a0[S[pos1]])

sytsisp<-candidato[[6]]

sntytsisp<-(candidato[[7]]-candidato[[6]])

sytsjsp<-candidato[[8]]
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sntytsjsp<-(candidato[[9]]-candidato[[8]])

if (dependencia==1){

Nij0<-contanjk(S,K)

N1j0<-contan0k(S[1],K)

matrizN<-rbind(N1j0,Nij0)

matrizNsp<-rbind(candidato[[11]],candidato[[10]])} else {

matrizN<-matrix(contank(S,K),nrow=1)

matrizNsp<-matrix(candidato[[11]],nrow=1)}

nsisp<-sum(matrizNsp[,S[pos1]])

nsjsp<-sum(matrizNsp[,candidato[[1]]])

nsi<-sum(matrizN[,S[pos1]])

PACEI<-min(1,probaceit(alfa,beta,sytsi,sntytsi,sytsisp,sntytsisp,sytsjsp,

sntytsjsp,gama,matrizN,matrizNsp,nsisp,nsjsp,nsi))}

#

if (indSpMgtotal[int]==1){

sytsi<-candidato[[6]]

sntytsi<-(candidato[[7]]-candidato[[6]])

sytsisp<-a0[S[pos1]]

sntytsisp<-(b0[S[pos1]]-a0[S[pos1]])

sytsjsp<-a0[S[pos2]]

sntytsjsp<-(b0[S[pos2]]-a0[S[pos2]])

if (dependencia==1){

Nij0<-contanjk(S,K)

N1j0<-contan0k(S[1],K)

matrizN<-rbind(candidato[[9]],candidato[[8]])

matrizNsp<-rbind(N1j0,Nij0)} else {

matrizN<-matrix(candidato[[9]],nrow=1)

matrizNsp<-matrix(contank(S,K),nrow=1)}

comp1<-sort(c(S[pos1],S[pos2]))[1]

nsi<-sum(matrizN[,comp1])

nsisp<-sum(matrizNsp[,S[pos1]])

nsjsp<-sum(matrizNsp[,S[pos2]])

PACEI<-min(1,1/(probaceit(alfa,beta,sytsi,sntytsi,sytsisp,sntytsisp,sytsjsp,

sntytsjsp,gama,matrizN,matrizNsp,nsisp,nsjsp,nsi)))}

#

######## Gibbs steps to update other parameters of the model

#

aux2<-runif(1)
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if (aux2<PACEI){

Ktotal[int]<-candidato[[1]]

indrejtotal[int]<-0

MT<-candidato[[4]]

teta<-candidato[[3]]

P0<-candidato[[5]]

S<-candidato[[2]]

K<-candidato[[1]]

#

Snovo<-numeric()

if (dependencia==1){

Snovo[1]<-postS1(MT,P0,teta,Y[1],Nt[1],S[2])

for (t in (2:(T-1))) Snovo[t]<-postSj(MT,teta,Y[t],Nt[t],Snovo[t-1],S[t+1])

Snovo[T]<-postST(MT,teta,Y[T],Nt[T],Snovo[T-1])} else {

for (t in (1:T)) Snovo[t]<-postSjind(MT[1,],teta,Y[t],Nt[t])}

S<-Snovo

#

a0<-somaYt(Y,S,K)

b0<-somaYt(Nt,S,K)

teta<-numeric()

for (j in (1:K)) teta[j]<-posttetak(alfa,beta,a0[j],(b0[j]-a0[j]))

#

if (dependencia==1){

Nij0<-contanjk(S,K)

N1j0<-contan0k(S[1],K)

MT<-matrix(0,K,K)

for (j in (1:K)) MT[j,]<-postpj(gama,Nij0[j,])

P0<-postpj(gama,N1j0)} else {

N1j0<-contank(S,K)

Nij0<-matrix(N1j0,K,K,byrow=TRUE)

P0<-postpj(gama,Nij0[1,])

MT<-matrix(P0,K,K,byrow=TRUE)}}

#

if (aux2>=PACEI){

indrejtotal[int]<-1

Ktotal[int]<-K

#

Snovo<-numeric()
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if (dependencia==1){

Snovo[1]<-postS1(MT,P0,teta,Y[1],Nt[1],S[2])

for (t in (2:(T-1))) Snovo[t]<-postSj(MT,teta,Y[t],Nt[t],Snovo[t-1],S[t+1])

Snovo[T]<-postST(MT,teta,Y[T],Nt[T],Snovo[T-1])} else {

for (t in (1:T)) Snovo[t]<-postSjind(MT[1,],teta,Y[t],Nt[t])}

S<-Snovo

#

a0<-somaYt(Y,S,K)

b0<-somaYt(Nt,S,K)

teta<-numeric()

for (j in (1:K)) teta[j]<-posttetak(alfa,beta,a0[j],(b0[j]-a0[j]))

#

if (dependencia==1){

Nij0<-contanjk(S,K)

N1j0<-contan0k(S[1],K)

MT<-matrix(0,K,K)

for (j in (1:K)) MT[j,]<-postpj(gama,Nij0[j,])

P0<-postpj(gama,N1j0)} else {

N1j0<-contank(S,K)

Nij0<-matrix(N1j0,K,K,byrow=TRUE)

P0<-postpj(gama,Nij0[1,])

MT<-matrix(P0,K,K,byrow=TRUE)}}

#

######### record the samples after burn-in and jumps

#

if (int>burnin & int%%saltos==0){

vetordep<-c(vetordep,dependencia)

vetorK<-c(vetorK,K)

vetorteta<-c(vetorteta,teta)

vetorS<-rbind(vetorS,S)

mtrans<-rbind(P0,MT)

a1<-numeric()

for (i in 1:ncol(mtrans)) a1<-c(a1,mtrans[,i])

vetorP<-c(vetorP,a1)}

}

#

########## export the final files

#
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Kmaxobs<-max(vetorK)

matrizteta<-matrix(0,amostrasfin,Kmaxobs)

matrizPtrans<-matrix(0,amostrasfin,Kmaxobs+(Kmaxobs*Kmaxobs))

cont1<-1

cont2<-1

for (i in (1:amostrasfin)){

for (l in (1:vetorK[i])){

matrizteta[i,l]<-vetorteta[cont1]

cont1<-cont1+1}

for (j in (1:(vetorK[i]+vetorK[i]*vetorK[i]))){

matrizPtrans[i,j]<-vetorP[cont2]

cont2<-cont2+1}}

#

soma<-numeric()

for (i in 1:nrow(matrizPtrans)) soma[i]<-sum(matrizPtrans[i,])

round(soma,2)

#

cat(dependtotal,file="/Users/Daiane/Downloads/deptotsp2_100_mat1.txt",append=T)

cat(Ktotal,file="/Users/Daiane/Downloads/Ktotsp2_100_mat1.txt",append=T)

cat(vetordep,file="/Users/Daiane/Downloads/depsp2_100_mat1.txt",append=T)

cat(indrejtotal,file="/Users/Daiane/Downloads/indrejsp2_100_mat1.txt",append=T)

cat(indrejdeptotal,file="/Users/Daiane/Downloads/indrejdepsp2_100_mat1.txt",

append=T)

cat(matrizteta,file="/Users/Daiane/Downloads/tetasp2_100_mat1.txt",append=T)

cat(matrizPtrans,file="/Users/Daiane/Downloads/Psp2_100_mat1.txt",append=T)

cat(vetorS,file="/Users/Daiane/Downloads/Ssp2_100_mat1.txt",append=T)

cat(vetorK,file="/Users/Daiane/Downloads/Ksp2_100_mat1.txt",append=T)

#
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Chapter

3

QTL mapping as a mixture model 1

In this chapter, we characterize the multiple QTLs mapping as a mixture model and propose

a birth-death-merge data-driven reversible jump (DDRJ) to estimate a model with unknown

number of QTLs. We compare the performance of the proposed methodology, usual reversible

jump (RJ) and multiple-interval mapping (MIM) using simulated and real data sets.

Compared with RJ, DDRJ shows a better performance to estimate the number of QTLs and

their locations on the genome mainly when the QTL effect is moderate, basically as a result of

better mixing for transdimensional moves. The inclusion of a merge step of consecutive QTLs

in DDRJ is efficient, under tested conditions, to avoid splitting a true QTL’s effects with false

QTLs and, consequently, selecting a wrong model. DDRJ is also more precise to estimate the

QTLs location than MIM in which the number of QTLs need to be specified in advance.

As DDRJ is more efficient to identify and characterize QTLs with smaller effect, this

method also appears to be useful and bring contributions to identify SNPs (single nucleotide

polymorphism) which usually have small effect on phenotype.

3.1 Introduction

Geneticists and molecular biologists have aimed at locating regions associated with

quantitative traits in a chromosome. These chromosomal regions are known as quantitative

trait loci (QTL) and their location and effects on the phenotypic traits are estimated by genetic

markers. The most popular genetic markers are SSR (simple sequence repeats) and SNP (single

nucleotide polymorphism), their location is specified by the linkage map and their genotype is

known.

1This chapter is based on the manuscript “Data-driven reversible jump for QTL mapping” (Zuanetti & Milan,
2016).
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A phenotype is usually modeled as a linear function of the additive and dominance effects

of the QTL genotypes and several methods have been developed for the localization and

characterization of QTLs. The standard estimation method in experimental crosses is the

interval mapping (IM) presented by Lander & Botstein (1989) and Haley & Knott (1992).

Lander & Botstein (1989) propose use of EM algorithm (Dempster et al., 1977), assuming a

single putative QTL at each location on the genome and comparing the hypothesis of a single

QTL to the null hypothesis of no segregation QTLs by the logarithm of the odds ratio (LOD

score). However, the estimate of the QTL effects can be influenced by the effect of other possible

QTLs in adjacent regions since this effect is not controlled in the model and nonexisting or ghost

QTLs can be identified. A ghost QTL appears when two or more QTLs are linked in coupling

(meaning that their effects have the same sign) and the interval mapping gives a maximum

LOD score at a location between the two QTLs (Broman & Speed, 1999).

Jansen (1993), Jansen & Stam (1994) and Zeng (1994) propose the composite interval

mapping (CIM) to control the effect of QTLs located in adjacent regions and avoid the

identification of ghost QTLs. They propose to include in the single putative QTL regression

model a subset of markers as cofactors. Kao et al. (1999) propose the multiple-interval mapping

(MIM) which consider the effect of all possible QTLs and epistatic effect between them in a

single model. This model, with a fixed number of QTLs, is estimated by EM algorithm and the

number of QTLs is selected by model selection methods as AIC (Akaike information criterion),

BIC (Bayesian information criterion), among others.

Bayesian methods for QTL mapping are interesting tools since they allow to select and

estimate the model jointly. Earlier Bayesian approaches were proposed by Stephens & Smith

(1993) and Satagopan et al. (1996). The authors estimate the locations and effect of a

prespecified number of QTLs. In practice, however, the number of QTLs is unknown and

must be estimated. Satagopan & Yandell (1996) and Stephens & Fisch (1998) propose variants

of reversible jump Markov chain Monte Carlo to estimate it and the remaining parameters of

the model jointly. An important characteristic in the chain generated in MCMC is that it

mixes well, i.e., that it moves around the parameter space rather easily and quickly finds its

stationary distribution. Forming good Markov chain and monitoring their behavior is a delicate

and sophisticated work (Broman & Speed, 1999).

Over the past decade, different ways to generate proposal parameters in MCMC have been

suggested to facilitate the moves between models and accelerate the convergence of the original

RJ algorithm. Green & Mira (2001) propose an algorithm that, on rejection, a second attempt

to move is made. Regarding the inclusion of a new QTL, Yi & Xu (2002) suggest generating its

effects (additive and dominance) from the conditional a posteriori distribution. Yi et al. (2005)

propose updating the location of a specific QTL and its genotypes together. As QTL’s location

and genotype are correlated, the acceptance probability of a new QTL’s location is higher if its

genotype is updated jointly.
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To accelerate the search procedure of the correct number of QTLs, K, more suitable and

efficient dimensional change candidates must be generated. For this purpose, we propose a

birth-death-merge data-driven reversible jump (DDRJ) for multiple QTL mapping. It simulates

a more likely location for a new QTL using the available data, chooses a QTL to be excluded

according to its importance in the current model or merges the effects of two consecutive QTLs

if their genotype are correlated. Consequently, candidates are more likely to be accepted and

the space of possible models are easily explored. Jain & Neal (2004), Jain & Neal (2007)

and Saraiva & Milan (2012) show that data-driven methods are effective in simplifying the

methodology and improving the chain mixing.

The merge movement of consecutive QTLs is efficient under tested conditions to avoid

identification of false QTLs. Usually, as close QTLs have similar estimated genotype, the

effects of a true QTL are split between two QTLs and bias the estimate of the number of QTLs

and their effects. Split QTLs can be seen as the opposite problem of ghost QTLs.

The proposed method also has the advantage of providing intervalar estimates about the

uncertainty of estimates. Usual methods generally provide only point estimates or asymptotic

confidence intervals for big samples.

The chapter is organized as follows: Section 3.2 presents a model for quantitative traits and

discusses the likelihood function; Section 3.3 addresses the Bayesian approach for the model

including the DDRJ procedure to estimate the number of QTLs; Section 3.4 analyzes the

performance of the DDRJ and compares it with the RJ and MIM performance in simulated

and real data sets. Finally, Section 3.5 draws discussions and Section 3.6 shows the appendices.

3.2 Model for quantitative traits

Let y = (y1, y2, ..., yn) be a quantitative trait of n individuals from an F2 population.

Assume this phenotype has been affected by K QTLs located at positions λ = (λ1, ..., λK),

λk < λk+1 for k = 1, ..., K − 1, between m different genotyped markers with a known linkage

map.

Phenotype yi for the i-th individual can be modeled by

yi = µ+
K∑
k=1

αkQik +
K∑
k=1

δk(1− |Qik|) + εi, (3.1)

where µ is the average of expected values of genotypes AA and aa, αk is the additive effect

of the k-th QTL, δk is the dominance effect of k-th QTL, Qik represents the genotype of k-th

QTL of the i-th individual coded as −1, 0 or 1 for aa, Aa or AA, respectively, k = 1, ..., K

and i = 1, 2, ..., n, εi ∼ Normal(0, σ2) is the random error, and εi and εi′ are supposed to be

independent for i 6= i′.

The phenotype can also be affected by environmental covariates and interactions among
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3.2 Model for quantitative traits

QTLs or between covariates and QTLs. The model defined by eq. (3.1) does not consider

these effects, but extensions (modeling environmental covariates as fixed effects, for example)

are straightforward.

The data set consist of y = (y1, y2, ..., yn) - the observations regarding the quantitative

trait of n individuals, M(n×m) - the markers genotype coded as −1, 0 or 1 for aa,Aa or AA,

respectively, and D = {D1, D2, ..., Dm} - the distances (in centiMorgans - cM) between each

marker and the first marker, where D1 = 0.

We assume there is at most one QTL between two consecutive markers, therefore K <

m, and the QTL’s genotype is explained only by flanking markers, i.e., Qik|Mirk ,Milk and

Qik′|Mirk′
,Milk′

are independent for k 6= k′, where Mirk is the genotype of the marker to the

right of the k-th QTL for the i-th individual and Milk is the genotype of the marker to the left

of the k-th QTL for the i-th individual.

The joint probability distribution of y and Q, where Q = {Qik} is the matrix of the K

QTLs genotype for the n individuals is

fY,Q|M,D(y,q) =
n∏
i=1

fYi|qi(yi)Pr (Qi = qi|Mi,D) , (3.2)

where Pr (Qi1 = qi1, ..., QiK = qiK |Mi,D) =
∏K

k=1 Pr (Qik = qik|Mirk ,Milk ,D), for i = 1, ..., n,∑
qik
Pr (Qik = qik|Mirk ,Milk ,D) = 1, for qik = −1, 0, 1, and f is the conditional normal density

for Yi.

As Q are nonobservable variables, the marginal probability distribution of y is

fY|M,D(y) =
∑

q

fY,Q|M,D(y,q)

=
n∏
i=1

∑
qi1

· · ·
∑
qiK

fYi|qi(yi)Pr (Qi1 = qi1, ..., QiK = qiK |Mi,D) , (3.3)

where the sum over q is over the 3K possible QTLs genotypes for i-th individual and∑
qi1
· · ·
∑

qiK
Pr (Qi1 = qi1, ..., QiK = qiK |Mi,D) =

∏K
k=1

∑
qik
Pr (Qik = qik|Mirk ,Milk ,D) =

1. Eq. (3.3) characterizes variable Yi, i = 1, ..., n, as a mixture of 3K distributions.

In practice, the number of QTLs K is unknown and the parameters of the model are

θ = (K,λ, µ,α = (α1, ..., αK), δ = (δ1, ..., δK), σ2). The likelihood function of θ given y and

Q = q is

L(θ|y,q) =
(
2πσ2

)−n/2
exp

{
− 1

2σ2

n∑
i=1

ε2i

}
n∏
i=1

K∏
k=1

Pr (Qik = qik|Mirk ,Milk ,D) , (3.4)

where εi = yi − µ−
∑K

k=1 αkqik −
∑K

k=1 δk(1− |qik|) is the residual of the i-th observation and
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3.2 Model for quantitative traits

Pr (Qik = qik|Mirk ,Milk ,D) is the conditional probability of QTL genotype given the flanking

marker genotypes as defined by Stephens & Fisch (1998). Such a probability is a function

of recombination fractions between the k-th QTL and its flanking markers calculated by the

Haldane distance function. Note that Qik, i = 1, ..., n and k = 1, ..., K, is nonobservable and

must be estimated.

Without loosing the generality and for simplicity, consider the models with one and two

QTLs defined, respectively, as

yi = µ+ α1Qi1 + δ1(1− |Qi1|) + εi (M1) and

yi = µ+ α
′
1Q
′
i1 + α

′
2Q
′
i2 + δ

′
1(1− |Q′i1|) + δ

′
2(1− |Q′i2|) + εi (M2),

for i = 1, ..., n. Observe if Q
′
i1 = Q

′
i2 = Qi1 for all or almost all individuals, α

′
1 + α

′
2 = α1 and

δ
′
1 + δ

′
2 = δ1, the models M1 and M2 are equally or almost equally likely and can be hard to

select the correct model in this situation. The genotype of two loci has a high probability of

being equal when they are close on the same chromosome and the model is wrongly estimated

if the effect of two or more true close QTLs are merged in only one QTL or if the effect of one

true QTL is split with one or more false close QTLs. We note in our simulated data sets, some

of them are shown in Section 3.4, and using multiple QTLs methods to estimate the model

that often methods split the effect of one true QTL with one or more false QTLs. Conventional

methodologies for QTL mapping often do not deal well with this problem.

3.3 Bayesian approach

The usual Bayesian methodology for models with unknown K is the RJ proposed by Green

(1995). This method consists in running Metropolis-Hastings steps that either accepts or rejects

different moves, like“birth”or“death”of a QTL. These steps enable transitions from the current

model to models of higher or lower dimensions.

Parameters λ|K, α|K, δ|K, µ, σ2 and elements of α and δ are supposed to be independent

and the joint a priori density for θ is written as

π(θ) = π(K)π(λ|K)

(
K∏
k=1

π(αk)π(δk)

)
π(µ)π(σ2). (3.5)

Particularly, we consider

1. K ∼ Uniform(0, 1, ...,m− 1);

2. αk ∼ Normal(να, σ
2
α), k = 1, ..., K, where να and σ2

α > 0 are known hyper-parameters;

3. δk ∼ Normal(νδ, σ
2
δ ), k = 1, ..., K, where νδ and σ2

δ > 0 are known hyper-parameters;

4. µ ∼ Normal(νµ, σ
2
µ), where νµ and σ2

µ > 0 are known hyper-parameters;

50



3.3 Bayesian approach

5. σ2 ∼ Inverse-gamma(ηa, ηb), where ηa > 0 and ηb > 0 are known hyper-parameters; and

6. π(λ|K) = π(λ1, ..., λK |K) = π(λ1|K)π(λ2|λ1, K) . . . π(λK |λK−1, K). If there is no a priori

information about the QTL’s location, each location is assumed uniformly distributed over

the possible loci.

As we have assumed any marker interval contains at most one QTL, we can define

• λ1|K ∼ Uniform(D1, Dm−(K−1)), therefore we guarantee there are more (K − 1)

marker intervals to allocate the remaining (K − 1) QTLs;

• λ2|λ1, K ∼ Uniform(Dr1 , Dm−(K−2)), therefore we guarantee there are more (K − 2)

marker intervals to allocate the remaining (K − 2) QTLs. Dr1 is the element of D

that represents the position of the marker to the right of 1-st QTL;

• λk|λk−1, K distribution, for k = 3, ..., K − 1, is defined as in the above item and;

• λK |λK−1, K ∼ Uniform(DrK−1
, Dm), where DrK−1

is the element of D that represents

the position of the marker to the right of (k − 1)-th QTL.

Combining the likelihood function in equation (3.4) with the a priori distributions, we obtain

the conditional a posteriori distributions of µ| (y,q,θ−µ), σ2| (y,q,θ−σ2), αk| (y,q,θ−αk),
δk| (y,q,θ−δk), provided in the appendices of this chapter, and λk| (y,q,θ−λk), k = 1, ..., K.

The nonobservable genotype qik, i = 1, ..., n and k = 1, ..., K, is simulated and updated by

its conditional a posteriori distribution given by

Pr(Qik = qik|y,q−qik ,M,D) ∝ Pr(Qik = qik, yi|q−qik ,Mirk ,Milk ,D)

= fYi|qi(yi)Pr(Qik = qik|Mirk ,Milk ,D), (3.6)

for qik ∈ {−1, 0, 1} and where fYi|qi(yi) is the Normal
(
µ+

∑K
k=1 αkqik +

∑K
k=1 δk(1− |qik|), σ2

)
density function.

From equation (3.6), Qik|(y,q−qik ,M,D) ∼ Multinomial(1, (pik−1, pik0, pik1)), where

pikj =
fYi|qi (yi)Pr(Qik=j|Mirk

,Milk
,D)∑

j fYi|qi (yi)Pr(Qik=j|Mirk
,Milk

,D)
,

j = −1, 0, 1.

Parameters µ, σ2, αk, δk and nonobservable values qik, i = 1, ..., n and k = 1, ..., K, are

updated by Gibbs sampling steps and λk is updated jointly with qk by Metropolis-Hastings

steps in which λ
′

k is sampled from a Uniform(Dlk , Drk) distribution and the block (λ
′

k,q
′

k) is
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accepted according to probability Ψ((λ
′

k,q
′

k)|(λk,qk)) = min(1, A), where

A =
exp

{
− 1

2σ2

∑n
i=1 ε

′
i

2
}

exp
{
− 1

2σ2

∑n
i=1 ε

2
i

} ∏n
i=1 Pr

(
Qik = q

′

ik|Mirk ,Milk ,D
)∏n

i=1 Pr (Qik = qik|Mirk ,Milk ,D)

×
∏n

i=1 Pr(Qik = qik|y,q−qik ,M,D)∏n
i=1 Pr(Qik = q

′
ik|y,q−qik ,M,D)

, (3.7)

εi = yi − µ−
∑K

k=1 αkqik −
∑K

k=1 δk(1− |qik|) is the residual of the i-th individual, i = 1, ..., n,

and ε
′
i is calculated using q−qk and q

′

k.

3.3.1 DDRJ

The movements that change K are called birth (b), death (d) or merge (mg) moves when a

new QTL is included in the model or, conversely, one QTL is excluded from the current model

or the effect of two QTLs are summed into a single QTL. The birth, death and merge moves are

implemented by Metropolis-Hastings steps and either increase or reduce the number of QTL

by one at each step.

Consider x = (q,θ) the current state of MCMC procedure with K QTLs and x
′

= (q
′
,θ
′
)

the proposed movement, where ′ means either a birth (b), a death (d) or a merge (mg) of QTLs.

Therefore, K
′

= K + 1 if a birth movement is proposed or K
′

= K − 1 if a death or a merge

movement is proposed. This move is accepted according to Metropolis-Hastings probability

Ψ(x
′|x) = min(1, A

′
), where

A
′
=
L(θ

′ |y,q′)
L(θ|y,q)

π(θ
′
)

π(θ)

q(x|x′)
q(x′|x)

, (3.8)

and q(·|·) is the transition function, described below.

At each step, we choose a movement to increase or reduce the number of QTLs as follows:

1. If 0 < K < m− 1, a birth or a death is randomly chosen, according to their probability.

Here, we assume Pr(b|K) = 1/2 and Pr(d|K) = 1/2;

2. If K = 0, a birth is chosen, i.e., Pr(b|K) = 1; and

3. If K = m− 1, a death is chosen, i.e., Pr(d|K) = 1.

Birth proposal

When a birth movement is chosen, a location is selected for the new QTL in a marker interval

that has no QTL and its genotype and effect parameters must be defined. The selection of a

location through a Uniform distribution can be inefficient, mainly if we have a large number of

marker intervals.
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If there is a strong association between a marker and a trait, it is reasonable suppose there

is a QTL nearby that marker. Therefore, the association between markers and trait can be

used to guide the search for new QTLs in the estimation process. As each marker can be seen

as a factor with three levels affecting differently the phenotype mean or the residual mean of

the current model, we use the Kruskal-Wallis test statistic to measure this association. The

F-statistics in a one-way analysis of variance could also be used. Higher values indicate the

residual mean is different for the distinct levels of the marker and there is a higher chance of a

QTL close to it whose effect is not considered in the current model. Values close to zero indicate

the residual mean is the same for all levels of the marker and its contribution to explain the

quantitative trait is not relevant or its effect is already considered in the model.

The complete birth step is built as follows:

1. Select a marker to allocate the new QTL from a Multinomial(1, (pb1, ..., pbm)), where

pbj =
KWj∑m
j=1KWj

, j = 1, ...,m, and KWj is the statistics of the Kruskal-Wallis test from

residuals of the current model and j-th marker genotype, defined as

KWj = (n− 1)
∑3
l=1 nl(r̄l·−r̄)

2∑3
l=1

∑nl
i=1(rli−r̄)2

,

where nl is the number of individuals in l-th group and the three groups are specified by

the genotype of j-th marker, rli is the rank (among all individuals) of i-th individual from

l-th group, r̄l =
∑nl

i=1 rli/nl and r̄ = 0.5(n+ 1) is the average of all the rli.

Note that markers which most affect the residual mean are more likely to be chosen;

2. Assume j∗-th marker has been chosen, j∗ 6= 1 and j∗ 6= m, and suppose there is no QTL

between (j∗− 1) and (j∗+ 1)-th markers. The new QTL can be located in [Dj∗−1, Dj∗+1]

and λK+1 is defined as Dj∗−1 + (Dj∗+1 − Dj∗−1) ∗ Z, where Z ∼ Beta(a, 1) and a is

calculated according to

E[Z] =

∑(j∗+1)
j=(j∗−1)

Dj−Dj∗−1
Dj∗+1−Dj∗+1

KWj∑(j∗+1)
j=(j∗−1)

KWj

, i.e., a = E[Z]
1−E[Z]

.

Consequently, the expected value of λK+1 is the average of j∗-th marker and its flanking

markers’ position weighted by their effect on the residual mean of the current model and

the new QTL is more likely to be close to the marker that is most relevant effect on

the residual mean. Note Beta(a, 1) distribution is Uniform(0, 1) when Mj∗−1,Mj∗ and

Mj∗+1 have the same effect on the residual mean and j∗-th marker is in the middle of

[Dj∗−1, Dj∗+1].

If j∗ = 1, j∗ = m, [Dj∗−1, Dj∗ ] or [Dj∗ , Dj∗+1] already contains a QTL, the new QTL

will be located in [D1, D2], [Dm−1, Dm], [Dj∗ , Dj∗+1] or [Dj∗−1, Dj∗ ], respectively, and its

position is simulated as in step 2, considering only two markers and not three;
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3. Sample genotype of the new QTL for all individuals, qK+1, from

Pr
(
QiK+1 = qiK+1|MirK+1

,MilK+1
,D
)
;

4. Sample αK+1 from its conditional a posteriori distribution considering qb = (q,qK+1)

and δK+1 = 0;

5. Sample δK+1 from its conditional a posteriori distribution considering qb and

αb = (α, αK+1);

6. Sample µb from its conditional a posteriori distribution considering qb, αb and

δb = (δ, δK+1) and;

7. Sample σ2b from its conditional a posteriori distribution considering qb, αb, δb and µb.

Therefore, we have a new set of QTL genotypes and parameters xb = (qb,θb). This transition

proposal is denoted by xb|x and its probability is

q(xb|x) = Pr(b|K)pbj∗fZ(z)
n∏
i=1

(
Pr
(
QiK+1 = qiK+1|MirK+1

,MilK+1
,D
))

× π
(
αK+1|y,qb,θ−K , K + 1, λK+1, δK+1

)
π
(
δK+1|y,qb,θ−K , K + 1, λK+1, αK+1

)
× π

(
µb|y,qb,θb−(µb,σ2b)

, σ2
)
π
(
σ2b|y,qb,θb−σ2b

)
, (3.9)

where π (·|·) is the conditional a posteriori distribution for each parameter used to sample the

candidate-values. The acceptance probability for the birth move is Ψ(xb|x) = min(1, Ab), where

Ab is given by equation (3.8). The probability of the transition proposal denoted by x|xb is

q(x|xb) = Pr(d|K + 1)pdK+1π
(
µ|y,q,θ−(µ,σ2), σ

2b
)
π
(
σ2|y,q,θ−σ2

)
. (3.10)

Death proposal

Since a death move has been selected, we choose a QTL from the current model to be

deleted.

As Qik assumes only values −1, 0 and 1 and (1−|Qik|) assumes only 0 and 1, for i = 1, ..., n

and k = 1, ..., K, the current absolute value of αk and δk shows the importance and significance

of the k-th QTL, i.e., higher absolute values of αk or δk indicate the k-th QTL is more relevant

to explain the phenotype. The current values of these parameters are useful for the choice of

the QTL to be excluded without changing significantly the predictive power of the model.

Instead of selecting a QTL to be excluded from a Uniform(1, ..., K), we select it from a

Multinomial(1, (pd1, ..., pdk)), where pdk =
1

|αk|+|δk|∑K
k=1

1
|αk|+|δk|

, for k = 1, ..., K, i.e., QTLs that exert

the strongest effects and are the most relevant to the model are less likely to be selected and

deleted. Therefore, the acceptance probability of the death movement is improved.
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The complete death step is as follows:

1. Select the QTL to be excluded from Multinomial(1, (pd1, ..., pdK)), the k∗-th QTL;

2. Delete q∗k, λ
∗
k, α

∗
k and δ∗k from q, λ, α and δ, respectively;

3. Sample µd from its conditional a posteriori distribution considering only K − 1 QTLs

and;

4. Sample σ2d from its conditional a posteriori distribution considering the reduced model.

We have a new set of QTL’s genotypes and parameters xd = (qd,θd = (K − 1,λd,αd, δd,

µd, σ2d)). This transition proposal is denoted by xd|x and its probability is

q(xd|x) = Pr(d|K)pdk∗π
(
µd|y,qd,θd−(µd,σ2d)

, σ2
)
π
(
σ2d|y,qd,θd−σ2d

)
, (3.11)

where π (·|·) is the conditional a posteriori distribution of each parameter used to generate the

candidate-values.

The acceptance probability for the death movement is Ψ(xd|x) = min(1, Ad), where Ad =

1/Ab with some suitable substitutions. The probability of transition proposal denoted by x|xd

is defined as

q(x|xd) = Pr(b|K − 1)

(
pblk∗fZ

(
λk∗ −Dlk∗−1

Dlk∗+1 −Dlk∗−1

)
+ pbrk∗fZ

(
λk∗ −Drk∗−1

Drk∗+1 −Drk∗−1

))
×

n∏
i=1

(Pr (Qik∗ = qik∗|Mirk∗ ,Milk∗ ,D, λk∗))

× π
(
αk∗|y,q,θd−(K−1), K, λk∗ , δk∗

)
π
(
δk∗|y,q,θd−(K−1), K, λk∗ , αk∗

)
× π

(
µ|y,q,θ−(µ,σ2), σ

2d
)
π
(
σ2|y,q,θ−σ2

)
, (3.12)

where lk∗ is the marker on the left of k∗-th QTL and rk∗ is the marker on the right of k∗-th

QTL.

Note that if we first choose a birth movement in state x, giving xb, and then choose the

death of (K + 1)-th QTL, we can recover x and state x is likely to be recovered after a birth

process of xd. If the candidate movement is not accepted, the chain remains in the current

model, the value of K does not change and the remaining parameters of the model are updated

by Metropolis-Hastings or Gibbs steps.

Merge proposal

Instead of proposing a data-driven with only birth and death steps, we also include a merge

movement in the procedure since the model can be wrongly estimated if the effect of a true QTL

is split between two or more false QTLs. The split of a QTL may happen if a QTL appears
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very close to an existent QTL and, as their genotype are very similar, both are in the model

and split the additive and dominance effect which would be of only one QTL. The death of one

of these QTLs is not generally accepted since the effects of both QTLs are relevant to explain

the phenotype variability. The merge moves of two consecutive QTLs is usually accepted and

effective to avoid split QTLs since the effects of the QTL that is removed from the model is

added to the effect of an adjacent QTL and the predictive power of the model does not change

significantly.

For merging two QTLs we must choose a pair of consecutive QTLs to be merged and choose

one QTL to be removed from the model. Its effects are added to the effect of the other QTL.

We propose to build a data-driven merge candidate as follows:

1. Select a pair of consecutive QTLs to be merged from Multinomial(1, (pmg12, pmg23, ...,

pmg(K−1)K)), where pmgkj =
Vkj∑K−1

k=1

∑K
j=k+1 Vkj

, k = 1, ..., K − 1 and j = k + 1, ..., K, Vkj is

the Cramér’s V measure of association between the genotype of k-th and j-th QTLs. Note

that pairs of successive QTLs with more associated genotypes have higher probability to

be merged since the split happens between QTLs with similar genotype. Suppose the pair

of QTLs k∗ and k∗ + 1 has been selected;

2. Choose the k∗-th or (k∗ + 1)-th to be excluded from the current model, according to

pdk =
1

|αk|+|δk|∑k∗+1
k=k∗

1
|αk|+|δk|

, k = k∗, k∗+ 1. Consider (k∗+ 1)-th has been chosen to be excluded;

3. Delete qk∗+1, λk∗+1, αk∗+1 and δk∗+1 from q, λ, α and δ, respectively;

4. Update αk∗ , δk∗ , µ and σ2, successively, from their conditional a posteriori distribution

considering qmg, αmg and δmg with k − 1 QTLs.

Instead of adding the value of αk∗+1 and δk∗+1 to αk∗ and δk∗ , respectively, we propose to

update αk∗ and δk∗ from their conditional a posteriori probability using the reduced model. It

is equivalent since we remove the effects of (k∗ + 1)-th QTL from the current model to update

αk∗ and δk∗ and simplify the calculation of merge acceptance probability since is not necessary

to define deterministic transformations to reduce the dimension of the model.

We have a new set of QTL’s genotypes and parameters xmg = (qmg,θmg = (K −
1,λmg,αmg, δmg, µmg, σ2mg)). This transition proposal is denoted by xmg|x and its probability

is

q(xmg|x) = pmgk∗(k∗+1)pdk∗+1π
(
αk∗|y,qmg, K − 1,λmg,αmg−αk∗ , δ

xmg, µ, σ2
)

× π
(
δk∗|y,qmg, K − 1,λmg,αmg, δmg−δk∗ , µ, σ

2
)
π
(
µmg|y,qmg,θmg−(µmg ,σ2mg)

, σ2
)

× π
(
σ2mg|y,qmg,θmg−σ2mg

)
, (3.13)
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where π (·|·) is the conditional a posteriori distribution of each parameter used to sample the

candidate-values.

The acceptance probability for the merge movement is Ψ(xmg|x) = min(1, Amg), where

Amg is defined by eq. (3.8). The probability of transition proposal denoted by x|xmg which

represents a split of k∗-th QTL is defined as

q(x|xmg) =

(
pblk∗+1

fZ

(
λk∗+1 −Dlk∗+1−1

Dlk∗+1+1 −Dlk∗+1−1

)
+ pbrk∗+1

fZ

(
λk∗+1 −Drk∗+1−1

Drk∗+1+1 −Drk∗+1−1

))
×

n∏
i=1

(
Pr
(
Qik∗+1 = qik∗+1|Mirk∗+1

,Milk∗+1
,D, λk∗+1

))
× π

(
αk∗+1|y,q,θmg−(K−1), K, λk∗+1, δk∗+1 = 0

)
π
(
δk∗+1|y,q,θmg−(K−1), K, λk∗+1, αk∗+1

)
× π (αk∗ |y,q,θ−αk∗ )π (δk∗|y,q,θ−δk∗ )

× π
(
µ|y,q,θ−(µ,σ2), σ

2mg
)
π
(
σ2|y,q,θ−σ2

)
, (3.14)

where lk∗+1 is the marker on the left of (k∗ + 1)-th QTL and rk∗+1 is the marker on the right

of (k∗ + 1)-th QTL.

Since we include the QTL merge move only to avoid split QTLs, we do not include a QTL

split step in this procedure. However, a split step could be easily included in the algorithm

using the transition function of a split movement q(xsp|x) = q(x|xmg) defined in eq. (3.14).

Algorithm

The birth-death-merge DDRJ is specified as follows:

1. Initialize a configuration for θ and q.

2. For l-th iteration, l = 1, ..., L, do:

(a) Choose a death or birth movement.

(b) Generate the candidate-values of x
′
.

(c) Accept the proposal with probability Ψ(x
′ |x), where ′ means either b or d.

i. If a birth movement has been accepted, do K(l) = K(l−1) + 1 and consider xb.

ii. If a death movement has been accepted, do K(l) = K(l−1) − 1 and consider xd.

iii. If no movement has been accepted, do K(l) = K(l−1) and consider x.

(d) If K(l) ≥ 2, generate and evaluate the acceptance of a QTLs merge candidate. If a

merge movement has been accepted, do K(l) = K(l) − 1 and consider xmg.

(e) Update λk, k = 1, ..., K(l).

(f) Update qik, i = 1, ..., n and k = 1, ..., K(l), from its conditional a posteriori

distribution.
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3.3 Bayesian approach

(g) Update αk and δk, k = 1, ..., K(l), from their conditional a posteriori distributions.

(h) Update µ from its conditional a posteriori distribution.

(i) Update σ2 from its conditional a posteriori distribution.

This algorithm is implemented in R language and the codes are available in the appendices of

this chapter. R is a free software environment for statistical computing and graphics and more

details are found in its homepage https://www.r-project.org’.

3.4 Applications

We apply the proposed method to simulated and real data sets and compare the performance

of the RJ, DDRJ and MIM methodologies. Although the computational efficiency is an

important feature of the methods, we focus in analyzing and comparing their performance

in selecting and estimating the correct model. We set hyper-parameters να = νδ = νµ = 0,

σ2
α = σ2

δ = σ2
µ = 100 and ηa = ηb = 0.1. This set up provides a priori distributions with large

variability and weak information about the parameters.

3.4.1 Simulated data sets

We simulate a high dimension linkage map with 450 loci which are allocated on a large

chromosome of 450 cM (average distance between the locus is 1 cM) and their genotype for

an F2 population of 300 individuals by QTL Cartographer 2.5 software available on http:

//statgen.ncsu.edu/qtlcart/WQTLCart.htm (Basten et al., 1997). We choose K = 5 loci

located at λ = {15.0, 82.4, 299.8, 363.1, 391.1} to be the QTLs and simulate the phenotype

using α = (−0.60, 0.90, 0.25,−0.40, 0.40), δ = (0.30, 0.05,−0.25, 0.15,−0.15), µ = 20 and three

values of σ (0.5, 1.0, 1.5). The effect of first and second QTLs are stronger and are easily

identified, fourth and fifth QTLs have opposite effects, and the effect of third QTL is the

weakest.

We run RJ and DDRJ chains L = 55000 iterations, discard the first 5000 iterations and

take one for every 10 iterations. The chains are initialized with K = 0. Convergence is verified

using trace plots.

Figures 3.1, 3.2 and 3.3 show the RJ and DDRJ trace plots of K for σ = 0.5, 1.0 and 1.5,

respectively. We observe DDRJ chains show better mixing since they easily move around the

models space throughout the chain as a consequence of better proposal candidates. The RJ

chain moves with greater difficulty among the possible models and it can get stuck in a specific

model for longer periods even if it is a wrong model. When σ = 0.5, we observe a very poor

mixing of the RJ chain since it gets stuck for long periods (in the beginning and end of the

chain) in model with K = 3 (wrong model). When σ = 1.0, the RJ chain moves easily around

the models space in the beginning of the chain but not in its end.

We also analyze the mixing of the chains by their effective sample size (ESS), (Kass et al.,
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Table 3.1: ESS of K sequences.
RJ DDRJ

σ = 0.5 3 357
σ = 1.0 159 330
σ = 1.5 445 894

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

6
7

K

(A)

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

6
7

iterations

K

(B)

Figure 3.1: Trace plot of K for σ = 0.5 : (A)
RJ sequence and (B) DDRJ sequence.
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Figure 3.2: Trace plot of K for σ = 1.0 : (A)
RJ sequence and (B) DDRJ sequence.

1998) which is the number of effectively independent draws from the a posteriori distribution.

A large discrepancy between the ESS and the simulation sample size indicates poor mixing.

Table 3.1 shows the ESS for the RJ and DDRJ K sequences and we observe the DDRJ ESS

is higher than the RJ ESS which confirms a better mixing of DDRJ chains. We observe a

very poor mixing of RJ chain mainly for σ = 0.5. The DDRJ and RJ ESS of the remaining

parameters of the models are shown in Table 3.7 and DDRJ ESSs are in most cases higher than

RJ ESSs.

Table 3.2 shows a posteriori probabilities for K calculated as the relative frequency of each

value of K in the sequence. The highest a posteriori probability estimate for each situation

is in boldface type and the argument that maximizes this probability is the estimate of K.

In situations where the genetic effects of QTL are strong compared with the size of the error

variability (σ = 0.5) both methodologies estimate correctly K = 5. However, as a result of

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

6
7

K

(A)

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

6
7

iterations

K

(B)

Figure 3.3: Trace plot of K for σ = 1.5 : (A) RJ sequence and (B) DDRJ sequence.
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Table 3.2: The a posteriori probability for K.

K
σ

0.5 1.0 1.5
RJ DDRJ RJ DDRJ RJ DDRJ

1 0.000 0.000 0.000 0.000 0.308 0.016
2 0.000 0.000 0.268 0.007 0.490 0.191
3 0.443 0.000 0.724 0.914 0.201 0.706
4 0.002 0.000 0.007 0.075 0.001 0.081
5 0.554 0.971 0.001 0.004 0.000 0.005
6 0.001 0.028 0.000 0.000 0.000 < 0.001
7 0.000 0.001 0.000 0.000 0.000 0.000

weak mixing, the RJ chain gets stuck in K = 3 for long periods and tends to underestimate the

a posteriori probability of K. Since σ = 0.5 represents a small variability of the random error

and, consequently, the effect of QTL is more evident, the choice of the correct model should be

precise. When σ > 1.0, the opposite fourth and fifth QTLs, although they have higher addictive

effect than the third QTL, are not identified by RJ and DDRJ since their effect cancel each

other. For σ = 1.5, the RJ procedure estimates only K = 2 and shows greater difficulties in

locating the QTLs.

Table 3.3 shows the estimates (a posteriori average) of parameters and their 95% credibility

interval. The estimates of both methodologies are similar when σ = 0.5 and close to the true

values. The DDRJ point estimates of additive and dominance effect of fourth and fifth QTLs are

closer to the true simulated parameters than the RJ estimates. Zero belongs to RJ credibility

interval of δ5. The additive and dominance effects of third QTL are the worst estimate in both

methods. When σ = 1.0, RJ and DDRJ estimates for model with K = 3 QTLs are similar and

the additive and dominance effects estimates of third QTL is also the worst estimate in both

methods. For σ = 1.5, RJ shows a low performance to estimate the number of QTLs and the

parameters associated with them. The RJ point estimates are different from the parameters

and interval estimates are large.
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Table 3.3: The a posteriori estimates of the models parameters.
Real value

σ = 0.5 σ = 1.0 σ = 1.5
RJ DDRJ RJ DDRJ RJ DDRJ

λ1 = 15.0 16.3 (16.0;16.8) 13.8 (13.4;14.0) 16.4 (16.0;17.0) 16.5 (13.4;17.9) 45.3 (19.7;80.4) 15.4 (13.0;23.7)
λ2 = 82.4 82.6 (81.9;83.2) 83.5 (83.4;83.9) 80.9 (77.4;87.2) 82.8 (81.8;83.4) 178.5 (81.4;302.6) 82.7 (77.7;87.8)
λ3 = 299.8 295.4 (294.8;295.8) 299.1 (295.9;302.7) 296.4 (291.2;302.9) 296.0 (292.6;302.4) 294.9 (289.4;303.1)
λ4 = 363.1 363.1 (362.2;364.0) 361.6 (361.1;362.1)
λ5 = 391.1 387.8 (386.2;402.6) 389.7 (389.2;390.1.6)
µ = 20.0 19.92 (19.79;20.05) 19.99 (18.86;20.12) 19.94 (19.70;20.18) 19.93 (19.71;20.16) 20.00 (19.70;20.29) 19.92 (19.65;20.20)
α1 = −0.60 -0.60 (-0.68;-0.52) -0.59 (-0.67;-0.51) -0.62 (-0.79;-0.44) -0.59 (-0.75;-0.41) 0.03 (-0.82;0.98) -0.59 (-0.80;-0.28)
α2 = −0.90 0.93 (0.84;1.01) 0.91 (0.83;0.99) 0.91 (0.74;1.09) 0.97 (0.80;1.13) 0.78 (0.39;1.14) 0.96 (0.75;1.18)
α3 = 0.25 0.36 (0.27;0.45) 0.37 (0.29;0.46) 0.44 (0.29;0.62) 0.45 (0.28;0.61) 0.57 (0.27;0.78)
α4 = −0.40 -0.37 (-0.49;-0.25) -0.41 (-0.51;-0.30)
α5 = 0.40 0.33 (0.21;0.44) 0.38 (0.28;0.48)
δ1 = 0.30 0.24 (0.13;0.35) 0.24 (0.13;0.36) 0.14 (-0.08;0.38) 0.13 (-0.10;0.37) 0.07 (-0.32;0.44) 0.10 (-0.19;0.39)
δ2 = 0.05 0.02 (-0.10;0.13) 0.01 (-0.10;0.12) -0.02 (-0.32;0.25) 0.03 (-0.20;0.26) -0.15 (-0.50;0.21) -0.04 (-0.37;0.26)
δ3 = −0.25 -0.15 (-0.27;-0.02) -0.16 (-0.28;-0.03) -0.05 (-0.31;0.23) -0.05 (-0.32;0.19) 0.04 (-0.29;0.37)
δ4 = 0.15 0.17 (0.04;0.31) 0.15 (0.03;0.28)
δ5 = −0.15 -0.11 (-0.24;0.03) -0.15 (-0.27;-0.02)

σ 0.50 (0.46;0.54) 0.49 (0.45;0.53) 1.02 (0.93;1.10) 0.98 (0.91;1.06) 1.49 (1.38;1.62) 1.44 (1.33;1.57)

We also analyze the simulated data sets using MIM method available in QTL Cartographer.

The main model selection criterion available in QTL Cartographer to select the number of

QTLs is BIC= −2 log(L(θ̂|y,q)) + pc(n), where θ̂ is the maximum-likelihood estimator of θ,

p is the number of free parameters to be estimated and c(n) = log(n). Other definitions of

c(n) are used and available in QTL Cartographer such as c(n) = 2 (AIC), c(n) = 2 log(log(n)),

c(n) = 2 log(n), c(n) = 3 log(n) and c(n) = 10X log(n), where we define X = 0.01. We choose

MIM forward search method to estimate the initial model and test the six model selection

criteria to optimize QTLs positions, search for new QTLs and test existing QTLs. We report

the results of c(n) = log(n) which shows the best results for the simulated data sets.

The MIM method combined with BIC model selection methodologies and optimization

procedures of QTLs location and effect estimates K = 6, 3, 3 for σ = 0.5, 1.0 and 1.5,

respectively. Table 3.4 shows the MIM estimates of the remaining parameters of the models.

The method identifies one nonexisting QTL at 9.0 cM when σ = 0.5 and the additive and

dominance effects of the second QTL are biased. We observe that if we sum the estimates of

additive and dominance effects of first and second QTLs, we have estimates closer to additive

and dominance effect of the QTL located at 15.0 cM, that is, the effects of the true QTL

estimated at 14 cM are split with a false QTL identified at 9 cM. When σ = 1.0 and 1.5, the

opposite fourth and fifth QTLs are not identified and the DDRJ estimates of the remaining

parameters, especially estimates associated with the third QTL that has weaker effects, are

better than MIM estimates. We do not have confidence interval considering the uncertainty of

the estimates.

Table 3.4: MIM estimates of the parameters.
Parameter Real value σ = 0.5 σ = 1.0 σ = 1.5

λ (15.0, 82.4, 299.8, 363.1, 391.1) (9.0, 14.0, 83.4, 298.8, 363.1, 390.1) (14.0, 83.4, 293.8) (14.0, 83.4, 293.8)
α (−0.60, 0.90, 0.25,−0.40, 0.40) (0.24,−0.80, 0.89, 0.40,−0.43, 0.40) (−0.58, 0.96, 0.47) (−0.59, 0.98, 0.61)
δ (0.30, 0.05,−0.25, 0.15,−0.15) (−0.21, 0.42,−0.01,−0.19, 0.18,−0.13) (0.18, 0.01,−0.001) (0.15,−0.02, 0.07)
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Unlike BIC (c(n) = log(n)), we stop AIC, BIC-like criterion with c(n) = 2 log(log(n))

and c(n) = 0.1 log(n) estimation when they wrongly identifies K = 12, 9 and 9 significant

QTLs for σ = 0.5, 1.0 and 1.5 located at λ̂ = {9.0, 14.0, 83.4, 86.4, 91.5, 298.8, 339.8, 351.2,

360.2, 363.1, 388.2, 390.1}, λ̂ = {10.0, 14.0, 83.4, 293.8, 301.8, 309.8, 337.8, 388.1, 390.1} and λ̂ =

{3.0, 9.0, 14.0, 83.4, 86.4, 91.5, 293.8, 338.8, 410.1, 390.1}, respectively. BIC-like criterion with

c(n) = 2 log(n) estimates K = 3 significant QTLs located at λ̂ = {14.0, 83.4, 293.8} for all

values of σ and BIC-like criterion with c(n) = 3 log(n) estimates K = 3 QTLs located at

λ̂ = {14.0, 83.4, 296.8} for σ = 0.5, K = 2 QTLs located at λ̂ = {15.0, 83.4} for σ = 1.0 and

K = 1 significant QTL located at λ̂ = 83.5 for σ = 1.5. Therefore, we observe MIM method

combined with BIC model selection is sensitive to c(n) choice, the method overestimates or

underestimates the number of QTLs. If the data were not simulated and we did not known

the correct model, we could estimate the model by the six MIM model selection criteria and

select the estimated model that was the most frequent between all criteria. In this case,

we would choose, for all values of σ, the model estimated by AIC, BIC-like criterion with

c(n) = 2 log(log(n)) and c(n) = 0.1 log(n) which is the worst estimated model.

3.4.2 Bone mineral density data set

We apply RJ and DDRJ to the bone mineral density data set (Wergedal et al., 2006).

It consists of 661 female F2 mice derived from matings of F1 individuals belonging from

NZB/B1NJ x RF/J parents. This cross is designed to identify the genetic loci regulating

femur mechanical properties, geometric properties and bone mineral density (BMD). The

data have 94 genetic markers located in 19 chromosomes. NZB, RF and heterozygous

markers are coded as 1, −1 and 0, respectively. The data was downloaded from site

http://qtlarchive.org/db/q?pg=projlist.

Twenty-three phenotypes were measured in all individuals. However, we analyze only the

total femur volumetric BMD in milligrams per cubic centimeter. The trait was log-transformed

before analysis to be comparable with Wergedal et al. (2006) and Cox et al. (2009) results. We

remove 6 individuals with missing genotype for all markers and use the hidden Markov model

(HMM) to input missing genotypes for remaining individuals. For details about inference in

HMM see the Chapter 2 of this thesis.

We run L = 110000 RJ iterations, discard the first 10000 and take one for every 10 iterations.

We run L = 55000 DDRJ iterations, discard the first 5000 and take one for every 10 iterations.

The sequences are initialized with K = 0 and, in DDRJ, we update the birth candidate 10

times before evaluating its acceptance, as proposed by Green & Mira (2001). We analyze the

convergence and conclude the number of iterations is sufficient for reliable results.

Table 3.5 shows the a posteriori DDRJ probability (relative frequency) for K in each

chromosome whose value is a evidence of a QTL presence. The a posteriori probability of

the model with one QTL is 0.67 in chromosome 7, 0.42 in chromosome 11, 0.38 in chromosome

62



3.4 Applications

19, 0.33 in chromosome 9 and 0.25 in chromosome 1, which represents strong evidence of a

QTL in chromosome 7 since K = 1 is the argument that maximizes the a posteriori probability

of K and moderate in chromosomes 1, 9, 11 and 19 since, despite the maximum a posteriori

probability is not for K = 1, it is > 0.25. In chromosomes 10, 12, 17 and 18, the probability

of a QTL is not negligible. Depending on the cost and researcher interest, these loci can be

studied in more details. Therefore, we identify at least K = 5 QTLs regulating bone mineral

density.

Table 3.6 shows estimates and 95% credibility intervals for QTLs’ locations (cM) and

additive and dominance effects in chromosomes 1, 7, 9, 10, 11, 12, 17, 18 and 19. Additive and

dominance effects explain how QTLs genotype are associated to the bone mineral density and

their estimates are small (close to zero) because of the scale of the log(BMD). Although the

chance of a QTL in chromosomes 10, 17 and 19 is not negligible, zero belongs to their additive

and dominance effects 95% credibility interval. Therefore, DDRJ identifies relevant QTLs at

chromosomes 1, 7, 9, 11, 12 and 18.

Table 3.5: DDRJ a posteriori probability for K in each chromosome.

K
Chromosome

1 2 3 4 5 6 7 8 9 10
0 0.60 0.93 0.90 0.86 0.95 0.92 0.30 0.85 0.63 0.76
1 0.25 0.06 0.09 0.11 0.04 0.06 0.67 0.12 0.33 0.17
2 0.13 0.01 0.01 0.03 0.01 0.02 0.03 0.03 0.03 0.06
≥ 3 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

K
Chromosome

11 12 13 14 15 16 17 18 19
0 0.47 0.79 0.88 0.91 0.92 0.94 0.76 0.82 0.59
1 0.42 0.18 0.11 0.08 0.07 0.05 0.21 0.16 0.38
2 0.10 0.03 0.01 0.01 0.01 0.01 0.02 0.02 0.03
≥ 3 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

We also analyze this data by a RJ and MIM forward search method combined with BIC

model selection (c(n) = log(n)) which shows better results in simulated data sets. We observe

only RJ low a posteriori probabilities 0.0006, 0.0009 and 0.027 for one QTL in chromosomes 7,

9 and 11, respectively. MIM identifies one QTL in chromosomes 1, 7, 9, 11 and 12 located at 88,

65, 70, 34 and 28 cM, respectively. The MIM point estimates of additive and dominance effects

are α̂ = (0.009, 0.009, 0.012,−0.014, 0.009) and δ̂ = (0.008, 0.016,−0.005,−0.004, 0.004). The

MIM effect estimates are close to DDRJ estimates; however, we do not have information about

MIM estimates uncertainty. Wergedal et al. (2006) use a three-stage strategy and LOD score

to identify K = 5 QTLs located in chromosomes 3, 7, 10, 11 and 18 at 10, 65, 65, 40 and 50

cM positions, respectively.

63



3.4 Applications

Table 3.6: DDRJ estimates and 95% credibility intervals of parameters.
Chromosome λ α δ

1 84.1 (52.8;99.9) 0.008 (0.001;0.013) 0.009 (-0.001;0.002)
7 63.5 (48.3;68.6) 0.009 (0.003;0.014) 0.015 (0.006;0.023)
9 64.4 (45.4;70.8) 0.011 (0.006;0.017) -0.006 (-0.015;0.005)
10 60.4 (47.0;64.7) 0.003 (-0.003;0.009) 0.003 (-0.006;0.010)
11 32.5 (21.9;43.1) -0.013(-0.019;-0.008) -0.002 (-0.011;0.007)
12 30.7 (5.8;57.6) 0.007 (0.001;0.013) 0.001 (-0.012;0.015)
17 35.2 (18.0;54.2) 0.002 (-0.004;0.008) -0.009 (-0.017;0.001)
18 44.9 (30.7;55.7) -0.008 (-0.014;-0.003) 0.005 (-0.009;0.015)
19 43.5 (28.5;51.4) -0.0002 (-0.005;0.005) -0.005 (-0.014;0.005)

If we use the DDRJ a posteriori probability of K as evidence of QTL presence, we observe

DDRJ, MIM and Wergedal methodologies identify QTLs in chromosomes 7 and 11; DDRJ and

MIM identify more three QTLs in chromosomes 1, 9 and 12; and DDRJ and Werdegal method

identifies another QTL in chromosome 18. The Werdegal method also identifies one QTL in

chromosome 3 and 10 whose credibility interval of the additive effect and dominance contains

zero. Therefore, for this data set, DDRJ methodology identifies QTLs with strong and weak

effect in BMD that are not identified by other QTL mapping methods.

3.5 Discussion

We propose a birth-death-merge data-driven reversible jump (DDRJ) for QTL mapping

in an F2 population with unknown number of QTLs. We compare the performance of the

proposed method with traditional reversible jump (RJ) and multiple-interval mapping (MIM)

combined with model selection method and optimization procedures which are the most popular

methodologies for QTL mapping in experimental crosses. Although the computational efficiency

is an important feature of the methods, we focus in analyzing and comparing their performance

in identifying significant QTL regions.

DDRJ shows a better performance to identify and estimate QTLs mainly when their effects

are moderate and RJ does not identify them. The better performance of DDRJ occurs because it

facilitates the moves around the models space and improves the chain mixing as a consequence of

better proposals in transdimensional moves. Unlike DDRJ, the RJ method moves with greater

difficulty between the possible models and it can get stuck in a specific model for longer periods

even if it is a wrong model. Compared with MIM combined with model selection methods,

DDRJ also shows better performance in identifying QTL regions and provides uncertainty

information for all the estimates through credibility intervals. For simulated data sets, MIM

shows sensitivity to the choice of model selection criterion and, depending on the criterion

choice, the method overestimates or underestimates the number of QTLs. As QTLs single effect

are not so high in practice, mainly the effect of SNP QTLs (Yang et al., 2010), the proposed
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methodology appears to be useful and brings contributions to identification and characterization

of QTLs.

The DDRJ a posteriori probability of K is evidence of QTL presence and, even when this

value is not maximum for K > 0, it allows us to specify regions which can be further explored

by genetic researchers. The application in real data set illustrates an example where DDRJ

identifies QTLs with strong, moderate and weak effect on the phenotype that are not identified

by RJ, MIM or other QTL mapping methods.

The inclusion of merge moves in DDRJ is efficient under analyzed data sets to avoid the split

of a true QTL effect with one or more false QTLs. The conventional methodologies usually deal

with ghost QTL which appears between two or more QTLs linked in coupling and is generally

more significant than the true QTLs. The problem presented here is the opposite of that of

ghost QTLs since the true QTLs share their importance with one or more false QTLs. Ghost

QTLs are usually avoided by multiple-QTL mapping methods and merge moves included in

DDRJ reduced the chance of split QTLs. Since we include the QTL merge move only to avoid

split QTLs, we do not include a QTL split step in this procedure.

The amplitude of DDRJ credibility interval of QTLs’ location is large when error variability

is higher. To improve the DDRJ performance, we can estimate the genotype of a QTL using

more than the two flanking markers or use nonconjugate samplers and analyze the results in

future works. The proposed data-driven method can be extended to generalized linear models

and identifies QTLs that affect binary or discrete phenotypes or for QTL mapping in pedigree

data in which the individuals’ genotype is correlated if they are relatives and improve SNPs

mapping methods which have smaller single effect on the phenotype.

3.6 Appendices

3.6.1 Conditional a posteriori distribution of parameters

Combining the likelihood function with the a priori distributions, we obtain the conditional

a posteriori distribution of µ| (y,q,θ−µ), αk| (y,q,θ−αk), δk| (y,q,θ−δk), for k = 1, ..., K, and

σ2| (y,q,θ−σ2).

Let ai =
∑K

k=1 αkqik and di =
∑K

k=1 δk(1 − |qik|), for i = 1, 2, ..., n. The conditional a
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posteriori distribution of µ is given by

π (µ|y,q,θ−µ) ∝ exp

{
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2σ2
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which is the density function of a Normal
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The conditional a posteriori distribution of αk∗ , for k∗ = 1, 2, ...K, is defined as
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(3.16)

which is the density function of a Normal
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The conditional a posteriori distribution of δk∗ , for k∗ = 1, 2, ...K, is given by

π(δk∗ |y,q,θ−δk∗ )∝exp
{
− 1

2σ2

∑n
i=1(yi−µ−

∑K
k=1 αkqik−

∑K
k=1 δk(1−|qik|))

2
− 1

2σ2
δ

(δk∗−νδ)2
}

∝exp
{
− 1

2σ2
∑n
i=1

(
−2yiδk∗ (1−|qik∗ |)+2µδk∗ (1−|qik∗ |)+(∑Kk=1 δk(1−|qik|))

2
+2δk∗ (1−|qik∗ |)

∑K
k=1 αkqik

)}

×exp
{
− 1

2σ2
δ

(δ2
k∗−2δk∗νδ)

}

∝exp{− 1
2σ2

∑n
i=1(δ2k∗ (1−|qik∗ |)2+2δk∗ (1−|qik∗ |)

∑
k 6=k∗ δk(1−|qik|)−2δk∗ (1−|qik∗ |)(yi−µ−

∑K
k=1 αkqik))}

×exp
{
− 1

2σ2
δ

(δ2
k∗−2δk∗νδ)

}

=exp{− 1
2σ2

(δ2k∗
∑n
i=1(1−|qik∗ |)

2−2δk∗
∑n
i=1(1−|qik∗ |)(yi−µ−

∑
k 6=k∗ δk(1−|qik|)−

∑K
k=1 αkqik))}

×exp
{
− 1

2σ2

(
σ2δ2

k∗
σ2
δ

−
2σ2δk∗νδ

σ2
δ

)}

=exp

{
− 1

2σ2

(
δ2
k∗

(∑n
i=1(1−|qik∗ |)

2+σ
2

σ2
δ

))}

×exp
{
− 1

2σ2

(
−2δk∗(

∑n
i=1(1−|qik∗ |)(yi−µ−

∑
k 6=k∗ δk(1−|qik|)−

∑K
k=1 αkqik))+

σ2νδ
σ2
δ

)}

=exp

−
1
2

(∑n
i=1(1−|qik∗ |)

2

σ2
+ 1
σ2
δ

)δ2k∗−2δk∗

∑n
i=1(1−|qik∗ |)(yi−µ−

∑
k 6=k∗ δk(1−|qik|)−

∑K
k=1 αkqik)+

σ2νδ
σ2
δ∑n

i=1
(1−|qik∗ |)

2+σ
2

σ2
δ




=exp


− 1

2

(∑n
i=1(1−|qik∗ |)

2

σ2
+ 1
σ2
δ

)
δ

2
k∗−2δk∗

∑n
i=1(1−|qik∗ |)(yi−µ−

∑
k 6=k∗ δk(1−|qik|)−

∑K
k=1 αkqik)

σ2
+
νδ
σ2
δ∑n

i=1
(1−|qik∗ |)

2

σ2
+ 1
σ2
δ




,

(3.17)

which is the density function of a

Normal
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The conditional a posteriori distribution of σ2 is

σ2| (y,q,θ−σ2) ∼ Inverse-gamma

(
n
2

+ ηa,
∑n
i=1(yi−

∑K
k=1 αkqik−

∑K
k=1 δk(1−|qik|))

2

2
+ ηb

)
.

3.6.2 Additional information about the RJ and DDRJ chains of simulated data

sets

Table 3.7 shows the effective sample size (ESS) of the RJ and DDRJ chains for all parameters

of the estimated models for simulated data sets. We observe DDRJ ESS is higher than RJ ESS

in most cases which confirms a better mixing of DDRJ chains.
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Table 3.7: Effective sample size of RJ and DDRJ chains.

Parameter
σ = 0.5 σ = 1.0 σ = 1.5

RJ DDRJ RJ DDRJ RJ DDRJ
λ1 2774 4395 2727 1853 216 417
λ2 2195 4037 192 4569 226 388
λ3 2186 3 94 61 1762
λ4 1621 4752
λ5 16 4752
µ 2774 897 155 1252 1605 2399
α1 2603 4752 272 4569 230 512
δ1 2774 4752 3621 607 686 1959
α2 2561 5004 3621 4569 416 1382
δ2 2774 4752 27 4569 1528 286
α3 2483 4752 592 2746 369
δ3 2774 62 262 548 1168
α4 301 4396
δ4 794 898
α5 284 5782
δ5 217 333
σ 1591 5166 3807 3459 2266 3364

3.6.3 R codes to carry out DDRJ

In this section, we show DDRJ R codes for a simulated data set.

#

###################################

# Functions

###################################

#

################

### sample a multinomial value, where p is the success probability vector

#

rDiscreta<-function(p){

u<-runif(1)

P<-cumsum(p)

val<-sum(P<u)+1

val}

#

################

### compute the recombination rate through Haldane function for a specific

### genetic distance (dist) in Morgan (M)
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#

Haldane<-function(dist){

recomb<-0.5*(1-exp(-2*dist))

recomb}

#

################

### compute the probability of selecting a specific marker using Kruskal-wallis

### and sample a marker

#

prob.selec.marc<-function(dados,res1,qtls,loc.marc){

# dados = matriz com fenÛtipo na primeira coluna e genÛtipo dos marcadores

# nas demais colunas

# qtls = positions of QTLs in current model

krusk<-numeric()

for (i in 2:ncol(dados)) krusk[i-1]<-kruskal.test(res1~dados[,i])[[1]]

if (sum(qtls<=loc.marc[2])>0) krusk[1]<-0

for (i in 2:(length(loc.marc)-1)) if ((sum(qtls>=loc.marc[i-1] &

qtls<=loc.marc[i])>0)&(sum(qtls>=loc.marc[i] & qtls<=loc.marc[i+1])>0))

krusk[i]<-0

if (sum(qtls>=loc.marc[length(loc.marc)-1])>0) krusk[length(loc.marc)]<-0

prob<-krusk/sum(krusk)

marc<-rDiscreta(prob)

list(marc,log(prob[marc]),krusk)}

#

################

### compute the probability of excluding a specific marker from the model

### and sample a marker to be excluded

#

prob.excl.marc<-function(num.QTLs,vet.coef){

efeitos<-numeric()

for (i in 1:num.QTLs) efeitos[i]<-1/sum(c(abs(vet.coef[(2*i),1]),

abs(vet.coef[((2*i)+1),1])))

proba<-efeitos/sum(efeitos)

qtl<-rDiscreta(proba)

list(qtl,log(proba[qtl]))}

#

################

### sample the position of the new QTL around the chosen marker
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#

pos.qtl<-function(qtls,loc.marc,marc,krusk){

if (marc==1 | sum(qtls>=loc.marc[marc-1] & qtls<=loc.marc[marc])>0){

marc.ini<-marc

marc.fim<-marc+1} else {

if (marc==length(loc.marc) | sum(qtls>=loc.marc[marc] &

qtls<=loc.marc[marc+1])>0){

marc.ini<-marc-1

marc.fim<-marc} else {

if ((sum(qtls>=loc.marc[marc-1] & qtls<=loc.marc[marc])==0)&

(sum(qtls>=loc.marc[marc]

& qtls<=loc.marc[marc+1])==0)){

marc.ini<-marc-1

marc.fim<-marc+1}}}

marc.pos<-(loc.marc[marc.ini:marc.fim]-loc.marc[marc.ini])/

(loc.marc[marc.fim]-loc.marc[marc.ini])

estas<-krusk[marc.ini:marc.fim]

mi.pos<-(t(marc.pos)%*%estas)/sum(estas)

parA<-mi.pos/(1-mi.pos)

parB<-1

uger<-rbeta(1,parA,parB)

loc.qtl<-loc.marc[marc.ini]+(loc.marc[marc.fim]-loc.marc[marc.ini])*uger

dens<-dbeta(uger,parA,parB,log = TRUE)

list(loc.qtl,dens)}

#

dens.pos.qtl<-function(qtls,loc.marc,marc,krusk){

if (marc==1 | sum(qtls>=loc.marc[marc-1] & qtls<=loc.marc[marc])>0){

marc.ini<-marc

marc.fim<-marc+1} else {

if (marc==length(loc.marc) | sum(qtls>=loc.marc[marc] &

qtls<=loc.marc[marc+1])>0){

marc.ini<-marc-1

marc.fim<-marc} else {

if ((sum(qtls>=loc.marc[marc-1] & qtls<=loc.marc[marc])==0)&

(sum(qtls>=loc.marc[marc] & qtls<=loc.marc[marc+1])==0)){

marc.ini<-marc-1

marc.fim<-marc+1}}}

marc.pos<-(loc.marc[marc.ini:marc.fim]-loc.marc[marc.ini])/
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(loc.marc[marc.fim]-loc.marc[marc.ini])

estas<-krusk[marc.ini:marc.fim]

mi.pos<-(t(marc.pos)%*%estas)/sum(estas)

parA<-mi.pos/(1-mi.pos)

parB<-1

uger<-(QTLmg-loc.marc[marc.ini])/(loc.marc[marc.fim]-loc.marc[marc.ini])

dens<-dbeta(uger,parA,parB)

dens}

#

################

### compute the a priori density of QTLs location

#

priori.loc.qtls<-function(num.qtls,loc.marc){

loc.qtls<-numeric()

num.marc<-length(loc.marc)

prob.loc<-0

if (num.qtls>0){

for (i in 1:num.qtls){

loc.qtls[i]<-runif(1,min=loc.marc[sum(loc.marc<=loc.qtls[i-1])+1],

max=loc.marc[num.marc-(num.qtls-i)])

prob.loc<-prob.loc+dunif(loc.qtls[i],min=loc.marc[sum(loc.marc<=

loc.qtls[i-1])+1], max=loc.marc[num.marc-(num.qtls-i)],log=TRUE)}}

list(loc.qtls,prob.loc)}

#

dens.priori.loc.qtls<-function(loc.qtls,loc.marc){

num.qtls<-length(loc.qtls)

num.marc<-length(loc.marc)

prob.loc<-0

if (num.qtls>0){

for (i in 1:num.qtls){

prob.loc<-prob.loc+dunif(loc.qtls[i],min=loc.marc[sum(loc.marc<=

loc.qtls[i-1])+1],max=loc.marc[num.marc-(num.qtls-i)],log=TRUE)}}

prob.loc}

#

################

### compute the probability of QTL genotype based on the flanking

### markers genotype

#
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# gen = 1 if dominant homozygous

# gen = 0 if heterozygous

# gen = -1 if recessive homozygous

gen.igual<-function(recomb,gen1) if (gen1==0) {(recomb*recomb)+(1-recomb)**2}

else {(1-recomb)**2}

gen.dif1<-function(recomb) 2*(1-recomb)*recomb

gen.dif2<-function(recomb) recomb*recomb

#

calc.prob.gen<-function(gen1,gen2,recomb){

if (abs(gen1-gen2)==0) {prob<-gen.igual(recomb,gen1)} else {

if (abs(gen1-gen2)==1) {if (gen1==0) {prob<-gen.dif1(recomb)/2} else

{prob<-gen.dif1(recomb)}}

else {prob<-gen.dif2(recomb)}}

prob}

#

################

### sample from the a posteriori distribution of sigma2

#

poster.sigma2<-function(neta.a,neta.b,residuos){

alpha<-(length(residuos)/2)+neta.a

beta<-(sum(residuos^2)/2)+neta.b

sigma2<-1/(rgamma(1,alpha,beta))

dens<-dgamma((1/sigma2),alpha,beta,log = TRUE)

list(sigma2,dens)}

#

################

### sample from the a posteriori distribution of mu

#

poster.mi<-function(media.mi,sigma2.mi,sigma2,residuos,mi.anterior){

res.mi<-residuos+mi.anterior

quo<-(length(residuos)/sigma2)+(1/sigma2.mi)

media<-((sum(res.mi)/sigma2)+(media.mi/sigma2.mi))/quo

variancia<-1/quo

mi<-rnorm(1,media,sqrt(variancia))

dens<-dnorm(mi,media,sqrt(variancia),log = TRUE)

list(mi,dens)}

#

################
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### sample from the a posteriori distribution of additive effect alphaj

#

poster.alpha<-function(media.alpha,sigma2.alpha,sigma2,residuos,

alpha.anterior,gen.QTL){

res.alpha<-residuos+(alpha.anterior*gen.QTL)

quo<-(sum(gen.QTL^2)/sigma2)+(1/sigma2.alpha)

media<-((sum(gen.QTL*res.alpha)/sigma2)+(media.alpha/sigma2.alpha))/quo

variancia<-1/quo

alpha<-rnorm(1,media,sqrt(variancia))

dens<-dnorm(alpha,media,sqrt(variancia),log = TRUE)

list(alpha,dens)}

#

################

### sample from the a posteriori distribution of dominance effect deltaj

#

poster.delta<-function(media.delta,sigma2.delta,sigma2,residuos,

delta.anterior,gen.QTL.dom){

res.delta<-residuos+(delta.anterior*gen.QTL.dom)

quo<-(sum(gen.QTL.dom^2)/sigma2)+(1/sigma2.delta)

media<-((sum(gen.QTL.dom*res.delta)/sigma2)+(media.delta/sigma2.delta))/quo

variancia<-1/quo

delta<-rnorm(1,media,sqrt(variancia))

dens<-dnorm(delta,media,sqrt(variancia),log = TRUE)

list(delta,dens)}

#

################

### choose a death or birth move

#

dec.sp.mg<-function(num.QTLs,num.marc){

if (num.QTLs==0) {psplit<-1; pmerge<-0} else {if (num.QTLs==(num.marc-1))

{psplit<-0;pmerge<-1} else {psplit<-pmerge<-1/2}}

prob<-c(psplit,pmerge)

ind.sp.mg<-rDiscreta(prob)

list(ind.sp.mg,log(prob))}

#

#################

### sample a birth QTL candidate and compute its transition function

#
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gera.inclusao.QTL<-function(dados,residuos,mat.delinea,vet.coef,pos.qtls,

loc.marc,sigma2.vig,alpha.vig,delta.vig,media.mi,sigma2.mi,media.alpha,

sigma2.alpha,media.delta,sigma2.delta,neta.a,neta.b){

marcador<-prob.selec.marc(dados,residuos,pos.qtls,loc.marc)

qtl<-pos.qtl(pos.qtls,loc.marc,marcador[[1]],marcador[[3]])

#

dQTL<-qtl[[1]]

Marc1<-sum(loc.marc<=dQTL)

Marc2<-length(loc.marc)-(sum(loc.marc>=dQTL)-1)

dM1<-loc.marc[Marc1]

dM2<-loc.marc[Marc2]

r12<-Haldane(abs(dM2-dM1))

r1<-Haldane(abs(dQTL-dM1))

r2<-Haldane(abs(dQTL-dM2))

#

matriz.prob.gen.QTL<-numeric()

probQTL<-numeric()

for (j in 1:nrow(dados)){

gen<-c(-1,0,1)

for (i in 1:3) probQTL[i]<-(calc.prob.gen(dados[j,(Marc1+1)],gen[i],r1)*

calc.prob.gen(gen[i],dados[j,(Marc2+1)],r2))/calc.prob.gen(

dados[j,(Marc1+1)],dados[j,(Marc2+1)],r12)

matriz.prob.gen.QTL<-rbind(matriz.prob.gen.QTL,probQTL)}

#

dados.QTL<-matrix(0,nrow(dados),1)

for (i in 1:nrow(dados)) dados.QTL[i,1]<-gen[rDiscreta(

matriz.prob.gen.QTL[i,])]

mat.delinea<-cbind(mat.delinea,dados.QTL)

#

alpha<-poster.alpha(media.alpha,sigma2.alpha,sigma2.vig,residuos,alpha.vig,

dados.QTL[,1])

vet.coef<-rbind(vet.coef,alpha[[1]])

predito<-mat.delinea%*%vet.coef

residuos<-dados[,1]-predito

#

dados.QTL<-cbind(dados.QTL,(1-abs(dados.QTL[,1])))

delta<-poster.delta(media.delta,sigma2.delta,sigma2.vig,residuos,delta.vig,

dados.QTL[,2])
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mat.delinea<-cbind(mat.delinea,dados.QTL[,2])

vet.coef<-rbind(vet.coef,delta[[1]])

predito<-mat.delinea%*%vet.coef

residuos<-dados[,1]-predito

#

mi<-poster.mi(media.mi,sigma2.mi,sigma2.vig,residuos,vet.coef[1,1])

vet.coef[1,1]<-mi[[1]]

predito<-mat.delinea%*%vet.coef

residuos<-dados[,1]-predito

sigma2<-poster.sigma2(neta.a,neta.b,residuos)

#

list(qtl[[1]],mat.delinea,vet.coef,sigma2[[1]],marcador[[2]],qtl[[2]],

matriz.prob.gen.QTL,alpha[[2]],delta[[2]],mi[[2]],sigma2[[2]],

c(pos.qtls,qtl[[1]]))}

#

#################

### sample a death QTL candidate and compute its transition function

#

gera.exclusao.QTL<-function(pos.qtls,vet.coef,mat.delinea,sigma2.vig,

media.mi,sigma2.mi,neta.a,neta.b){

num.QTLs<-length(pos.qtls)

qtl<-prob.excl.marc(num.QTLs,vet.coef)

#

pos.qtls<-pos.qtls[-qtl[[1]]]

mat.delinea<-matrix(mat.delinea[,-c((2*qtl[[1]]),(2*qtl[[1]]+1))],

nrow=nrow(dados))

vet.coef<-matrix(vet.coef[-c((2*qtl[[1]]),(2*qtl[[1]]+1))],ncol=1)

predito<-mat.delinea%*%vet.coef

residuos<-dados[,1]-predito

#

mi<-poster.mi(media.mi,sigma2.mi,sigma2.vig,residuos,vet.coef[1,1])

vet.coef[1,1]<-mi[[1]]

predito<-mat.delinea%*%vet.coef

residuos<-dados[,1]-predito

sigma2<-poster.sigma2(neta.a,neta.b,residuos)

#

list(qtl[[1]],mat.delinea,vet.coef,sigma2[[1]],qtl[[2]],mi[[2]],sigma2[[2]],

sigma2[[2]],sigma2[[2]],sigma2[[2]],sigma2[[2]],pos.qtls)}
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#

#################

### sample a merge QTL candidate and compute its transition function

#

gera.juncao.QTL<-function(dados,num.QTLs,mat.delinea,vet.coef,pos.qtls,

media.alpha,sigma2.alpha,sigma2.vig,media.delta,sigma2.delta,media.mi,

sigma2.mi,neta.a,neta.b){

cramer<-numeric(num.QTLs-1)

for (i in 1:(num.QTLs-1)) cramer[i]<-abs(cv.test(mat.delinea[,2*i],

mat.delinea[,2*(i+1)]))

prob_par<-cramer/sum(cramer)

junta<-rDiscreta(prob_par)

par_QTL<-c(junta,junta+1)

efeitos<-c(1/sum(abs(vet.coef[2*junta,1]),abs(vet.coef[2*junta+1,1])),

1/sum(abs(vet.coef[2*(junta+1),1]),abs(vet.coef[2*(junta+1)+1,1])))

prob<-efeitos/sum(efeitos)

gera<-rDiscreta(prob) # escolhe o QTL que vai sumir

qtl<-par_QTL[gera]

#

pos.qtls.c<-pos.qtls[-qtl]

mat.delinea.c<-matrix(mat.delinea[,-c((2*qtl),(2*qtl+1))],nrow=row(dados))

vet.coef.c<-matrix(vet.coef[-c((2*qtl),(2*qtl+1))],ncol=1)

predito<-mat.delinea.c%*%vet.coef.c

residuos<-dados[,1]-predito

#

alpha<-poster.alpha(media.alpha,sigma2.alpha,sigma2.vig,residuos,

vet.coef.c[(2*par_QTL[[1]]),1],mat.delinea.c[,(2*par_QTL[[1]])])

vet.coef.c[(2*par_QTL[[1]]),1]<-alpha[[1]]

residuos<-dados[,1]-(mat.delinea.c%*%vet.coef.c)

delta<-poster.delta(media.delta,sigma2.delta,sigma2.vig,residuos,

vet.coef.c[(2*par_QTL[[1]])+1,1],mat.delinea.c[,(2*par_QTL[[1]])+1])

vet.coef.c[(2*par_QTL[[1]])+1,1]<-delta[[1]]

residuos<-dados[,1]-(mat.delinea.c%*%vet.coef.c)

#

mi<-poster.mi(media.mi,sigma2.mi,sigma2.vig,residuos,vet.coef.c[1,1])

vet.coef.c[1,1]<-mi[[1]]

predito<-mat.delinea.c%*%vet.coef.c

residuos<-dados[,1]-predito
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sigma2<-poster.sigma2(neta.a,neta.b,residuos)

prob_merge<-log(prob[gera])+log(prob_par[junta])

#

list(qtl,mat.delinea.c,vet.coef.c,sigma2[[1]],prob_merge,mi[[2]],sigma2[[2]],

alpha[[2]],delta[[2]],par_QTL[which(par_QTL!=qtl)],par_QTL,pos.qtls.c)}

#

#################

### compute the acceptance probability of a birth move

#

prob.aceitacao<-function(residuossp,residuos,sigma2,sigma2sp,misp,mi,

media.mi,sigma2.mi,neta.a,neta.b,alphasp,media.alpha,sigma2.alpha,

deltasp,media.delta,sigma2.delta,loc.marc,num.QTLs,num.QTLssp,psplit,

pmerge,pmarc,plambdasp,plambdamg,postmi,postsigma2,postalphasp,

postdeltasp,postmisp,postsigma2sp,pri.pos.sp,pri.pos){

vero<-sum(dnorm(residuossp,0,sqrt(sigma2sp),log=TRUE))-

sum(dnorm(residuos,0,sqrt(sigma2),log=TRUE))

priori<-dnorm(misp,media.mi,sqrt(sigma2.mi),log=TRUE)-

dnorm(mi,media.mi,sqrt(sigma2.mi),log=TRUE)+

dgamma((1/sigma2sp),neta.a,neta.b,log=TRUE)-

dgamma((1/sigma2),neta.a,neta.b,log=TRUE)+

dnorm(alphasp,media.alpha,sqrt(sigma2.alpha),log=TRUE)+

dnorm(deltasp,media.delta,sqrt(sigma2.delta),log=TRUE)+

pri.pos.sp-pri.pos

trans<-pmerge+plambdamg+postmi+postsigma2-psplit-pmarc-plambdasp-

postalphasp-postdeltasp-postmisp-postsigma2sp

prob.ace<-exp(vero+priori+trans)

prob.ace}

#

#################

### compute the acceptance probability of a split move

#

prob.aceitacao.split<-function(residuossp,residuos,sigma2,sigma2sp,

misp,mi,media.mi,sigma2.mi,neta.a,neta.b,alphamg,alphasp1,alphasp2,

media.alpha,sigma2.alpha,deltamg,deltasp1,deltasp2,media.delta,

sigma2.delta,loc.marc,num.QTLs,num.QTLssp,psplit,pmerge,pmarc,

plambdasp,plambdamg,postalpha,postdelta,postmi,postsigma2,postalphasp1,

postalphasp2,postdeltasp1,postdeltasp2,postmisp,postsigma2sp,pri.pos.sp,

pri.pos){
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vero<-sum(dnorm(residuossp,0,sqrt(sigma2sp),log=TRUE))-

sum(dnorm(residuos,0,sqrt(sigma2),log=TRUE))

priori<-dnorm(misp,media.mi,sqrt(sigma2.mi),log=TRUE)-

dnorm(mi,media.mi,sqrt(sigma2.mi),log=TRUE)+

dgamma((1/sigma2sp),neta.a,neta.b,log=TRUE)-

dgamma((1/sigma2),neta.a,neta.b,log=TRUE)+

dnorm(alphasp1,media.alpha,sqrt(sigma2.alpha),log=TRUE)+

dnorm(deltasp1,media.delta,sqrt(sigma2.delta),log=TRUE)+

dnorm(alphasp2,media.alpha,sqrt(sigma2.alpha),log=TRUE)+

dnorm(deltasp2,media.delta,sqrt(sigma2.delta),log=TRUE)-

(dnorm(alphamg,media.alpha,sqrt(sigma2.alpha),log=TRUE)+

dnorm(deltamg,media.delta,sqrt(sigma2.delta),log=TRUE))+

pri.pos.sp-pri.pos

trans<-pmerge+plambdamg+postalpha+postdelta+postmi+postsigma2-psplit-pmarc-

plambdasp-postalphasp1-postalphasp2-postdeltasp1-postdeltasp2-postmisp-

postsigma2sp

prob.ace<-exp(vero+priori+trans)

prob.ace}

#

##################

# run DDRJ procedure and initialize the chain with k=0 QTLs

##################

#

# hyperparameters of a priori distributions

#

neta.a<-0.1

neta.b<-0.1

sigma2.mi<-100

media.mi<-0

sigma2.alpha<-100

media.alpha<-0

sigma2.delta<-100

media.delta<-0

#

####### Model initialization

#

num.marc<-ncol(dados)-1

residuos<-dados[,1]
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sigma2.vig<-poster.sigma2(neta.a,neta.b,residuos)[[1]]

#

mi<-poster.mi(media.mi,sigma2.mi,sigma2.vig,residuos,0)[[1]]

#

pos.qtls<-numeric() # QTLs positons in initial model.

num.QTLs<-length(pos.qtls)

mat.delinea<-matrix(1,nrow(dados),1)

vet.coef<-matrix(mi,1,1)

predito<-mat.delinea%*%vet.coef

residuos<-dados[,1]-predito

sigma2.vig<-poster.sigma2(neta.a,neta.b,residuos)[[1]]

#

indSpMgtotal<-numeric() # 1 - birth candidate; 2 - death candidate

probacetotal<-numeric()

probacemerge<-numeric()

num.QTL.total<-numeric()

indrejtotal<-numeric()

#

#####################

# run DDRJ

#####################

#

set.seed(493)

amostrasfin<-5000

burnin<-10000

saltos<-10 # jumps

AmostrasTotal<-burnin+amostrasfin*saltos

#

library(compiler)

enableJIT(3)

#

for (int in (1:AmostrasTotal)){

cat(’\n’, int)

cand.sp.mg<-dec.sp.mg(num.QTLs,num.marc)

indSpMgtotal[int]<-cand.sp.mg[[1]]

#

##############

###### QTL birth

80



3.6 Appendices

##############

#

if (indSpMgtotal[int]==1) {candidato<-gera.inclusao.QTL(dados,residuos,

mat.delinea,vet.coef,pos.qtls,loc.marc,sigma2.vig,0,0,media.mi,sigma2.mi,

media.alpha,sigma2.alpha,media.delta,sigma2.delta,neta.a,neta.b)

num.QTL.total[int]<-num.QTLs+1

residuossp<-dados[,1]-(candidato[[2]]%*%candidato[[3]])

sigma2<-sigma2.vig

sigma2sp<-candidato[[4]]

mi<-vet.coef[1,1]

misp<-candidato[[3]][1,1]

alphasp<-candidato[[3]][(nrow(candidato[[3]])-1),1]

deltasp<-candidato[[3]][(nrow(candidato[[3]])),1]

num.QTLssp<-num.QTLs+1

psplit<-cand.sp.mg[[2]][1]

pmerge<-dec.sp.mg(num.QTLssp,num.marc)[[2]][2]

pmarc<-candidato[[5]]

plambdasp<-candidato[[6]]

#

efeito<-numeric()

if (num.QTLs==0) efeito<-0

if (num.QTLs>0) for (i in 1:num.QTLs) efeito[i]<-1/(abs(vet.coef[2*i,1])+

abs(vet.coef[(2*i)+1,1]))

efeitosp<-1/(abs(alphasp)+abs(deltasp))

plambdamg<-log(efeitosp/(efeitosp+sum(efeito)))

#

res.mi<-residuos+mi

quo<-(length(residuos)/sigma2sp)+(1/sigma2.mi)

media<-((sum(res.mi)/sigma2sp)+(media.mi/sigma2.mi))/quo

variancia<-1/quo

postmi<-dnorm(mi,media,sqrt(variancia),log = TRUE)

#

aa1<-(length(residuos)/2)+neta.a

bb1<-(sum(residuos^2)/2)+neta.b

postsigma2<-dgamma((1/sigma2),aa1,bb1,log = TRUE)

#

postalphasp<-candidato[[8]]

postdeltasp<-candidato[[9]]
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postmisp<-candidato[[10]]

postsigma2sp<-candidato[[11]]

pos.qtls.sp<-sort(candidato[[12]])

pri.pos.sp<-dens.priori.loc.qtls(pos.qtls.sp,loc.marc)

pri.pos<-dens.priori.loc.qtls(pos.qtls,loc.marc)

#

probace<-prob.aceitacao(residuossp,residuos,sigma2,sigma2sp,misp,mi,

media.mi,sigma2.mi,neta.a,neta.b,alphasp,media.alpha,sigma2.alpha,

deltasp,media.delta,sigma2.delta,loc.marc,num.QTLs,num.QTLssp,psplit,

pmerge,pmarc,plambdasp,plambdamg,postmi,postsigma2,postalphasp,

postdeltasp,postmisp,postsigma2sp,pri.pos.sp,pri.pos)}

#

##############

###### QTL death

##############

#

if (indSpMgtotal[int]==2) {candidato<-gera.exclusao.QTL(pos.qtls,vet.coef,

mat.delinea,sigma2.vig,media.mi,sigma2.mi,neta.a,neta.b)

num.QTL.total[int]<-num.QTLs-1

residuosmg<-dados[,1]-(candidato[[2]]%*%candidato[[3]])

sigma2<-sigma2.vig

sigma2mg<-candidato[[4]]

mi<-vet.coef[1,1]

mimg<-candidato[[3]][1,1]

num.QTLsmg<-num.QTLs-1

pmerge<-cand.sp.mg[[2]][2]

psplit<-dec.sp.mg(num.QTLsmg,num.marc)[[2]][1]

postmimg<-candidato[[6]]

postsigma2mg<-candidato[[7]]

pos.qtls.mg<-sort(candidato[[12]])

pri.pos<-dens.priori.loc.qtls(pos.qtls,loc.marc)

pri.pos.mg<-dens.priori.loc.qtls(pos.qtls.mg,loc.marc)

plambdamg<-candidato[[5]]

alpha<-vet.coef[(2*candidato[[1]]),1]

delta<-vet.coef[(2*candidato[[1]]+1),1]

#

krusk<-prob.selec.marc(dados,residuosmg,pos.qtls.mg,loc.marc)[[3]]

prob<-krusk/sum(krusk)
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QTLmg<-pos.qtls[candidato[[1]]]

Marc1<-sum(loc.marc<=QTLmg)

Marc2<-num.marc-sum(loc.marc>=QTLmg)+1

loc.Marc1<-dens.pos.qtl(pos.qtls.mg,loc.marc,Marc1,krusk)

loc.Marc2<-dens.pos.qtl(pos.qtls.mg,loc.marc,Marc2,krusk)

plambdasp<-log(prob[Marc1]*loc.Marc1+prob[Marc2]*loc.Marc2)

pmarc<-0

#

quo<-(sum(mat.delinea[,2*candidato[[1]]]^2)/sigma2mg)+(1/sigma2.alpha)

media<-((sum(mat.delinea[,2*candidato[[1]]]*residuosmg)/sigma2mg)+

(media.alpha/sigma2.alpha))/quo

variancia<-1/quo

postalpha<-dnorm(alpha,media,sqrt(variancia),log = TRUE)

#

quo<-(sum(mat.delinea[,2*candidato[[1]]+1]^2)/sigma2mg)+(1/sigma2.delta)

media<-((sum(mat.delinea[,2*candidato[[1]]+1]*residuosmg)/sigma2mg)+

(media.delta/sigma2.delta))/quo

variancia<-1/quo

postdelta<-dnorm(delta,media,sqrt(variancia),log = TRUE)

#

res.mi<-residuos+vet.coef[1,1]

quo<-(length(residuos)/sigma2mg)+(1/sigma2.mi)

media<-((sum(res.mi)/sigma2mg)+(media.mi/sigma2.mi))/quo

variancia<-1/quo

postmi<-dnorm(mi,media,sqrt(variancia),log = TRUE)

#

aa1<-(length(residuos)/2)+neta.a

bb1<-(sum(residuos^2)/2)+neta.b

postsigma2<-dgamma((1/sigma2),aa1,bb1,log = TRUE)

#

probace<-1/prob.aceitacao(residuos,residuosmg,sigma2mg,sigma2,mi,mimg,

media.mi,sigma2.mi,neta.a,neta.b,alpha,media.alpha,sigma2.alpha,delta,

media.delta,sigma2.delta,loc.marc,num.QTLsmg,num.QTLs,psplit,pmerge,

pmarc,plambdasp,plambdamg,postmimg,postsigma2mg,postalpha,postdelta,

postmi,postsigma2,pri.pos,pri.pos.mg)}

#

#####################

# update the model parameters
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#####################

#

# update the number of QTLs (accept or reject the birth or death candidate)

#

probacetotal[int]<-probace

aux2<-runif(1)

if (aux2<probace){

indrejtotal[int]<-0

pos.qtls<-candidato[[12]]

num.QTLs<-length(pos.qtls)

mat.delinea<-candidato[[2]]

vet.coef<-candidato[[3]]

sigma2.vig<-candidato[[4]]

if (num.QTLs>0){

posicao<-order(pos.qtls)

pos.qtls<-pos.qtls[posicao]

posicao2<-1

for (i in 1:length(posicao)) posicao2<-c(posicao2,posicao[i]*2,posicao[i]*2+1)

mat.delinea<-mat.delinea[,posicao2]

vet.coef<-matrix(vet.coef[posicao2,],ncol(mat.delinea),1)}

residuos<-dados[,1]-(mat.delinea%*%vet.coef)}

#

if (aux2>=probace) indrejtotal[int]<-1

#

#### evaluate a merge move of two consecutive QTLs

#

if (num.QTLs>1){

candidato<-gera.juncao.QTL(dados,num.QTLs,mat.delinea,vet.coef,pos.qtls,

media.alpha,sigma2.alpha,sigma2.vig,media.delta,sigma2.delta,media.mi,

sigma2.mi,neta.a,neta.b)

residuosmg<-dados[,1]-(candidato[[2]]%*%candidato[[3]])

sigma2<-sigma2.vig

sigma2mg<-candidato[[4]]

mi<-vet.coef[1,1]

mimg<-candidato[[3]][1,1]

num.QTLsmg<-num.QTLs-1

pmerge<-0

psplit<-0
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postmimg<-candidato[[6]]

postsigma2mg<-candidato[[7]]

postalphamg<-candidato[[8]]

postdeltamg<-candidato[[9]]

pos.qtls.mg<-sort(candidato[[12]])

pri.pos<-dens.priori.loc.qtls(pos.qtls,loc.marc)

pri.pos.mg<-dens.priori.loc.qtls(pos.qtls.mg,loc.marc)

plambdamg<-candidato[[5]]

alphamg<-candidato[[3]][(2*candidato[[11]][1]),1]

deltamg<-candidato[[3]][(2*candidato[[11]][1]+1),1]

alphasp1<-vet.coef[(2*candidato[[1]]),1]

deltasp1<-vet.coef[(2*candidato[[1]]+1),1]

alphasp2<-vet.coef[(2*candidato[[10]]),1]

deltasp2<-vet.coef[(2*candidato[[10]]+1),1]

#

krusk<-prob.selec.marc(dados,residuosmg,pos.qtls.mg,loc.marc)[[3]]

prob<-krusk/sum(krusk)

QTLmg<-pos.qtls[candidato[[1]]]

Marc1<-sum(loc.marc<=QTLmg)

Marc2<-num.marc-sum(loc.marc>=QTLmg)+1

loc.Marc1<-dens.pos.qtl(pos.qtls.mg,loc.marc,Marc1,krusk)

loc.Marc2<-dens.pos.qtl(pos.qtls.mg,loc.marc,Marc2,krusk)

plambdasp<-log(prob[Marc1]*loc.Marc1+prob[Marc2]*loc.Marc2)

pmarc<-0

#

quo<-(sum(mat.delinea[,2*candidato[[1]]]^2)/sigma2mg)+(1/sigma2.alpha)

media<-((sum(mat.delinea[,2*candidato[[1]]]*residuosmg)/sigma2mg)+

(media.alpha/sigma2.alpha))/quo

variancia<-1/quo

postalpha1<-dnorm(alphasp1,media,sqrt(variancia),log = TRUE)

#

quo<-(sum(mat.delinea[,2*candidato[[1]]+1]^2)/sigma2mg)+(1/sigma2.delta)

media<-((sum(mat.delinea[,2*candidato[[1]]+1]*residuosmg)/sigma2mg)+

(media.delta/sigma2.delta))/quo

variancia<-1/quo

postdelta1<-dnorm(deltasp1,media,sqrt(variancia),log = TRUE)

#

vet_coef_parc<-rbind(candidato[[3]],vet.coef[candidato[[1]]*2,1],
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vet.coef[candidato[[1]]*2+1,1])

mat_delinea_parc<-cbind(candidato[[2]],mat.delinea[,candidato[[1]]*2],

mat.delinea[,candidato[[1]]*2+1])

vet_coef_parc<-matrix(vet_coef_parc[-(2*candidato[[11]][1]),],ncol=1)

mat_delinea_parc<-mat_delinea_parc[,-(2*candidato[[11]][1])]

residuosparc<-dados[,1]-mat_delinea_parc%*%vet_coef_parc

quo<-(sum(mat.delinea[,2*candidato[[10]]]^2)/sigma2mg)+(1/sigma2.alpha)

media<-((sum(mat.delinea[,2*candidato[[10]]]*residuosparc)/sigma2mg)+

(media.alpha/sigma2.alpha))/quo

variancia<-1/quo

postalpha2<-dnorm(alphasp2,media,sqrt(variancia),log = TRUE)

#

vet_coef_parc<-matrix(vet.coef[-(2*candidato[[10]]+1)],ncol=1)

mat_delinea_parc<-mat.delinea[,-(2*candidato[[10]]+1)]

residuosparc<-dados[,1]-mat_delinea_parc%*%vet_coef_parc

quo<-(sum(mat.delinea[,2*candidato[[10]]+1]^2)/sigma2mg)+(1/sigma2.delta)

media<-((sum(mat.delinea[,2*candidato[[10]]+1]*residuosparc)/sigma2mg)+

(media.delta/sigma2.delta))/quo

variancia<-1/quo

postdelta2<-dnorm(deltasp2,media,sqrt(variancia),log = TRUE)

#

res.mi<-residuos+vet.coef[1,1]

quo<-(length(residuos)/sigma2mg)+(1/sigma2.mi)

media<-((sum(res.mi)/sigma2mg)+(media.mi/sigma2.mi))/quo

variancia<-1/quo

postmi<-dnorm(mi,media,sqrt(variancia),log = TRUE)

#

aa1<-(length(residuos)/2)+neta.a

bb1<-(sum(residuos^2)/2)+neta.b

postsigma2<-dgamma((1/sigma2),aa1,bb1,log = TRUE)

#

probace<-1/prob.aceitacao.split(residuos,residuosmg,sigma2mg,sigma2,mi,mimg,

media.mi,sigma2.mi,neta.a,neta.b,alphamg,alphasp1,alphasp2,media.alpha,

sigma2.alpha,deltamg,deltasp1,deltasp2,media.delta,sigma2.delta,loc.marc,

num.QTLsmg,num.QTLs,psplit,pmerge,pmarc,plambdasp,plambdamg,postalphamg,

postdeltamg,postmimg,postsigma2mg,postalpha1,postalpha2,postdelta1,postdelta2,

postmi,postsigma2,pri.pos,pri.pos.mg)

#
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probacemerge[int]<-probace

aux2<-runif(1)

if (aux2<probace){

pos.qtls<-candidato[[12]]

num.QTLs<-length(pos.qtls)

mat.delinea<-candidato[[2]]

vet.coef<-candidato[[3]]

sigma2.vig<-candidato[[4]]

residuos<-dados[,1]-(mat.delinea%*%vet.coef)}}

#

#### update QTLs position - Metropolis Hastings

#

if (num.QTLs>0){

for (i in 1:num.QTLs){

M.esq<-sum(loc.marc<=pos.qtls[i])

M.dir<-num.marc-(sum(loc.marc>=pos.qtls[i]))+1

loc.cand<-runif(1,min=loc.marc[M.esq],max=loc.marc[M.dir])

#

vet.delinea<-mat.delinea

r1c<-Haldane(abs(loc.cand-loc.marc[M.esq]))

r2c<-Haldane(abs(loc.cand-loc.marc[M.dir]))

r12<-Haldane(abs(loc.marc[M.dir]-loc.marc[M.esq]))

r1<-Haldane(abs(pos.qtls[i]-loc.marc[M.esq]))

r2<-Haldane(abs(pos.qtls[i]-loc.marc[M.dir]))

probQTL<-numeric()

probQTLat<-numeric()

logdens<-numeric()

logdensat<-numeric()

densacumat<-0

probacumat<-0

probacum<-0

densacum<-0

gen<-c(-1,0,1)

for (j in 1:nrow(dados)){

for (l in 1:3){

probQTL[l]<-log((calc.prob.gen(dados[j,(M.esq+1)],gen[l],r1c)*

calc.prob.gen(gen[l],dados[j,(M.dir+1)],r2c))/

calc.prob.gen(dados[j,(M.esq+1)],dados[j,(M.dir+1)],r12))
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probQTLat[l]<-log((calc.prob.gen(dados[j,(M.esq+1)],gen[l],r1)*

calc.prob.gen(gen[l],dados[j,(M.dir+1)],r2))/

calc.prob.gen(dados[j,(M.esq+1)],dados[j,(M.dir+1)],r12))

dom<-1-abs(gen[l])

vet.delinea[j,2*i]<-gen[l]

vet.delinea[j,(2*i)+1]<-dom

logdens[l]<-dnorm(dados[j,1],vet.delinea[j,]%*%

vet.coef,sqrt(sigma2.vig),log=TRUE)

logdensat[l]<-dnorm(dados[j,1],vet.delinea[j,]%*%

vet.coef,sqrt(sigma2.vig),log=TRUE)}

prob<-exp(probQTL+logdens-max(probQTL+logdens))/sum(exp(probQTL+

logdens-max(probQTL+logdens)))

probat<-exp(probQTLat+logdensat-max(probQTLat+logdensat))/

sum(exp(probQTLat+logdensat-max(probQTLat+logdensat)))

ger.gen<-rDiscreta(prob)

vet.delinea[j,2*i]<-gen[ger.gen]

vet.delinea[j,(2*i)+1]<-1-abs(vet.delinea[j,2*i])

probacum<-probacum+log(prob[ger.gen])

densacum<-densacum+logdens[ger.gen]

gen.at<-sum(gen<=mat.delinea[j,2*i])

probacumat<-probacumat+log(probat[gen.at])

densacumat<-densacumat+logdensat[gen.at]}

#

numer<-denom<-0

for (j in 1:nrow(dados)){

numer<-numer+log((calc.prob.gen(dados[j,(M.esq+1)],vet.delinea[j,2*i],r1c)*

calc.prob.gen(vet.delinea[j,2*i],dados[j,(M.dir+1)],r2c))/calc.prob.gen

(dados[j,(M.esq+1)],dados[j,(M.dir+1)],r12))

denom<-denom+log((calc.prob.gen(dados[j,(M.esq+1)],mat.delinea[j,2*i],r1)*

calc.prob.gen(mat.delinea[j,2*i],dados[j,(M.dir+1)],r2))/calc.prob.gen

(dados[j,(M.esq+1)],dados[j,(M.dir+1)],r12))}

#

paceit<-exp(densacum+numer+probacumat-densacumat-denom-probacum)

aux3<-runif(1)

if (aux3<paceit){

pos.qtls[i]<-loc.cand

mat.delinea[,2*i]<-vet.delinea[,2*i]

mat.delinea[,(2*i)+1]<-vet.delinea[,(2*i)+1]}}}
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#

#### update QTLs genotype - Gibbs sampling

#

if (num.QTLs>0){

for (i in 1:num.QTLs){

M.esq<-sum(loc.marc<=pos.qtls[i])

M.dir<-num.marc-(sum(loc.marc>=pos.qtls[i]))+1

r12<-Haldane(abs(loc.marc[M.dir]-loc.marc[M.esq]))

r1<-Haldane(abs(pos.qtls[i]-loc.marc[M.esq]))

r2<-Haldane(abs(pos.qtls[i]-loc.marc[M.dir]))

probQTL<-numeric()

logdens<-numeric()

gen<-c(-1,0,1)

for (j in 1:nrow(dados)){

for (l in 1:3){

probQTL[l]<-log((calc.prob.gen(dados[j,(M.esq+1)],gen[l],r1)*

calc.prob.gen(gen[l],dados[j,(M.dir+1)],r2))/

calc.prob.gen(dados[j,(M.esq+1)],dados[j,(M.dir+1)],r12))

dom<-1-abs(gen[l])

vet.delinea<-mat.delinea[j,]

vet.delinea[2*i]<-gen[l]

vet.delinea[(2*i)+1]<-dom

logdens[l]<-dnorm(dados[j,1],vet.delinea%*%

vet.coef,sqrt(sigma2.vig),log=TRUE)}

prob<-exp(probQTL+logdens-max(probQTL+logdens))/

sum(exp(probQTL+logdens-max(probQTL+logdens)))

mat.delinea[j,2*i]<-gen[rDiscreta(prob)]

mat.delinea[j,(2*i)+1]<-1-abs(mat.delinea[j,2*i])}}}

residuos<-dados[,1]-(mat.delinea%*%vet.coef)

#

#### update mu - Gibbs sampling

#

vet.coef[1,1]<-poster.mi(media.mi,sigma2.mi,sigma2.vig,residuos,vet.coef[1,1])[[1]]

residuos<-dados[,1]-(mat.delinea%*%vet.coef)

#

#### update additive and dominance effect - Gibbs sampling

#

if (num.QTLs>0){
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for (i in 1:num.QTLs){

vet.coef[(2*i),1]<-poster.alpha(media.alpha,sigma2.alpha,sigma2.vig,

residuos,vet.coef[(2*i),1],mat.delinea[,(2*i)])[[1]]

residuos<-dados[,1]-(mat.delinea%*%vet.coef)

vet.coef[(2*i)+1,1]<-poster.delta(media.delta,sigma2.delta,sigma2.vig,

residuos,vet.coef[(2*i)+1,1],mat.delinea[,(2*i)+1])[[1]]

residuos<-dados[,1]-(mat.delinea%*%vet.coef)}}

#

#### update error variance - sigma2

#

sigma2.vig<-poster.sigma2(neta.a,neta.b,residuos)[[1]]

#

############################## save the sample after burn-in and jumps

#

if (int>burnin & int%%saltos==0){

cat(’’,num.QTLs,file="/home/milan/¡rea de Trabalho/Documentos/Daiane/

numero_QTLs_mg_var1_alfa2_chain1.txt",append=T)

cat(’’,pos.qtls,file="/home/milan/¡rea de Trabalho/Documentos/Daiane/

posicao_QTLs_mg_var1_alfa2_chain1.txt",append=T)

cat(’’,vet.coef,file="/home/milan/¡rea de Trabalho/Documentos/Daiane/

vetor_coeficientes_mg_var1_alfa2_chain1.txt",append=T)

cat(’’,sigma2.vig,file="/home/milan/¡rea de Trabalho/Documentos/Daiane/

sigma2_mg_var1_alfa2_chain1.txt",append=T)}

}

cat(’’,indrejtotal,file="/home/milan/¡rea de Trabalho/Documentos/Daiane/

indrej_mg_var1_alfa2_chain1.txt",append=T)

cat(’’,round(probacetotal,2),file="/home/milan/¡rea de Trabalho/Documentos/

Daiane/prob_rej_sp_var1_alfa2_chain1.txt",append=T)

cat(’’,round(probacemerge,2),file="/home/milan/¡rea de Trabalho/Documentos/

Daiane/prob_rej_mg_var1_alfa2_chain1.txt",append=T)

#
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Chapter

4

QTL mapping model checking

In this chapter, we apply some model validation statistics described in Lesaffre & Lawson

(2012) to check the fit of a QTL mapping model to data.

4.1 Introduction

In Chapter 3 we propose a Bayesian method to select and estimate the best QTL mapping

model for a data set among a set of candidate models. However, it does not guarantee a good

fit of the selected model to the data. Evaluation of the goodness of fit of a model requires a

lot of exploration such as 1 - checking that inference from the chosen model is reasonable, 2

- verifying that the model can reproduce the data, 3 - sensitivity analyses by varying certain

aspects of the model.

Bayesian models can be evaluated in several ways. Most simply, the fit of model to data

can be assessed using a posteriori predictive statistics (Gelman et al., 1996, 2014; Rubin et al.

, 1984) and exploring the a posteriori distribution of the residuals. Lesaffre & Lawson (2012)

shows many statistics to evaluate the fit of general Bayesian models and detect outliers and

influential observations.

Although QTL mapping model is a linear regression model for which there is an extensive

literature about model checking, the fit of a QTL mapping model is not extensively discussed,

specially for Bayesian QTL mapping.

In this chapter, we briefly describe some of statistics used in model checking and propose

using them to check the goodness of fit of a Bayesian QTL mapping model in Section 4.2.

In Section 4.3, we apply the suggested checking analysis to the bone mineral density model

estimated in Section 3.4.2.
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4.2 Bayesian model checking

Let y = (y1, y2, ..., yn) be a quantitative trait of n individuals from an F2 population.

Assume this phenotype has been affected by K QTLs located at positions λ = (λ1, ..., λK),

λk < λk+1, and consider the following linear model for describing the phenotype as a linear

function of QTLs’ genotype

yi = µ+
K∑
k=1

αkQik +
K∑
k=1

δk(1− |Qik|) + εi, (4.1)

where µ is the average of expected values of genotypes AA and aa, αk is the additive effect

of the k-th QTL, δk is the dominance effect of k-th QTL, Qik represents the genotype of k-th

QTL of the i-th individual coded as −1, 0 or 1 for aa, Aa or AA, respectively, k = 1, ..., K

and i = 1, 2, ..., n, εi ∼ Normal(0, σ2) is the random error, and εi and εi′ are supposed to be

independent for i 6= i′.

One way of evaluating the fit of the estimated model at each observation in a Bayesian

context is exploring the a posteriori distribution of the residuals. The ordinary residual of i-th

individual, i = 1, ..., n, is defined as εi = yi− ŷi, where ŷi = µ̂−
∑K

k=1 α̂kqik−
∑K

k=1 δ̂k(1− |qik|)
is the predicted phenotype and µ̂, α̂k and δ̂k are the Bayesian point estimate of µ, αk and δk,

k = 1, ..., K. An individual with a large residual is an outlier and indicates that the model falls

short in predicting its response properly.

The studentized residual is given by ti = εi
σ̂
√

1−hii
, where σ̂ is the Bayesian point

estimate of σ, hii = xTi
(
XTX

)−1
xi is the classical measure of leverage and X =(

1 q1 1− |q1| · · · qK 1− |qK |
)

is the design matrix of the QTL mapping model. We

expect that roughly 5% of the studentized residuals are beyond |2| and observations whose

studentized residuals are higher than |2| are considered as outlying individuals.

Suppose a converged Markov chain γ1, · · · ,γL, where γ = (µ, σ,α, δ) is available. Then,

a sample of the a posteriori distribution of εi and ti for the i-th observation, i = 1, ..., n, is

readily obtained. The l-th ordinary residual of i-th individual is calculated as εli = yi − ŷli,

where ŷli = µl −
∑K

k=1 α
l
kqik −

∑K
k=1 δ

l
k(1 − |qik|) and the l-th studentized residual of i-th

individual is given by tli =
εli

σl
√

1−hii
, l = 1, ..., L. We can identify atypical observations and check

normality, independence and homocedasticity of random error through a normal probabilistic

plot of studentized residuals mean, plot of studentized residuals a posteriori distribution versus

index and plot of studentized residuals a posteriori distribution versus predicted values.

Another measure used to identify outliers is the a posteriori predictive ordinate (PPO)

defined as

PPOi = fYi|y(yi), (4.2)
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for i = 1, ..., n. A low value of PPOi indicates that the i-th observation is in the tail area of

the distribution fYi|y(·) and if it is too low compared with PPO value of other observations, yi

is classified as an atypical observation. PPOi is estimated as

P̂POi = f̂Yi|y(yi) =
1

L

L∑
l=1

fYi|γl(yi), (4.3)

where {γ1, · · · ,γL} is the MCMC sequence of the joint a posteriori distribution of γ.

In the computation of PPO the observed data are used twice. First in determining the a

posteriori distribution of γ and later in evaluating the density function fYi|y(·) at yi. To avoid

the double use of data, Geisser (1980) suggest the CPO statistic given by

CPOi = fYi|y(i)
(yi), (4.4)

for i = 1, ..., n, where y(i) represents the data without observation yi.

The following simple derivation of CPO, assuming conditional independence of yi given γ,

1

fYi|y(i)
(yi)

=
fY(i)

(y(i))

fY(y)
=

∫
fY(i)|γ(y(i))π(γ)

fY(y)
dγ =

∫
fY|γ(y)π(γ)

fYi|γ(yi)fY(y)
dγ (4.5)

=

∫
1

fYi|γ(yi)
π(γ|y)dγ = Eγ|y

(
1

fYi|γ(yi)

)
allows us to estimate CPOi using the MCMC output as an harmonic mean

ĈPOi =

(
1

L

L∑
l=1

1

fYi|γl(yi)

)−1

. (4.6)

Researchers usually prefer to analyze ICPO = 1/CPO instead of CPO since ICPO

of atypical observations is more discrepant of ICPO of other observations than CPO.

Consequently, atypical individuals are more evident if we compare ICPO values instead of

CPO values.

Lesaffre & Lawson (2012) also propose methods for analyzing the model sensitivity to specific

observations and identifying global influence individuals that have a great impact on γ estimate.

One of them is the global influence measure Ii(h1), i = 1, ..., n, that is a divergence measure

between π(γ|y) and π(γ|y(i)) defined from

π(γ|y(i))

π(γ|y)
=
fY(i)|γ(y(i))fY(y)

fY|γ(y)fY(i)
(y(i))

=
CPOi

fYi|γ(yi)
= h1i(γ) (4.7)

and estimated as Îi(h1) = 1
L

∑L
l=1 log h1i(γ

l). Values of Îi(h1) much higher than zero indicate

global influence observations.
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Other globally influence measure is the observed variance of
{

h1i(γ
l)∑L

l=1 h1i(γ
l)
, l = 1, ..., L

}
, i =

1, ..., n, called the sequence of normalized importance weight for deleting the i-th observation

at l-th MCMC iteration. A high weights variance indicates the i-th individual is very influent

in just a small number of iterations and does not show a stable influence behavior.

4.3 Checking the bone mineral density QTL mapping

model

In Section 3.4.2 we select and estimate a QTL mapping model for the bone mineral data

set (Wergedal et al., 2006) using the proposed data-driven reversible jump (DDRJ) scheme.

Analyzing each chromosome separately since they are independent, we identifyK = 6 significant

QTLs located in chromosomes 1, 7, 9, 11, 12 and 18. Since their effects estimates shown in

Table 3.6 are not jointly estimated, we fix the estimated location and genotype of the K = 6

QTLs and run a MCMC chain to estimate γ jointly. We run the Gibbs steps to update γ

L = 55000 iterations, discard the first 5000 iterations and take one for every 10 iterations. The

convergence is verified using trace plots.

Table 4.1 shows estimates (a posteriori mean) and 95% credibility intervals for additive

and dominance effects of QTLs. Comparing the estimates of full model shown in Table 4.1

with estimates of separated by chromosomes model in Table 3.6, we observe that they are very

similar.

Table 4.1: Point estimates and 95% credibility intervals for parameters.
Chromossome α δ

1 0.005 (0.001,0.009) 0.010 (0.003,0.016)
7 0.007 (0.002,0.012) 0.017 (0.011,0.023)
9 0.005 (0.006,0.015) -0.005 (-0.012,0.001)
11 -0.011 (-0.016,-0.007) 0.001 (-0.005,0.008)
12 0.006 (0.002,0.011) 0.003 (-0.004,0.010)
18 -0.009 (-0.014,-0.004) 0.004 (-0.002,0.011)

Using the converged MCMC sequence {γ1, · · · ,γL}, we calculate a sequence of ordinary

and studentized residuals for each individual. Figure 4.1 shows diagnostic statistics of goodness

of the model fit. Clearly we observe three outlying observations (423, 454 and 496) in normal

probabilistic plot of a posteriori mean of studentized residuals (Figure 4.1 (A)), in a posteriori

distribution of studentized residuals versus iterations (Figure 4.1 (B)) and predicted value plots

(Figure 4.1 (C)). Individuals 423, 454 and 496 are also identified (Figure 4.1 (D), (E) and (F))

as high influential cases since their ICPO, global influence and weights variance values are too

discrepant.

We excluded the observations 423, 454 and 496 from the data set and run the DDRJ scheme

for each chromosome to verify the influence of these outlying observations in identifying and
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Figure 4.1: Diagnostic measures of goodness of fit: (A) normal probabilistic plot of a posteriori
mean of studentized residuals; (B) the a posteriori distribution of studentized residuals versus
iterations plot; (C) the a posteriori distribution of studentized residuals versus predicted values
plot; (C) index plot of ICPO; (D) index plot of global influence; (E) index plot of normalized
importance weight variance.
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4.3 Checking the bone mineral density QTL mapping model

locating the QTLs. We run DDRJ chains L = 55000 iterations, discard the first 5000 iterations

and take one for every 10 iterations. The chains are initialized with K = 0 which represents a

model without QTLs. Convergence is verified using trace plots.

Table 4.2 shows a posteriori probabilities for K calculated as the relative frequency of

each value of K in the sequence of each chromosome. Comparing these results with results

shown in Table 3.5, we note that the a posteriori probabilities for K in chromosomes 1, 17 and

18 have considerable changes. The evidence of a QTL in chromosome 1 and 17 disappeared

indicating that these QTLs are not important to explain bone mineral density variability when

outliers are excluded from data. The evidence of a QTL in chromosome 19 is higher without

atypical observations. A QTL’s presence is still strong evident in chromosome 7 and moderate

in chromosomes 9, 10, 11, 12 and 18. Then, we conclude that atypical individuals can influence

QTLs’ identification.

Table 4.2: The a posteriori probabilities for K in each chromosome without atypical
observations.

K
Cromossomo

1 2 3 4 5 6 7 8 9 10
0 0.970 0.980 0.980 0.950 0.998 0.900 0.380 0.980 0.830 0.810
1 0.030 0.020 0.020 0.050 0.002 0.090 0.610 0.020 0.170 0.170
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

K
Cromossomo

11 12 13 14 15 16 17 18 19
0 0.590 0.830 0.990 0.990 0.980 0.990 0.960 0.900 0.500
1 0.390 0.160 0.010 0.010 0.020 0.010 0.040 0.100 0.500
2 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Tabela 4.3 shows the estimated location (a posteriori mean) of QTLs (cM) and their

credibility intervals 95%. Comparing results of Tables 4.3 and 3.6, we observe that the point

estimate of QTLs’ location in chromosome 7, 9 ,10, 11, 12, 18 and 19 is similar and not too

sensitive to outliers. The credibility intervals are shorter when atypical observations are not

considered.

Table 4.3: Estimates and 95% credibility interval for QTLs’ location without atypical
observations.

Chromosome λ (cM)
7 65.7 (60.6,69.6)
9 67.2 (51.4,60.8)
10 58.6 (46.9,64.8)
11 32.6 (18.5,41.8)
12 28.2 (9.6,55.3)
18 43.6 (22.0,56.0)
19 44.5 (35.0,51.6)
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4.3 Checking the bone mineral density QTL mapping model

Here we do not show the QTLs’s effects estimates and 95% credibility interval obtained when

we fit the model for each chromosome, but QTLs in chromosomes 10 and 19 are nonsignificant

and we exclude both QTLs of the estimation of the full model. We fix the estimated location

and genotype of the K = 5 QTLs and run a MCMC chain to estimate γ jointly. We run the

Gibbs steps to update γ L = 55000 iterations, discard the first 5000 iterations and take one for

every 10 iterations. The convergence is verified using trace plots.

Table 4.4 shows QTLs’ effects estimates and their 95% credibility interval. Comparing

results of Tables 4.4 and 3.6, we note that, although the point estimate of QTL’s effects in

chromosomes 7, 9, 11, 12 and 18 are similar, the 95% credibility intervals are shorter when the

outliers are not in data set. The dominance effect of the QTL in chromosome 12 is significant

when we do not consider the outliers.

Table 4.4: Estimates and 95% credibility interval for parameters of model with 5 QTLs and
without outliers.

Chromosome α δ
7 0.008 (0.004,0.013) 0.014 (0.008,0.020)
9 0.012 (0.007,0.017) -0.004 (-0.011,0.002)
11 -0.009 (-0.014,-0.005) 0.001 (-0.006,0.007)
12 0.006 (0.001,0.011) 0.011 (0.005,0.017)
18 -0.007 (-0.012,-0.003) -0.003 (-0.009,0.003)

Figure 4.2 shows diagnostic statistics of goodness of the model fit without the outliers. We

observe the fitted model predicts well the response for all individuals since we do not have high

values of studentized residuals and they are randomly distributed around zero. No observation

is an influential case because no value of ICPO, global influence statistic and weights variance

is discrepant.

4.4 Discussion

We briefly describe some diagnostic measure of goodness of fit for Bayesian models and

apply them to evaluate a QTL mapping model fit. In Bayesian context, the model checking is

usually carried out using the a posteriori distribution of residuals and a posteriori predictive

statistics.

In the analyzed data set, the bone mineral density, we observe that atypical observations

can influence the identification of QTLs evidencing false QTLs or hiding true QTLs.
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4.4 Discussion
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Figure 4.2: Diagnostic measures of goodness of fit: (A) normal probabilistic plot of a posteriori
mean of studentized residuals; (B) the a posteriori distribution of studentized residuals versus
iterations plot; (C) the a posteriori distribution of studentized residuals versus predicted values
plot; (C) index plot of ICPO; (D) index plot of global influence; (E) index plot of normalized
importance weight variance.

98



Chapter

5

A model for QTL mapping of pedigree data 1

In this chapter, we propose a model for QTL mapping of pedigree data to explain a

phenotype as a function of QTLs’ fixed effects. The model considers the detailed dependence

structure of familiar dependence. It combines the Mendelian probability of inheritance of

parents’ genotype and the correlation between the loci of markers and QTLs. This is a

differential to models which use only Mendelian segregation or only the correlation between

markers and QTLs to estimate transmission probabilities.

We use the Bayesian approach to estimate the number of QTLs, their location and the

additive and dominance effects. We compare the performances of the proposed method and the

variance component model using simulated data sets. Under tested conditions the proposed

method shows an excellent performance for estimating the number of QTLs and accuracy to

estimate QTL positions and their effects.

5.1 Introduction

Variance component (VC) models have been used to identify quantitative trait loci (QTL)

and estimate their contribution to phenotypic variance for pedigree data. Considering QTLs’

effects as random effects is usual in QTL mapping of pedigree data and data’s covariance

structure is defined as a function of the assumed random effects’ covariance structure, see for

instance Almasy & Blangero (1998). The mixed VC model have been extended to accommodate

general pedigrees of arbitrary size and complexity (Almasy & Blangero, 1998; Comuzzie et al.

, 1997). However, there are situations where these models are not efficient to identify QTLs’

effects, confounding genetic and environmental sources of variation (Lee et al., 2010; Suzanne,

1This chapter is based on the manuscript “A model for QTL mapping of pedigree data” submitted for
publication (Zuanetti & Milan, Submitted).
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5.1 Introduction

2008). Accommodating effects like epistasis and interaction between environmental and QTLs’

effects is not straightforward in variance component model (Habier et al., 2010).

Elston & Stewart (1971), Cannings et al. (1978) and Lander & Green (1987) consider the

dependence between individual’s genotypes and suggest computational algorithms to reduce the

complexity involved in the likelihood and genotype probability’s computation, known as peeling

algorithms. Their basic assumption is that the phenotype of each individual only depends on its

own associated genotypes and different loci are unlinked. The offspring’s genotype in a specific

locus depends only on parents’s genotype through Mendelian segregation. Lander & Green

(1987) consider that consecutive loci are linked and use hidden Markov model to calculate the

probability of a specific gamete (paternal or maternal) based in the previous gamete. Elston

& Stewart (1971) consider a nuclear family at a time and Lander & Green (1987) considers

one locus at a time. See Fishelson & Geiger (2002), Lauritzen & Sheehan (2003) and Li et al.

(2009) for a revision of these and other approaches and applications.

Heath (1997) proposes a reversible jump scheme to estimate the number of QTLs and their

fixed effects using the single-locus peeling method (Cannings et al., 1978; Elston & Stewart

, 1971). It assumes that individual’s genetic properties depend on parents genes considering

only Mendelian inheritance to explain the genotype of offsprings in a specific locus.

We propose a model which describes the dependence structure among individuals and

variables through conditional independence structures. The proposed model considers the

segregation of a gene in a locus depends on Mendelian segregation and also is correlated with

genotypes of flanking markers (at left and at right). The assumption of linked genotypes of

nearby loci is desirable because the chance of a genetic recombination through meiosis process is

low and the genotype of flanking loci is informative and improves the model which considers sole

the Mendel probability of inheritance for parents’ genotypes. We also extend the data-driven

reversible jump MCMC (DDRJ) proposed in Zuanetti & Milan (2016) for mapping QTLs of

independent individuals to estimate the number, positions, additive and dominance effects

of QTLs in pedigree data. DDRJ also provides a better computational performance when

compared with previous approaches.

The chapter is organized as follows. Section 5.2 proposes the model and conditional

independence structures for quantitative traits in pedigree data and its likelihood function.

It also proposes how to consider Mendelian segregation and genotype of linked flanking loci to

determine the genotype of a specific locus ; in Section 5.3 we address the Bayesian approach

for the model including the DDRJ to estimate the number of QTLs; in Section 5.4 we analyze

the performance of the method comparing it with the usual mixed variance component model.

Finally, we discuss the results in Section 5.5 and show appendices in Section 5.6.
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5.2 Model for quantitative traits of pedigree data

5.2 Model for quantitative traits of pedigree data

Consider y = (y1, y2, ..., yn) the quantitative trait of n individuals with a known familiar

structure (pedigree). Assume that the phenotype is affected by K QTLs located at positions

λ = (λ1, ..., λK), λk < λk+1 for k = 1, ..., K − 1, and that m different genotyped markers are

available.

Phenotype yi for the i-th individual is modeled by the linear model

yi = µ+
K∑
k=1

αkQik +
K∑
k=1

δk(1− |Qik|) + εi, (5.1)

where µ is the average of expected values of genotypes AA and aa; αk and δk are the additive

and dominance effects for the k-th QTL; Qik corresponds to the genotype of k-th QTL of the

i-th individual which is coded as −1, 0 or 1 for aa,Aa or AA, respectively; and εi is a random

error, εi ∼ Normal(0, σ2).

The phenotype may also be affected by environmental covariates, interactions between

QTLs or between covariates and QTLs. The model in (5.1) does not include these effects

but extensions, as modeling environmental covariates as fixed effects, for instance, are

straightforward.

The data consists of the observations y = (y1, y2, ..., yn); the markers’ genotypes M = {mij},
mij coded as −1, 0 or 1 for aa,Aa or AA respectively; D = (D1, D2, ..., Dm) are the distances

(in centiMorgan - cM) between each marker and the first marker, D1 = 0; and the pedigree

structure. We assume that there is at most one QTL between each pair of consecutive markers.

We consider pedigree as a group of individuals with full specification of parentage. In a

pedigree, we define as nonfounders those individuals whose parents are in the group and as

founders those individuals whose parents are not in the group. We assume that founders are

unrelated and both parents of any nonfounder are available in the pedigree.

A pedigree may be represented by a directed acyclic graph (DAG) with well-defined

dependence structure. Nodes denote individuals and arrows connect individuals to their

offsprings showing the dependence structure. Figure 5.1 shows a pedigree and its respective

DAG with 10 individuals, females are represented by circles and males by squares. Individuals

1, 2, 3, 6 and 7 are founders and individuals 4, 5, 8, 9 and 10 are nonfounders. We consider a

nonfounder and its nondescending individuals independent given its parents.

Figure 5.2 shows the complete graphical model for individuals 1, 2 and 4 represented in

Figure 5.1. Circles represent random variables and squares represent deterministic values.

Each node represents a genotype or a phenotype of an individual and the arrows show the

relationship among these nodes.

The model in Figure 5.2 presents the following conditional independence relations:
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Figure 5.1: Pedigree represented by a DAG.

1. Given its QTLs’ genotypes, the phenotype of the i-th individual is independent of any

other individual’s phenotype, yi ⊥ yi′|Qi = (qi1, ..., qiK), for i 6= i′ and i, i′ ∈ {1, ..., n}.

2. The genotype of the k-th QTL of the i-th individual is independent of any QTLs’ genotype

of i-th individual and k-th QTL’s genotype of nondescending individuals, given its

flanking markers’ genotypes and k-th QTL’s genotype of the i-th individual’s parents, i.e.,

Qik ⊥ {Qik′ , QND,k} |Qpik,Mirk ,Milk , for k 6= k′ and k, k′ ∈ {1, ..., K}, where ND is the

set of nondescendents of the i-th individual; pi are the parents of the i-th individual; Mirk

and Milk are the genotypes of the markers at right and left of the k-th QTL, respectively,

for the i-th individual.

We assume that given the QTLs’ genotypes, the polygenic effects are absent and yi’s are

independent, as in Heath (1997) and Balding et al. (2008). For polygenic effect we means QTLs

with minor phenotypic effects that generally remain below the detection threshold (Bink et al.,

2014).

Considering F the set of founders and F c the set of nonfounders, the joint distribution of y

and Q is

fY,Q|M,D(y,q) = fY|q(y)Pr (Q = q|M,D)

=
n∏
i=1

fYi|qi(yi)
∏
i∈F

Pr (Qi = qi|Mi,D)
∏
i∈F c

Pr (Qi = qi|Mi,D,Qpi ,Mpi)

=
∏
i∈F

fYi|qi(yi)Pr (Qi = qi|Mi,D)
∏
i∈F c

fYi|qi(yi)Pr (Qi = qi|Mi,D,Qpi ,Mpi) .

(5.2)

Using conditional independence we have

Pr (Qi = qi|Mi,D) =
∏K

k=1 Pr (Qik = qik|Milk ,Mirk , Dlk , Drk);
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Q1 k M1 j M1 j+1 Q1 k+1 M1 j+2

Q4 k M4 j M4 j+1 Q4 k+1 M4 j+2

Q2 k M2 j M2 j+1 Q2 k+1 M2 j+2

Y4

Y2

Y1

Figure 5.2: DAG for a family of a pair of parents and their offspring.

Pr (Qi = qi|Mi,D,Qpi ,Mpi) =
∏K

k=1 Pr (Qik = qik|Milk ,Mirk , Dlk , Drk ,Qpik,Mpirk);∑
qik
Pr (Qik = qik|Milk ,Mirk , Dlk , Drk) = 1 and∑

qik
Pr (Qik = qik|Milk ,Mirk , Dlk , Drk ,Qpik,Mpirk) = 1.

The marginal distribution of y is

fY|M,D(y) =
∑

q

fY,Q|M,D(y,q)

=
∏
i∈F

∑
qi1

· · ·
∑
qiK

fYi|qi(yi)Pr (Qi1 = qi1, ..., QiK = qiK |Mi,D)

×
∏
i∈F c

∑
qi1

· · ·
∑
qiK

fYi|qi(yi)Pr (Qi1 = qi1, ..., QiK = qiK |Mi,D,Qpi ,Mpi) , (5.3)

where
∑

qi1
· · ·
∑

qiK
Pr (Qi = qi|Mi,D) =

∏K
k=1

∑
qik
Pr (Qik = qik|Milk ,Mirk , Dlk , Drk) = 1

and ∑
qi1
···
∑
qiK

Pr(Qi=qi|Mi,D,Qpi ,Mpi)=
∏K
k=1

∑
qik

Pr(Qik=qik|Milk
,Mirk

,Dlk ,Drk ,Qpik
,Mpirk)=1.

Equation (5.3) characterizes each yi as a mixture of 3K distributions.

From equation (5.2), the likelihood function for θ = (K,µ,λ,α, δ, σ2) is

L(θ|y,q) = fY,Q|M,D(y,q)

=
∏
i∈F

(
fYi|qi(yi)

K∏
k=1

Pr (Qik = qik|Milk ,Mirk , Dlk , Drk)

)

×
∏
i∈F c

(
fYi|qi(yi)

K∏
k=1

Pr (Qik = qik|Milk ,Mirk , Dlk , Drk ,Qpik,Mpirk)

)
, (5.4)
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5.2 Model for quantitative traits of pedigree data

where α = (α1, ..., αK), δ = (δ1, ..., δK), fYi|qi(yi) is the normal density function with

µ +
∑K

k=1 αkqik +
∑K

k=1 δk(1 − |qik|) mean and variance σ2, Pr (Qik = qik|Mirk ,Milk , Dlk , Drk)

is the conditional probability of founders’ QTL given flanking markers genotypes as defined by

Stephens & Fisch (1998) and Pr (Qik = qik|Milk ,Mirk , Dlk , Drk ,Qpik,Mpirk) is the conditional

probability of nonfounders’ QTL given flanking markers genotypes and parents’ QTL and

markers genotype, known as transmission probabilities.

5.2.1 Transmission probabilities

Similar to meiosis or segregation indicators presented by Lander & Green (1987) and

Lauritzen & Sheehan (2003), we use auxiliary variables and maternal and paternal allele’s

probabilities to define the transmission probabilities of nonfounder individuals.

Let Spit and Smit be the meiosis or segregation indicators of i-th individual at locus t defined

as

Spit =

{
1, if paternal allele of t-th locus is inherited from i’s paternal grandfather

0, if paternal allele of t-th locus is inherited from i’s paternal grandmother

and

Smit =

{
1, if maternal allele of t-th locus is inherited from i’s maternal grandfather

0, if maternal allele of t-th locus is inherited from i’s maternal grandmother.

The sequence of paternal meiosis indicators of m markers and K QTLs Sp =

(SpM1
, ..., Spk , ..., SpMm ) and the sequence of maternal meiosis indicators Sm =

(SmM1
, ..., Smk , ..., SmMm ), both ordered by loci occurrence in the chromosome are nonhomoge-

nous Markov chains where spt and smt are realizations of Spt and Smt and spt , smt ∈ {0, 1}
for t = M1, ..., k, ...,Mm. The transition probability matrix from locus t − 1 to t is given by

PSt =

(
1− rt rt

rt 1− rt

)
for both chains, where rt is the recombination fraction between

loci t − 1 and t calculated through Haldane function and the elements of PSt represent

Pr
(
Spt = spt |Spt−1 , Dlt

)
and Pr

(
Smt = smt|Smt−1 , Dlt

)
.

Now consider Lpik and Lmik the allele of the k-th QTL which i-th individual inherited from

its father (paternal) and mother (maternal) respectively, where the observed values lpik , lmik ∈

{1, 0} ≡ {A, a}. Therefore, Lpik =

{
lppik , if spik = 1

lmpik , if spik = 0
and Lmik =

{
lpmik , if smik = 1

lmmik , if smik = 0
,

where pi is the i-th individual’s father and mi is the i-th individual’s mother, respectively, and

Pr
(
Lpik = lpik |LpiMlk , Dlk , Lppik , Lmpik

)
= Pr

(
Spik = s∗pik |SpiMlk , Dlk

)
,

where s∗pik is the specific value of spik which provides the inheritance of allele lpik and is shown

in Table 5.1 considering heterozygous father, and

Pr
(
Lmik = lmik |LmiMlk , Dlk , Lpmik , Lmmik

)
= Pr

(
Smik = s∗mik |SmiMlk , Dlk

)
,
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5.2 Model for quantitative traits of pedigree data

where s∗mik is the specific value of smik which provides the inheritance of allele lmik and is

specified in a similar way by Table 5.1 considering heterozygous mother. Cases of homozygous

parents are discussed in Section 5.2.1.

Table 5.1: Values of s∗pik for each combination of lpik , lppik and lmpik considering heterozygous
father.

lppik = 0 and lmpik = 1 lppik = 1 and lmpik = 0

lpik
0 1 0
1 0 1

Note that if Spi, Smi and Lppi
, Lmpi , Lpmi

and Lmmi are known the genotype of the i-th

individual is completely defined including its QTLs’ genotypes.

Considering the genetic inheritance of parents independent, Lpik ⊥ Lmik , the transmission

probabilities are defined as

Pr(Qik=−1|Milk
,Mirk

,Dlk ,Drk ,Qpik
,Mpirk)=

=Pr

(
Lpik=0|LpiMlk

,LpiMrk
,Dlk ,Drk ,Lppik

,Lmpik
,LppiMrk

,LmpiMrk

)
×Pr

(
Lmik=0|LmiMlk

,LmiMrk
,Dlk ,Drk ,Lpmik

,Lmmik
,LpmiMrk

,LmmiMrk

)
, (5.5)

Pr(Qik=1|Milk
,Mirk

,Dlk ,Drk ,Qpik
,Mpirk)=

=Pr

(
Lpik=1|LpiMlk

,LpiMrk
,Dlk ,Drk ,Lppik

,Lmpik
,LppiMrk

,LmpiMrk

)
×Pr

(
Lmik=1|LmiMlk

,LmiMrk
,Dlk ,Drk ,Lpmik

,Lmmik
,LpmiMrk

,LmmiMrk

)
(5.6)

and Pr(Qik=0|Milk
,Mirk

,Dlk ,Drk ,Qpik
,Mpirk)=

=Pr

(
Lpik=0|LpiMlk

,LpiMrk
,Dlk ,Drk ,Lppik

,Lmpik
,LppiMrk

,LmpiMrk

)
×Pr

(
Lmik=1|LmiMlk

,LmiMrk
,Dlk ,Drk ,Lpmik

,Lmmik
,LpmiMrk

,LmmiMrk

)
+Pr

(
Lpik=1|LpiMlk

,LpiMrk
,Dlk ,Drk ,Lppik

,Lmpik
,LppiMrk

,LmpiMrk

)
×Pr

(
Lmik=0|LmiMlk

,LmiMrk
,Dlk ,Drk ,Lpmik

,Lmmik
,LpmiMrk

,LmmiMrk

)
, (5.7)

where Pr

(
Lpik=lpik |LpiMlk

,LpiMrk
,Dlk ,Drk ,Lppik

,Lmpik
,LppiMrk

,LmpiMrk

)
=

=

Pr

(
Lpik

=lpik
|LpiMlk

,Dlk
,Lppik

,Lmpik

)
Pr

(
LpiMrk

=lpiMrk
|Lpik ,Drk ,LppiMrk

,LmpiMrk

)
∑1
lpik

=0
Pr

(
Lpik

=lpik
|LpiMlk

,Dlk
,Lppik

,Lmpik

)
Pr

(
LpiMrk

=lpiMrk
|Lpik ,Drk ,LppiMrk

,LmpiMrk

)

=

Pr

(
Spik

=s∗pik
|SpiMlk

,Dlk

)
Pr

(
SpiMrk

=s∗piMrk
|Spik ,Drk

)
∑1
spik

=0 Pr

(
Spik

=spik
|SpiMlk

,Dlk

)
Pr

(
SpiMrk

=s∗piMrk
|Spik ,Drk

) (5.8)
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and Pr

(
Lmik=lmik |LmiMlk

,LmiMrk
,Dlk ,Drk ,Lpmik

,Lmmik
,LpmiMrk

,LmmiMrk

)
is defined similarly to equation

(5.8).

Special cases

When one or both parents are homozygous in a specific locus t, i.e., Lppit = Lmpit = l and/or

Lpmit = Lmmit = l, for l ∈ {1, 0}, the parents’ genotype are not informative in relation to the

origin of each allele of their offspring and

Pr
(
Lpit = l|LpiMlt , Dlt , Lppit = l, Lmpit = l

)
= 1

and/or

Pr
(
Lmit = l|LmiMlt , Dlt , Lpmit = l, Lmmit = l

)
= 1

by Mendel’s probability of genetic inheritance.

If rt ≈ 1/2 ≈ rt+1, indicating that the loci t−1, t and t+1 are so far apart that they segregate

independently, the transmission probabilities are also Mendelian and depend only on parents’

genotype. In this case, Pr (Qik = qik|Milk ,Mirk , Dlk , Drk ,Qpik,Mpirk) = Pr (Qik = qik|Qpik)

given by Table 5.2 whose elements represent Pr (Qik = x|Qpik = u,Qmik = v), for u, v, x =

−1, 0, 1, i = 1, ..., n and k = 1, .., K.

Table 5.2: Transmission probabilities when rt ≈ 1/2 ≈ rt+1.
Qpik (u) -1 0 1
Qmik (v) -1 0 1 -1 0 1 -1 0 1

Qik (x)
-1 1 1/2 0 1/2 1/4 0 0 0 0
0 0 1/2 1 1/2 1/2 1/2 1 1/2 0
1 0 0 0 0 1/4 1/2 0 1/2 1

To illustrate how to calculate these probabilities consider the case where Qpik = Qmik = 0

and Qik ∈ {−1, 0, 1}. From equations (5.5), (5.6), (5.7) and (5.8) the transmission probabilities

are

Pr(Qik=−1|Milk
,Mirk

,Dlk ,Drk ,0,0,Mpirk)=

=

Pr

(
Spik

=s∗pik
|SpiMlk

,Dlk

)
Pr

(
SpiMrk

=s∗piMrk
|Spik ,Drk

)
∑1
spik

=0 Pr

(
Spik

=spik
|SpiMlk

,Dlk

)
Pr

(
SpiMrk

=s∗piMrk
|Spik ,Drk

)

×
Pr

(
Smik

=s∗mik
|SmiMlk

,Dlk

)
Pr

(
SmiMrk

=s∗miMrk
|Smik ,Drk

)
∑1
smik

=0 Pr

(
Smik

=smik
|SmiMlk

,Dlk

)
Pr

(
SmiMrk

=s∗miMrk
|Smik ,Drk

)

≈ 1/2∗1/2
1/2∗1/2+1/2∗1/2

1/2∗1/2
1/2∗1/2+1/2∗1/2= 1

4
, (5.9)

since Pr
(
Spik = s∗pik |SpiMlk , Dlk

)
, P r

(
SpiMrk

= s∗piMrk
|spik , Drk

)
, P r

(
Smik = s∗mik |SmiMlk , Dlk

)
and Pr

(
SmiMrk

= s∗miMrk
|smik , Drk

)
≈ 1/2 for any value of s∗mik and s∗miMrk

,
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5.2 Model for quantitative traits of pedigree data

Pr(Qik=0|Milk
,Mirk

,Dlk ,Drk ,0,0,Mpirk)=

=
∑
{(1,0),(0,1)}

Pr

(
Spik

=s∗pik
|SpiMlk

,Dlk

)
Pr

(
SpiMrk

=s∗piMrk
|Spik ,Drk

)
∑1
spik

=0 Pr

(
Spik

=spik
|SpiMlk

,Dlk

)
Pr

(
SpiMrk

=s∗piMrk
|Spik ,Drk

)

×
Pr

(
Smik

=s∗mik
|SmiMlk

,Dlk

)
Pr

(
SmiMrk

=s∗miMrk
|Smik ,Drk

)
∑1
smik

=0 Pr

(
Smik

=smik
|SmiMlk

,Dlk

)
Pr

(
SmiMrk

=s∗miMrk
|Smik ,Drk

)

≈2
1/2∗1/2

1/2∗1/2+1/2∗1/2
1/2∗1/2

1/2∗1/2+1/2∗1/2= 1
2

(5.10)

and Pr (Qik = 1|Milk ,Mirk , Dlk , Drk , 0, 0,Mpirk) ≈ 1
4
. Remaining transmission probabilities are

obtained in a similar way.

5.2.2 Missing founder’s parents

Founders’ parents or grandparents genotypes are usually unknown. We treat them as missing

values and estimate them using Bayes’ formulas, Mendel’s rules and their offspring genotype.

Consider the mother of the i-th individual is unavailable and Omi represents the set of

individuals of her offspring. The genotype of her first marker has probabilities

Pr
(
Mmi1

=mmi1|LmOmiM1

)
=

Pr

(
LmOmiM1

=lmOmiM1
|mmi1

)
Pr(Mmi1=mmi1)∑

mmi1
Pr

(
LmOmiM1

=lmOmiM1
|mmi1

)
Pr(Mmi1=mmi1)

=

∏
o∈Omi

Pr(LmoM1
=lmoM1

|mmi1)Pr(Mmi1=mmi1)∑
mmi1

∏
o∈Omi

Pr(LmoM1
=lmoM1

|mmi1)Pr(Mmi1=mmi1)
, (5.11)

where mmi1 ∈ {−1, 0, 1} ≡ {aa,Aa,AA}, Pr (Mmi1 = mmi1) is the population frequency of the

genotype mmi1 that can be assumed as 1/4, 1/2, 1/4 for −1, 0 and 1, respectively, if we have no

information about it and Pr
(
LmoM1

= lmoM1
|mmi1

)
is the Mendelian probability of o-th child

has inherited the maternal allele lmoM1
given maternal genotype mmi1.

Consider also that beyond missing mother’s genotypes the i-th individual’s maternal

grandparents are also missing. The first marker’s genotype of grandparents, Mpmi1
and Mmmi1

,

has distribution given by (5.11) considering only i-th individual’s mother as their offspring

(founders are supposed to be unrelated and she has no full-sib neither half-sib in the data set).

For second marker, the paternal and maternal alleles Lpmi2 and Lmmi2 which comprise Mmi2

can be estimated separately. First, for o ∈ Omi , we determine the value of Smo1 based on Mmi1,

Mpmi1
and Mmmi1

, and generate Smo2 through Pr (Smo2 = smo2|Smo1 , D2), considering Smo2 and

Smo′2 independent for o 6= o′ and o, o′ ∈ Omi . Then, we define

Lpmi2 =

{
lmo2 , if smo2 = 1 for some o ∈ Omi ,

sampled from Pr
(
Lpmi2 = lpmi2 |Lpmi1 , D2

)
, if smo2 = 0 ∀ o ∈ Omi ,

where Pr
(
Lpmi2 = lpmi2|Lpmi1 , D2

)
is estimated using the recombination fraction between

paternal allele of markers 2 and 1, and
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5.2 Model for quantitative traits of pedigree data

Lmmi2 =

{
lmo2 , if smo2 = 0 for some o ∈ Omi ,

sampled from Pr
(
Lmmi2 = lmmi2 |Lmmi1 , D2

)
, if smo2 = 1 ∀ o ∈ Omi .

The second marker’s genotype of maternal grandfather Mpmi2
= (Lppmi2 , Lmpmi2), for

instance, is generated from

Pr(Mpmi2
=mpmi2

|lpmi2,Mpmi1
,D2)=

Pr(Mpmi2=mpmi2,Lpmi2=lpmi2|Mpmi1,D2)∑
mpmi2

Pr(Mpmi2=mpmi2,Lpmi2=lpmi2|Mpmi1,D2)

=
Pr

(
Mpmi2

=(l·pmi2
,lpmi2

)|Mpmi1
,D2

)
∑
l·pmi2

Pr

(
Mpmi2

=(l·pmi2
,lpmi2

)|Mpmi1
,D2

) , (5.12)

where · represents either the paternal or maternal allele, Pr
(
Mpmi2

= (l·pmi2 , lpmi2)|Mpmi1
, D2

)
is the conditional probability of Mpmi2

genotype considering that one of its two alleles is lpmi2

(since he transferred this allele for his offspring) and given his previous marker genotype. This

conditional probability is defined in the transition matrix

PM2 =


−1(aa) 0(Aa) 1(AA)

−1(aa) (1− r2)2 2r2(1− r2) r2
2

0(Aa) r2(1− r2) (1− r2)2 + r2
2 r2(1− r2)

1(AA) r2
2 2r2(1− r2) (1− r2)2

,

and r2 is the recombination fraction between 2-nd and 1-st markers. The second marker’s

genotype of maternal grandmother can be estimated similarly.

Genotypes of markers j = 3, ...,m are drawn analogously to the procedure described for

j = 2. Note that the genotype of a specific marker is generated for all the missing parents and

grandparents before the method generates the genotype of the next marker.

Therefore, we simulate the missing genotypes of founder’s parents and grandparents in order

to obtain the complete likelihood.

5.3 Bayesian approach

We use a Bayesian approach to select and estimate the best model. The a priori distributions

are

1. K ∼ Uniform(0, 1, ...,m− 1);

2. αk|K ∼ Normal(να, σ
2
α), k = 1, ..., K, where να and σ2

α > 0 are known hyper-parameters;

3. δk|K ∼ Normal(νδ, σ
2
δ ), k = 1, ..., K, where νδ and σ2

δ > 0 are known hyper-parameters;

4. µ ∼ Normal(νµ, σ
2
µ), where νµ and σ2

µ > 0 are known hyper-parameters;

5. σ2 ∼ Inverse-gamma(ηa, ηb), where ηa > 0 and ηb > 0 are known hyper-parameters and;
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5.3 Bayesian approach

6. π(λ|K) = π(λ1, ..., λK |K) = π(λ1|K)π(λ2|λ1, K) . . . π(λK |λK−1, K). If there is no a priori

information about the QTL’s location, each location can be assumed uniformly distributed

over the possible loci.

Combining the likelihood function (5.4) with the a priori distributions, we obtain the

conditional a posteriori distributions,

µ| (y,q,θ−µ) ∼ Normal


∑n
i=1(yi−

∑K
k=1 αkqik−

∑K
k=1 δk(1−|qik|))

σ2 + νµ
σ2
µ

n
σ2 + 1

σ2
µ

,
1

n
σ2 + 1

σ2
µ

 , (5.13)

σ2| (y,q,θ−σ2) ∼ Inv-gamma

n
2

+ ηa,

∑n
i=1

(
yi −

∑K
k=1 αkqik −

∑K
k=1 δk(1− |qik|)

)2

2
+ ηb

 ,

(5.14)

αk∗| (y,q,θ−αk∗ ) ∼ Normal

∑n
i=1 qik∗(yi−µ−

∑
k 6=k∗ αkqik−

∑K
k=1 δk(1−|qik|))

σ2 + να
σ2
α∑n

i=1 q
2
ik∗

σ2 + 1
σ2
α

,
1∑n

i=1 q
2
ik∗

σ2 + 1
σ2
α

 ,

(5.15)

δk∗ |(y,q,θ−δk∗ )∼Normal



∑n
i=1(1−|qik∗ |)(yi−µ−

∑K
k=1 αkqik−

∑
k 6=k∗ δk(1−|qik|))

σ2
+
νδ
σ2
δ∑n

i=1
(1−|qik∗ |)

2

σ2
+ 1
σ2
δ

, 1∑n
i=1

(1−|qik∗ |)
2

σ2
+ 1
σ2
δ

, (5.16)

for k∗ = 1, ..., K, and

Qik|(y,q−qik ,M,D) ∼ Multinomial(1, (pik(−1), pik0, pik1)), (5.17)

where pikj =
fYi|qi (yi)Pr(Qik=j|Milk

,Mirk
,Dlk ,Drk )∑

j′=−1,0,1 fYi|qi (yi)Pr(Qik=j′|Milk
,Mirk

,Dlk ,Drk )
, for j ∈ {−1, 0, 1} and i ∈ F , or

Qik|(y,q−qik ,M,D) ∼ Multinomial(1, (pik(−1), pik0, pik1)), (5.18)

where pikj =
fYi|qi (yi)Pr(Qik=j|Milk

,Mirk
,Dlk ,Drk ,Qpik

,Mpirk
)∑

j′=−1,0,1 fYi|qi (yi)Pr(Qik=j′|Mirk
,Milk

,Dlk ,Drk ,Qpik
,Mpirk

)
, for j ∈ {−1, 0, 1} and i ∈ F c.

The location of k-th QTL, λk, is updated jointly with qk by Metropolis-Hastings steps in

which λ
′

k is simulated from a Uniform(Dlk , Drk) distribution and the block (λ
′

k,q
′

k) is accepted
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with probability Ψ((λ
′

k,q
′

k)|(λk,qk)) = min(1, Aλ), where

Aλ =
exp

{
− 1

2σ2

∑n
i=1 ε

′
i

2
}

exp
{
− 1

2σ2

∑n
i=1 ε

2
i

} ∏i∈F Pr
(
Qik = q

′

ik|M,D
)∏

i∈F c Pr
(
Qik = q

′

ik|M,D,Q
′

pik
,Mpirk

)∏
i∈F Pr (Qik = qik|M,D)

∏
i∈F c Pr (Qik = qik|M,D,Qpik,Mpirk)

×
∏

i∈F Pr (Qik = qik|y,q−qik ,M,D)
∏

i∈F c Pr
(
Qik = qik|y,q−qik ,M,D,Q

′

pik
,Mpirk

)∏
i∈F Pr

(
Qik = q

′
ik|y,q−qik ,M,D

)∏
i∈F c Pr

(
Qik = q

′
ik|y,q−qik ,M,D,Q

′
pik
,Mpirk

) ,
(5.19)

εi = yi − µ−
∑K

k=1 αkqik −
∑K

k=1 δk(1− |qik|) is the residual of the i-th individual, i = 1, ..., n,

and ε
′
i is calculated using q−qk and q

′

k.

The number of QTLs K is updated through a birth or a death move. If K = 1, a birth is

chosen. If K = Kmax, a death is chosen. If 1 < K < Kmax, a new candidate value is chosen

between K−1 and K+1 with probability 0.5. When a birth movement is chosen, the association

between markers genotype and residuals of the current model (measured by the Kruskal-Wallis

test statistic) is used to define a locus for the new QTL. The new QTL’s genotype, additive

and dominance effects are drawn from their conditional a posteriori distributions defined by

(5.17) or (5.18), (5.15) and (5.16), and µ and σ2 are updated by (5.13) and (5.14), respectively.

When a death movement is chosen, we select a QTL to be excluded from the current model.

Its genotype and effects are excluded from the model and µ and σ2 are updated using (5.13)

and (5.14), respectively. For more details about updating K see Zuanetti & Milan (2016).

Let x = (q,θ) be the current state with K QTLs and x
′

= (q
′
,θ
′
) be the proposed

movement, where signal ′ represents either a birth (b) or a death (d) of a QTL. The proposed

move from x to x
′

is accepted according to the Metropolis-Hastings probability Ψ(x
′ |x) =

min(1, A
′
) where

A
′
=
L(θ

′|y,q′)
L(θ|y,q)

π(θ
′
)

π(θ)

q(x|x′)
q(x′|x)

, (5.20)

and q(·|·) is the transition function.

5.3.1 Algorithm DDRJ for pedigree data

The data-driven reversible jump is specified as follows:

1. Initialize a configuration for θ and q.

2. For l-th iteration, l = 1, ..., L, do:

(a) Simulate markers’s genotype for missing founders’ parents and grandparents as

described in Section 5.2.2.

(b) Simulate values of spi and smi for all nonfounder individuals.
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(c) Choose between a death or birth movement.

(d) Generate candidate-values x
′
depending on chosen movement as described in Section

5.3.

(e) Accept the proposal with probability Ψ(x
′ |x) = min(1, A

′
), where A

′
is given by

(5.20) and ′ is either b or d.

i. If a birth movement is accepted, do K(l) = K(l−1) + 1 and consider xb.

ii. If a death movement is accepted, do K(l) = K(l−1) − 1 and consider xd.

iii. If no movement is accepted, do K(l) = K(l−1) and replicate x.

(f) Update λk, for k = 1, ..., K(l), using (5.19).

(g) Update qik, for i = 1, ..., n and k = 1, ..., K(l), from their conditional a posteriori

distribution defined by (5.17) or (5.18).

(h) Update αk and δk, for k = 1, ..., K(l), from their conditional a posteriori distributions

defined by (5.15) and (5.16), respectively.

(i) Update µ from its conditional a posteriori distribution defined by (5.13).

(j) Update σ2 from its conditional a posteriori distribution defined by (5.14).

This algorithm is implemented in R language and the codes are available in the appendices

of this chapter. R is a free software environment for statistical computing and graphics and

more details are found in its homepage https://www.r-project.org’.

5.4 Applications

We apply the proposed method to simulated data sets and compare its performance with the

variance components analysis performance. The test data sets were generated from program

SimPed (Leal et al., 2005) available in http://bioinformatics.org/simped/doc.html. We

simulate the genotype of 200 marker loci equally distributed in a 2 Morgans (M) chromosome

(1 marker every 1 cM). Our data consists of n = 500 individuals from 50 families structured as

in Figure 5.1. We interchange groups of diallelic markers in linkage disequilibrium and blocks

of diallelic markers in linkage equilibrium.

We choose K = 5 markers to randomly locate the QTLs and simulate phenotypes as

the sum of the overall mean, additive and dominance QTLs’ effects and a random residual

drawn from the Normal(0, σ2) distribution, for σ2 = 1, 4, 9, 16, 25, as in Lund et al. (2009).

The additive and dominance effects were drawn from the Normal(0, 1) and Normal(0, 0.25)

distributions, respectively. The true values used to simulate the phenotypes are: µ = 5, λ =

(0.12, 0.52, 0.62, 0.92, 1.10), α = (0.759,−0.529,−0.784, 0.679, 1.896) and δ = (0.005,−0.238,

−0.523,−0.278, 0.085). The 5-th and 2-nd QTLs have the highest and lowest additive effect,
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respectively. The dominance effects of the 1-st and 5-th QTLs are near zero and they mimic

QTLs which have only additive effects.

Heritability reflects all the genetic contributions to population’s phenotypic variance and is

defined as H2 = total variance−σ2

total variance
. For our simulated data sets the heritability are approximately

0.75, 0.40, 0.20, 0.10, 0.05 for σ2 = 1, 4, 9, 16, 25, respectively. Lower heritability usually means

harder modeling.

In order to get a vague a priori distribution we set hyperparameters as να = νδ = νµ = 0,

σ2
α = σ2

δ = σ2
µ = 100 and ηa = ηb = 0.1. We run DDRJ for L = 11000 iterations and discard

the 1000 first iterations. We take one draw for every 10 iterations to obtain a final sequence of

1000 values. The chains are initialized with K = 0. The analysis of convergence indicates that

the number of iterations is enough for reliable results.

Table 5.3 shows the a posteriori probabilities for K. It is calculated as the relative frequency

of each value of K in the MCMC sequence.

Table 5.3: The a posteriori probability for K.

K
σ

1 2 3 4 5
0 0.0 0.0 0.0 0.0 5.0
1 0.0 0.2 17.1 44.2 57.3
2 0.0 13.5 69.6 44.4 28.9
3 0.0 41.0 12.0 10.6 7.3
4 0.0 34.4 1.1 0.7 1.4
5 99.7 9.9 0.2 0.1 0.1
≥ 6 0.3 1.0 0.0 0.0 0.0

The proposed methodology shows good performance in estimating K = 5 when σ = 1.

When σ = 2, although the estimate of number of QTLs is K = 3, we notice in Figure 5.3 that

the first estimated QTL is clearly located in three different regions: around 0.10, 0.50 and 0.60

M where true QTLs 1, 2 and 3 are located. Figure 5.3 indicates that the three distinct regions

should be studied in details to verify QTL’s presence. As the error variability rises and the

heritability goes down the method identifies only QTLs with higher effect in phenotype.

Table 5.4 shows the Bayesian estimates (a posteriori average) for the model’s parameters.

It also provides the 95% credibility interval for each parameter. When σ = 2, we consider

the three distinct regions shown in Figure 5.3 as different QTLs in order to show separated

estimates for each of them. The dominance effect of 1-th and 5-th QTLs are nonsignificant

since their true value is very close to zero. When σ ≤ 2 the QTLs’ effects and remaining

parameters are well estimated. The 4-th and 5-th QTLs are identified when σ = 3 and only the

5-th QTLs is estimated when σ = 4. Even when only some QTLs are identified, their effects,

the error variability and the overall mean are well estimated.

We apply the variance components modeling to the simulated data sets in order to compare
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Figure 5.3: Position (M) of the first estimated QTL when σ = 2.

with the proposed method. In a variance components model the effects of QTLs are defined as

random effects. The variance structure of y is function of σ2
α (total additive genetic variance),

σ2
δ (total dominance genetic variance) and σ2 (variance of error term or environmental variance).

Heritability in these models is defined as H2 =
σ2
α+σ2

δ

σ2
α+σ2

δ+σ2 .

We use software Mendel, available at http://www.genetics.ucla.edu/software/mendel,

to do the variance component analysis, see Bauman et al. (2005); Lange & Sobel (2006); Lange

et al. (1976, 1983, 2013) for details. We analyze the data with additive and dominance random

effects in the model using variance components option of analysis.

Table 5.5 shows the estimates of variance components models. We note for cases considered

here that the dominance effect is nonsignificant in all cases and the error variability is always

underestimated. Consequently, additive variance and heritability are overestimated and we

wrongly justify part of environmental variability as genetic contribution to phenotypes.

Table 5.5: Estimates and standard errors of variance components models.

Parameter
σ

1 2 3 4 5
µ 4.88 (0.13) 4.82 (0.15) 4.80 (0.18) 4.78 (0.22) 4.78 (0.25)
σ2
α 3.34 (0.46) 3.50 (0.75) 3.96 (1.18) 4.76 (1.77) 5.87 (2.51)
σ2
δ 0.02 (1.28) 0.00 0.00 0.00 0.00
σ2 0.69 (1.34) 3.26 (0.56) 7.39 (1.05) 13.03 (1.70) 20.20 (2.51)
H2 0.83 (0.19) 0.52 (0.06) 0.35 (0.07) 0.27 (0.07) 0.22 (0.08)

113



5.5 Discussion

Table 5.4: The a posteriori estimates for models.

Parameter True value
σ

1 2 3 4 5
λ1 0.12 0.10 (0.09,0.11) 0.10 (0.09,0.11)
λ2 0.52 0.50 (0.49,0.51) 0.50 (0.49,0.52)
λ3 0.62 0.60 (0.59,0.61) 0.61 (0.60,0.63)
λ4 0.92 0.90 (0.89,0.91) 0.90 (0.89,0.91) 0.90 (0.89,0.91) 0.90 (0.50,0.98)
λ5 1.10 1.08 (1.07,1.09) 1.08 (1.07,1.09) 1.08 (1.07,1.09) 1.08 (1.07,1.09) 1.07 (1.06,1.08)
µ 5 4.95 (4.70,5.18) 5.00 (4.45,5.48) 5.10 (4.54,5.63) 5.18 (4.00,5.97) 4.61 (3.90,5.95)
α1 0.76 0.67 (0.53,0.82) 0.67 (0.42,0.92)
α2 -0.53 -0.59 (-0.73,-0.45) -0.57 (-0.87,-0.36)
α3 -0.78 -0.71 (-0.85,-0.59) -0.62 (-0.94,-0.29)
α4 0.68 0.77 (0.63,0.90) 0.84 (0.57,1.14) 0.90 (0.43,1.34) 0.95 (0.03,1.58)
α5 1.90 1.75 (1.62,1.90) 1.60 (1.32,1.87) 1.52 (1.15,1.86) 1.33 (0.73,1.83) 1.35 (0.11,1.95)
δ1 0.01 -0.04 (-0.24,0.13) -0.08 (-0.37,0.29)
δ2 -0.24 -0.01 (-0.16,0.20) -0.36 (-0.69,0.05)
δ3 -0.52 -0.39 (-0.59,-0.21) -0.25 (-0.70,0.24)
δ4 -0.28 -0.55 (-0.75,-0.34) -0.69 (-1.11,-0.27) -0.92 (-1.58,-0.27) -0.98 (-1.77,0.35)
δ5 0.08 0.12 (-0.07,0.30) 0.09 (-0.29,0.51) 0.05 (-0.47,0.55) 0.03 (-0.55,0.67) 0.06 (-2.00,1.09)
σ 0.95 (0.89,1.02) 1.97 (1.85,2.09) 2.89 (2.71,3.09) 3.81 (3.57,4.10) 4.82 (4.53,5.14)

5.5 Discussion

We propose a QTL mapping model which describes the pedigree relationship between

individuals and their genotypes through conditional independence structures without random

effects in the model. Random effects may increase model’s variability making more difficult the

identification of QTLs with small effect.

The method shows good performance under the tested conditions. The number of QTLs,

their position and effects on the phenotype are well estimated outperforming the variance

components method for QTL mapping of pedigree data. The variance components modeling

confounds genetic and environmental sources of variation. The proposed method also provides

credibility interval about the uncertainty of estimates while conventional methods usually

provide point estimates or asymptotic confidence intervals for large samples.

The major differential of the proposed method is that it considers Mendelian and multiple

linked loci segregation to estimate the genotype’s probability of a specific locus. Also, it

estimates missing parents genotype and it runs on reasonable computation times (partially

thanks to the DDRJ procedure).

5.6 Appendices

5.6.1 R codes to carry out DDRJ

In this section, we show DDRJ R codes.

#

###################################

# Functions

###################################
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#

################

# calculation of Crámeer’ coefficient

#

cv.test = function(x,y) {

CV = sqrt(chisq.test(x, y, correct=FALSE)$statistic /

(length(x) * (min(length(unique(x)),length(unique(y))) - 1)))

print.noquote("CramÈr V / Phi:")

return(as.numeric(CV))}

#

### identify if an allele is paternal or maternal

#

identalel_pai_mae<-function(genpai,genmae,genfilho){

# Alelo = 2 representa alelo dominante e Alelo = 1 representa alelo recessivo

if (genfilho==1) {

afp<-2

afm<-2} else {

if (genfilho==-1){

afp<-1

afm<-1} else {

if (genpai==1) {

afp<-2

afm<-1} else {

if (genpai==-1) {

afp<-1

afm<-2} else {

if (genmae==1) {

afp<-1

afm<-2} else {

if (genmae==-1) {

afp<-2

afm<-1} else {

aux<-rbinom(1,1,0.5)

afp<-(2^aux)*(1^(1-aux))

afm<-(2^(1-aux))*(1^aux)}}}}}}

list(afp,afm)}

#

#################
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### sample a birth QTL candidate and compute its transition function

#

gera.inclusao.QTL<-function(dados,residuos,mat.delinea,vet.coef,pos.qtls,

loc.marc,sigma2.vig,alpha.vig,delta.vig,media.mi,sigma2.mi,media.alpha,

sigma2.alpha,media.delta,sigma2.delta,neta.a,neta.b,mat.ped.pais,founders,

nonfounders,alelo.paterno,alelo.materno,Sp,Sm,mat.alelo.qtls,comfenot){

#

marcador<-prob.selec.marc(dados[comfenot,],residuos,pos.qtls,loc.marc)

qtl<-pos.qtl(pos.qtls,loc.marc,marcador[[1]],marcador[[3]])

#

dQTL<-qtl[[1]]

Marc1<-sum(loc.marc<=dQTL)

Marc2<-length(loc.marc)-(sum(loc.marc>=dQTL)-1)

dM1<-loc.marc[Marc1]

dM2<-loc.marc[Marc2]

r12<-Haldane(abs(dM2-dM1))

r1<-Haldane(abs(dQTL-dM1))

r2<-Haldane(abs(dQTL-dM2))

matrec1<-matrix(c(1-r1,r1,r1,1-r1),2,2,byrow=TRUE)

matrec2<-matrix(c(1-r2,r2,r2,1-r2),2,2,byrow=TRUE)

#

## sample the genotype of founders’ QTL

#

matriz.prob.gen.QTL<-numeric()

probQTL<-numeric(3)

for (j in 1:length(founders)){

gen<-c(-1,0,1)

for (i in 1:3) probQTL[i]<-(calc.prob.gen(dados[j,(Marc1+1)],gen[i],r1)*

calc.prob.gen(gen[i],dados[j,(Marc2+1)],r2))/calc.prob.gen(

dados[j,(Marc1+1)],dados[j,(Marc2+1)],r12)

matriz.prob.gen.QTL<-rbind(matriz.prob.gen.QTL,probQTL)}

#

dados.QTL<-matrix(0,length(founders),1)

for (i in 1:length(founders)) dados.QTL[i,1]<-gen[rDiscreta(

matriz.prob.gen.QTL[i,])]

#

ale.pai<-matrix(99,nrow=length(founders),1)

ale.mae<-matrix(99,nrow=length(founders),1)
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probale<-numeric(2)

#

for (k in 1:length(founders)){

if (dados.QTL[k,1]==-1){

ale.mae[k,1]<-1

ale.pai[k,1]<-1}

if (dados.QTL[k,1]==1){

ale.mae[k,1]<-2

ale.pai[k,1]<-2}

if (dados.QTL[k,1]==0){

for (ale in 1:2) probale[ale]<-matrec1[alelo.paterno[k,Marc1],ale]*

matrec2[ale,alelo.paterno[k,Marc2]]

probale<-probale/sum(probale)

aux2<-rDiscreta(probale)-1

ale.mae[k,1]<-1^(aux2)*2^(1-aux2)

ale.pai[k,1]<-2^(aux2)*1^(1-aux2)}}

dados.alelo<-cbind(ale.pai,ale.mae)

#

## sample the genotype of nonfounders’ QTL

#

matriz.prob.S.pat<-numeric()

matriz.prob.S.mat<-numeric()

probSpat<-numeric(2)

probSmat<-numeric(2)

for (j in 1:length(nonfounders)){

for (i in 1:2){

probSmat[i]<-matrec1[Sm[j,Marc1],i]*matrec2[i,Sm[j,Marc2]]

probSpat[i]<-matrec1[Sp[j,Marc1],i]*matrec2[i,Sp[j,Marc2]]}

matriz.prob.S.mat<-rbind(matriz.prob.S.mat,(probSmat/sum(probSmat)))

matriz.prob.S.pat<-rbind(matriz.prob.S.pat,(probSpat/sum(probSpat)))}

Smqtl<-numeric(length(nonfounders))

Spqtl<-numeric(length(nonfounders))

for (j in 1:length(nonfounders)){

Smqtl[j]<-rDiscreta(matriz.prob.S.mat[j,])

Spqtl[j]<-rDiscreta(matriz.prob.S.pat[j,])}

for (i in 1:length(nonfounders)) dados.alelo<-rbind(dados.alelo,c(dados.alelo

[mat.ped.pais[i,1],Spqtl[i]],dados.alelo[mat.ped.pais[i,2],Smqtl[i]]))

#
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dados.QTL<-matrix(0,nrow(dados.alelo),1)

for (i in 1:nrow(dados.alelo)){

if (dados.alelo[i,1]==1 & dados.alelo[i,2]==1) dados.QTL[i,1]<--1

if (dados.alelo[i,1]==2 & dados.alelo[i,2]==2) dados.QTL[i,1]<-1

if (dados.alelo[i,1]!= dados.alelo[i,2]) dados.QTL[i,1]<-0}

mat.delinea<-cbind(mat.delinea,dados.QTL)

#

alpha<-poster.alpha(media.alpha,sigma2.alpha,sigma2.vig,residuos,

alpha.vig,dados.QTL[comfenot,1])

vet.coef<-rbind(vet.coef,alpha[[1]])

predito<-mat.delinea[comfenot,]%*%vet.coef

residuos<-dados[comfenot,1]-predito

#

dados.QTL<-cbind(dados.QTL,(1-abs(dados.QTL[,1])))

delta<-poster.delta(media.delta,sigma2.delta,sigma2.vig,residuos,

delta.vig,dados.QTL[comfenot,2])

mat.delinea<-cbind(mat.delinea,dados.QTL[,2])

vet.coef<-rbind(vet.coef,delta[[1]])

predito<-mat.delinea[comfenot,]%*%vet.coef

residuos<-dados[comfenot,1]-predito

#

mi<-poster.mi(media.mi,sigma2.mi,sigma2.vig,residuos,vet.coef[1,1])

vet.coef[1,1]<-mi[[1]]

predito<-mat.delinea[comfenot,]%*%vet.coef

residuos<-dados[comfenot,1]-predito

sigma2<-poster.sigma2(neta.a,neta.b,residuos)

#

list(qtl[[1]],mat.delinea,vet.coef,sigma2[[1]],marcador[[2]],qtl[[2]],

dados.alelo,alpha[[2]],delta[[2]],mi[[2]],sigma2[[2]],c(pos.qtls,

qtl[[1]]),cbind(mat.alelo.qtls,dados.alelo))}

#

#################

### sample a death QTL candidate and compute its transition function

#

gera.exclusao.QTL<-function(pos.qtls,vet.coef,mat.delinea,sigma2.vig,

media.mi,sigma2.mi,neta.a,neta.b,mat.alelo.qtls,comfenot){

num.QTLs<-length(pos.qtls)

qtl<-prob.excl.marc(num.QTLs,vet.coef)
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#

pos.qtls<-pos.qtls[-qtl[[1]]]

mat.alelo.qtls<-mat.alelo.qtls[,-c((2*qtl[[1]])-1,(2*qtl[[1]]))]

mat.delinea<-matrix(mat.delinea[,-c((2*qtl[[1]]),(2*qtl[[1]]+1))],

nrow=nrow(dados))

vet.coef<-matrix(vet.coef[-c((2*qtl[[1]]),(2*qtl[[1]]+1))],ncol=1)

predito<-mat.delinea[comfenot,]%*%vet.coef

residuos<-dados[comfenot,1]-predito

#

mi<-poster.mi(media.mi,sigma2.mi,sigma2.vig,residuos,vet.coef[1,1])

vet.coef[1,1]<-mi[[1]]

predito<-mat.delinea[comfenot,]%*%vet.coef

residuos<-dados[comfenot,1]-predito

sigma2<-poster.sigma2(neta.a,neta.b,residuos)

#

list(qtl[[1]],mat.delinea,vet.coef,sigma2[[1]],qtl[[2]],mi[[2]],sigma2[[2]],

sigma2[[2]],sigma2[[2]],sigma2[[2]],sigma2[[2]],pos.qtls,mat.alelo.qtls)}

#

#################

### sample a merge QTL candidate and compute its transition function

#

gera.juncao.QTL<-function(dados,num.QTLs,mat.delinea,vet.coef,

pos.qtls,media.alpha,sigma2.alpha,sigma2.vig,media.delta,sigma2.delta,

media.mi,sigma2.mi,neta.a,neta.b,mat.alelo.qtls,comfenot){

cramer<-numeric(num.QTLs-1)

for (i in 1:(num.QTLs-1)) cramer[i]<-abs(cv.test(mat.delinea

[comfenot,2*i],mat.delinea[comfenot,2*(i+1)])) # cramer entre os QTLs vizinhos

prob_par<-cramer/sum(cramer)

junta<-rDiscreta(prob_par)

par_QTL<-c(junta,junta+1)

efeitos<-c(1/sum(abs(vet.coef[2*junta,1]),abs(vet.coef[2*junta+1,1])),

1/sum(abs(vet.coef[2*(junta+1),1]),abs(vet.coef[2*(junta+1)+1,1])))

prob<-efeitos/sum(efeitos)

gera<-rDiscreta(prob) # escolhe o QTL que vai sumir

qtl<-par_QTL[gera]

#

pos.qtls.c<-pos.qtls[-qtl]

mat.alelo.qtls.c<-mat.alelo.qtls[,-c((2*qtl)-1,(2*qtl))]
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mat.delinea.c<-matrix(mat.delinea[,-c((2*qtl),(2*qtl+1))],nrow=nrow(dados))

vet.coef.c<-matrix(vet.coef[-c((2*qtl),(2*qtl+1))],ncol=1)

predito<-mat.delinea.c[comfenot,]%*%vet.coef.c

residuos<-dados[comfenot,1]-predito

#

alpha<-poster.alpha(media.alpha,sigma2.alpha,sigma2.vig,residuos,

vet.coef.c[(2*par_QTL[[1]]),1],mat.delinea.c[comfenot,(2*par_QTL[[1]])])

vet.coef.c[(2*par_QTL[[1]]),1]<-alpha[[1]]

residuos<-dados[comfenot,1]-(mat.delinea.c[comfenot,]%*%vet.coef.c)

delta<-poster.delta(media.delta,sigma2.delta,sigma2.vig,residuos,

vet.coef.c[(2*par_QTL[[1]])+1,1],mat.delinea.c[comfenot,(2*par_QTL[[1]])+1])

vet.coef.c[(2*par_QTL[[1]])+1,1]<-delta[[1]]

residuos<-dados[comfenot,1]-(mat.delinea.c[comfenot,]%*%vet.coef.c)

#

mi<-poster.mi(media.mi,sigma2.mi,sigma2.vig,residuos,vet.coef.c[1,1])

vet.coef.c[1,1]<-mi[[1]]

predito<-mat.delinea.c[comfenot,]%*%vet.coef.c

residuos<-dados[comfenot,1]-predito

sigma2<-poster.sigma2(neta.a,neta.b,residuos)

prob_merge<-log(prob[gera])+log(prob_par[junta])

#

list(qtl,mat.delinea.c,vet.coef.c,sigma2[[1]],prob_merge,mi[[2]],sigma2[[2]],

alpha[[2]],delta[[2]],par_QTL[which(par_QTL!=qtl)],par_QTL,pos.qtls.c,

mat.alelo.qtls.c)}

#

##################

# run DDRJ procedure and initialize the chain with k=0 QTLs

##################

#

####### hyper parameters of a priori distributions

#

neta.a<-0.1

neta.b<-0.1

sigma2.mi<-100

media.mi<-0

sigma2.alpha<-100

media.alpha<-0

sigma2.delta<-100
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media.delta<-0

#

####### Model initialization

#

set.seed(510)

residuos<-dados[comfenot,1]

sigma2.vig<-poster.sigma2(neta.a,neta.b,residuos)[[1]]

#

mi<-poster.mi(media.mi,sigma2.mi,sigma2.vig,residuos,0)[[1]]

#

pos.qtls<-numeric()

num.QTLs<-length(pos.qtls)

mat.alelo.qtls<-numeric()

mat.delinea<-matrix(1,nrow(dados),1)

vet.coef<-matrix(mi,1,1)

predito<-mat.delinea[comfenot,]%*%vet.coef

residuos<-dados[comfenot,1]-predito

sigma2.vig<-poster.sigma2(neta.a,neta.b,residuos)[[1]]

#

amostrasfin<-1000

burnin<-1000

saltos<-10

AmostrasTotal<-burnin+amostrasfin*saltos

#

indSpMgtotal<-numeric(AmostrasTotal)

probacetotal<-numeric(AmostrasTotal)

probacemerge<-numeric(AmostrasTotal)

num.QTL.total<-numeric(AmostrasTotal)

indrejtotal<-numeric(AmostrasTotal)

#

#####################

# run DDRJ - some functions used here are available

# in R codes of Chapter 3

#####################

#

library(compiler)

enableJIT(3)

#
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for (int in (1:AmostrasTotal)){

cat(’\n’, crom, int,num.QTLs)

cand.sp.mg<-dec.sp.mg(num.QTLs,num.marc)

indSpMgtotal[int]<-cand.sp.mg[[1]]

#

##############

###### QTL birth

##############

#

if (indSpMgtotal[int]==1) {candidato<-gera.inclusao.QTL(dados,residuos,

mat.delinea,vet.coef,pos.qtls,loc.marc,sigma2.vig,0,0,media.mi,sigma2.mi,

media.alpha,sigma2.alpha,media.delta,sigma2.delta,neta.a,neta.b,

mat.ped.pais,founders,nonfounders,alelo.paterno,alelo.materno,Sp,Sm,

mat.alelo.qtls,comfenot)

num.QTL.total[int]<-num.QTLs+1

residuossp<-dados[comfenot,1]-(candidato[[2]][comfenot,]%*%candidato[[3]])

sigma2<-sigma2.vig

sigma2sp<-candidato[[4]]

mi<-vet.coef[1,1]

misp<-candidato[[3]][1,1]

alphasp<-candidato[[3]][(nrow(candidato[[3]])-1),1]

deltasp<-candidato[[3]][(nrow(candidato[[3]])),1]

num.QTLssp<-num.QTLs+1

psplit<-cand.sp.mg[[2]][1]

pmerge<-dec.sp.mg(num.QTLssp,num.marc)[[2]][2]

pmarc<-candidato[[5]]

plambdasp<-candidato[[6]]

#

efeito<-numeric()

if (num.QTLs==0) efeito<-0

if (num.QTLs>0) for (i in 1:num.QTLs) efeito[i]<-1/(abs(vet.coef[2*i,1])+

abs(vet.coef[(2*i)+1,1]))

efeitosp<-1/(abs(alphasp)+abs(deltasp))

plambdamg<-log(efeitosp/(efeitosp+sum(efeito)))

#

res.mi<-residuos+mi

quo<-(length(residuos)/sigma2sp)+(1/sigma2.mi)

media<-((sum(res.mi)/sigma2sp)+(media.mi/sigma2.mi))/quo
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variancia<-1/quo

postmi<-dnorm(mi,media,sqrt(variancia),log = TRUE)

#

aa1<-(length(residuos)/2)+neta.a

bb1<-(sum(residuos^2)/2)+neta.b

postsigma2<-dgamma((1/sigma2),aa1,bb1,log = TRUE)

#

postalphasp<-candidato[[8]]

postdeltasp<-candidato[[9]]

postmisp<-candidato[[10]]

postsigma2sp<-candidato[[11]]

pos.qtls.sp<-sort(candidato[[12]])

pri.pos.sp<-dens.priori.loc.qtls(pos.qtls.sp,loc.marc)

pri.pos<-dens.priori.loc.qtls(pos.qtls,loc.marc)

#

probace<-prob.aceitacao(residuossp,residuos,sigma2,sigma2sp,misp,mi,

media.mi,sigma2.mi,neta.a,neta.b,alphasp,media.alpha,sigma2.alpha,deltasp,

media.delta,sigma2.delta,loc.marc,num.QTLs,num.QTLssp,psplit,pmerge,pmarc,

plambdasp,plambdamg,postmi,postsigma2,postalphasp,postdeltasp,postmisp,

postsigma2sp,pri.pos.sp,pri.pos)}

#

##############

###### QTL death

##############

#

if (indSpMgtotal[int]==2) {candidato<-gera.exclusao.QTL(pos.qtls,vet.coef,

mat.delinea,sigma2.vig,media.mi,sigma2.mi,neta.a,neta.b,mat.alelo.qtls,comfenot)

num.QTL.total[int]<-num.QTLs-1

residuosmg<-dados[comfenot,1]-(candidato[[2]][comfenot,]%*%candidato[[3]])

sigma2<-sigma2.vig

sigma2mg<-candidato[[4]]

mi<-vet.coef[1,1]

mimg<-candidato[[3]][1,1]

num.QTLsmg<-num.QTLs-1

pmerge<-cand.sp.mg[[2]][2]

psplit<-dec.sp.mg(num.QTLsmg,num.marc)[[2]][1]

postmimg<-candidato[[6]]

postsigma2mg<-candidato[[7]]
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pos.qtls.mg<-sort(candidato[[12]])

pri.pos<-dens.priori.loc.qtls(pos.qtls,loc.marc)

pri.pos.mg<-dens.priori.loc.qtls(pos.qtls.mg,loc.marc)

plambdamg<-candidato[[5]]

alpha<-vet.coef[(2*candidato[[1]]),1]

delta<-vet.coef[(2*candidato[[1]]+1),1]

#

krusk<-prob.selec.marc(dados[comfenot,],residuosmg,pos.qtls.mg,loc.marc)[[3]]

prob<-krusk/sum(krusk)

QTLmg<-pos.qtls[candidato[[1]]]

Marc1<-sum(loc.marc<=QTLmg)

Marc2<-num.marc-sum(loc.marc>=QTLmg)+1

loc.Marc1<-dens.pos.qtl(QTLmg,pos.qtls.mg,loc.marc,Marc1,krusk)

loc.Marc2<-dens.pos.qtl(QTLmg,pos.qtls.mg,loc.marc,Marc2,krusk)

plambdasp<-log(prob[Marc1]*loc.Marc1+prob[Marc2]*loc.Marc2)

pmarc<-0

#

quo<-(sum(mat.delinea[comfenot,2*candidato[[1]]]^2)/sigma2mg)+

(1/sigma2.alpha)

media<-((sum(mat.delinea[comfenot,2*candidato[[1]]]*residuosmg)/sigma2mg)+

(media.alpha/sigma2.alpha))/quo

variancia<-1/quo

postalpha<-dnorm(alpha,media,sqrt(variancia),log = TRUE)

#

quo<-(sum(mat.delinea[comfenot,2*candidato[[1]]+1]^2)/sigma2mg)+

(1/sigma2.delta)

media<-((sum(mat.delinea[comfenot,2*candidato[[1]]+1]*residuosmg)/sigma2mg)+

(media.delta/sigma2.delta))/quo

variancia<-1/quo

postdelta<-dnorm(delta,media,sqrt(variancia),log = TRUE)

#

res.mi<-residuos+vet.coef[1,1]

quo<-(length(residuos)/sigma2mg)+(1/sigma2.mi)

media<-((sum(res.mi)/sigma2mg)+(media.mi/sigma2.mi))/quo

variancia<-1/quo

postmi<-dnorm(mi,media,sqrt(variancia),log = TRUE)

#

aa1<-(length(residuos)/2)+neta.a
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bb1<-(sum(residuos^2)/2)+neta.b

postsigma2<-dgamma((1/sigma2),aa1,bb1,log = TRUE)

#

probace<-1/prob.aceitacao(residuos,residuosmg,sigma2mg,sigma2,mi,mimg,

media.mi,sigma2.mi,neta.a,neta.b,alpha,media.alpha,sigma2.alpha,delta,

media.delta,sigma2.delta,loc.marc,num.QTLsmg,num.QTLs,psplit,pmerge,pmarc,

plambdasp,plambdamg,postmimg,postsigma2mg,postalpha,postdelta,postmi,

postsigma2,pri.pos,pri.pos.mg)}

#

#####################

# update the model parameters

#####################

#

# update the number of QTLs (accept or reject the birth or death candidate)

#

probacetotal[int]<-probace

aux2<-runif(1)

if (aux2<probace){

indrejtotal[int]<-0

pos.qtls<-candidato[[12]]

num.QTLs<-length(pos.qtls)

mat.delinea<-candidato[[2]]

vet.coef<-candidato[[3]]

sigma2.vig<-candidato[[4]]

mat.alelo.qtls<-candidato[[13]]

if (num.QTLs>0){

posicao<-order(pos.qtls)

pos.qtls<-pos.qtls[posicao]

posicao2<-1

for (i in 1:length(posicao)) posicao2<-c(posicao2,posicao[i]*2,posicao[i]*2+1)

mat.alelo.qtls<-mat.alelo.qtls[,posicao2[-1]-1]

mat.delinea<-mat.delinea[,posicao2]

vet.coef<-matrix(vet.coef[posicao2,],ncol(mat.delinea),1)}

residuos<-dados[comfenot,1]-(mat.delinea[comfenot,]%*%vet.coef)}

#

if (aux2>=probace) indrejtotal[int]<-1

#

#### evaluate a merge move of two consecutive QTLs
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#

if (num.QTLs>1){

candidato<-gera.juncao.QTL(dados,num.QTLs,mat.delinea,

vet.coef,pos.qtls,media.alpha,sigma2.alpha,sigma2.vig,media.delta,sigma2.delta,

media.mi,sigma2.mi,neta.a,neta.b,mat.alelo.qtls,comfenot)

residuosmg<-dados[comfenot,1]-(candidato[[2]][comfenot,]%*%candidato[[3]])

sigma2<-sigma2.vig

sigma2mg<-candidato[[4]]

mi<-vet.coef[1,1]

mimg<-candidato[[3]][1,1]

num.QTLsmg<-num.QTLs-1

pmerge<-0

psplit<-0

postmimg<-candidato[[6]]

postsigma2mg<-candidato[[7]]

postalphamg<-candidato[[8]]

postdeltamg<-candidato[[9]]

pos.qtls.mg<-sort(candidato[[12]])

pri.pos<-dens.priori.loc.qtls(pos.qtls,loc.marc)

pri.pos.mg<-dens.priori.loc.qtls(pos.qtls.mg,loc.marc)

plambdamg<-candidato[[5]]

alphamg<-candidato[[3]][(2*candidato[[11]][1]),1]

deltamg<-candidato[[3]][(2*candidato[[11]][1]+1),1]

alphasp1<-vet.coef[(2*candidato[[1]]),1]

deltasp1<-vet.coef[(2*candidato[[1]]+1),1]

alphasp2<-vet.coef[(2*candidato[[10]]),1]

deltasp2<-vet.coef[(2*candidato[[10]]+1),1]

#

krusk<-prob.selec.marc(dados[comfenot,],residuosmg,pos.qtls.mg,loc.marc)[[3]]

prob<-krusk/sum(krusk)

QTLmg<-pos.qtls[candidato[[1]]]

Marc1<-sum(loc.marc<=QTLmg)

Marc2<-num.marc-sum(loc.marc>=QTLmg)+1

loc.Marc1<-dens.pos.qtl(QTLmg,pos.qtls.mg,loc.marc,Marc1,krusk)

loc.Marc2<-dens.pos.qtl(QTLmg,pos.qtls.mg,loc.marc,Marc2,krusk)

plambdasp<-log(prob[Marc1]*loc.Marc1+prob[Marc2]*loc.Marc2)

pmarc<-0

#
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quo<-(sum(mat.delinea[comfenot,2*candidato[[1]]]^2)/sigma2mg)+

(1/sigma2.alpha)

media<-((sum(mat.delinea[comfenot,2*candidato[[1]]]*residuosmg)/sigma2mg)+

(media.alpha/sigma2.alpha))/quo

variancia<-1/quo

postalpha1<-dnorm(alphasp1,media,sqrt(variancia),log = TRUE)

#

quo<-(sum(mat.delinea[comfenot,2*candidato[[1]]+1]^2)/sigma2mg)+(1/sigma2.delta)

media<-((sum(mat.delinea[comfenot,2*candidato[[1]]+1]*residuosmg)/sigma2mg)+

(media.delta/sigma2.delta))/quo

variancia<-1/quo

postdelta1<-dnorm(deltasp1,media,sqrt(variancia),log = TRUE)

#

vet_coef_parc<-rbind(candidato[[3]],vet.coef[candidato[[1]]*2,1],vet.coef

[candidato[[1]]*2+1,1])

mat_delinea_parc<-cbind(candidato[[2]],mat.delinea[,candidato[[1]]*2],

mat.delinea[,candidato[[1]]*2+1])

vet_coef_parc<-matrix(vet_coef_parc[-(2*candidato[[11]][1]),],ncol=1)

mat_delinea_parc<-mat_delinea_parc[,-(2*candidato[[11]][1])]

residuosparc<-dados[comfenot,1]-mat_delinea_parc[comfenot,]%*%vet_coef_parc

quo<-(sum(mat.delinea[comfenot,2*candidato[[10]]]^2)/sigma2mg)+

(1/sigma2.alpha)

media<-((sum(mat.delinea[comfenot,2*candidato[[10]]]*residuosparc)/sigma2mg)+

(media.alpha/sigma2.alpha))/quo

variancia<-1/quo

postalpha2<-dnorm(alphasp2,media,sqrt(variancia),log = TRUE)

#

vet_coef_parc<-matrix(vet.coef[-(2*candidato[[10]]+1)],ncol=1)

mat_delinea_parc<-mat.delinea[,-(2*candidato[[10]]+1)]

residuosparc<-dados[comfenot,1]-mat_delinea_parc[comfenot,]%*%vet_coef_parc

quo<-(sum(mat.delinea[comfenot,2*candidato[[10]]+1]^2)/sigma2mg)+

(1/sigma2.delta)

media<-((sum(mat.delinea[comfenot,2*candidato[[10]]+1]*residuosparc)/sigma2mg)+

(media.delta/sigma2.delta))/quo

variancia<-1/quo

postdelta2<-dnorm(deltasp2,media,sqrt(variancia),log = TRUE)

#

res.mi<-residuos+vet.coef[1,1]
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quo<-(length(residuos)/sigma2mg)+(1/sigma2.mi)

media<-((sum(res.mi)/sigma2mg)+(media.mi/sigma2.mi))/quo

variancia<-1/quo

postmi<-dnorm(mi,media,sqrt(variancia),log = TRUE)

#

aa1<-(length(residuos)/2)+neta.a

bb1<-(sum(residuos^2)/2)+neta.b

postsigma2<-dgamma((1/sigma2),aa1,bb1,log = TRUE)

#

probace<-1/prob.aceitacao.split(residuos,residuosmg,sigma2mg,sigma2,

mi,mimg,media.mi,sigma2.mi,neta.a,neta.b,alphamg,alphasp1,alphasp2,

media.alpha,sigma2.alpha,deltamg,deltasp1,deltasp2,media.delta,sigma2.delta,

loc.marc,num.QTLsmg,num.QTLs,psplit,pmerge,pmarc,plambdasp,plambdamg,

postalphamg,postdeltamg,postmimg,postsigma2mg,postalpha1,postalpha2,

postdelta1,postdelta2,postmi,postsigma2,pri.pos,pri.pos.mg)

#

probacemerge[int]<-probace

aux2<-runif(1)

if (aux2<probace){

pos.qtls<-candidato[[12]]

num.QTLs<-length(pos.qtls)

mat.alelo.qtls<-candidato[[13]]

mat.delinea<-candidato[[2]]

vet.coef<-candidato[[3]]

sigma2.vig<-candidato[[4]]

residuos<-dados[comfenot,1]-(mat.delinea[comfenot,]%*%vet.coef)}}

#

#### update QTLs position - Metropolis Hastings

#

if (num.QTLs>0){

for (i in 1:num.QTLs){

M.esq<-sum(loc.marc<=pos.qtls[i])

M.dir<-num.marc-(sum(loc.marc>=pos.qtls[i]))+1

loc.cand<-runif(1,min=loc.marc[M.esq],max=loc.marc[M.dir])

#

vet.delinea<-mat.delinea

mat.alelo.qtlsc<-mat.alelo.qtls

r1c<-Haldane(abs(loc.cand-loc.marc[M.esq]))
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r2c<-Haldane(abs(loc.cand-loc.marc[M.dir]))

r1<-Haldane(abs(pos.qtls[i]-loc.marc[M.esq]))

r2<-Haldane(abs(pos.qtls[i]-loc.marc[M.dir]))

r12<-Haldane(abs(loc.marc[M.dir]-loc.marc[M.esq]))

matrec1<-matrix(c(1-r1,r1,r1,1-r1),2,2,byrow=TRUE)

matrec2<-matrix(c(1-r2,r2,r2,1-r2),2,2,byrow=TRUE)

matrec1c<-matrix(c(1-r1c,r1c,r1c,1-r1c),2,2,byrow=TRUE)

matrec2c<-matrix(c(1-r2c,r2c,r2c,1-r2c),2,2,byrow=TRUE)

probQTLc<-numeric(3)

probQTL<-numeric(3)

logdens<-numeric(3)

probacum<-0

probacumc<-0

densacum<-0

densacumc<-0

numer<-denom<-0

#

# update QTLs genotype of founders - Gibbs sampling

#

gen<-c(-1,0,1)

for (j in 1:length(founders)){

if (j %in% comfenot){

for (l in 1:3){

probQTLc[l]<-log((calc.prob.gen(dados[j,(M.esq+1)],gen[l],r1c)*

calc.prob.gen(gen[l],dados[j,(M.dir+1)],r2c))/calc.prob.gen(dados

[j,(M.esq+1)],dados[j,(M.dir+1)],r12))

probQTL[l]<-log((calc.prob.gen(dados[j,(M.esq+1)],gen[l],r1)*

calc.prob.gen(gen[l],dados[j,(M.dir+1)],r2))/calc.prob.gen(dados

[j,(M.esq+1)],dados[j,(M.dir+1)],r12))

dom<-1-abs(gen[l])

vet.delinea[j,2*i]<-gen[l]

vet.delinea[j,(2*i)+1]<-dom

logdens[l]<-dnorm(dados[j,1],vet.delinea[j,]%*%vet.coef,sqrt(sigma2.vig),

log=TRUE)}

probc<-exp(probQTLc+logdens-max(probQTLc+logdens))/sum(exp(probQTLc+

logdens-max(probQTLc+logdens)))

prob<-exp(probQTL+logdens-max(probQTL+logdens))/sum(exp(probQTL+

logdens-max(probQTL+logdens)))
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ger.gen<-rDiscreta(probc)

vet.delinea[j,2*i]<-gen[ger.gen]

vet.delinea[j,(2*i)+1]<-1-abs(vet.delinea[j,2*i])

probacumc<-probacumc+log(probc[ger.gen])

densacumc<-densacumc+logdens[ger.gen]

numer<-numer+probQTLc[ger.gen]

gen.at<-which(gen==mat.delinea[j,2*i])

probacum<-probacum+log(prob[gen.at])

densacum<-densacum+logdens[gen.at]

denom<-denom+probQTL[gen.at]} else {

for (l in 1:3){

probQTLc[l]<-log((calc.prob.gen(dados[j,(M.esq+1)],gen[l],r1c)*

calc.prob.gen(gen[l],dados[j,(M.dir+1)],r2c))/calc.prob.gen(dados

[j,(M.esq+1)],dados[j,(M.dir+1)],r12))

probQTL[l]<-log((calc.prob.gen(dados[j,(M.esq+1)],gen[l],r1)*

calc.prob.gen(gen[l],dados[j,(M.dir+1)],r2))/calc.prob.gen(dados

[j,(M.esq+1)],dados[j,(M.dir+1)],r12))

dom<-1-abs(gen[l])

vet.delinea[j,2*i]<-gen[l]

vet.delinea[j,(2*i)+1]<-dom}

probc<-exp(probQTLc)/sum(exp(probQTLc))

prob<-exp(probQTL)/sum(exp(probQTL))

ger.gen<-rDiscreta(probc)

vet.delinea[j,2*i]<-gen[ger.gen]

vet.delinea[j,(2*i)+1]<-1-abs(vet.delinea[j,2*i])}}

#

ale.pai<-matrix(99,nrow=length(founders),1)

ale.mae<-matrix(99,nrow=length(founders),1)

probale<-numeric(2)

for (k in 1:length(founders)){

if (vet.delinea[k,2*i]==-1){

ale.mae[k,1]<-1

ale.pai[k,1]<-1}

if (vet.delinea[k,2*i]==1){

ale.mae[k,1]<-2

ale.pai[k,1]<-2}

if (vet.delinea[k,2*i]==0){

for (ale in 1:2) probale[ale]<-matrec1[alelo.paterno[k,M.esq],ale]*matrec2
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[ale,alelo.paterno[k,M.dir]]

probale<-probale/sum(probale)

# aux2<-which(probale==max(probale))-1

aux2<-rDiscreta(probale)-1

ale.mae[k,1]<-1^(aux2)*2^(1-aux2)

ale.pai[k,1]<-2^(aux2)*1^(1-aux2)}

mat.alelo.qtlsc[k,(2*i-1)]<-ale.pai[k,1]

mat.alelo.qtlsc[k,(2*i)]<-ale.mae[k,1]}

#

matriz.prob.S<-numeric()

matriz.prob.Sc<-numeric()

probSpat<-numeric(2)

probSmat<-numeric(2)

probSpatc<-numeric(2)

probSmatc<-numeric(2)

#

# update QTLs genotype of nonfounders - Gibbs sampling

#

for (j in 1:length(nonfounders)){

if ((length(founders)+j) %in% comfenot){

for (l in 1:2){

probSmat[l]<-matrec1[Sm[j,M.esq],l]*matrec2[l,Sm[j,M.dir]]

probSpat[l]<-matrec1[Sp[j,M.esq],l]*matrec2[l,Sp[j,M.dir]]

probSmatc[l]<-matrec1c[Sm[j,M.esq],l]*matrec2c[l,Sm[j,M.dir]]

probSpatc[l]<-matrec1c[Sp[j,M.esq],l]*matrec2c[l,Sp[j,M.dir]]}

probSpat<-probSpat/sum(probSpat)

probSmat<-probSmat/sum(probSmat)

probSpatc<-probSpatc/sum(probSpatc)

probSmatc<-probSmatc/sum(probSmatc)

matriz.prob.S<-c(probSpat*probSmat[1],probSpat*probSmat[2])

matriz.prob.Sc<-c(probSpatc*probSmatc[1],probSpatc*probSmatc[2])

#

mat.possc<-cbind(matrix(c(1,1,2,1,1,2,2,2),4,2,byrow=TRUE),matrix(0,4,2))

for (l in 1:4){

mat.possc[l,3]<-mat.alelo.qtls[mat.ped.pais[j,1],2*i-(2-mat.possc[l,1])]

mat.possc[l,4]<-mat.alelo.qtls[mat.ped.pais[j,2],2*i-(2-mat.possc[l,2])]}

mat.possc<-cbind(mat.possc,matrix(matriz.prob.S,4,1))

if ((sum(mat.possc[,3])==4 | sum(mat.possc[,3])==8) &
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(sum(mat.possc[,4])==4 | sum(mat.possc[,4])==8)){

mat.possc[1,5]<-1

mat.possc<-matrix(mat.possc[-c(2,3,4),],1,5)} else {

if (sum(mat.possc[,3])==4 | sum(mat.possc[,3])==8){

mat.possc[1,5]<-mat.possc[1,5]+mat.possc[2,5]

mat.possc[3,5]<-mat.possc[3,5]+mat.possc[4,5]

mat.possc<-mat.possc[-c(2,4),]} else {

if (sum(mat.possc[,4])==4 | sum(mat.possc[,4])==8){

mat.possc[1,5]<-mat.possc[1,5]+mat.possc[3,5]

mat.possc[2,5]<-mat.possc[2,5]+mat.possc[4,5]

mat.possc<-mat.possc[-c(3,4),]}}}

mat.possc<-cbind(mat.possc,matrix(0,nrow(mat.possc),2))

for (l in 1:nrow(mat.possc)){

if (mat.possc[l,3]==1 & mat.possc[l,4]==1) mat.possc[l,6]<--1

if (mat.possc[l,3]==2 & mat.possc[l,4]==2) mat.possc[l,6]<-1

if (mat.possc[l,3]!= mat.possc[l,4]) mat.possc[l,6]<-0}

mat.possc[,7]<-1-abs(mat.possc[,6])

#

logdens<-numeric(nrow(mat.possc))

for (l in 1:nrow(mat.possc)){

vet.delinea[length(founders)+j,2*i]<-mat.possc[l,6]

vet.delinea[length(founders)+j,(2*i)+1]<-mat.possc[l,7]

logdens[l]<-dnorm(dados[length(founders)+j,1],vet.delinea[

length(founders)+j,]%*%vet.coef,sqrt(sigma2.vig),log=TRUE)}

probc<-exp(log(mat.possc[,5])+logdens-max(log(mat.possc[,5])+

logdens))/sum(exp(log(mat.possc[,5])+logdens-max(log(mat.possc[,5])+logdens)))

gen<-which(mat.possc[,3]==mat.alelo.qtls[length(founders)+j,(2*i)-1] &

mat.possc[,4]==mat.alelo.qtls[length(founders)+j,2*i])

probacum<-probacum+log(probc[gen])

densacum<-densacum+logdens[gen]

denom<-denom+log(mat.possc[gen,5])

#

mat.possc<-cbind(matrix(c(1,1,2,1,1,2,2,2),4,2,byrow=TRUE),matrix(0,4,2))

for (l in 1:4){

mat.possc[l,3]<-mat.alelo.qtlsc[mat.ped.pais[j,1],2*i-(2-mat.possc[l,1])]

mat.possc[l,4]<-mat.alelo.qtlsc[mat.ped.pais[j,2],2*i-(2-mat.possc[l,2])]}

mat.possc<-cbind(mat.possc,matrix(matriz.prob.Sc,4,1))

if ((sum(mat.possc[,3])==4 | sum(mat.possc[,3])==8) &
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(sum(mat.possc[,4])==4 | sum(mat.possc[,4])==8)){

mat.possc[1,5]<-1

mat.possc<-matrix(mat.possc[-c(2,3,4),],1,5)} else {

if (sum(mat.possc[,3])==4 | sum(mat.possc[,3])==8){

mat.possc[1,5]<-mat.possc[1,5]+mat.possc[2,5]

mat.possc[3,5]<-mat.possc[3,5]+mat.possc[4,5]

mat.possc<-mat.possc[-c(2,4),]} else {

if (sum(mat.possc[,4])==4 | sum(mat.possc[,4])==8){

mat.possc[1,5]<-mat.possc[1,5]+mat.possc[3,5]

mat.possc[2,5]<-mat.possc[2,5]+mat.possc[4,5]

mat.possc<-mat.possc[-c(3,4),]}}}

mat.possc<-cbind(mat.possc,matrix(0,nrow(mat.possc),2))

for (l in 1:nrow(mat.possc)){

if (mat.possc[l,3]==1 & mat.possc[l,4]==1) mat.possc[l,6]<--1

if (mat.possc[l,3]==2 & mat.possc[l,4]==2) mat.possc[l,6]<-1

if (mat.possc[l,3]!= mat.possc[l,4]) mat.possc[l,6]<-0}

mat.possc[,7]<-1-abs(mat.possc[,6])

#

logdens<-numeric(nrow(mat.possc))

for (l in 1:nrow(mat.possc)){

vet.delinea[length(founders)+j,2*i]<-mat.possc[l,6]

vet.delinea[length(founders)+j,(2*i)+1]<-mat.possc[l,7]

logdens[l]<-dnorm(dados[length(founders)+j,1],vet.delinea

[length(founders)+j,]%*%vet.coef,sqrt(sigma2.vig),log=TRUE)}

probc<-exp(log(mat.possc[,5])+logdens-max(log(mat.possc[,5])+

logdens))/sum(exp(log(mat.possc[,5])+logdens-max(log(mat.possc[,5])+logdens)))

ger.gen<-rDiscreta(probc)

vet.delinea[length(founders)+j,2*i]<-mat.possc[ger.gen,6]

vet.delinea[length(founders)+j,(2*i)+1]<-mat.possc[ger.gen,7]

mat.alelo.qtlsc[length(founders)+j,(2*i-1)]<-mat.possc[ger.gen,3]

mat.alelo.qtlsc[length(founders)+j,(2*i)]<-mat.possc[ger.gen,4]

probacumc<-probacumc+log(probc[ger.gen])

densacumc<-densacumc+logdens[ger.gen]

numer<-numer+log(mat.possc[ger.gen,5])} else {

for (l in 1:2){

probSmat[l]<-matrec1[Sm[j,M.esq],l]*matrec2[l,Sm[j,M.dir]]

probSpat[l]<-matrec1[Sp[j,M.esq],l]*matrec2[l,Sp[j,M.dir]]

probSmatc[l]<-matrec1c[Sm[j,M.esq],l]*matrec2c[l,Sm[j,M.dir]]
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probSpatc[l]<-matrec1c[Sp[j,M.esq],l]*matrec2c[l,Sp[j,M.dir]]}

probSpat<-probSpat/sum(probSpat)

probSmat<-probSmat/sum(probSmat)

probSpatc<-probSpatc/sum(probSpatc)

probSmatc<-probSmatc/sum(probSmatc)

matriz.prob.S<-c(probSpat*probSmat[1],probSpat*probSmat[2])

matriz.prob.Sc<-c(probSpatc*probSmatc[1],probSpatc*probSmatc[2])

#

mat.possc<-cbind(matrix(c(1,1,2,1,1,2,2,2),4,2,byrow=TRUE),matrix(0,4,2))

for (l in 1:4){

mat.possc[l,3]<-mat.alelo.qtlsc[mat.ped.pais[j,1],2*i-(2-mat.possc[l,1])]

mat.possc[l,4]<-mat.alelo.qtlsc[mat.ped.pais[j,2],2*i-(2-mat.possc[l,2])]}

mat.possc<-cbind(mat.possc,matrix(matriz.prob.Sc,4,1))

if ((sum(mat.possc[,3])==4 | sum(mat.possc[,3])==8) &

(sum(mat.possc[,4])==4 | sum(mat.possc[,4])==8)){

mat.possc[1,5]<-1

mat.possc<-matrix(mat.possc[-c(2,3,4),],1,5)} else {

if (sum(mat.possc[,3])==4 | sum(mat.possc[,3])==8){

mat.possc[1,5]<-mat.possc[1,5]+mat.possc[2,5]

mat.possc[3,5]<-mat.possc[3,5]+mat.possc[4,5]

mat.possc<-mat.possc[-c(2,4),]} else {

if (sum(mat.possc[,4])==4 | sum(mat.possc[,4])==8){

mat.possc[1,5]<-mat.possc[1,5]+mat.possc[3,5]

mat.possc[2,5]<-mat.possc[2,5]+mat.possc[4,5]

mat.possc<-mat.possc[-c(3,4),]}}}

mat.possc<-cbind(mat.possc,matrix(0,nrow(mat.possc),2))

for (l in 1:nrow(mat.possc)){

if (mat.possc[l,3]==1 & mat.possc[l,4]==1) mat.possc[l,6]<--1

if (mat.possc[l,3]==2 & mat.possc[l,4]==2) mat.possc[l,6]<-1

if (mat.possc[l,3]!= mat.possc[l,4]) mat.possc[l,6]<-0}

mat.possc[,7]<-1-abs(mat.possc[,6])

#

probc<-mat.possc[,5]/sum(mat.possc[,5])

ger.gen<-rDiscreta(probc)

vet.delinea[length(founders)+j,2*i]<-mat.possc[ger.gen,6]

vet.delinea[length(founders)+j,(2*i)+1]<-mat.possc[ger.gen,7]

mat.alelo.qtlsc[length(founders)+j,(2*i-1)]<-mat.possc[ger.gen,3]

mat.alelo.qtlsc[length(founders)+j,(2*i)]<-mat.possc[ger.gen,4]}}
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#

paceit<-exp(densacumc+numer+probacum-densacum-denom-probacumc)

aux3<-runif(1)

if (aux3<paceit){

pos.qtls[i]<-loc.cand

mat.delinea[,2*i]<-vet.delinea[,2*i]

mat.delinea[,(2*i)+1]<-vet.delinea[,(2*i)+1]

mat.alelo.qtls[,(2*i-1)]<-mat.alelo.qtlsc[,(2*i-1)]

mat.alelo.qtls[,(2*i)]<-mat.alelo.qtlsc[,(2*i)]}}}

#

#### update QTLs genotype - Gibbs sampling

#

if (num.QTLs>0){

for (i in 1:num.QTLs){

M.esq<-sum(loc.marc<=pos.qtls[i])

M.dir<-num.marc-(sum(loc.marc>=pos.qtls[i]))+1

r1<-Haldane(abs(pos.qtls[i]-loc.marc[M.esq]))

r2<-Haldane(abs(pos.qtls[i]-loc.marc[M.dir]))

r12<-Haldane(abs(loc.marc[M.dir]-loc.marc[M.esq]))

matrec1<-matrix(c(1-r1,r1,r1,1-r1),2,2,byrow=TRUE)

matrec2<-matrix(c(1-r2,r2,r2,1-r2),2,2,byrow=TRUE)

probQTL<-numeric(3)

logdens<-numeric(3)

matriz.prob.S<-numeric()

probSpat<-numeric(2)

probSmat<-numeric(2)

gen<-c(-1,0,1)

#

for (j in 1:length(founders)){

if (j %in% comfenot){

for (l in 1:3){

probQTL[l]<-log((calc.prob.gen(dados[j,(M.esq+1)],gen[l],r1)*

calc.prob.gen(gen[l],dados[j,(M.dir+1)],r2))/calc.prob.gen(dados

[j,(M.esq+1)],dados[j,(M.dir+1)],r12))

dom<-1-abs(gen[l])

vet.delinea<-mat.delinea[j,]

vet.delinea[2*i]<-gen[l]

vet.delinea[(2*i)+1]<-dom
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logdens[l]<-dnorm(dados[j,1],vet.delinea%*%vet.coef,sqrt(sigma2.vig),

log=TRUE)}

prob<-exp(probQTL+logdens-max(probQTL+logdens))/sum(exp(probQTL+

logdens-max(probQTL+logdens)))

mat.delinea[j,2*i]<-gen[rDiscreta(prob)]

mat.delinea[j,(2*i)+1]<-1-abs(mat.delinea[j,2*i])} else {

for (l in 1:3){

probQTL[l]<-log((calc.prob.gen(dados[j,(M.esq+1)],gen[l],r1)*

calc.prob.gen(gen[l],dados[j,(M.dir+1)],r2))/calc.prob.gen(dados

[j,(M.esq+1)],dados[j,(M.dir+1)],r12))}

prob<-exp(probQTL)/sum(exp(probQTL))

mat.delinea[j,2*i]<-gen[rDiscreta(prob)]

mat.delinea[j,(2*i)+1]<-1-abs(mat.delinea[j,2*i])}}

#

monoto<-length(table(mat.delinea[1:length(founders),2*i]))

if (monoto==1){

indiv<-sample(seq(1:length(founders)),1)

if (mat.delinea[indiv,2*i]==-1) mat.delinea[indiv,2*i]<-0

if (mat.delinea[indiv,2*i]==0) mat.delinea[indiv,2*i]<-1

if (mat.delinea[indiv,2*i]==1) mat.delinea[indiv,2*i]<-0

mat.delinea[indiv,(2*i)+1]<-1-abs(mat.delinea[indiv,2*i])}

#

ale.pai<-matrix(99,nrow=length(founders),1)

ale.mae<-matrix(99,nrow=length(founders),1)

probale<-numeric(2)

for (k in 1:length(founders)){

if (mat.delinea[k,2*i]==-1){

ale.mae[k,1]<-1

ale.pai[k,1]<-1}

if (mat.delinea[k,2*i]==1){

ale.mae[k,1]<-2

ale.pai[k,1]<-2}

if (mat.delinea[k,2*i]==0){

for (ale in 1:2) probale[ale]<-matrec1[alelo.paterno[k,M.esq],ale]*

matrec2[ale,alelo.paterno[k,M.dir]]

probale<-probale/sum(probale)

aux2<-rDiscreta(probale)-1

ale.mae[k,1]<-1^(aux2)*2^(1-aux2)
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ale.pai[k,1]<-2^(aux2)*1^(1-aux2)}

mat.alelo.qtls[k,(2*i-1)]<-ale.pai[k,1]

mat.alelo.qtls[k,(2*i)]<-ale.mae[k,1]}

#

for (j in 1:length(nonfounders)){

if ((length(founders)+j) %in% comfenot){

for (l in 1:2){

probSmat[l]<-matrec1[Sm[j,M.esq],l]*matrec2[l,Sm[j,M.dir]]

probSpat[l]<-matrec1[Sp[j,M.esq],l]*matrec2[l,Sp[j,M.dir]]}

probSpat<-probSpat/sum(probSpat)

probSmat<-probSmat/sum(probSmat)

matriz.prob.S<-c(probSpat*probSmat[1],probSpat*probSmat[2])

mat.possc<-cbind(matrix(c(1,1,2,1,1,2,2,2),4,2,byrow=TRUE),matrix(0,4,2))

for (l in 1:4){

mat.possc[l,3]<-mat.alelo.qtls[mat.ped.pais[j,1],2*i-(2-mat.possc[l,1])]

mat.possc[l,4]<-mat.alelo.qtls[mat.ped.pais[j,2],2*i-(2-mat.possc[l,2])]}

mat.possc<-cbind(mat.possc,matrix(matriz.prob.S,4,1))

if ((sum(mat.possc[,3])==4 | sum(mat.possc[,3])==8) &

(sum(mat.possc[,4])==4 | sum(mat.possc[,4])==8)){

mat.possc[1,5]<-1

mat.possc<-matrix(mat.possc[-c(2,3,4),],1,5)} else {

if (sum(mat.possc[,3])==4 | sum(mat.possc[,3])==8){

mat.possc[1,5]<-mat.possc[1,5]+mat.possc[2,5]

mat.possc[3,5]<-mat.possc[3,5]+mat.possc[4,5]

mat.possc<-mat.possc[-c(2,4),]} else {

if (sum(mat.possc[,4])==4 | sum(mat.possc[,4])==8){

mat.possc[1,5]<-mat.possc[1,5]+mat.possc[3,5]

mat.possc[2,5]<-mat.possc[2,5]+mat.possc[4,5]

mat.possc<-mat.possc[-c(3,4),]}}}

mat.possc<-cbind(mat.possc,matrix(0,nrow(mat.possc),2))

for (l in 1:nrow(mat.possc)){

if (mat.possc[l,3]==1 & mat.possc[l,4]==1) mat.possc[l,6]<--1

if (mat.possc[l,3]==2 & mat.possc[l,4]==2) mat.possc[l,6]<-1

if (mat.possc[l,3]!= mat.possc[l,4]) mat.possc[l,6]<-0}

mat.possc[,7]<-1-abs(mat.possc[,6])

#

logdens<-numeric(nrow(mat.possc))

vet.delinea<-mat.delinea[length(founders)+j,]
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for (l in 1:nrow(mat.possc)){

vet.delinea[2*i]<-mat.possc[l,6]

vet.delinea[(2*i)+1]<-mat.possc[l,7]

logdens[l]<-dnorm(dados[length(founders)+j,1],vet.delinea%*%

vet.coef,sqrt(sigma2.vig),log=TRUE)}

prob<-exp(log(mat.possc[,5])+logdens-max(log(mat.possc[,5])+logdens))/

sum(exp(log(mat.possc[,5])+logdens-max(log(mat.possc[,5])+logdens)))

ger.gen<-rDiscreta(prob)

mat.delinea[length(founders)+j,2*i]<-mat.possc[ger.gen,6]

mat.delinea[length(founders)+j,(2*i)+1]<-mat.possc[ger.gen,7]

mat.alelo.qtls[length(founders)+j,(2*i-1)]<-mat.possc[ger.gen,3]

mat.alelo.qtls[length(founders)+j,(2*i)]<-mat.possc[ger.gen,4]} else {

for (l in 1:2){

probSmat[l]<-matrec1[Sm[j,M.esq],l]*matrec2[l,Sm[j,M.dir]]

probSpat[l]<-matrec1[Sp[j,M.esq],l]*matrec2[l,Sp[j,M.dir]]}

probSpat<-probSpat/sum(probSpat)

probSmat<-probSmat/sum(probSmat)

matriz.prob.S<-c(probSpat*probSmat[1],probSpat*probSmat[2])

mat.possc<-cbind(matrix(c(1,1,2,1,1,2,2,2),4,2,byrow=TRUE),matrix(0,4,2))

for (l in 1:4){

mat.possc[l,3]<-mat.alelo.qtls[mat.ped.pais[j,1],2*i-(2-mat.possc[l,1])]

mat.possc[l,4]<-mat.alelo.qtls[mat.ped.pais[j,2],2*i-(2-mat.possc[l,2])]}

mat.possc<-cbind(mat.possc,matrix(matriz.prob.S,4,1))

if ((sum(mat.possc[,3])==4 | sum(mat.possc[,3])==8) &

(sum(mat.possc[,4])==4 | sum(mat.possc[,4])==8)){

mat.possc[1,5]<-1

mat.possc<-matrix(mat.possc[-c(2,3,4),],1,5)} else {

if (sum(mat.possc[,3])==4 | sum(mat.possc[,3])==8){

mat.possc[1,5]<-mat.possc[1,5]+mat.possc[2,5]

mat.possc[3,5]<-mat.possc[3,5]+mat.possc[4,5]

mat.possc<-mat.possc[-c(2,4),]} else {

if (sum(mat.possc[,4])==4 | sum(mat.possc[,4])==8){

mat.possc[1,5]<-mat.possc[1,5]+mat.possc[3,5]

mat.possc[2,5]<-mat.possc[2,5]+mat.possc[4,5]

mat.possc<-mat.possc[-c(3,4),]}}}

mat.possc<-cbind(mat.possc,matrix(0,nrow(mat.possc),2))

for (l in 1:nrow(mat.possc)){

if (mat.possc[l,3]==1 & mat.possc[l,4]==1) mat.possc[l,6]<--1
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if (mat.possc[l,3]==2 & mat.possc[l,4]==2) mat.possc[l,6]<-1

if (mat.possc[l,3]!= mat.possc[l,4]) mat.possc[l,6]<-0}

mat.possc[,7]<-1-abs(mat.possc[,6])

#

prob<-mat.possc[,5]/sum(mat.possc[,5])

ger.gen<-rDiscreta(prob)

mat.delinea[length(founders)+j,2*i]<-mat.possc[ger.gen,6]

mat.delinea[length(founders)+j,(2*i)+1]<-mat.possc[ger.gen,7]

mat.alelo.qtls[length(founders)+j,(2*i-1)]<-mat.possc[ger.gen,3]

mat.alelo.qtls[length(founders)+j,(2*i)]<-mat.possc[ger.gen,4]}}}}

residuos<-dados[comfenot,1]-(mat.delinea[comfenot,]%*%vet.coef)

#

#### update mu - Gibbs sampling

#

vet.coef[1,1]<-poster.mi(media.mi,sigma2.mi,sigma2.vig,residuos,

vet.coef[1,1])[[1]]

residuos<-dados[comfenot,1]-(mat.delinea[comfenot,]%*%vet.coef)

#

#### update additive and dominance effect - Gibbs sampling

#

if (num.QTLs>0){

for (i in 1:num.QTLs){

vet.coef[(2*i),1]<-poster.alpha(media.alpha,sigma2.alpha,sigma2.vig,

residuos,vet.coef[(2*i),1],mat.delinea[comfenot,(2*i)])[[1]]

residuos<-dados[comfenot,1]-(mat.delinea[comfenot,]%*%vet.coef)

vet.coef[(2*i)+1,1]<-poster.delta(media.delta,sigma2.delta,sigma2.vig,

residuos,vet.coef[(2*i)+1,1],mat.delinea[comfenot,(2*i)+1])[[1]]

residuos<-dados[comfenot,1]-(mat.delinea[comfenot,]%*%vet.coef)}}

#

#### update error variance - sigma2

#

sigma2.vig<-poster.sigma2(neta.a,neta.b,residuos)[[1]]

#

##################### export results

#

if (int>burnin & int%%saltos==0){

cat(’’,num.QTLs,file=paste(caminhosim,"numero_QTLs_b2_dd2_crom",crom,

".txt",sep=""),append=T)
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cat(’’,pos.qtls,file=paste(caminhosim,"posicao_QTLs_b2_dd2_crom",crom,

".txt",sep=""),append=T)

cat(’’,vet.coef,file=paste(caminhosim,"vetor_coeficientes_b2_dd2_crom",crom,

".txt",sep=""),append=T)

cat(’’,sigma2.vig,file=paste(caminhosim,"sigma2_b2_dd2_crom",crom,

".txt",sep=""),append=T)}

}

cat(’’,indrejtotal,file=paste(caminhosim,"indrej_b2_dd2_crom",crom,

".txt",sep=""),append=T)

cat(’’,round(probacetotal,2),file=paste(caminhosim,"prob_rej_b2_dd2_crom",crom,

".txt",sep=""),append=T)

cat(’’,round(probacemerge,2),file=paste(caminhosim,"prob_rej_mg_b2_dd2_crom",crom,

".txt",sep=""),append=T)

5.6.2 Codes used to simulate data sets in SimPed

In this section, we show the codes used to simulate data sets in SimPed

#

# family structure

#

1 1 0 0 1 1

1 2 0 0 2 1

1 3 0 0 2 1

1 4 1 2 1 1

1 5 1 2 2 1

1 6 0 0 1 1

1 7 0 0 2 1

1 8 4 3 1 1

1 9 6 5 2 1

1 10 8 7 1 1

#

# Input file

#

pedin3.pre pedfile1.pre << name of pedigree file, name of output file

23221 1601 21001 << three random seeds

0 0 << # of columns for affection status/quantitative trait,

# autosomal data to be generated

50 <<number of replicates

200 20 << Total # of marker loci, # of times pattern to be repeated

140



5.6 Appendices

3 << "1" recomb fraction, "2" Kosambi map distance & "3" Haldane map distance

10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

1 7 10 1 << "1" for haplotypes, # of haplotypes, # of marker loci, # of times

# pattern repeated

0.25 0.25 0.125 0.125 0.1 0.1 0.05<< the frequency for each haplotype

1 1 1 1 1 1 1 1 1 1 < << observed alleles for each haplotype

2 2 2 2 2 2 2 2 2 2

1 1 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 2 2 2

2 2 2 1 1 1 1 1 1 1

1 1 1 2 2 2 2 2 2 2

2 2 1 1 2 2 1 1 2 2
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Chapter

6

A marginal NDP – clustering distributions 1

In this chapter, we introduce a marginal version of the nested Dirichlet process to cluster

distributions or histograms. We apply the model to cluster genes by patterns of gene-gene

interaction. The proposed approach is based on the nested partition that is implied in the

original construction of the nested Dirichlet process. It allows simulation exact inference, as

opposed to a truncated Dirichlet process approximation. More importantly, the construction

highlights the nature of the nested Dirichlet process as a nested partition of experimental units.

We apply the proposed model to inference on clustering genes related to DNA mismatch

repair (DMR) by the distribution of gene-gene interactions with other genes. Gene-gene

interactions are recorded as coefficients in an auto-logistic model for the co-expression of

two genes, adjusting for copy number variation, methylation and protein activation. These

coefficients are extracted from an online database, called Zodiac, computed based on The

Cancer Genome Atlas (TCGA) data.

We compare results with a variation of k-means clustering that is set up to cluster

distributions. The proposed inference shows favorable performance, under simulated conditions

and also in the real data set.

6.1 Introduction

We discuss clustering for distributions of gene-gene interactions. The aim is inference on

groups of genes that are similar in terms of the distribution of their interactions with other

genes. We use a nested Dirichlet process a priori (NDP) (Rodriguez et al., 2008) for the desired

1This chapter is based on the manuscript “A Marginal NDP – Clustering Distributions” submitted for
publication (Zuanetti et al., Submitted a). The manuscript is a joint work supervised by Prof. Dr. Peter
Müller and with colaboration of Dr. Yitan Zhu, Dr. Shengjie Yang and Prof. Dr. Yuan Ji.
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grouping of distributions. We show how inference in the NDP can be implemented exactly,

rather than the approximate inference based on finite truncations that is used in the original

NDP. The proposed Markov chain Monte Carlo scheme clarifies the nature of the NDP as a

prior for nested clustering. We apply the model and proposed implementation to cluster DNA

mismatch-repair (DMR) genes by similar distributions of gene-gene interactions, and find well

defined clusters.

Recent literature proposed several alternative methods for such nested partitions. Wade

et al. (2011) introduce the enriched Dirichlet process, which can be set up to define exactly

the same nested partition as the NDP, although the construction starts quite differently. Other

Dirichlet process-based models for nested partition include Rodŕıguez & Ghosh (2012) and Lee

et al. (2013) who in contrast to the NDP impose matching nested partitions for lower level

units. Details are discussed below, including how the enriched Dirichlet process generates the

same nested partition as the NDP.

Genetic interactions play a critical role in cancer development and have been extensively

studied. A typical example is Zodiac (Zhu et al., 2015), an on-line search engine for genetic

interactions. Zodiac reports inference on pairwise gene-gene interactions based on statistical

analysis of data for thousands of samples from dozen of cancer types collected by The Cancer

Genome Atlas (TCGA). For each pair of genes, statistical inference in Zodiac is based on an

auto-logistic model for gene expression (GE), protein activation (where available), methylation

and copy number variation for that pair. For the upcoming discussion the GE-GE coefficients

in that model are the data. We do not make use of the detail methods of how Zodiac derives

them (using a model proposed in Mitra et al. 2013). Instead we consider the problem of

grouping genes by similar interaction patterns represented by the distribution of auto-logistic

GE-GE coefficients for each gene. That is, we aim to group genes by similar histograms of

reported GE-GE coefficients. Such inference is helpful to understand the relative importance

of the genes, for example, by identifying a group of genes that has, systematically, the highest

correlations with many other genes.

Rodriguez et al. (2008) address a formally similar problem. They consider quality of care

measurements for hospitals across the US, and cluster states by similar distributions of quality

of care outcomes. Their approach uses Markov chain Monte Carlo (MCMC) simulation based

on an approximation with a truncated stick-breaking construction to estimate the model.

Truncation levels are chosen by empirical analysis. In this manuscript, we develop an exact

simulation MCMC algorithm. The proposed implementation is a marginal algorithm. The

random distributions are analytically marginalized and inference proceeds on the implied nested

partition. The implementation uses an approximation of a posteriori inference in Dirichlet

process mixture models that was developed in MacEachern et al. (1999). We apply the proposed

approach of clustering distributions to group DMR genes.

The chapter is organized as follows: In Section 6.2 we briefly define the NDP and propose the
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MCMC algorithm to estimate a marginal NDP in Section 6.3. Section 6.4 presents a simulated

example to illustrate the performance of NDP in clustering histograms with same features

of GE coefficients distributions. We apply the proposed procedure to cluster the coefficients

distributions of DMR genes in Section 6.5 and compare the NDP results with results under a

k-means method, which is a widely used deterministic method for clustering. Finally, we close

with a brief discussion in Section 6.6 and appendices in Section 6.7.

6.2 Nested Dirichlet process

The data are GE-GE coefficients in auto-logistic models for gene-expression, protein

activation, methylation and copy number variation for pairs of genes. Let yj = (yj1, . . . , yjIj),

for j = 1, . . . , J , be the GE-GE coefficients for the gene expression of gene j and Ij other genes.

The yji are the data in the upcoming discussion. We assume gene-specific sampling models Fj.

That is, we assume yji ∼ Fj. Our interest is to cluster {Fj, j = 1, . . . , J}.
We start with a brief description of the NDP model. Consider a collection of distributions

{G1, . . . , GJ}. The NDP assumes Gj | Q ∼ Q, j = 1, . . . , J , and Q ∼ DP(αDP(βG0)), where

DP denotes a Dirichlet process, G0 is a non-atomic baseline probability measure, α, β > 0 are

the total mass parameters. That is, Q =
∑

hwhδG??h is a discrete distribution of distributions

and G??
h ∼ DP(βG0), i.i.d. Similarly, G??

h =
∑

f vfδθ??f with θ??f ∼ G0, i.i.d. The weights wh

in Q are generated by stick-breaking (Sethuraman, 1994) with the total mass parameter α of

the outer DP, and the weights vf in G??
h are generated with the total mass parameter β of the

nested, inner DP. We use an additional convolution with a continuous kernel p(· | θ),

Fj(·) =

∫
θ

p(· | θ)Gj(dθ), (6.1)

to achieve a continuous distribution. Here p(· | θ) is a sampling model for yji and θ is the finite

dimensional parameter associated with the sampling model. The collection {F1, . . . , FJ} is said

to follow a nested Dirichlet process (NDP) mixture first introduced in Rodriguez et al. (2008).

It is a hierarchical model involving two Dirichlet processes. The baseline probability measure

for the first DP is given by the second DP. In summary, and replacing (6.1) by a hierarchical

model with latent variables θji ∼ Gj, we have

yji | θji
indep∼ p(yji | θji)

θji | Gj ∼ Gj

Gj ∼ Q and Q
iid∼ DP(αDP(βG0)) (6.2)

The discrete nature of Q gives rise to ties among the Gj. Let {G?
1, . . . , G

?
K} denote the

unique elements among the Gj, and let Sk = {j : Gj = G?
k} denote clusters that are defined by

the configuration of these ties. Let nk = |Sk| and sj = k when j ∈ Sk denote cluster size and
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cluster membership indicators. Alternatively to {S1, . . . , SK}, the vector s = (s1, . . . , sn) can

be used to equivalently identify the partition. We use the two representations interchangeably.

It can be shown that sampling Gj from a DP random measure with total mass parameter α

implies

p(s) ∝ αK
K∏
k=1

(nk − 1)! (6.3)

with the understanding of indexing clusters by appearance. That is, s1 = 1 and si+1 ≤
max{s1, . . . , si} + 1. The random partition (6.3) is known as the Polya urn. We will refer

to it as s ∼ PU(α). See, for example, Ghoshal (2010) for a review.

Similarly, the discrete nature of G?
k gives rise to ties among {θji; j ∈ Sk and i = 1, . . . , Ij}.

Let {θ?k1, . . . ,θ
?
kLk
} denote the Lk unique elements, let Rk` = {(j, i) : sj = k and θji = θ?k`}

denote the clusters and rji = ` when (j, i) ∈ Rk` denote cluster membership indicators. And let

mk` = |Rk`| denote the sizes of the clusters. We refer to Sk as distributional clusters, since they

are defined by common distributions, and Rk` as observational clusters since they are defined by

ties in the parameters θji. Let S̃k = {(j, i) : Gj = G?
k and i = 1, . . . , Ij} denote all pairs (j, i)

in cluster Sk. That is, S̃k describes Sk at the level of the θji. Observational clusters are nested

within distributional clusters, that is,
⋃Lk
`=1Rk` = S̃k. Using the latent cluster membership

indicators, and letting s = (s1, . . . , sJ) and rj = (rji, i = 1, . . . , Ij) we can rewrite (6.2) as

yji | sj = k, rji = `
indep∼ p(yji | θ?k`)

θ?k` ∼ G0

s ∼ PU(α) and rj | s
i.i.d.∼ PU(β), (6.4)

k = 1, . . . , K and ` = 1, . . . , Lk. The last two representations marginalize with respect to the

infinite dimensional Q and G?
k.

The joint distribution on G1, . . . , GK is defined as

p(s, r, (θ?k`),y) =


K∏
k=1

Lk∏
`=1

 ∏
(j,i)∈Rk`

p(yji | θ?k`)


{

K∏
k=1

Lk∏
`=1

G0(θ?k`)

}{
J∏
j=1

p(rj | s)

}
p(s).

(6.5)

We complete the joint model construction with a normal sampling model, p (yji | θ?k` = (µ?k`, σ
?2
k`)) =

N(µ?k`, σ
?2
k`) and a conjugate baseline measure G0(θ?k`) = NIG(µ0, λ, a, b). Here, NIG(µ, σ2 |

µ0, λ, a, b) denotes a normal inverse gamma distribution for (µ, σ2). That is, a gamma a priori

p(1/σ2) = Ga(a, b) for 1/σ2 and a conditional normal a priori for µ, p(µ | σ2) = N(µ0, σ
2/λ).

The gamma a priori is parametrized such that E(1/σ2) = a/b.

The statement of the NDP model in (6.2), or equivalently, in (6.4) highlights the nature

of the NDP as a random nested partition. The clusters Sk define an upper level partition of
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6.2 Nested Dirichlet process

experimental units j = 1, . . . , J , in our case genes. Nested within each cluster Sk, Rk` is a

partition of lower level units, in our case the auto-logistic GE-GE coefficients. Similar nested

partition models are defined as the enriched DP in Wade et al. (2011), nested clustering in

Rodŕıguez & Ghosh (2012) and as local clustering in Lee et al. (2013). In fact, the enriched DP

can be used to define exactly the same random nested partition as the NDP (Trippa, 2011). The

enriched DP is an a priori for a random probability measure on a partitioned vector (xj, yj).

If xj are interpreted as gene-specific tags (that are not used further), then the conditional

PY |X(· | xj) can be used as Gj. Like the NDP the enriched DP assumes a DP a priori for the

conditional PY |X(· | xj), adding the additional generality of allowing dependence of the base

measure of this DP on xj. Rodŕıguez & Ghosh (2012) construct nested partitions by ties of

cluster-specific parameters. Similarly, Lee et al. (2013) construct a random partition of upper

level units, defined by all upper level units in the same cluster sharing the same partition of

lower level units. The construction is without reference to cluster-specific parameters, which in

fact can vary across matching second level clusters. The latter two methods are closely related

to the NDP, but do not allow the desired clustering of distributions.

Therefore, later, in the simulation study we will set up another practical and easy alternative

for clustering distributions. We define a version of k-means to allow for clustering of random

distributions. We achieve this by representing each distribution by a high order Jacobi

polynomial (Arbel et al., 2015).

6.3 The a posteriori simulation for the marginal NDP

6.3.1 Gibbs sampling transition probabilities

We implement Markov chain Monte Carlo simulation for model (6.4). That is, we define

a posteriori simulation for the NDP based on the marginal model on nested partitions,

without resorting to truncated DP random measures simulation. We define MCMC transition

probabilities for the a posteriori distribution under (6.5), including updates for s, r, (θ?k`) and,

consequently, K and Lk, for k = 1, . . . , K.

Updating θ?k`: As the NIG base measure G0(θ?k`) is conjugate to the normal kernel p(yji | θ?k`),
the marginal distribution of yji and complete conditional a posteriori distribution of (θ?k`) and

rji are available in closed form. We can therefore define Gibbs sampling transition probabilities

to update θ?k` by draws from the complete conditional a posteriori distribution. For a given

configuration of s and r, the complete conditional a posteriori distribution of θ?k` is

p(θ?k` | . . .) = NIG(µk`, λk`, ak`, bk,`) (6.6)
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6.3 The a posteriori simulation for the marginal NDP

with

µk` =
mk`ȳk` + λµ0

λ+mk`

, λk` = λ+mk`, ak` =
mk`

2
+ a, bk` = b+

1

2

(
s2
k` +

mk`λ(ȳk` − µ0)2

λ+mk`

)
,

where ȳk` =
∑

(j,i)∈Rk` yji/mk` and s2
k` =

∑
(j,i)∈Rk`(yji− ȳk`)

2 are cluster-specific sample means

and (scaled) variances.

Updating rji: The observational cluster indicator rji, for j = 1, . . . , J and i = 1, . . . , Ij,

is drawn using its complete conditional a posteriori distribution. Let h0(yji) =
∫

N(yji |
θ) NIG(θ | µ0, λ, a, b) dθ, use the superscript xx− to represent the appropriate quantity xx

with rji excluded from the sample, and let r−ji denote r with rji removed. The complete

conditional is

p(rji = ` | r−ji, sj = k,y,θ?) ∝

m−k`N(yji | θ?k`), for ` = 1, . . . , L−k

βh0(yji), for ` = L−k + 1.
(6.7)

Inspection of the right hand side shows that rji is conditionally independent of yj′i′ , (j′, i′) 6=
(j, i). For later reference we note that we could replace y in the conditioning set by yji. Let

t(x | ν,m, s) denote a t-distribution with ν degrees of freedom and location and scale parameters

m and s, evaluated at x. Similarly, let N(x | µ, σ2) denote a normal p.d.f. evaluated at x and

similarly for NIG(x | µ, λ, a, b). We find h0(yji) = t

(
yji | 2a, µ0,

(
b(1+λ)
aλ

)1/2
)

. Note that the

second line in (6.7) allows to generate a new observational cluster inside k-th distributional

cluster and, consequently, increment Lk by one. In that case we use (6.6) to generate a value

for θ?k1 for the new k = L−k + 1. In each step of the algorithm, empty observational clusters in

the new configuration of r and their respective parameters are excluded from the model, the

remaining observational clusters are relabeled and values of Lk’s are recalculated.

6.3.2 Transition probabilities for distributional clusters

Updating the distributional cluster indicator sj, for j = 1, . . . , J , is more complicated since

allocating yj in a different distributional cluster also involves reallocating observational cluster

memberships rj. Therefore, we have to update sj and rj jointly.

One possible approach is proposed in Jain & Neal (2007) who, instead of updating cluster

indicators sequentially, construct a proposal by first sampling two observations and then

update cluster indicators for all observations that share cluster memberships with these two

observations. The proposal involves a split if both observations are in the same cluster and a

merge if they are in different clusters. We propose a different strategy, using an approximation

of the joint a posteriori for a random partition proposed in MacEachern et al. (1999). They

use the approximation as importance sampling density in an importance sampling scheme. We

use a similar partial a posteriori distribution here to define a suitable proposal distribution for
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6.3 The a posteriori simulation for the marginal NDP

a Metropolis-Hastings transition probability that updates sj and rj jointly.

Let x = (sj, rj) be the current configuration and let x
′
= (s

′
j, r

′
j) be a proposal configuration

in a Metropolis-Hastings type transition probability. Let r−j = (rj′i, j
′ 6= j, i = 1, . . . , Ij′).

The new state x
′

is accepted with probability Ψ(x
′ | x) = min(1, A

′
), where

A
′
=
p(x

′ | y, r−j, s−j)
p(x | y, r−j, s−j)

q(x | x′)
q(x′ | x)

, (6.8)

where p(x | y, r−j, s−j) is the marginal a posteriori probability of cluster indicators and q(· |
·) is the proposal distribution to generate a proposal in the Metropolis-Hastings transition

probability. Both are described below.

The marginal a posteriori. The marginal a posteriori distribution of x = (sj, rj) is evaluated

as

p(sj = k, rj | y, r−j, s−j) =
p(sj = k, rj,yj | y−j, r−j, s−j)

p(yj | y−j, r−j, s−j)
∝ p(sj = k | s−j)p(rj | sj = k, r−j, s−j) p(yj | rj, sj = k,y−j, r−j, s−j), (6.9)

where the conditional a priori on sj follows from (6.3) as

p(sj = k | s−j) ∝

{
n−k , if k ∈ {1, . . . , K−}
α, if k = K− + 1

(6.10)

and the conditional a priori for rj is similarly derived from (6.3) as

p(rj | sj = k, r−j) =
∏Ij

i=1 p(rji = ` | sj = k, r−j, rj1, . . . , rji−1) with

p(rji = ` | sj = k, r−j, rj1, . . . , rji−1) ∝

m
−(rji,...,rjIj )

k` , if ` ∈ {1, . . . , L−k }

β, if ` = L−k + 1.

Here m
−(rji,...,rjIj )

k` is the size of cluster Rk` without rjh, h = i, . . . , Ij, and note that rji can share

clusters with rj′i′ for other genes j′ 6= j (which are included in r−j). Finally, the likelihood in

(6.9) is

p(yj | rj, sj = k,y−j, r−j, s−j) =

∫
Θ

p(yj | rj, sj = k, r−j, s−j,θ) p(θ | y−j, r, s)dθ

=

Lk∏
`=1

∫
Θ

 ∏
i:rji=`

p(yji | θ?k`)

 p(θ?k` | y−j, r−j, s−j)dθ

and p(θ?k` | y−j, r−j, s−j) is the complete conditional a posteriori distribution for θ?k` as in (6.6),

but conditional on only y−j, r−j and s−j. Under the normal sampling model and the conjugate
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6.3 The a posteriori simulation for the marginal NDP

baseline probability measure,

∫
Θ

 ∏
i:rji=`

p(yji | θ?k`)

 p(θ?k` | y−j, r−j, s−j)dθ = (2π)−
(mk`)j

2

(
λ−?

(mk`)j + λ−?

)1/2

×
Γ
(

(mk`)j
2

+ a−?

)
Γ
(
a−?
) (

b−?
)a−? b−? +

(sk`)
2
j

2
+
λ−∗ (mk`)j

(
(ȳk`)j − µ−?

)2

2
(
(mk`)j + λ−∗

)

−
(

(mk`)j
2

+a−?

)
,

where µ−? , λ−? , a−? and b−? are the parameters of the NIG distribution given by (6.6) considering

y−j, r−j and s−j and (mk`)j, (s2
k`)j and (ȳk`)j are calculated only using yj. Finally, note that

the denominator of (6.9) is the same for configuration x and x
′

and it cancels out in (6.8).

Proposal distribution. The proposal distribution q(x′ | x) is constructively defined in the

following two steps. In words, for sj we use the conditional a priori. For rj we construct a

proposal distribution that is similar to the importance sampling density in MacEachern et al.

(1999).

1. sample s
′
j from its a priori distribution given s−j defined by (6.10). Observe that the

second line of (6.10) allows to start a new distributional cluster and, consequently, increase

the current value of K by one;

2. sample r
′
ji, for i = 1, . . . , IJ , from

p(r
′

ji = ` | r−j, r
′

j1, . . . , r
′

ji−1, s
′

j = k, yji,θ
?)

given by (6.7) and where m−k` is substituted for m
−(rji,...,rjIj )

k` since the last Ij − i + 1

observations have not been reallocated yet. Note that if s
′
j = K− + 1, r

′
j1 = 1 necessarily

and we use the second line in (6.7) to sample r
′
j2, . . . , r

′
jIj

. That is we replace the N(yji |
θ?k`) density in the first line by h0(yji).

In summary, the proposal distribution q(x
′ | x) is:

q(x
′ | x) = p(s

′

j = k | s−j)
Ij∏
i=1

p(r
′

ji = ` | r−j, r
′

j1, . . . , r
′

ji−1, s
′

j = k, yji,θ
?) (6.11)

and the transition function q(x | x′) is defined in a similar way.

After evaluating the acceptance of the proposal configuration x
′
, we drop empty

observational and distributional clusters, relabel remaining clusters, recalculate K and values

of Lk and update θ?k`, for k = 1, . . . , K and ` = 1, . . . , Lk, from their complete conditional a

posteriori distributions (6.6).
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Figure 6.1: Simulation truth.

6.4 Simulation

6.4.1 Marginal NDP

We generate J = 40 samples of size Ij = 100, for j = 1, . . . , 40. Each sample is obtained

from one of K = 4 mixtures of normal distributions shown in Table 6.1 and plotted in Figure

6.1. These distributions have been chosen to mimic the data in the application to DMR genes

(see the next section).

Table 6.1: Parameters of the true distributions used to simulate the data set, where w represents
the component weight.

Distribution
Component 1 Component 2 Component 3
w µ σ2 w µ σ2 w µ σ2

F1 1 -3 9
F2 1 3 9
F3 0.3 -3 2 0.7 3 2
F4 0.25 -5 2 0.65 5 2 0.10 10 2

The total mass parameters α and β are both fixed to 1 and the hyperparameters of the

NIG baseline measure are µ0 = 0, λ = 0.01, a = 3 and b = 5, implying that, an a priori i,

E(σ2) = 2.5, V ar(σ2) = 6.5, E(µ | σ2) = 0 and V ar(µ | σ2) = 100σ2. We use the approach

described in Section 6.3 to generate a a posteriori Monte Carlo sample. We run two MCMC

chains with different starting point and 11,000 iterations, discarding the first 4000 iterations

and then thinning out to save one in every 10 iterations. The first chain is initialized with

K = 1 and L1 = 1 distributional and observational cluster, respectively, and the second chain

is initialized with K = 8 distributional clusters and Lk = 2 observational clusters for all k. The
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6.4 Simulation

R code for clustering the simulated data set is available in the appendices of this chapter.

Figure 6.2 (A) shows the observations ordered by the true clusters and Figure 6.2 (B) shows

a posteriori co-clustering probabilities p̄ij = p(si = sj | data) for each of the J(J − 1)/2 pairs

of samples. Black and white colors represent p̄ij close to 1 and 0, respectively. The a posteriori

probabilities are evaluated as ergodic averages over the MCMC output. We observe that under

the simulated conditions with well separated true clusters a posteriori inference distinguishes

clearly between distributions and correctly estimates the number of distributional clusters and

identifies the clusters. The a posteriori inference correctly discriminates between multimodal

and unimodal distributions with matching marginal mean and variance.

Inference under the NDP model includes estimation of the cluster-specific distributions, F̂k,

k = 1, . . . , 4. Figure 6.3 shows the estimated distribution for each cluster. The a posteriori

estimates closely recover the simulation truth.

Here and in other plots we use the following point estimate for the a posteriori random

partition, and the following post-processing to address label switching. We report two

observations j1 and j2 in the same cluster if p̄j1j2 > 0.5, that is, if they are located in the

same cluster in more than half of the MCMC sample. Alternatively one could use any other

point estimate, for example the estimate suggested in Dahl (2006).

To mitigate problems related to label switching and allow for a meaningful report of F̂k =

E(Fk | y), k = 1, . . . , K, we impose an order constraint on the observational and distributional

clusters, following a suggestion in Richardson & Green (1997). We order observational clusters

(within the k-th distributional cluster) by imposing µ?k1 < µ?k2 < . . . < µ?kLk . We order

distributional clusters by imposing µ̄1 < µ̄2 < . . . < µ̄K , where µ̄k =
∑Lk
`=1mk`µ

?
k`∑Lk

`=1mk`
is the weighted

average of unique values µ?k` in k-th distributional cluster, k = 1, . . . , K.

6.4.2 Clustering distributions by k-means

For comparison we also carry out clustering with the popular k-means algorithm (Jain,

2010; Kulis & Jordan, 2012). The k-means algorithm clusters data {y1, . . . ,yn}. The algorithm

is deterministic, based on minimizing the k-means criterion. Let ρ = {S1,. . . ,SK} denote

a partition of {1, . . . , n}. The algorithm finds the partition which minimizes the objective

function

ρ̂ = arg min
ρ

K∑
k=1

∑
j∈Sk

‖yj − µ?k‖2 + δK, (6.12)

with µ?k =
∑
j∈Sk

yj

|Sk|
. The δK term rewards parsimony by penalizing additional clusters.

There is a problem in using k-means for the desired clustering of distributions. The k-means

criterion is only meaningful when all yj are of matching length. More importantly, k-means is

meant to cluster p-dimensional response vectors. It is not constructed to cluster distributions

Fj.
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Figure 6.2: Panel (A) shows the simulation truth for cluster membership by plotting I(si = sj)
(black for equality). Panel (B) plots the a posteriori probabilities p̄ij = p(si = sj | y) (black
for p̄ij = 1, white for 0).
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Figure 6.3: Estimated F̂k = E(Fk | y). Compare with Figure 6.1.
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We introduce a variation of k-means to adapt the algorithm for the clustering of a set of

distributions by adding a pre-processing step before minimizing (6.12). The step is motivated by

results in Arbel et al. (2015) who show examples where a distribution is very well fit by Jacobi

polynomials with the first seven moments. See, for example, Provost (2005) for a discussion of

Jacobi polynomials. Let F̂j denote the empirical distribution of yji, i = 1, . . . , Ij, for each gene j.

We summarize yj by the first seven moments Mj = (Mj1, . . . ,Mj7) of F̂j, where Mjr =
∑Ij
j=1 y

r
ji

Ij

is the r-th empirical moment. We define transformed data ỹj = Mj and then carry out k-means

for standardized ỹj, j = 1, . . . , J . We refer to this modified k-means algorithm as“distributional

k-means.”

Let SSE denote the error sum of squares and SST the total sum of squares. We calibrate the

penalty δ in the k-means criterion by evaluating SSE/SST over a grid of δ values and selecting

the largest δ (consequently smallest K) before SSE/SST starts to sharply rise. Algorithm 1

summarizes the distributional k-means algorithm.

Algorithm 1 Distributional k-means algorithm
Input: y1, . . . ,yJ as histograms.
Output: Partition {S1, . . . , SK}, including the number of clusters K

1. For each histogram yj, j = 1, . . . , J , calculate ỹj.

2. Over a grid on δ.

(a) Find the partition which minimizes (6.12) for ỹ;

(b) Calculate SSE/SST.

3. Select the largest δ before SSE/SST starts to sharply rise.

4. Report the partition which minimizes (6.12).

We carry out distributional k-means for the simulation data from Section 6.4.1.

Table 6.2 shows the misclassification table for the simulation truth and the estimated

partition of ỹ (reporting the misclassification rate for the best match of cluster indices). We

observe that the four distributional clusters are well identified by the distributional k-means

algorithm. Only one histogram that was truly generated by sampling from F4 was wrongly

classified as coming from F2 and another histogram was classified as a singleton cluster.

Table 6.2: Misclassification table of true and estimated clusters of ỹ.

True clusters
Estimated clusters
1 2 3 4 5

1 10 0 0 0 0
2 0 7 0 0 0
3 0 0 9 0 0
4 0 1 0 12 1
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Figure 6.4: Histograms of GE-GE interactions for four genes. The inference goal is to group all
J genes into clusters with similar distributions of GE-GE interactions.

6.5 Clustering DMR genes

6.5.1 Data

DNA mismatch repair (DMR) is a system for recognizing and repairing erroneous

insertion, deletion, and mis-incorporation of bases that can arise during DNA replication and

recombination, as well as repairing some forms of DNA damage. Defects in mismatch repair

can result in microsatellite instability which is typical for most human cancers. We selected

J = 23 genes from the Zodiac database (Zhu et al., 2015) which are known to be associated

with DMR. Zodiac output reports the auto-logistic coefficients for GE-GE interactions between

these J genes and all other genes in the data base. Since the inference goal is to cluster DMR

genes according to their significant GE-GE interaction pattern with others genes, we therefore

focus only significant coefficients. Significant coefficients are identified by a threshold on false

discovery rate (FDR) < 0.1. See, for example, Mitra et al. (2013) for more details. After

FDR thresholding, this leaves between 222 and 4,393 significant coefficients for each gene,

j = 1, . . . , J , with a total of m = 43, 555 significant coefficients. Figure 6.4 shows histograms

of coefficients for four arbitrarily selected genes.

6.5.2 Results

We run two MCMC chains with different starting points and 11,000 iterations, discard the

first 4,000 iterations and thin out to save only every 10-th iteration. The first chain is initialized

with K = 1 distributional cluster and the second chain is initialized with K = 23 distributional

clusters, that is, each gene in a singleton cluster. The mass parameters α and β are both fixed

to 1 and the hyperparameters of the NIG baseline measure are fixed at µ0 = 0, λ = 0.01, a = 3
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Figure 6.5: The a posteriori co-clustering probability p̄ij = p(si = sj | y) for DMR genes.
Numbers under each cluster in the diagonal represent clusters’ label.

and b = 5.

Figure 6.5 shows a posteriori co-clustering probabilities p̄ij = p(si = sj | y) for each of the

256 pairs of genes. That is, for each pair j1 < j2, the plot shows the a posteriori probability

that genes j1 and j2 share the same distribution of auto-logistic coefficients. We clearly observe

K = 9 clusters (the diagonal), five of them are singleton clusters (clusters 1, 4, 7, 8 and 9)

and the remaining four clusters contain at least four genes. The distribution of coefficients

for the genes POLD3 and RFC5, although it is closer to distributions of cluster 3, has also

similarities with distributions of cluster 6 and the distributions of RPA3 and RPA1 genes are

not too different from cluster 2.

Figure 6.6 shows the estimated distributions F̂k = E(Fk | y) = p̂(yJ+1,1 | y, sJ+1 = k) that

can be approximated by Monte Carlo estimator

1

D

D∑
d=1

 β

β +m
(d)
k`

∫
Θ

p(yJ+1,1 | θ)G0(dθ) +

L
(d)
k∑
`=1

m
(d)
k`

β +m
(d)
k`

p
(
yJ+1,1 | θ?k`

(d)
) ,

where D is the number of iterations in the Markov chain. The thick lines show the estimated

cluster-specific distributions F̂k = E(Fk | y), for k = 1, . . . , 9 (4, 8 and 9 are not shown).

For comparison, thinner lines show kernel density estimates of the sampling distribution for
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Figure 6.6: Estimated cluster-specific distributions F̂k = E(Fk | y).

each gene. Cluster 2 is composed by the genes PCNA, RFC1, RFC4 and SSBP1 and cluster

3 contains genes POLD3, RPA1, RPA3, MSH6 and RFC5, based on thresholding co-clustering

probabilities using a cutoff value of 0.50. The distribution associated with these both clusters are

clearly multimodal and they include genes with negative as well as positive GE-GE interaction

with other genes. Cluster 5 is composed of genes LIG1, POLD1, POLD2 and RFC3 and cluster

6 includes MLH3, MLH1, POLD4, MSH3 and RFC2. Both clusters are characterized by positive

unimodal distributions. That is, genes in these clusters have only positive GE-GE interactions

with other genes. Clusters 1 and 7 are singleton and the range of the coefficients distribution

is wider than in other clusters. Finally, also clusters 4, 8 and 9 are singletons, composed of

the genes RPA4, RPA2 and PMS2, respectively. The estimated distributions F̂k, k = 4, 8, 9

(not shown) put most probability for lower GE-GE interaction coefficients, much lower than

the other clusters, and are therefore of less interest.

For comparison, we cluster the same J = 23 DMR genes using the earlier defined

distributional k-means algorithm. We add the frequency fj0 of nonsignificant auto-logistic

coefficients in the pre-processed data ỹj = (Mj, log fj0) and implement k-means with the

standardized empirical moments and the logarithm of the frequency of nonsignificant auto-

logistic coefficients. Inspecting SSE/SST over a grid on δ (and the implied K) we find K = 5.

The first cluster contains 11 genes: MLH3, MLH1, PCNA, POLD3, POLD4, RPA1, RPA3,

MSH6, MSH3, RFC2 and RFC5. This is a combination of NDP clusters 3 and 6. Cluster 2

is composed by 6 genes: MSH2, LIG1, POLD1, POLD2, RFC1 and RFC3 which is basically

NDP cluster k = 5 with the highest GE-GE coefficients.

In summary, similar clusters of coefficient distributions are identified by NDP and k-means.
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However, the NDP model identifies minor differences in the features of the distributions and

splits them in additional clusters. More importantly, inference under the proposed marginal

NDP model includes estimated distributions F̂k, including a full probabilistic description p(Fk |
y), while a deterministic algorithm like k-mean only delivers a point estimate of the partition,

without any notion of uncertainties and without estimated distributions (beyond an ad-hoc

kernel density estimate).

6.6 Discussion

We introduced the marginal nested Dirichlet process to cluster histograms and identify

groups of genes that have similar patterns of genetic interaction with other genes and propose

a MCMC algorithm to estimate it. As a nonparametric model, the NDP is a flexible model

and the groups are clustered by their entire distribution, rather than by particular features

of the distribution. In addition to clustering the samples, NDP also includes inference on the

cluster-specific distributions Fk, including a full description of related uncertainties in the form

of p(Fk | y).

In the small simulation study proposed inference showed good performance in distinguishing

multimodal from unimodal distributions even with similar means and variances. The NDP

clusters of genes associated with DMR have clearly distinct features. Important for the

application, we can easily identify the group of genes that have the highest GE-GE interactions

with other genes.

Among the limitations is the computation cost to run the exact MCMC algorithm for

clustering hundreds or thousands of genes. Relatedly, the nested DP in the lower level of

the NDP model which creates the observational clusters inside the distributional clusters is not

exploited for the desired distributional clustering that is of interest in the motivating application

here. It could be useful in other applications.

6.7 Appendices

6.7.1 R codes to carry out marginal NDP in simulated data set

In this section, we show R codes for clustering the simulated data set.

#

#########################

# simulate the data set from different normal distributions

#########################

#

rDiscreta<-function(p){

u<-runif(1)

P<-cumsum(p)

157



6.7 Appendices

val<-sum(P<u)+1

return(val)}

#

K<-4 # number of different distributions (clusters)

J<-40 # number of elements in the sample

Ij<-rep(100,J) # number of replication for each element

#

meanvec1<-c(-3,3)

sigmavec1<-c(2,2)

p1<-c(0.30,0.70)

meanvec2<-c(3)

sigmavec2<-c(9)

p2<-1

meanvec3<-c(-3)

sigmavec3<-c(9)

p3<-1

meanvec4<-c(-5,5,10)

sigmavec4<-c(2,2,2)

p4<-c(0.25,0.65,0.10)

#

id<-numeric(sum(Ij)) # specifies from each distribution each element comes from

iddentr<-numeric(sum(Ij))

Y<-numeric(sum(Ij)) # observations

#

set.seed(1034)

cont<-1

for (j in 1:40){

dist<-rDiscreta(rep(1/K,K))

for (i in 1:Ij[j]){

id[cont]<-dist

if (id[cont]==1){

iddentr[cont]<-rDiscreta(p1)

Y[cont]<-rnorm(1,meanvec1[iddentr[cont]],sqrt(sigmavec1[iddentr[cont]]))}

if (id[cont]==2){

iddentr[cont]<-rDiscreta(p2)

Y[cont]<-rnorm(1,meanvec2[iddentr[cont]],sqrt(sigmavec2[iddentr[cont]]))}

if (id[cont]==3){

iddentr[cont]<-rDiscreta(p3)
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Y[cont]<-rnorm(1,meanvec3[iddentr[cont]],sqrt(sigmavec3[iddentr[cont]]))}

if (id[cont]==4){

iddentr[cont]<-rDiscreta(p4)

Y[cont]<-rnorm(1,meanvec4[iddentr[cont]],sqrt(sigmavec4[iddentr[cont]]))}

cont<-cont+1}}

#

tauj_verd<-id # specifies from each distribution each element comes from in level

of elements and their replication

Sj_verd<-numeric(J) # specifies from each distribution each element comes from

in level of elements

for (i in 1:J){

Sj_verd[i]<-as.numeric(as.character(data.frame(table(tauj_verd[

(cumsum(Ij)[i]-Ij[i]+1):cumsum(Ij)[i]]))[,1]))}

#

id<-rep(1,Ij[1])

for (j in 2:J) id<-c(id,rep(j,Ij[j]))

dataset<-matrix(c(id,Y),ncol=2) # final data set

#

#########################

# useful functions

#########################

#

############

# sample from a Normal Inverse gamma distribution (mu, lambda, alpha, beta)

############

rinvgamma<-function(media.mi,lambda,alpha,beta){

n<-length(media.mi)

sigma2<-1/(rgamma(n,alpha,beta))

mu<-rnorm(n,media.mi,sqrt(sigma2/lambda))

sample<-cbind(mu,sigma2)

return(sample)}

#

############

# sample from a Multinomial distribituion (p)

############

rDiscreta<-function(p){

u<-runif(1)

P<-cumsum(p)
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val<-sum(P<u)+1

return(val)}

#

############

# calculate the density function of a t distribution (yij, ni, mu, sigma)

############

dstudentt<-function(yij,ni,mu,desvio){

dens<-(gamma((ni+1)/2)/gamma(ni/2))*((1+(1/ni)*((yij-mu)/desvio)**2)**

(-(ni+1)/2))*(1/(sqrt(pi*ni)*desvio))

return(dens)}

#

############

# calculate the marginalized likelihood of Yj given (Xij ,tauj) and specific l

############

dmarglikeli<-function(Yjl,lambda,agam,bgam,mu){

mlkj<-length(Yjl)

media<-mean(Yjl)

varia<-var(Yjl)*(mlkj-1)

if (is.na(varia)) varia<-0

logdens<-(lgamma(mlkj/2+agam)-lgamma(agam))+((-mlkj/2)*log(2*pi))+

(0.5*(log(lambda)-log(mlkj+lambda)))+(agam*log(bgam))+((-(mlkj/2+agam))*

log(bgam+(varia/2)+((lambda*mlkj*((media-mu)**2))/(2*(mlkj+lambda)))))

return(logdens)}

#

############

# sample from conditional a posteriori distribution of theta for all k and l

############

posteriori.theta<-function(dataset, Zij, tauj, lambda, agam, bgam,mu){

mlk<-aggregate(rep(1,nrow(dataset)), by = list(Zij, tauj), FUN = "sum")[,3]

Ymeanlk<-aggregate(dataset[,2], by = list(Zij, tauj), FUN = "mean")[,3]

Yvarlk<-aggregate(dataset[,2], by = list(Zij, tauj), FUN = "var")[,3]*(mlk-1)

mupost<-((mlk*Ymeanlk)+(lambda*mu))/(lambda+mlk)

lambdapost<-lambda+mlk

agampost<-agam+(mlk/2)

Yvarlk[is.na(Yvarlk)] <- 0

bgampost<-bgam+(Yvarlk+((mlk*lambda*(Ymeanlk-mu)**2)/(lambda+mlk)))/2

theta.samp<-rinvgamma(mupost,lambdapost,agampost,bgampost)

return(theta.samp)}
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#

############

# sample from conditional a posteriori distribution of Zij

############

posteriori.Zij<-function(dataset, Zij, tauj, K, theta.samp, ni, mu, desvio, Lk,

beta){

for (k in 1:K){

observ<-which(tauj==k)

Yclusterk<-dataset[observ,2]

Zclusterk<-Zij[observ]

cont<-1

for (i in observ){

probZij<-numeric(Lk[k])

contmlk<-Zclusterk[-cont]

l<-seq(1:Lk[k])

mlk<-rep(0,Lk[k])

need<-data.frame(table(contmlk[which(contmlk<=Lk[k])]))

categr<-as.numeric(as.character(need[,1]))

mlk[categr]<-as.numeric(need[,2])

probZij<-mlk*dnorm(Yclusterk[cont],theta.samp[(cumsum(Lk)[k]-Lk[k]+l),1],

sqrt(theta.samp[(cumsum(Lk)[k]-Lk[k]+l),2]))

probZij<-c(probZij,beta*dstudentt(Yclusterk[cont],ni,mu,desvio))

probZij<-probZij/sum(probZij)

Zij[i]<-rDiscreta(probZij)

Zclusterk<-Zij[observ]

cont<-cont+1}

while (length(table(Zclusterk))<max(Zclusterk)){ # exclude empty clusters

categr<-as.numeric(as.character(data.frame(table(Zclusterk))[,1]))

categd<-seq(1:length(table(Zclusterk)))

dif<-which(categr!=categd)

for (i in 1:length(Zclusterk)) if (Zclusterk[i]>dif[1])

Zclusterk[i]<-Zclusterk[i]-1}

Zij[observ]<-Zclusterk}

return(Zij)}

#

############

# sample from conditional a posteriori distribution of Zij for just one j

############
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posteriori.Zij2<-function(dataset, Zij, tauj, K, theta.samp, ni, mu, desvio,

Lk, beta, j, Sj){

k<-Sj[j]

observ<-which(tauj==k)

Yclusterk<-dataset[observ,2]

Zclusterk<-Zij[observ]

cont<-1

for (i in observ){

probZij<-numeric(Lk[k])

contmlk<-Zclusterk[-cont]

l<-seq(1:Lk[k])

mlk<-rep(0,Lk[k])

need<-data.frame(table(contmlk[which(contmlk<=Lk[k])]))

categr<-as.numeric(as.character(need[,1]))

mlk[categr]<-as.numeric(need[,2])

probZij<-mlk*dnorm(Yclusterk[cont],theta.samp[(cumsum(Lk)[k]-Lk[k]+l),1],

sqrt(theta.samp[(cumsum(Lk)[k]-Lk[k]+l),2]))

probZij<-c(probZij,beta*dstudentt(Yclusterk[cont],ni,mu,desvio))

probZij<-probZij/sum(probZij)

Zij[i]<-rDiscreta(probZij)

Zclusterk<-Zij[observ]

cont<-cont+1}

while (length(table(Zclusterk))<max(Zclusterk)){ # exclude empty clusters

categr<-as.numeric(as.character(data.frame(table(Zclusterk))[,1]))

categd<-seq(1:length(table(Zclusterk)))

dif<-which(categr!=categd)

for (i in 1:length(Zclusterk)) if (Zclusterk[i]>dif[1])

Zclusterk[i]<-Zclusterk[i]-1}

Zij[observ]<-Zclusterk

return(Zij)}

#

############

# build a proposal of new cluster for each Sj and realocate its Zij

############

sample.tau.xi<-function(dataset, Ij, Sj, Zij, tauj, K, Lk, theta.samp, j, alpha,

beta, ni, mu, desvio){

nk<-numeric(K)

for (k in 1:K) nk[k]<-sum(Sj[-j]==k)
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observ<-which(dataset[,1]==j)

Yclusterj<-dataset[observ,2]

Zclusterj<-Zij[observ]

nk[Sj[j]]<-0 # we force Sj candidate to be different of the current value

nk<-c(nk,alpha)

probSj<-nk/sum(nk)

Sprop<-rDiscreta(probSj)

Sold<-Sj[j]

Zprop<-numeric(Ij[j])

Zold<-numeric(Ij[j])

lprior<-0

lfunctrans<-0

lpriorold<-0

lfunctransold<-0

taujcand<-tauj

taujcand[(cumsum(Ij)[j]-Ij[j]+1):cumsum(Ij)[j]]<-rep(K+1,Ij[j])

nj<-sum(Sj[-j]==Sold)

if (Sprop <= K){

for (i in 1:Ij[j]){

l<-1:Lk[Sprop]

Zvector<-c(Zij[which(tauj==Sprop)],Zprop[which(Zprop<=Lk[Sprop] & Zprop>0)])

mlk<-table(Zvector)

probZij<-mlk*dnorm(Yclusterj[i],theta.samp[(cumsum(Lk)[Sprop]-

Lk[Sprop]+l),1],sqrt(theta.samp[(cumsum(Lk)[Sprop]-Lk[Sprop]+l),2]))

if (length(which(Zprop>Lk[Sprop]))>0){

mlk2<-table(Zprop[which(Zprop>Lk[Sprop])])

probZij2<-mlk2*dstudentt(Yclusterj[i],ni,mu,desvio)

mlk<-c(mlk,mlk2)

probZij<-c(probZij,probZij2)}

mlk<-c(mlk,beta)

probZij<-c(probZij,mlk[length(mlk)]*dstudentt(Yclusterj[i],ni,mu,desvio))

probZij<-probZij/sum(probZij)

mlk<-mlk/sum(mlk)

Zprop[i]<-rDiscreta(probZij)

lprior<-lprior+log(mlk[Zprop[i]])

lfunctrans<-lfunctrans+log(probZij[Zprop[i]])

if (nj > 0){

l<-1:Lk[Sold]
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Zvector<-c(Zij[which(taujcand==Sold)],Zold[which(Zold<=Lk[Sold] & Zold>0)])

mlk<-rep(0,Lk[Sold])

need<-data.frame(table(Zvector))

categr<-as.numeric(as.character(need[,1]))

mlk[categr]<-as.numeric(need[,2])

probZij<-mlk*dnorm(Yclusterj[i],theta.samp[(cumsum(Lk)[Sold]-

Lk[Sold]+l),1],sqrt(theta.samp[(cumsum(Lk)[Sold]-Lk[Sold]+l),2]))

if (length(which(mlk==0))==0){

mlk<-c(mlk,beta)

probZij<-c(probZij,mlk[length(mlk)]*dstudentt(Yclusterj[i],ni,mu,desvio))}

else {

empty<-which(mlk==0)

if (mlk[Zclusterj[i]]==0){

mlk[Zclusterj[i]]<-beta

probZij[Zclusterj[i]]<-mlk[Zclusterj[i]]*dstudentt(Yclusterj[i],ni,mu,

desvio)} else {

mlk[empty[1]]<-beta

probZij[empty[1]]<-mlk[empty[1]]*dstudentt(Yclusterj[i],ni,mu,desvio)}}

probZij<-probZij/sum(probZij)

mlk<-mlk/sum(mlk)

Zold[i]<-Zclusterj[i]

lpriorold<-lpriorold+log(mlk[Zclusterj[i]])

lfunctransold<-lfunctransold+log(probZij[Zclusterj[i]])} else {

Zold[1]<-Zclusterj[1]

Zvector<-c(Zij[which(taujcand==Sold)],Zold[which(Zold <= Lk[Sold] & Zold>0)])

mlk<-rep(0,Lk[Sold])

need<-data.frame(table(Zvector))

categr<-as.numeric(as.character(need[,1]))

if(length(categr)>0) mlk[categr]<-as.numeric(need[,2])

probZij<-mlk*dstudentt(Yclusterj[i],ni,mu,desvio)

if (length(which(mlk==0))==0){

mlk<-c(mlk,beta)

probZij<-c(probZij,mlk[length(mlk)]*dstudentt(Yclusterj[i],ni,mu,

desvio))} else {

empty<-which(mlk==0)

if (mlk[Zclusterj[i]]==0){

mlk[Zclusterj[i]]<-beta

probZij[Zclusterj[i]]<-mlk[Zclusterj[i]]*dstudentt(Yclusterj[i],ni,mu,
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desvio)} else {

mlk[empty[1]]<-beta

probZij[empty[1]]<-mlk[empty[1]]*dstudentt(Yclusterj[i],ni,mu,desvio)}}

probZij<-probZij/sum(probZij)

mlk<-mlk/sum(mlk)

Zold[i]<-Zclusterj[i]

lpriorold<-lpriorold+log(mlk[Zclusterj[i]])

lfunctransold<-lfunctransold+log(probZij[Zclusterj[i]])}}}

if (Sprop > K){

Zprop[1]<-1

for (i in 2:Ij[j]){

mlk<-table(Zprop[which(Zprop>0)])

probZij<-mlk*dstudentt(Yclusterj[i],ni,mu,desvio)

mlk<-c(mlk,beta)

probZij<-c(probZij,mlk[length(mlk)]*dstudentt(Yclusterj[i],ni,mu,desvio))

probZij<-probZij/sum(probZij)

mlk<-mlk/sum(mlk)

Zprop[i]<-rDiscreta(probZij)

lprior<-lprior+log(mlk[Zprop[i]])

lfunctrans<-lfunctrans+log(probZij[Zprop[i]])

if (nj > 0){

l<-1:Lk[Sold]

Zvector<-c(Zij[which(taujcand==Sold)],Zold[which(Zold<=Lk[Sold] & Zold>0)])

mlk<-rep(0,Lk[Sold])

need<-data.frame(table(Zvector))

categr<-as.numeric(as.character(need[,1]))

mlk[categr]<-as.numeric(need[,2])

probZij<-mlk*dnorm(Yclusterj[i],theta.samp[(cumsum(Lk)[Sold]-Lk[Sold]+l),1],

sqrt(theta.samp[(cumsum(Lk)[Sold]-Lk[Sold]+l),2]))

if (length(which(mlk==0))==0){

mlk<-c(mlk,beta)

probZij<-c(probZij,mlk[length(mlk)]*dstudentt(Yclusterj[i],ni,mu,

desvio))} else {

empty<-which(mlk==0)

if (mlk[Zclusterj[i]]==0){

mlk[Zclusterj[i]]<-beta

probZij[Zclusterj[i]]<-mlk[Zclusterj[i]]*dstudentt(Yclusterj[i],ni,mu,

desvio)} else {
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mlk[empty[1]]<-beta

probZij[empty[1]]<-mlk[empty[1]]*dstudentt(Yclusterj[i],ni,mu,desvio)}}

probZij<-probZij/sum(probZij)

mlk<-mlk/sum(mlk)

Zold[i]<-Zclusterj[i]

lpriorold<-lpriorold+log(mlk[Zclusterj[i]])

lfunctransold<-lfunctransold+log(probZij[Zclusterj[i]])} else {

Zold[1]<-Zclusterj[1]

Zvector<-c(Zij[which(taujcand==Sold)],Zold[which(Zold <= Lk[Sold] & Zold>0)])

mlk<-rep(0,Lk[Sold])

need<-data.frame(table(Zvector))

categr<-as.numeric(as.character(need[,1]))

if(length(categr)>0) mlk[categr]<-as.numeric(need[,2])

probZij<-mlk*dstudentt(Yclusterj[i],ni,mu,desvio)

if (length(which(mlk==0))==0){

mlk<-c(mlk,beta)

probZij<-c(probZij,mlk[length(mlk)]*dstudentt(Yclusterj[i],ni,mu,desvio))}

else {

empty<-which(mlk==0)

if (mlk[Zclusterj[i]]==0){

mlk[Zclusterj[i]]<-beta

probZij[Zclusterj[i]]<-mlk[Zclusterj[i]]*dstudentt(Yclusterj[i],ni,mu,

desvio)} else {

mlk[empty[1]]<-beta

probZij[empty[1]]<-mlk[empty[1]]*dstudentt(Yclusterj[i],ni,mu,

desvio)}}

probZij<-probZij/sum(probZij)

mlk<-mlk/sum(mlk)

Zold[i]<-Zclusterj[i]

lpriorold<-lpriorold+log(mlk[Zclusterj[i]])

lfunctransold<-lfunctransold+log(probZij[Zclusterj[i]])}}}

Sjcand<-Sj

Sjcand[j]<-Sprop

taujcand<-tauj

taujcand[(cumsum(Ij)[j]-Ij[j]+1):cumsum(Ij)[j]]<-rep(Sprop,Ij[j])

Zijcand<-Zij

Zijcand[(cumsum(Ij)[j]-Ij[j]+1):cumsum(Ij)[j]]<-Zprop

return(list(Sjcand, taujcand, Zijcand, lprior, lfunctrans, Sprop, Zprop,
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Yclusterj, Zclusterj,lpriorold,lfunctransold))}

#

############

# calculate the acceptance rate of the pair Sj and all Zij

############

prob.accept<-function(dataset, Yclusterj, Sj, Zij, tauj, Lk, theta.samp, j,

Zijcand, taujcand, Sprop, Zprop, lambda, mu, agam, bgam, lprior,

lfunctrans, lpriorold, lfunctransold){

marglikel<-0

marglikelold<-0

#

Yclusterk<-dataset[which(tauj==Sprop),2]

Zclusterk<-Zij[which(tauj==Sprop)]

Lsprop<-length(table(c(Zclusterk,Zprop)))

if (length(Zclusterk)==0){

mlk<-rep(0,Lsprop)

Ymeanlk<-rep(0,Lsprop)

Yvarlk<-rep(0,Lsprop)}

if (length(Zclusterk)>0){

mlk<-table(Zclusterk)

Ymeanlk<-aggregate(Yclusterk, by = list(Zclusterk,rep(1,length(Zclusterk))),

FUN = "mean")[,3]

Ymeanlk[is.na(Ymeanlk)] <- 0

Yvarlk<-aggregate(Yclusterk, by = list(Zclusterk,rep(1,length(Zclusterk))),

FUN = "var")[,3]*(mlk-1)

Yvarlk[is.na(Yvarlk)] <- 0

dif<-Lsprop-length(mlk)

if (dif > 0){

mlk<-c(mlk,rep(0,dif))

Ymeanlk<-c(Ymeanlk,rep(0,dif))

Yvarlk<-c(Yvarlk,rep(0,dif))}}

mupost<-((mlk*Ymeanlk)+(lambda*mu))/(lambda+mlk)

lambdapost<-lambda+mlk

agampost<-agam+(mlk/2)

bgampost<-bgam+(Yvarlk+((mlk*lambda*(Ymeanlk-mu)**2)/(lambda+mlk)))/2

for (l in 1:Lsprop){

Yclusterjl<-Yclusterj[Zprop==l]

if (length(Yclusterjl)>0) marglikel<-marglikel+dmarglikeli(Yclusterjl,
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lambdapost[l],agampost[l],bgampost[l],mupost[l])}

#

Yclusterk<-dataset[which(taujcand==Sj[j]),2]

Zclusterk<-Zijcand[which(taujcand==Sj[j])]

if (length(Zclusterk)==0){

mlk<-rep(0,Lk[Sj[j]])

Ymeanlk<-rep(0,Lk[Sj[j]])

Yvarlk<-rep(0,Lk[Sj[j]])}

if (length(Zclusterk)>0){

mlk<-table(Zclusterk)

Ymeanlk<-aggregate(Yclusterk, by = list(Zclusterk,rep(1,length(Zclusterk))),

FUN = "mean")[,3]

Ymeanlk[is.na(Ymeanlk)] <- 0

Yvarlk<-aggregate(Yclusterk, by = list(Zclusterk,rep(1,length(Zclusterk))),

FUN = "var")[,3]*(mlk-1)

Yvarlk[is.na(Yvarlk)] <- 0

dif<-Lk[Sj[j]]-length(mlk)

if (dif > 0){

mlk<-c(mlk,rep(0,dif))

Ymeanlk<-c(Ymeanlk,rep(0,dif))

Yvarlk<-c(Yvarlk,rep(0,dif))}}

mupost<-((mlk*Ymeanlk)+(lambda*mu))/(lambda+mlk)

lambdapost<-lambda+mlk

agampost<-agam+(mlk/2)

bgampost<-bgam+(Yvarlk+((mlk*lambda*(Ymeanlk-mu)**2)/(lambda+mlk)))/2

Zold<-Zij[(cumsum(Ij)[j]-Ij[j]+1):cumsum(Ij)[j]]

for (l in 1:Lk[Sj[j]]){

Yclusterjl<-Yclusterj[Zold==l]

if (length(Yclusterjl)>0) marglikelold<-marglikelold+dmarglikeli(Yclusterjl,

lambdapost[l],agampost[l],bgampost[l],mupost[l])}

#

paccept<-exp(marglikel+lprior+lfunctransold-(marglikelold+lpriorold+lfunctrans))

return(list(paccept,lprior,lpriorold,lfunctrans,lfunctransold,marglikel,

marglikelold))}

#

#########################

# Model initialization

#########################
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#

# data set needs to be ordered by elements and replications of each element

# column 1 identifies the elements and the column 2 has the observations for

# each element

#

caminho<-"/xxx/xxxxx/" # this directory is where the files with MCMC output

# will be saved, then you need to change it for a directory of your computer

J<-max(dataset[,1])

Nt<-nrow(dataset)

alpha<-1 # total mass parameter

beta<-1 # total mass parameter

agam<-3 # alpha hyperparameter of Inverse gamma distribution (G0)

bgam<-5 # beta hyperparameter of Inverse gamma distribution (G0)

mu<-0 # mu hyperparameter of Inverse gamma distribution (G0)

lambda<-0.01 # lambda hyperparameter of Inverse gamma distribution (G0)

ni<-2*agam # parameter of student-t distribution

desvio<-sqrt((2*bgam*(1+lambda))/(ni*lambda)) # parameter of t distribution

Ij<-numeric(J)

for (i in 1:J) Ij[i]<-sum(dataset[,1]==i)

#

# Initialize Sj, Zij and theta

#

Sj<-rep(1,J) # distributional cluster membership indicator of elements

Zij<-rep(1,Nt) # observational cluster membership indicator

K<-length(table(Sj))

Lk<-numeric(K)

tauj<-numeric()

for (j in 1:length(Sj)) tauj<-c(tauj,rep(Sj[j],Ij[j]))

for (k in 1:K) Lk[k]<-length(table(Zij[which(tauj==k)]))

set.seed(1000)

theta.samp<-posteriori.theta(dataset, Zij, tauj, lambda, agam, bgam, mu)

#

indrejtotal<-0 #initialize vector indrejtotal

probacetotal<-1 #initialize vector probacetotal

#

amostrasfin<-1000 # MCMC sample size after burn in and jumps

burnin<-1000 # burn in size

saltos<-10 # jumps size
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AmostrasTotal<-burnin+amostrasfin*saltos # number of iterations to be run

set.seed(300)

#

library(compiler)

enableJIT(3)

#

for (int in 1:AmostrasTotal){

#

######### update Sj and Zij by a MH step of one j

#

j<-sample(1:J,1)

#

cat(’\n’, int, j, K)

candidato<-sample.tau.xi(dataset, Ij, Sj, Zij, tauj, K, Lk, theta.samp, j,

alpha,beta, ni, mu, desvio)

paccept<-prob.accept(dataset, candidato[[8]], Sj, Zij, tauj, Lk, theta.samp,

j,candidato[[3]], candidato[[2]], candidato[[6]], candidato[[7]], lambda,

mu,agam, bgam, candidato[[4]], candidato[[5]], candidato[[10]],

candidato[[11]]) [[1]]

probacetotal<-c(probacetotal,paccept)

aux2<-runif(1)

if (aux2<paccept){

indrejtotal<-c(indrejtotal,0)

Sj[j]<-candidato[[6]]

tauj[(cumsum(Ij)[j]-Ij[j]+1):cumsum(Ij)[j]]<-rep(candidato[[6]],Ij[j])

Zij[(cumsum(Ij)[j]-Ij[j]+1):cumsum(Ij)[j]]<-candidato[[7]]

while (length(table(Sj))<max(Sj)){ # exclude empty distributional clusters

categr<-as.numeric(as.character(data.frame(table(Sj))[,1]))

categd<-seq(1:length(table(Sj)))

dif<-which(categr!=categd)

for (i in 1:length(Sj)) if (Sj[i]>dif[1]) Sj[i]<-Sj[i]-1

tauj<-numeric()

for (n in 1:length(Sj)) tauj<-c(tauj,rep(Sj[n],Ij[n]))}

K<-length(table(Sj))

Lk<-numeric(K)

for (k in 1:K){

observ<-which(tauj==k)

Lk[k]<-length(table(Zij[observ]))
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while (Lk[k]<max(Zij[observ])){ # exclude empty observational clusters

categr<-as.numeric(as.character(data.frame(table(Zij[observ]))[,1]))

categd<-seq(1:Lk[k])

dif<-which(categr!=categd)

for (i in observ) if (Zij[i]>dif[1]) Zij[i]<-Zij[i]-1}}

theta.samp<-posteriori.theta(dataset, Zij, tauj, lambda, agam, bgam, mu)

Zij<-posteriori.Zij2(dataset, Zij, tauj, K, theta.samp, ni, mu, desvio, Lk,

beta, j, Sj)

Lk<-numeric(K)

for (n in 1:K) Lk[n]<-length(table(Zij[which(tauj==n)]))

theta.samp<-posteriori.theta(dataset, Zij, tauj, lambda, agam, bgam, mu)}

if (aux2>=paccept) indrejtotal<-c(indrejtotal,1)

#

if (int>burnin & int%%saltos==0){

cat(’’,Sj,file=paste(caminho,"Sj_simu1.txt",sep=""),append=T)

cat(’’,theta.samp,file=paste(caminho,"theta_simu1.txt",sep=""),append=T)

cat(’’,Zij,file=paste(caminho,"Zij_simu1.txt",sep=""),append=T)

cat(’’,K,file=paste(caminho,"K_simu1.txt",sep=""),append=T)

cat(’’,Lk,file=paste(caminho,"Lk_simu1.txt",sep=""),append=T)}

}

cat(’’,indrejtotal,file=paste(caminho,"indrejtotal_simu1.txt",sep=""),append=T)
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Chapter

7

Big Data Clustering using mixture model 1

In this chapter, we propose two nonparametric Bayesian methods to cluster big data and

apply them to cluster genes by patterns of gene-gene interaction. Both approaches define

model-based clustering with nonparametric Bayesian priors and include an implementation

that remains feasible for big data.

The first method is based on a predictive recursion which requires a single (or two) cycle

of simple deterministic calculations for each observation under study. The second scheme is

an exact method that divides the data into smaller subsamples and involves local partitions

that can be determined in parallel. In a second step, the method requires only the sufficient

statistics of each local cluster to derive global clusters.

Under simulated and benchmark data sets the proposed methods compare favorably with

other clustering algorithms, including k-means, DBSCAN, SUGS and EM algorithm.

We apply the proposed approaches to cluster a large data set of gene-gene interactions

extracted from the online search tool “Zodiac”. The original genetic data consisting of

distributions of regression coefficients is pre-processed by summarizing each distribution by

a high order Jacobi polynomial.

1This chapter is based on the manuscript “Big Data Clustering” submitted for publication (Zuanetti et al.
, Submitted b). The manuscript is a joint work supervised by Prof. Dr. Peter Müller and with colaboration of
Dr. Yitan Zhu, Dr. Shengjie Yang and Prof. Dr. Yuan Ji.
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7.1 Introduction

7.1.1 Clustering methods

We develop model-based clustering methods that are suitable for large data sets. The

discussion is motivated by an application to cluster around 20,000 genes by their interaction

patterns with other genes. The interaction between a pair of genes is represented as a coefficient

in an auto-logistic model of gene expression, copy number variation, methylation, and protein

activation (when available) for pairs of genes. See Mitra et al. (2013) for details. For the

upcoming discussion the data are the estimated gene-gene interaction coefficients in these

models. That is, we have a histogram of 20,000 reported coefficients for each gene. Genetic

interactions play a critical role in cancer development. Therefore, identifying a group of genes

that has, systematically, the highest correlation with many others genes is helpful to understand

the relative importance of genes.

A traditional and useful classification of clustering methods is into partitional and

hierarchical clustering methods. Hierarchical clustering algorithms recursively find nested

clusters, starting from either all singleton clusters and merging clusters, or starting from a

single large cluster and then proceeding with recursive splits of clusters. Partitional clustering

algorithms find all clusters simultaneously as a partition of the data and do not impose a

hierarchical structure. Xu et al. (2005) reviews the most commonly used hierarchical and

partitional clustering algorithms in statistics, computer science and machine learning. Jain

(2010) summarizes well known partitional clustering methods and discusses major challenges

in designing such clustering algorithms.

One of the most popular partitional algorithms is k-means and variations for various

types of data. It is typically used with an Euclidean metric to find spherical or ball-shaped

clusters. Versions with Mahalanobis distance, Itakura-Saito distance, L1 distance and Bregman

divergence have been used to detect different shaped clusters (Banerjee et al., 2005; Kashima

et al., 2008; Linde et al., 1980; Mao & Jain, 1996). Other variants of k-means include ISODATA

(which consider the effect of outliers in clustering), FOGGY, Fuzzy c-means (which allows

multiple cluster membership), and many others. See, for example, Jain (2010) for a review and

more references. Kulis & Jordan (2012) propose another variant of k-means algorithm, known

as DP-means, which adds a penalty based on the number of clusters in the objective function.

Although k-means is a deterministic method, it can be shown that, under suitable conditions,

the solution is equivalent to the solution under some model-based clustering. Kulis & Jordan

(2012) show that the estimated partition under DP-means is approximately the maximum a

posteriori (MAP) solution under model-based clustering using a Dirichlet Process (DP) mixture

of normals in the limit, as the kernel standard deviation goes to zero.

Another popular partitional deterministic clustering algorithm is DBSCAN (Ester et al.
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, 1996) which requires two input parameters and discovers cluster of arbitrary shape. It is

a density based method where clusters can be defined as high density regions in the feature

space, separated by low density regions. Although it seems to be more efficient than k-means

for large databases, results in simulated and real data sets show that DBSCAN can provide a

large number of singleton clusters.

In addition to deterministic schemes, a number of probabilistic model-based approaches

have been developed for data clustering. Many approaches assume that the data is generated

by a mixture model. Sampling from a mixture model implies a prior on a random partition of

the data, using the following construction. First we rewrite the mixture model as a hierarchical

model with latent indicator variables that select terms in the mixture. Interpreting these latent

variables as cluster membership indicators a mixture model implies a random partition. Fraley

& Raftery (2002) describe and review a methodological framework. The approach comprises

three core elements: initialization via model-based hierarchical agglomerative clustering,

maximum likelihood estimation via the EM algorithm, and selection of the model and the

number of clusters using approximate Bayes factors. The latter can be implemented, for

example, using an approximation with the Bayesian information criteria (BIC).

7.1.2 Big data clustering

Most of the above mentioned methods fail for big data, due to computational constraints and

the need to access all data simultaneously. Most clustering algorithms that handle large-size

data sets can be characterized as data summarization, distributed computing, incremental

clustering or sampling-based methods. Data summarization methods first summarize a big data

set into a relatively small subset and then apply the clustering algorithms to the summarized

data set. Dimension reduction not only makes it possible to work with big data and reduces the

computational cost, but can also provide users with a visual examination of the data of interest

(Xu et al., 2005). Distributed computing methods divide each step of a data clustering algorithm

into a number of procedures that can be computed independently, in parallel. Incremental

clustering algorithms are designed to work with a single (or few) pass over all data points.

Sampling-based methods subsample a large data set selectively, and perform clustering for the

smaller subset and later transfer the results to the larger data set.

Some examples of distributed computing algorithms are the following methods. Guha et al.

(2003) propose a simple algorithm that splits the data set into random smaller data subsets,

finds clusters for each one using a k-medians algorithm and then clusters all the intermediate

medians into K final medians. Pennell & Dunson (2007) proposed a 2-stage method for fitting

semiparametric random effects models to large data sets. In the first stage, they construct

G << n (where n is the sample size) clusters using a method similar to a k-means method. In

the second stage, they use a Dirichlet process prior (DP) for the G cluster means. Inference

under the DP prior implies that some of the earlier G cluster means are merged. Zhao et al.

174



7.1 Introduction

(2009) adapt the k-means algorithm to the MapReduce framework to make the clustering

method applicable to large scale data.

Unrelated to clustering, many Bayesian model-based methods for big data are variations of

a strategy known as consensus Monte Carlo. Huang & Gelman (2005) suggest four alternative

methods for consensus Monte Carlo. The first variation is combining separate subset-specific

inference using a normal approximation. The second variation consists in carrying out prior to

a posteriori updating sequentially; that is, fitting the model for the first subset and using the a

posteriori distribution of this subset as a prior to estimate the model for second subset and so on.

The third option is starting inference with one subset and adding other data using importance

sampling. The final suggestion generalizes the second option by combining importance sampling

and a birth-death process. The problem with importance sampling methods is the potential

risk that the Monte Carlo sample could collapse to a single high dimensional point. Scott

et al. (2016) also propose a consensus Monte Carlo approach to divide the data across multiple

machines, with each machine implementing separate Monte Carlo simulation from the subset

a posteriori. The a posteriori draws are then combined using weighted averages to form a

consensus Monte Carlo sample.

Sequential importance sampling (SIS) (MacEachern et al., 1999) and sequential updating

and greedy search (SUGS) (Wang & Dunson, 2011) are examples of incremental clustering

algorithms with nonparametric mixture models in big data. MacEachern et al. (1999) did

not originally develop an approach for clustering, but the method involves latent variables

that can be used to define a random partition on the basis of ties of these variables. The

method exploits the similarities between the collapsed Gibbs sampler and SIS and propose a

method which clusters observations sequentially without running a Markov chain. Instead,

many independent and identically distributed replicates are simulated to create an importance

sample. Wang & Dunson (2011) propose a similar scheme, similar to SIS in the sense of

sequential updating but different in that it adopts a random assignment of allocation instead

of finding the allocation that maximizes the a posteriori probability of cluster membership

indicators. A common limitation of these methods is potentially sticky cluster allocation.

Building on these methods, in this chapter we propose two nonparametric model-based

methods to cluster big data. The first scheme is an incremental clustering algorithm called

predictive recursion clustering (PRC). It is based on a predictive recursion algorithm by Newton

et al. (1998), which is usually applied to approximate the a posteriori mean of a DP mixture

model. The approximation takes the form of a mixture of kernels that is incrementally updated

on a grid. We use the terms of the mixture approximation to define clusters and add a

step to allocate observations to the cluster that maximizes the marginal a posteriori after

all observations have been included in the model. It is an approximate method that avoids a

full Markov chain Monte Carlo a posteriori simulation.
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The second method is a distributed computing algorithm called subset nonparametric

Bayesian (SNOB) clustering. It is an exact method that divides the data into smaller groups,

referred to as shards, across multiple machines and identifies local clusters. In a second step, we

combine the local clusters to determine global clusters in a MapReduce or Hadoop framework.

The method is simulation exact, in the sense that the global clusters are built on the basis

of a probability model for the full original data. Importantly, in the second step we need

only sufficient statistics for cluster-specific parameters from the first step. We apply the two

proposed big data model-based clustering approaches to group genes by gene-gene interactions.

The chapter is organized as follows: in Section 7.2 we briefly define the predictive recursion

algorithm of Newton et al. (1998) and develop the PRC method for clustering big data. Section

7.3 proposes the SNOB method. Section 7.4 applies both methods in two benchmark data sets

and one simulated data set to explore the performance of both schemes in clustering big data.

We compare their performance with DP-means, DBSCAN, SUGS and EM clustering. Section

7.5 clusters the gene data set using the two proposed methods. In Section 7.6 we discuss the

results and in Section 7.7 we show the appendices.

7.2 Predictive recursion clustering (PRC)

7.2.1 Predictive recursion

We introduce a big data clustering algorithm based on the recursive algorithm of Newton

et al. (1998). The algorithm is usually applied to approximate the a posteriori expectation

for the unknown mixture distribution in a Dirichlet process (DP) mixture model. A major

advantage of the approach is the computationally efficient implementation, in particular, the

method processes the data one by one and needs only a single pass over the entire data set.

Let y = (y1, . . . ,yn) be the observed data where yi = (yi1, . . . , yip) for i = 1, . . . , n. Assume

yi ∼ F , i.i.d., for some unknown distribution F . The widely used DP mixture model writes F

as a mixture, F =
∫
p(y | θ) dG(θ) of some kernel p(y | θ) with respect to a mixing measure G

which in turn is assigned a DP prior, G ∼ DP(αG0). Here DP(µ) denotes a DP prior with base

measure µ = αG0, where G0 is a normalized probability measure and α > 0 is known as the

total mass parameter. The DP prior is a nonparametric Bayesian prior for a discrete random

probability measure (Ferguson, 1973). See, for example, Ghoshal (2010) for a review. The DP

mixture model can be equivalently written as a hierarchical model with latent variables θi ∼ G,

as

yi | θi
indep∼ p(yi | θi), θi | G

iid∼ G and G ∼ DP(αG0). (7.1)

Ties in the θi give rise to the desired partition of experimental units with clusters defined by

matching unique values of the θi. Let gn(θn+1) ≡ p(θn+1 | y1, . . . ,yn) denote the a posteriori

predictive distribution. The a posteriori predictive gn(θ) is identical to the a posteriori

mean E(G | y). This is easily seen by considering p(θn+1 | y) = E {p(θn+1 | G) | y} =
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E {G(θn+1) | y}. The predictive recursion algorithm of Newton et al. (1998) approximates

gi(θ) as

gi(θ) = (1− ωi)gi−1(θ) + ωi
p(yi | θ)gi−1(θ)

c(yi, gi−1)
, (7.2)

starting with g0 = G0. Here, ω = (ω1, . . . , ωn) is a sequence of weights and c(yi, gi−1) =
∫
p(yi |

θ)gi−1(θ)dθ are normalization constant. Updating is exact for i = 1 and w1 = 1/(1 + α), and

is an approximation beyond that. That is, for i = 1, (7.2) defines exactly the a posteriori

predictive distribution under the DP mixture model. Convergence holds as long as the positive

weights satisfy
∑

i ωi = ∞ and limi→∞wi = 0 (Newton et al., 1998). Model (7.1) naturally

suggests ωi = 1/(i + α), however sequences that vanish a bit slower are also allowed. The

updated estimate gi is a mixture of the current estimate gi−1 and new information yi in the

form of an a posteriori density on θi under a model with prior gi−1 and likelihood p(yi | θi).
Under (7.2) the (approximate) predictive gi is a mixture of 2i components

gi(θ) =
2i∑
k=1

π
(i)
k f

(i)
k (θ), (7.3)

with weights π
(i)
k and components f

(i)
k :

π
(i)
k =

(1− ωi)π(i−1)
k

ωiπ
(i−1)

k−2i−1

and f
(i)
k (θ) =

f
(i−1)
k (θ), for k = 1, . . . , 2i−1

∝ f
(i−1)

k−2i−1(θ) p(yi | θ), for k = 2i−1 + 1, . . . , 2i,

starting with π
(0)
1 = 1 and f

(0)
1 (θ) = G0(θ). When G0 and p(y | θ) are conjugate updating of

f
(i)
k is straightforward. In the remaining discussion we assume such conjugate setup, and let

η
(i)
k denote the parameters that index f

(i)
k , and we will write f

(i)
k (θ | η(i)

k ) if we want to highlight

this.

Calculation of gn(θ) only requires a single cycle of simple deterministic updates for each

observation under study and remains therefore feasible also for large data sets. However, it

is impractical to record all 2i components. Instead we later merge and reduce the number of

components. See later for details. For the moment we only assume that gn is a mixture with

known weights π
(i)
k and components f

(i)
k .

Let N(y | θ = (µ, σ2)) denote a normal distribution for y and let NIG(θ = (µ, σ2) |
µ0, λ0, a0, b0) denote a normal inverse gamma distribution for θ. That is, a gamma distribution

for 1/σ2, p(1/σ2) = Ga(a0, b0), and a conditional normal distribution for µ, p(µ | σ2) =

N(µ, σ2/λ0). Here the gamma distribution is parametrized such that E(1/σ2) = a0/b0. Defining

the sampling model p(yi | θi) we assume that yij and yij′ are independent given θi, and j 6= j′.

The independence restriction is not a strong assumption as it could always be achieved by using
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transformed data ỹ =
(
A−1yT

)T
, with a factorization of an arbitrary non-diagonal covariance

matrix AA′. We therefore assume a normal sampling model, p(yi | θi = (µi,σ
2
i )) =

∏p
j=1 N(yij |

µij, σ
2
ij), and a conjugate baseline measure G0(θ) =

∏p
j=1 NIG(θj | µ0j, λ0j, a0j, b0j). Under this

model, the updating in (7.3) becomes

f
(i)
k (θi | η(i)

k ,yi) =

p∏
j=1

NIG
(
θj | µ(i)

kj , λ
(i)
kj , a

(i)
kj , b

(i)
kj

)
for k = 2i−1 + 1, . . . , 2i (7.4)

with

µ
(i)
kj =

yij + λ
(i−1)

k−2i−1j
µ

(i−1)

k−2i−1j

λ
(i)
kj

, b
(i)
kj = b

(i−1)

k−2i−1j
+
λ

(i−1)

k−2i−1j

(
yij − µ(i−1)

k−2i−1j

)2

2λ
(i)
kj

, (7.5)

λ
(i)
kj = λ

(i−1)

k−2i−1j
+ 1, and a

(i)
kj = a

(i−1)

k−2i−1j
+ 1/2. That is, η

(i)
k = (µ

(i)
kj , λ

(i)
kj , a

(i)
kj , b

(i)
kj ; j = 1, . . . , p).

The recursion starts with η
(0)
1 = (µ0j, λ0j, a0j, b0j, j = 1, . . . , p).

7.2.2 Merging similar components and removing order dependence

For a large data set it is impractical to keep all components and weights in memory. In

addition, most weights are negligible. Hennig (2010) reviews and compares different methods

for merging normal mixture components. One method that compares favorably is based on

thresholding a dissimilarity measure between pairs of components. Hennig (2010) suggests

using Bhattacharyya distance. Here we propose to use Mahalanobis distance, a special case

of Bhattacharyya distance, since for Mahalanobis distance the cutoff-value to merge a pair

of components can be easily determined as a χ2-quantile, whereas the cutoff-value for a

Bhattacharyya distance is, in general, a subjective choice.

In our case gi(θ) is a mixture of normal inverse gamma distributions. To reduce it to a

mixture of normals, we sample 1/σ
2(i)
kj ∼ Ga(a

(i)
kj , b

(i)
kj ), j = 1, . . . , p, and define

d(µ
(i)
k ,µ

(i)
k′ ) =

p∑
j=1

(
µ

(i)
kj − µ

(i)
k′j

)2(
σ

2(i)
kj /λ

(i)
kj + σ

2(i)
k′j /λ

(i)
k′j

)
/2
. (7.6)

We use the Mahalanobis distance (7.6) to merge terms as follows. First, we fix a threshold d?

as a (1 − q) tail cutoff in a χ2 distribution with p degrees of freedom. In our implementation

we use (1 − q) = 75% for i = 1, . . . , n − 1, and (1 − q) = 95% for the last step, i = n,

of updating (7.3). In each step, before recording the new approximation gi(·) we merge the

components with the smallest distance d(µ
(i)
k ,µ

(i)
k′ ) < d? by dropping the component with the

smaller weight, rescaling the remaining weights and continue dropping components while there

are pairs with d(µ
(i)
k ,µ

(i)
k′ ) < d?. Instead of dropping one of the components, we could combine

their parameters and build a new component with new parameters. However, in that case, we

would need to recompute Mahalanobis distances for all pairs.
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Finally, we add one more element to the algorithm. Because of sequential updating, the

predictive recursion estimate gi(θ) depends on the order in which observations are added.

Although this dependence can be weak (Newton et al., 1998) we prefer to mitigate it. We

repeat the predictive recursion clustering for multiple permutations of the ordering and use an

approximate pseudo-marginal likelihood (PML) to select the best order. See Gelfand & Dey

(1994) and Pettit (1990) for details about PML and Wang & Dunson (2011) for an application

of PML to select the best estimate in sequential updating.

PML is defined as product of conditional predictive ordinates as

PML(y) =
n∏
i=1

p(yi | y−i) =
n∏
i=1

∫
p(yi | θi)p(θi | y−i)dθi

≈
n∏
i=1

K∑
k=1

π
(n)
k

∫
p (yi | θi) f (n)

k (θi) dθi, (7.7)

where

∫
p (yi | θi) f (n)

k (θi) dθi =

p∏
j=1

t

yij | 2a(n)
kj , µ

(n)
kj ,

(
b

(n)
kj (1 + λ

(n)
kj )

a
(n)
kj λ

(n)
kj

)1/2
 ≡ p(yi | η(n)

k ). (7.8)

In (7.8) µ
(n)
kj , a

(n)
kj , b

(n)
kj and λ

(n)
kj are defined in (7.5), and t(y | ν,m, s) denotes a t-distribution

with ν degrees of freedom and location and scale parameters m and s. We refer to (7.8) as

p(yi | η(n)
k ), the marginal model for yi, marginalizing θi with respect to the k-th term in gn(·).

We will use (7.8) later again to approximate the desired clustering under the DP mixture (7.1).

The approximation in (7.7) is that π
(n)
k and f

(n)
k (θi) should be computed without considering

observation yi for i = 1, . . . , n. However, to speed up computation we evaluate them once over

all observations. The approximation is negligible for a large data sets. We select the order with

the largest PML.

7.2.3 PRC algorithm

At this moment of the construction we have an approximation gn(θn+1) ≈ p(θn+1 |
y1, . . . ,yn) as a mixture of K NIG terms. Here, K is the number of terms left after merging.

We now use the latter to impute the θi in (7.1). That is, we exploit the mixture model gn(·) to

approximate the desired clustering under the DP mixture. We use p(θi | y−i) ≈ gn(θi) to get

p(θi | y1, . . . ,yn) ∝ p(yi | θi) p(θi | y−i) ≈ p(yi | θi) gn(θi). Next, let si denote a latent cluster

membership indicator to select a term of the mixture gn in the approximation. Then, denoting

π(n) = (π
(n)
1 , . . . , π

(n)
K ), we have

p
(
si = k | π(n),η(n),y

)
∝ π

(n)
k p(yi | η(n)

k ) (7.9)
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7.2 Predictive recursion clustering (PRC)

for k = 1, . . . , K, using p(yi | η(n)
k ) from (7.8).

Let θ?k , k = 1, . . . , K, denote the unique values of θi, with θi = θ?k when si = k. Using the

a posteriori for θ?k defined as

p (θ?k | s,y) ∝ G0(θ?k)
∏
i:si=k

p(yi | θ?k), (7.10)

we generate θ?k , k = 1, . . . , K. In our case (7.10) is a normal inverse gamma distribution.

Finally, we update the cluster membership indicators si, now using the updated cluster-specific

θ?k ,

p
(
si = k | s−i,y,π(n),θ?

)
∝ π

(n)
k

p∏
j=1

p(yij | θ?kj), (7.11)

for k = 1, . . . , K. While the last step is not strictly necessary – we already have si – we found

that it improved observed mis-classification rates in simulation experiments.

Algorithm 2 PRC algorithm

Input: y1, . . . ,yn (data) and d? (cutoff-value for merging components)
Output: Cluster membership indicators s1, ..., sn and number of clusters K

1. For o = 1, . . . , O, where O is the number of different permutations of data.

(a) Reorder the data.

(b) For i = 1, . . . , n

i. Compute the elements of gi(θ).

ii. Merge pairs of components with d < d?.

(c) Calculate pseudo-marginal likelihood (PML) using (7.7).

2. Select the ordering with highest PML.

3. Draw s as in (7.9).

4. Update θ?k using (7.10), j = 1, . . . , p and k = 1, . . . , K.

5. Update s as in (7.11).

7.3 Subset nonparametric Bayesian (SNOB)

For large sample sizes, the usual MCMC algorithms for a posteriori computations in DP

mixture models as in (7.1) are computationally impractical. The recursive scheme of Section 7.2

is a computationally attractive approximation of a posteriori inference on the random partition.

Alternatively, we propose the following exact nonparametric scheme for big data clustering. The
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approach is exact in the sense of following a posteriori inference in the DP mixture model (7.1)

for the entire data.

The idea of the proposed scheme is to split the data into B smaller subsets, called shards,

and perform nonparametric clustering in each shard. We refer to the resulting partition in each

subset as local clusters. In a second step, we cluster the local clusters to create global clusters.

The shards can be processed in parallel. The a posteriori draws are then combined to identify

the global clusters. Importantly, both steps are carried out to follow a posteriori inference

under one common underlying DP mixture model (7.1) for the entire data. In that sense the

method is simulation exact. In summary, we cluster the full data y by splitting the data as

y = (y1, . . . ,yB) where yb = (yb1, . . . ,ybIb) denotes shard b = 1, . . . , B, Ib is the number of

observations in the b-th subset and
∑B

b=1 Ib = n. Let ybh be the h-th observation of b-th shard

for h = 1, . . . , Ib. We can rewrite model (7.1) as

ybh | θbh
indep∼ p(ybh | θbh), θbh | G

iid∼ G and G ∼ DP(αG0), (7.12)

b = 1, . . . , B and h = 1, . . . , Ib.

7.3.1 Clustering each shard and estimating local clusters

The discrete nature of G in model (7.12) gives rise to ties among θbh. Let {θ?b1, . . . ,θ?bLb}
denote the unique elements among θbh for the specific shard b and rb = (rb1, . . . , rbIb) the local

cluster membership indicators for b-th shard with rbh = ` if θbh = θ?b`, for h = 1, . . . , Ib. Let

Rb` = {h : rbh = `} denote the local clusters and nb` = |Rb`| denote the sizes of the Lb local

clusters. For later reference we state that the DP prior in (7.12) implies

p(rb) ∝ αLb
Lb∏
`=1

(nb` − 1)! (7.13)

The random partition (7.13) is known as the Polya urn (Blackwell & MacQueen, 1973) and

implies

p(rbh = ` | r−b ) ∝

{
n−b`, if ` = 1, . . . , L−b
α, if ` = L−b + 1,

(7.14)

where the superscript xx− represents the appropriate quantity xx with observation bh excluded

from the sample. See, for example, Ghoshal (2010) for a review, including a posteriori

simulation schemes for rb. Let p(ybh | rbh = `,r−b ,y
−
b ) =

∫
p(ybh | θ?b`

−)p(θ?b`
− | r−b ,y

−
b )dθ?b`

−

and h0(ybh) =
∫
p(ybh | θbh)G0(θbh)dθbh. The a posteriori simulation includes resampling of

the local cluster membership indicators rbh, h = 1, . . . , Ib, using the complete conditional a
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posteriori probabilities

p(rbh = ` | r−b ,y) ∝

n−b` p(ybh | rbh = `,r−b ,y
−
b ), for ` = 1, . . . , L−b

αh0(ybh), for ` = L−b + 1.
(7.15)

For conjugate DP mixtures p(θ?b`
− | r−b ,y

−
b ), p(ybh | rbh = `,r−b ,y

−
b ) and h0(ybh) are available

in closed form. For example, consider a normal sampling model, p(ybh | θbh = (µbh,σ
2
bh)) =∏p

j=1 N(ybhj | θbhj = (µbhj, σ
2
bhj)), and a conjugate baseline measure G0(θ) =

∏p
j=1 NIG(θj |

µ0j, λ0j, a0j, b0j). The complete conditional a posteriori distribution of θ?b`
− is

p(θ?b`
− | r−b ,y

−
b ) =

p∏
j=1

NIG(mb`j, λb`j, ab`j, bb`j), (7.16)

with λb`j = λ0j + n−b`, ab`j =
n−b`
2

+ a0j,

mb`j =
n−b`ȳb`j + λ0jµ0j

λ0j + n−b`
, and bb`j = b0j +

s2
b`j +

n−b`λ0j(ȳb`j−µ0j)
2

λ0j+n
−
b`

2
,

where ȳb`j =
∑

h∈R−b`
ybhj/n

−
b` and s2

b`j =
∑

h∈R−b`
(ybhj − ȳb`j)2 are cluster-specific sample means

and (scaled) variances evaluated without observation bh. The marginal likelihood

h0(ybh) =

p∏
j=1

t

(
ybhj | 2a0j, µ0j,

(
b0j(1 + λ0j)

a0jλoj

)1/2
)

(7.17)

and the marginal likelihood of ybh in first line of (7.15) is equal to (7.17), just changing

(µ0j, λ0j, a0j, b0j) for (mb`j, λb`j, ab`j, bb`j).

We use (7.15) and (7.17) to implement a posteriori MCMC simulation for the cluster

membership indicators for the local partitions rb. So far we only described standard a posteriori

simulation for each shard. Based on the a posteriori simulation output we can then record

estimated partitions rb. In our implementation we use thresholding of a posteriori co-clustering

probabilities π?bhh′ = p(rbh = rbh′ | yb). We report clusters using the following heuristic,

starting with rb1 = 1 and using a threshold p?. For h > 1, let mh = arg maxh′<h π
?
bhh′ ,

Kh = max {rb1, . . . , rbh} and

rbh =

rbmh , if π?bhmh ≥ p?

Kh−1 + 1, otherwise ,
(7.18)

for h = 2, . . . , Ib. We fix p? = 0.5, that is, we allocate two observations in the same cluster if

they are allocated in the same cluster in more than half of the MCMC sample. Alternatively,
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any other scheme to report a point estimate for rb could be used, for example Dahl (2006).

In summary, the inputs to cluster each shard are yb, a starting point for rb and a threshold

p? to define final clustering. The outputs are a point estimate for rb and sufficient statistics

of each local cluster: nb`, Mb`j =
∑

h∈Rb` ybhj and S2
b`j =

∑
h∈Rb` y

2
bhj, for ` = 1, . . . , Lb and

j = 1, . . . , p. In next section we will see that ηb` = (nb`,Mb`,S
2
b`) are enough to identify global

clusters. We do not need the original data yb anymore.

7.3.2 Estimating global clusters

Recall now the original inference goal of clustering {1, . . . , n}, that is inference on s. We

construct s by merging local clusters with matching θ?b`. Similar to inference for rbh in (7.15) we

can carry this out marginalizing w.r.t. θ?b`. Under (7.12) all required a posteriori probabilities

are available in closed form if the kernel p(ybh | θbh) and G0(θbh) are chosen as a conjugate pair.

Let θ?? = {θ??1 , . . . ,θ??K } denote the unique elements among θbh across all shards and let K

denote the number of global clusters. Our interest is to find the global clusters defined by θ??.

We will never need to record the θ??k – they are only used here to define the notion of global

clusters. Let S̃k = {(b, `) : θ?b` = θ??k } denote all local clusters in the k-th global cluster and

let s̃b` = k when (b, `) ∈ S̃k denote global cluster membership indicators for each local cluster.

Let Sk = {(b, h) : s̃brbh = k} denote all observations allocated in the k-th global cluster and let

sbh = k when (b, h) ∈ Sk denote the global cluster membership indicator for each observation.

The implied size of the k-th global cluster is nk = |Sk| =
∑

(b,`)∈S̃k nb`. The main inference

target is s = {sbh, b = 1, . . . , B, h = 1, . . . , Ib}, the cluster arrangement of the entire data,

which is determined by s̃ and r = (r1, . . . , rB) as sbh = s̃b,rbh . Deriving conditional prior and

a posteriori probabilities for global clusters, that is for s̃b`, parallels the earlier discussion for

(7.13). The only change is that a change in s̃b` involves reallocation of multiple experimental

units, namely all h ∈ Rb`. Keeping this detail in mind, similar to (7.13), the joint prior on s is

p(s) ∝ αK
K∏
k=1

(nk − 1)! (7.19)

and implies the conditional prior

p(s̃b` = k | s̃−, r) =
p(s̃−, s̃b` = k | r)

p(s̃− | r)

∝


αK
−(∏K−

m=1&m 6=k(n
−
m−1)!

)
(n−k +nb`−1)!

αK−
(∏K−

m=1&m 6=k(n
−
m−1)!

)
(n−k −1)!

, if k = 1, . . . , K−

αK
−(∏K−

m=1(n
−
m−1)!

)
α(nb`−1)!

αK−
(∏K−

m=1(n
−
m−1)!

) , if k = K− + 1

=


(n−k +nb`−1)!

(n−k −1)!
, if k = 1, . . . , K−

α (nb` − 1)!, if k = K− + 1,
(7.20)
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where the superscript xx− represents the appropriate quantity xx with local cluster bl excluded

from the sample.

Similar to before, let p(ybl | s̃b` = k, s̃−, r−,y−) =
∫ ∏

h∈Rb` p(ybh | θ
??
k
−)p(θ??k

− |
s̃−, r−,y−)dθ??k

−, and let h0(yb`) =
∫ ∏

h∈Rb` p(ybh | θbh)G0(θbh)dθbh. The global cluster

membership indicator s̃b`, for b = 1, . . . , B and ` = 1, . . . , Lb, is drawn using its marginal

conditional a posteriori distribution defined as

p(s̃b` = k | s̃−, r−,y) ∝


(n−k +nb`−1)!

(n−k −1)!
p(ybl | s̃b` = k, s̃−, r−,y−), for k = 1, . . . , K−

αΓ (nb`) h0(yb`), for k = K− + 1.
(7.21)

For conjugate models p(θ??k
− | s̃−, r−,y−) and h0(yb`) =

∫ ∏
h∈Rb` p(ybh | θbh)G0(θbh)dθbh

are available in closed form and usually are function of the summary statistics ηb` for Rb`

only, without need to access the original data yb. For example, under a normal sampling

model, p(ybh | θbh = (µbh,σ
2
bh)) =

∏p
j=1 N(ybhj | θbhj = (µbhj, σ

2
bhj)), and a conjugate NIG

baseline measure G0(θ) =
∏p

j=1 NIG(θj | µ0j, λ0j, a0j, b0j), the complete conditional a posteriori

distribution of θ??k
− is similar to (7.16), now including all observations allocated in global

cluster Sk except observations of local cluster Rb`. It can be evaluated using the summaries

ηb′`′ only. The marginal likelihood for (b`) starting a new global (singleton) cluster, h0(yb`) =∫ ∏
h∈Rb` p(ybh | θbh)G0(θbh)dθbh, is

h0(yb`) =

p∏
j=1

(2π)−
nb`
2

(
λ0j

nb` + λ0j

)1/2 Γ
(
nb`
2

+ a0j

)
Γ (a0j)

×
b
a0j
0j(

b0j +
s2b`j

2
+

λ0jnb`(ȳb`j−µ0j)
2

2(nb`+λ0j)

)nb`
2

+a0j
, (7.22)

where ȳb`j =
∑

h∈Rb` ybhj/nb` and s2
b`j =

∑
h∈Rb`(ybhj − ȳb`j)

2 are local cluster-specific sample

means and (scaled) variances. Both are functions of the summary ηb`. The marginal likelihood

when (b, `) joins global cluster k, that is p(ybl | s̃b` = k, s̃−, r−,y−), is equal to (7.22), replacing

µ0j, λ0j, a0j and b0j by the parameters of the complete conditional a posteriori distribution of

θ??k
−. Again, only functions of the summary ηb` are used.

We implement a posteriori MCMC for s̃ using (7.21). Finally, we report a point estimate

for s̃ using a similar scheme as before for rb. First we evaluate the a posteriori co-clustering

probabilities π??b`,b′`′ = p(s̃b` = s̃b′`′ | y) as appropriate Monte Carlo averages. Next we define

a threshold p?? and use a rule as in (7.18). We use p?? = 0.50, that is, we allocate two local

clusters in the same global cluster if they co-cluster in more than half of the MCMC samples.

In summary, the inputs to estimate global clusters are the sufficient statistics ηb` for all

local clusters and a starting point for s̃. The output is an estimated global partition as a set
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of clusters membership indicators for all local clusters, s̃, which combined with r provide the

global cluster for each observation.

In summary, Algorithm 3 describes the SNOB procedure.

Algorithm 3 SNOB algorithm

1. Local clustering of shards b = 1, . . . , B
Input: data yb for the b-th shard, a starting point for rb, and a threshold p?

Output: Local cluster membership indicators rb and sufficient statistics of each local
cluster of b-th shard, ηb`

(a) Draw rbh, for h = 1, . . . , Ib, M times, where M defines the MCMC chain size.

(b) Calculate a posteriori co-clustering probability for each pair of observations.

(c) Compute final estimate of rb and the sufficient statistics for each local cluster.

2. Global clustering
Input: sufficient statistics ηb` for each local cluster, a starting point for s̃, and a threshold
p?? to define global clusters
Output: Global cluster membership indicators s̃

(a) Draw s̃b`, for b = 1, . . . , B and ` = 1, . . . , Lb, M times, where M defines the MCMC
chain size.

(b) Calculate a posteriori co-clustering probability for each pair of local cluster.

(c) Compute final estimate of s̃.

7.4 Simulation

We apply the proposed PRC and SNOB approach to clustering in a simulation example

and two benchmark data sets. R codes used to carry out PRC and SNOB are available in

the appendices of this chapter. The first data set is far from the large sample size for which

we specifically developed PRC and SNOB. We use it because the analyses provide a useful

comparison with known (non-big data) clustering algorithms. The first data set is the iris

flower data set or Fisher’s iris data (Fisher, 1936). It consists of 50 samples from each of

K = 3 species of iris (iris setosa, iris virginica and iris versicolor), for a total sample size of

n = 150. Four features (p = 4) were measured from each sample: the length and the width

of the sepals and petals, in centimeters. The second data set, wine quality data (Cortez et al.,

2009), represents a white wine sample collection of Vinho Verde wines. It consists of n = 4898

samples and p = 11 physiochemical variables: fixed acidity, volatile acidity, citric acid, residual

sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol, and a

quality rating. The quality rating is based on a sensory taste test carried out by at least three

sommeliers and scaled in 11 quality classes from 0 - very bad to 10 - very excellent. We combine

wine quality classes into K = 3 levels: low (rating < 6), moderate (rating equal to 6) and high
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(rating > 6) as (Cortez et al., 2009). We also simulate another large data set with n = 5000

observations. The simulation truth is a mixture of K = 4 multivariate normal distributions

(p = 8), with parameters chosen to mimic the data in the application to genes (see the next

section).

We carry out clustering for these three data sets using DP-means (Kulis & Jordan, 2012),

DBSCAN (Ester et al., 1996), SUGS (Wang & Dunson, 2011) and an EM algorithm for Bayesian

regularization for multivariate normal mixtures proposed by Fraley & Raftery (2007). See the

introduction for a brief review of these methods. For all methods we cluster the de-correlated

transformed data ỹ =
(
A−1yT

)T
, where AA′ is a (Cholesky) factorization of the empirical

covariance matrix of y.

For SUGS, PRC and SNOB schemes we fix the total mass parameters as α = 1 and the

hyperparameters of the NIG baseline measure as µ0j = 0, λ0j = 0.01, a0j = 5 and b0j = 3,

for j = 1, . . . , p, implying that, a priori, E(σ2) = 0.75, SD(σ2) = 0.45, E(µ | σ2) = 0 and

V ar(µ | σ2) = 100σ2. The hyperparameters for σ2 are chosen because of the unit sample

standard deviation of the pre-processed data. For PRC, we use weights ωi = 1/(1 + α
√
i) =

1/(1 +
√
i), for i = 1, . . . , n, that is, weights that vanish slightly slower than nominal weight

ωi = 1/(i+ α) = 1/(1 + i).

We run DP-means for different numbers of clusters. For choosing the best DP-means

clustering, we use the summary SSE/SST for each value of K, where SSE is the error sum

of squares and SST is the total sum of squares. The best value of K is the smallest value before

SSE/SST starts to sharply rise. For the iris, wine and simulated data set we choose clustering

with K = 8, 19 and 10 clusters based on SSE/SST=0.32, 0.59 and 0.54, respectively. R code

for DP-means clustering is available at https://github.com/johnmyleswhite/bayesian_

nonparametrics/tree/master/code/dp-means.

For DBSCAN, we set the minimum number of neighbors a point should have to be included

into a cluster to 5 for all data sets and choose the maximum distance for a point be considered

a part of a cluster as suggested by Ester et al. (1996). For the iris, wine and simulated data

set, the estimated partition includes K = 2, 1 and 5 non-singleton clusters and 23, 0 and 135

singleton clusters, respectively. The DBSCAN algorithm is available as an R-package dbscan

(Ester et al., 1996).

The EM algorithm proposed by Fraley & Raftery (2007) classifies data using finite mixture

models with a random number of clusters and allows clusters with different sizes, shapes and

orientations. They propose to select the best clustering using Bayesian information criterion

(BIC). For the iris, wine and simulated data sets, the best partition has K = 2, 16 and 4 clusters,

respectively. This EM algorithm is available as the R-package mclust (Fraley & Raftery, 2002;

Fraley et al., 2012).

For SUGS and PRC we used 10 permutations of the data set and report the permutation

with maximum PML. SUGS estimates K to be 3, 19 and 5 for the iris, wine and simulated
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data set, respectively. We note sticky cluster allocation in SUGS – for all three data sets most

data are allocated in the first and second clusters only. Under PRC the estimate for K is 5, 19

and 12 clusters for the iris, wine and simulated data set, respectively.

We do not use subsamples in SNOB for the iris data set since it is already so small and only

carry out the step of estimating local clusters. The wine and simulated data set are broken

into B = 5 shards with same size. For all MCMC chains we run 6000 iterations, discarding the

first 1000 iterations and thinning out to save only every 5-th iteration. All chains is initialized

with singleton clusters. SNOB estimates K = 10 clusters for the iris data set (5 of them being

singleton clusters), K = 18 global clusters for the wine data and Lb = 4 local clusters for each

shard and K = 4 global clusters for the simulated data. The estimated number of local clusters

in wine data is 23, 23, 23, 21 and 28 for each shard.

As our interest is to identify clusters and correctly classify the data, we use misclassification

rate to compare methods. We define misclassification rate as

MCR =

∑n
i=1 I(s

(T )
i = si)

n
100, (7.23)

where s
(T )
i is the true cluster membership indicator. When the clusters’ label of s is switched

compared with s(T ), we relabel s and choose the labels’ permutation which minimize MCR.

When any method estimates K = 1 we record a misclassification rate of 100%.

Table 7.1 shows the misclassification rate of each method for each data set. We observe that

PRC and SNOB have favorable misclassification rates for all analyzed data sets. DP-means is

slightly better than PRC and SNOB for the iris data set. However it identifies a higher number

of clusters. For the simulated data set, the EM algorithm is comparable to SNOB and very

similar to PRC, but less favorable for the iris data set.

Comparing only PRC and SNOB, we observe that PRC usually reports a larger number

of clusters, but most observations are concentrated in a smaller number of groups while under

SNOB the clusters are more balanced.

Table 7.1: Misclassification rate of clustering.
DP-means DBSCAN SUGS EM PRC SNOB

Iris data set 18.0 38.7 34.7 33.0 21.3 28.7
Wine data set 51.2 100.0 52.8 47.9 50.8 45.0

Simulated data set 25.4 2.7 26.0 0.0 2.8 0.0

In terms of computation time, the fastest algorithms are PRC and SUGS since they only

read each observation once (except for a small number of repetitions to evaluate alternative

permutations to mitigate order dependence). Although SNOB involves MCMC simulation for

each shard and another MCMC simulation to find the global clusters, it remains computation

efficient since the shards are small, and can even be analyzed in parallel. For estimating global
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clustering we need to save only the sufficient statistics.

7.5 Clustering genes by their GE-GE interactions

7.5.1 Data

Our goal is clustering n = 19, 304 genes according to their GE-GE interaction pattern with

other genes. The data set is from Zodiac (Zhu et al., 2015), an online search engine for visualizing

gene interaction based on statistical analysis of data collected by The Cancer Genome Atlas

(TCGA). Statistical inference in Zodiac is based on auto-logistic models and the coefficients

between pairs of gene-specific latent indicators are used to describe the strength of gene-gene

interactions. We do not make use of the detail methods of how Zodiac derives them (using a

model proposed in Mitra et al. 2013). For the upcoming discussion these coefficients are the

data. That is, for each gene we record a histogram of 19, 303 gene-gene interaction coefficients,

and the formal goal becomes to identify a cluster of high interaction genes.

Available clustering algorithms, as well as the proposed PRC and SNOB scheme are

developed to cluster p-dimensional outcomes, rather than histograms (or distributions). We

therefore pre-process the data, replacing the histograms of gene-gene interaction coefficients

by an approximation with high Jacobi polynomials, that is, essentially by a sequence of

empirical moments. This choice is motivated by Arbel et al. (2015) who show examples

where distributions are well fitted by high order Jacobi polynomials (with the first seven

moments). We summarize the histogram of significant coefficients by their first seven moments

Mi = (Mi1, ...,Mi7) and add the frequency fi0 of nonsignificant auto-logistic coefficients.

Significant coefficients are identified by thresholding false discovery rate at 10%. See Mitra

et al. (2013) for details. The r-th empirical moment is defined as Mir =
∑ci

j=1 y
r
ij

/
ci where ci

is the number of significant coefficients for i-th gene. In summary, we define summarized data

as y?i = (Mi, log (fi0)).

Finally, we implement PRC and SNOB clustering with transformed data ỹ, where ỹ =(
A−1y?T

)T
and A is the lower triangular matrix of a Cholesky decomposition of the empirical

covariance matrix of the y?. For PRC and SNOB we fix the total mass parameters as α = 1

and the hyperparameters of the NIG baseline measure as µ0j = 0, λ0j = 0.01, a0j = 5 and

b0j = 3, for j = 1, . . . , 8.

7.5.2 PRC results

We implement the PRC algorithm with weights ωi = 1/(1 + α
√
i) = 1/(1 +

√
i), which

decrease slightly slower than nominal weights ωi = 1/(i + α) = 1/(1 + i). To mitigate the

dependency on the order, we use 10 permutations of the data set and select the one with the

largest PML value.

The final number of components in (7.3) is 104, but the genes are allocated to only 60 of
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these. Only 6 clusters include more than 1% of all genes and together they represent 96.4%

of the total number of genes. The remaining 3.6% genes are allocated to the remaining 54

small clusters. Table 7.2 shows the frequency (%) of the 6 most representative clusters. We

observe one larger cluster with frequency close to 0.69, called cluster 2, and two moderate size

clusters, called clusters 1 and 3, which frequency is 0.07 and 0.15, respectively. Similar to

inference for the simulated data set, we find a large number of clusters, but most observations

are concentrated in a small number of groups.

Table 7.2: Frequency of the most 6 representative PRC clusters.
Cluster % Cluster % Cluster %

1 6.5 3 14.6 5 1.3
2 69.8 4 1.5 6 2.7

Figure 7.1 shows the 6 most representative PRC clusters. With the aim of identifying

groups of gene with the systematically highest interactions with other genes, we represent each

cluster by a boxplot of the percentiles of the (original) interaction coefficients, showing the 5%,

10%, 25%, 50% (median), 75%, 90% and 95% percentiles and the 10f0i. Figure 7.1 shows the

boxplot of these 8 summary statistics arranged by clusters. Genes in cluster 3, which represent

14.6% of all genes, have only highly positive interaction coefficients with other genes. Genes of

cluster 3 are of most interest to investigators. Cluster 1, which represent almost 7% of genes, is

characterized by genes that have negative and positive significant interactions. Cluster 2 which

is the largest cluster consists of genes with positive and moderately significant coefficients. The

remaining clusters 4, 5 and 6 include the genes with the lowest interactions since all percentiles

are close to zero.

7.5.3 SNOB results

In SNOB, we split the data set into B = 20 shards. For all MCMC chains we run 6000

iterations, discarding the first 1000 iterations and thinning out to save only every 5-th iteration.

MCMC chains is initialized with singleton clusters.

The average number of local clusters in each shard is 17 with a total of 341 local clusters.

The number of global clusters is K = 26, but only 12 clusters have more than 1% of all genes,

and together they represent 97.3% of all genes. The remaining 2.7% genes (around 500 genes)

are distributed across the remaining 14 smaller global clusters. Table 7.3 shows the frequency

(%) of the 12 most representative clusters. We observe two larger clusters with frequency higher

than 0.20 (clusters 2 and 4), and two moderate size clusters (1 and 5).
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Figure 7.1: PRC clusters. Each boxplot shows the distribution of the respective quantile across
all genes in the cluster.

Table 7.3: Frequency of the most 12 representative SNOB clusters.
Cluster % Cluster % Cluster % Cluster %

1 10.7 4 21.4 7 3.6 10 1.2
2 2.4 5 7.3 8 1.8 11 1.0
3 42.4 6 2.2 9 2.3 12 1.1

Figure 7.2 shows the boxplot of percentiles of the original auto-logistic gene-gene interaction

coefficients, arranged by clusters. The boxplots shows percentiles for 5%, 10%, 25%, 50%

(median), 75%, 90% and 95%, plus 10f0i. Genes in clusters 4 and 9, which represent 23.7%

of genes, have only highly positive significant interactions with other genes. These clusters are

the desired report of genes of interest. Clusters 5 and 6, which represent almost 10% of genes,

are characterized by genes that have negative and positive significant interactions. Cluster 8

consists of genes with the largest number of significant coefficients. The remaining clusters (1,

2, 10, 11 and 12) have the genes with the lowest interactions since all percentiles are close to

zero.

7.6 Discussion

We introduced two nonparametric model-based methods to cluster big data and identify

groups across thousands of genes that have similar patterns of genetic interaction with other

genes. The first scheme, PRC, is an incremental clustering algorithm based on predictive
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Figure 7.2: SNOB clusters. Each boxplot shows the distributions of the respective quantile
across all genes in the cluster.

recursion algorithm of Newton et al. (1998). It is an approximate method which requires a

single cycle of simple deterministic calculations for each observation under study. The other

method is a distributed computing algorithm, called SNOB. It is an exact method that divides

the data in smaller groups across multiple machines and identifies local clusters. In a second

step, the method combines the local clusters to find global clusters in a MapReduce or Hadoop

framework. The algorithm is simulation exact, in the sense that it uses probabilities under the

a posteriori random partition of a DP mixture model. The second step is implemented as one

step of a Markov chain Monte Carlo simulation. It needs to only access the sufficient statistics

of the earlier determined local clusters.

Both methods show good performance to classify simulated and two benchmark smaller data

sets. Compared with traditional clustering algorithms including k-means, DBSCAN, SUGS and

the EM algorithm, PRC and SNOB have favorable misclassification rates. The clusters that

are reported under the PRC and SNOB methods have clear distinct features; we can interpret

the desired groups of gene with the highest interactions with other genes.

PRC is more computation efficient than SNOB since it does not require full Monte Carlo

simulations. However, in the examples we found that it estimates more concentrated clusters.

SNOB estimates more balanced clusters. Also, it is easier to implement with nonconjugate

distributions. For the PRC algorithm, the required normalizing constants complicate the

implemenation in nonconjugate problems.
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7.7 Appendices

7.7.1 R codes to carry out PRC for simulated data set

In this section, we show R codes for clustering the simulated data set using PRC method.

#

#########################

# useful functions

#########################

#

############

# sample n=1 from a Multinomial(p) distribution

############

rDiscreta<-function(p){

u<-runif(1)

P<-cumsum(p)

val<-sum(P<u)+1

val}

#

############

# calculate mean, lambda, alfa and beta of the posterior distribution given

# one observation yi when the variance of Yi is sigma^2/lambda

############

postparamvarunknown<-function(yi,mui,lambdai,alfai,betai){

munew<-(yi+(lambdai*mui))/(lambdai+1)

lambdanew<-lambdai+1

agamnew<-alfai+(1/2)

bgamnew<-betai+((lambdai*(yi-mui)**2)/(lambdai+1))/2

list(munew,lambdanew,agamnew,bgamnew)}

#

############

# calculate the density function of a t distribituion (yij, ni, mu, sigma)

############

dstudentt<-function(yij,ni,mu,desvio){

dens<-exp(lgamma((ni+1)/2)-lgamma(ni/2))/(sqrt(pi*ni)*desvio)*((1+(1/ni)*

((yij-mu)/desvio)**2)**(-(ni+1)/2))

return(dens)}

#
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############

# calculate mahalanobis distance between two multidim. normal distributions

############

MALAfunc<-function(mu0,mu1,sigma0,sigma1){

sigmap<-(sigma0+sigma1)/2

distmu<-t(mu1-mu0)

MALA<-sqrt(distmu%*%diag(1/sigmap)%*%t(distmu))}

#

#########################

# simulated data set

#########################

#

set.seed(100)

muvec<-matrix(c(0,0.5,1.1,-11.6,-8,1.7,3.1,1.9,-0.5,1.2,1.7,-11.7,-6.3,0.1,

2.3,2.4,0.5,-1.2,2.7,-11.6,-7,0.7,2.6,2.2,1,1.2,3.7,-11.6,-7.7,1.2,2.9,2.1),

nrow=4,byrow=TRUE)

sigmavec<-matrix(c(0.002140429, 0.001531872, 0.225287998, 0.053739488,

0.126138910, 0.112735647, 0.133862779, 0.002140429, 0.001798247,

0.006215775, 0.315767179, 0.231431127, 0.472012711,0.129508527,

1.008442513, 0.001798247,0.002172256, 0.015160350, 2.142055552,

0.885205346, 0.549862208, 3.155843303, 0.887398965, 0.002172256,

0.004303235, 0.011570390, 1.311111853, 1.026574670, 1.325584473,

0.319953786, 1.874197742, 0.004303235),nrow=4,byrow=TRUE)

Nt<-5000

compon<-numeric(Nt)

Y<-matrix(0,ncol=ncol(muvec),nrow=Nt)

for (i in 1:Nt){

compon[i]<-rDiscreta(rep(1/nrow(muvec),nrow(muvec)))

Y[i,]<-rnorm(ncol(muvec),muvec[compon[i],],sqrt(sigmavec[compon[i],]))}

#

covmat<-cov(Y)

decomp<-t(chol(covmat))

round(decomp%*%t(decomp),5)==round(covmat,5)

Ytransf<-t(solve(decomp)%*%t(Y))

media<-apply(Ytransf,2,mean)

for (j in 1:ncol(Ytransf)) Ytransf[,j]<-Ytransf[,j]-media[j]

Y<-Ytransf

Nt<-nrow(Y)
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#

#########################

# Run PRC

#########################

#

library(compiler)

enableJIT(3)

#

Yorig<-Y

componorig<-compon

replic<-10

vero<-numeric(replic)

#

for (mc in 1:replic){

#

set.seed(100)

alpha<-1

weight<-1/((1+alpha*sqrt(1:Nt)))

p<-ncol(Y) # dimension of multivariate distribution

muvec<-matrix(0,nrow=p,ncol=1) # G0 mean

lambdavec<-matrix(0.1,nrow=p,ncol=1) # G0 variance

alfavec<-matrix(5,nrow=p,ncol=1) # G0

betavec<-matrix(3,nrow=p,ncol=1) # G0

mixweigold<-1

#

dcomp<-sqrt(qchisq(.75, df=p))

for (j in 2:(Nt+1)){

for (k in 1:ncol(muvec)){

newpar<-postparamvarunknown(Y[j-1,],muvec[,k],lambdavec[,k],alfavec[,k],

betavec[,k])

muvec<-cbind(muvec,newpar[[1]])

lambdavec<-cbind(lambdavec,newpar[[2]])

alfavec<-cbind(alfavec,newpar[[3]])

betavec<-cbind(betavec,newpar[[4]])}

mixweigold<-c(mixweigold*(1-weight[j-1]),mixweigold*weight[j-1])

sigmavec<-matrix(0,ncol=ncol(muvec),nrow=nrow(muvec))

for (i in 1:nrow(muvec)){

for (k in 1:ncol(muvec)) sigmavec[i,k]<-1/(rgamma(1,alfavec[i,k],
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betavec[i,k]))/lambdavec[i,k]}

#

if (j>2){

MALA<-matrix(0,ncol=ncol(muvec)-1,nrow=ncol(muvec)-1)

for (i in 2:ncol(muvec)){

for (l in 2:ncol(muvec)){

MALA[i-1,l-1]<-MALAfunc(muvec[,i],muvec[,l],sigmavec[,i],sigmavec[,l])}}

for (i in 1:(ncol(muvec)-1)) MALA[i,i]<-100

#

while (min(MALA) < dcomp & ncol(muvec)>3){

index<-which(MALA==min(c(MALA)), arr.ind=TRUE)[1,]

i<-index[order(mixweigold[index])[2]]+1

l<-index[order(mixweigold[index])[1]]+1

muvec<-muvec[,-l]

lambdavec<-lambdavec[,-l]

alfavec<-alfavec[,-l]

betavec<-betavec[,-l]

sigmavec<-sigmavec[,-l]

mixweigold<-mixweigold[-l]

MALA<-MALA[,-(l-1)]

MALA<-MALA[-(l-1),]

mixweigold<-mixweigold/sum(mixweigold)}}}

#

dcomp<-sqrt(qchisq(.95, df=p))

MALA<-matrix(0,ncol=ncol(muvec),nrow=ncol(muvec))

for (i in 1:ncol(muvec)){

for (l in 1:ncol(muvec)){

MALA[i,l]<-MALAfunc(muvec[,i],muvec[,l],sigmavec[,i],sigmavec[,l])}}

for (i in 1:ncol(muvec)) MALA[i,i]<-100

while (min(MALA) < dcomp & ncol(muvec)>3){

index<-which(MALA==min(c(MALA)), arr.ind=TRUE)[1,]

if (min(index)==1){

i<-max(index)

l<-min(index)}

if (min(index)!=1){

i<-index[order(mixweigold[index])[2]]

l<-index[order(mixweigold[index])[1]]}

muvec<-muvec[,-l]
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lambdavec<-lambdavec[,-l]

alfavec<-alfavec[,-l]

betavec<-betavec[,-l]

sigmavec<-sigmavec[,-l]

mixweigold<-mixweigold[-l]

MALA<-MALA[,-l]

MALA<-MALA[-l,]

mixweigold<-mixweigold/sum(mixweigold)}

#

####### calculating the pseudo-marginal likelihood

#

prob_fim<-numeric()

prob<-numeric()

Sj<-numeric(Nt)

for (j in 1:Nt){

for (k in 1:length(mixweigold)){

ni<-2*alfavec[,k]

mu<-muvec[,k]

desvio<-sqrt((2*betavec[,k]*(1+lambdavec[,k]))/(ni*lambdavec[,k]))

prob[k]<-mixweigold[k]*prod(dstudentt(Y[j,],ni,mu,desvio))}

Sj[j]<-which((prob/sum(prob))==max((prob/sum(prob))))

prob_fim<-c(prob_fim,prob[Sj[j]])}

vero[mc]<-sum(log(prob_fim))

print(table(compon,Sj))

#

set.seed(310+mc)

neworder<-sample(1:nrow(Yorig),nrow(Yorig))

Y<-Yorig[neworder,]

compon<-componorig[neworder]

Nt<-nrow(Y)}

#

best<-which(vero==max(vero))-1

set.seed(310+best)

neworder<-sample(1:nrow(Yorig),nrow(Yorig))

Y<-Yorig[neworder,]

compon<-componorig[neworder]

Nt<-nrow(Y)

#
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########### run again the model with best order

#

set.seed(100)

alpha<-1

weight<-1/((1+alpha*sqrt(1:Nt)))

p<-ncol(Y) # dimension of multivariate distribution

muvec<-matrix(0,nrow=p,ncol=1) # G0 mean

lambdavec<-matrix(0.1,nrow=p,ncol=1) # G0 variance

alfavec<-matrix(5,nrow=p,ncol=1) # G0

betavec<-matrix(3,nrow=p,ncol=1) # G0

mixweigold<-1

#

dcomp<-sqrt(qchisq(.75, df=p))

for (j in 2:(Nt+1)){

for (k in 1:ncol(muvec)){

newpar<-postparamvarunknown(Y[j-1,],muvec[,k],lambdavec[,k],alfavec[,k],

betavec[,k])

muvec<-cbind(muvec,newpar[[1]])

lambdavec<-cbind(lambdavec,newpar[[2]])

alfavec<-cbind(alfavec,newpar[[3]])

betavec<-cbind(betavec,newpar[[4]])}

mixweigold<-c(mixweigold*(1-weight[j-1]),mixweigold*weight[j-1])

sigmavec<-matrix(0,ncol=ncol(muvec),nrow=nrow(muvec))

for (i in 1:nrow(muvec)){

for (k in 1:ncol(muvec)) sigmavec[i,k]<-1/(rgamma(1,alfavec[i,k],

betavec[i,k]))/lambdavec[i,k]}

#

if (j>2){

MALA<-matrix(0,ncol=ncol(muvec)-1,nrow=ncol(muvec)-1)

for (i in 2:ncol(muvec)){

for (l in 2:ncol(muvec)){

MALA[i-1,l-1]<-MALAfunc(muvec[,i],muvec[,l],sigmavec[,i],sigmavec[,l])}}

for (i in 1:(ncol(muvec)-1)) MALA[i,i]<-100

#

while (min(MALA) < dcomp & ncol(muvec)>3){

index<-which(MALA==min(c(MALA)), arr.ind=TRUE)[1,]

i<-index[order(mixweigold[index])[2]]+1

l<-index[order(mixweigold[index])[1]]+1
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muvec<-muvec[,-l]

lambdavec<-lambdavec[,-l]

alfavec<-alfavec[,-l]

betavec<-betavec[,-l]

sigmavec<-sigmavec[,-l]

mixweigold<-mixweigold[-l]

MALA<-MALA[,-(l-1)]

MALA<-MALA[-(l-1),]

mixweigold<-mixweigold/sum(mixweigold)}}}

#

dcomp<-sqrt(qchisq(.95, df=p))

MALA<-matrix(0,ncol=ncol(muvec),nrow=ncol(muvec))

for (i in 1:ncol(muvec)){

for (l in 1:ncol(muvec)){

MALA[i,l]<-MALAfunc(muvec[,i],muvec[,l],sigmavec[,i],sigmavec[,l])}}

for (i in 1:ncol(muvec)) MALA[i,i]<-100

while (min(MALA) < dcomp & ncol(muvec)>3){

index<-which(MALA==min(c(MALA)), arr.ind=TRUE)[1,]

if (min(index)==1){

i<-max(index)

l<-min(index)}

if (min(index)!=1){

i<-index[order(mixweigold[index])[2]]

l<-index[order(mixweigold[index])[1]]}

muvec<-muvec[,-l]

lambdavec<-lambdavec[,-l]

alfavec<-alfavec[,-l]

betavec<-betavec[,-l]

sigmavec<-sigmavec[,-l]

mixweigold<-mixweigold[-l]

MALA<-MALA[,-l]

MALA<-MALA[-l,]

mixweigold<-mixweigold/sum(mixweigold)}

#

prob_fim<-numeric()

prob<-numeric()

for (j in 1:Nt){

for (k in 1:length(mixweigold)){
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ni<-2*alfavec[,k]

mu<-muvec[,k]

desvio<-sqrt((2*betavec[,k]*(1+lambdavec[,k]))/(ni*lambdavec[,k]))

prob[k]<-mixweigold[k]*prod(dstudentt(Y[j,],ni,mu,desvio))}

prob_fim<-rbind(prob_fim,prob/sum(prob))}

Sj<-numeric(Nt)

for (j in 1:Nt) Sj[j]<-which(prob_fim[j,]==max(prob_fim[j,]))

table(compon,Sj)

#

# Updating parameters

#

K<-ncol(muvec)

Dim<-ncol(Y)

mu0<-matrix(0,ncol=1,nrow=Dim) # G0

lambda0<-matrix(0.1,nrow=Dim,ncol=1)

alfa0<-matrix(5,nrow=Dim,ncol=1)

beta0<-matrix(3,nrow=p,ncol=1)

#

nk<-numeric(K)

ykmean<-matrix(0,nrow=Dim,ncol=K)

ykvar<-matrix(0,nrow=Dim,ncol=K)

mupost<-matrix(0,nrow=Dim,ncol=K)

lambdapost<-matrix(0,nrow=Dim,ncol=K)

agampost<-matrix(0,nrow=Dim,ncol=K)

bgampost<-matrix(0,nrow=Dim,ncol=K)

for (k in 1:K){

nk[k]<-sum(Sj==k)

if (nk[k]==0){

ykmean[,k]<-matrix(0,ncol=1,nrow=Dim)

ykvar[,k]<-matrix(0,ncol=1,nrow=Dim)}

if (nk[k]>1){

ykmean[,k]<-apply(Y[which(Sj==k),],2,mean)

ykvar[,k]<-apply(Y[which(Sj==k),],2,var)*(nk[k]-1)}

if (nk[k]==1){

ykmean[,k]<-Y[which(Sj==k),]

ykvar[,k]<-matrix(0,ncol=1,nrow=Dim)}

mupost[,k]<-(ykmean[,k]*nk[k]+(lambda0*mu0))/(lambda0+nk[k])

lambdapost[,k]<-lambda0+nk[k]
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agampost[,k]<-alfa0+(nk[k]/2)

bgampost[,k]<-beta0+(ykvar[,k]+((nk[k]*lambda0*(ykmean[,k]-mu0)**2)/

(lambda0+nk[k])))/2}

muvec<-mupost

lambdavec<-lambdapost

alfavec<-agampost

betavec<-bgampost

sigma2vec<-matrix(0,ncol=ncol(agampost),nrow=nrow(agampost))

for (i in 1:nrow(sigma2vec)){

for (j in 1:ncol(sigma2vec)) sigma2vec[i,j]<-1/rgamma(1,alfavec[i,j],

betavec[i,j])}

#

prob_fim<-numeric()

prob<-numeric()

for (j in 1:Nt){

for (k in 1:length(mixweigold)) prob[k]<-mixweigold[k]*

prod(dnorm(Y[j,],muvec[,k],sqrt(sigma2vec[,k])))

prob_fim<-rbind(prob_fim,prob/sum(prob))}

Sj<-numeric(Nt)

for (j in 1:Nt) Sj[j]<-which(prob_fim[j,]==max(prob_fim[j,]))

table(compon,Sj)

7.7.2 R codes to carry out SNOB for simulated data set

In this section, we show R codes for clustering the simulated data set using SNOB method.

#

#########################

# useful functions

#########################

#

############

# sample n=1 from a Multinomial(p) distribution

############

rDiscreta<-function(p){

u<-runif(1)

P<-cumsum(p)

val<-sum(P<u)+1
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val}

#

############

# calculate the density function of a t distribituion (yij, ni, mu, sigma)

############

dstudentt<-function(yij,ni,mu,desvio){

dens<-exp(lgamma((ni+1)/2)-lgamma(ni/2))/(sqrt(pi*ni)*desvio)*((1+(1/ni)*

((yij-mu)/desvio)**2)**(-(ni+1)/2))

return(dens)}

#

############

# compute mean, lambda, alpha and beta of the posterior distribution

# given one observation yi when the variance of Yi is sigma^2

############

postparamvarunknown<-function(yi,mui,lambdai,alfai,betai){

munew<-(yi+(lambdai*mui))/(lambdai+1)

lambdanew<-lambdai+1

agamnew<-alfai+(1/2)

bgamnew<-betai+((lambdai*(yi-mui)**2)/(lambdai+1))/2

list(munew,lambdanew,agamnew,bgamnew)}

#

############

# compute mean, lambda, alfa and beta of the posterior distribution

# given many observations yi when the variance of Yi is sigma^2

############

postparamvarunyis<-function(yi,mui,lambdai,alfai,betai,nki){

if (nki>1){

ykmean<-apply(yi,2,mean)

yksumsquar<-apply(yi**2,2,sum)}

if (nki==1){

ykmean<-yi

yksumsquar<-yi**2}

munew<-(ykmean*nki+lambdai*mui)/(lambdai+nki)

lambdanew<-lambdai+nki

agamnew<-alfai+(nki/2)

s2<-yksumsquar-(nki*ykmean**2)

bgamnew<-betai+(s2+((nki*lambdai*(ykmean-mui)**2)/(lambdai+nki)))/2

list(munew,lambdanew,agamnew,bgamnew,ykmean,yksumsquar)}
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#

############

# compute the marginalized likelihood of yi

############

dmarglikeli<-function(mlkj,media,varia,lambda,agam,bgam,mu){

logdens<-(lgamma(mlkj/2+agam)-lgamma(agam))+((-mlkj/2)*log(2*pi))+

(0.5*(log(lambda)-log(mlkj+lambda)))+(agam*log(bgam))+((-(mlkj/2+agam))*

log(bgam+(varia/2)+((lambda*mlkj*((media-mu)**2))/(2*(mlkj+lambda)))))

return(logdens)}

#

############

# transform data using Cholesky decomposition

############

transfdata<-function(Y){ # Y is a matrix: rows represent different observations

# and columns represent different variables

covmat<-cov(Y)

decomp<-t(chol(covmat))

Ytransf<-t(solve(decomp)%*%t(Y))

media<-apply(Ytransf,2,mean)

for (j in 1:ncol(Ytransf)) Ytransf[,j]<-Ytransf[,j]-media[j]

return(Ytransf)}

#

############

# Gibbs to identify local cluster for each batch

############

Gibbs_local<-function(Y,Sj,burnin,amostrasfin,saltos,alpha,mu0,lambda0,

alfa0,beta0){

Nt<-nrow(Y)

Dim<-ncol(Y)

AmostrasTotal<-burnin+amostrasfin*saltos

nk<-table(Sj)

K<-length(nk)

ni0<-2*alfa0

mu0<-mu0

desvio0<-sqrt((2*beta0*(1+lambda0))/(ni0*lambda0))

#

ykmean<-matrix(0,nrow=Dim,ncol=K)

yksumsquar<-matrix(0,nrow=Dim,ncol=K)
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mupost<-matrix(0,nrow=Dim,ncol=K)

lambdapost<-matrix(0,nrow=Dim,ncol=K)

alfapost<-matrix(0,nrow=Dim,ncol=K)

betapost<-matrix(0,nrow=Dim,ncol=K)

for (k in 1:K){

param<-postparamvarunyis(Y[which(Sj==k),],mu0,lambda0,alfa0,beta0,nk[k])

mupost[,k]<-param[[1]]

lambdapost[,k]<-param[[2]]

alfapost[,k]<-param[[3]]

betapost[,k]<-param[[4]]

ykmean[,k]<-param[[5]]

yksumsquar[,k]<-param[[6]]}

#

for (int in 1:AmostrasTotal){

cat(’\n’,int)

for (i in 1:Nt){

nk<-numeric(K)

for (k in 1:K) nk[k]<-sum(Sj[-i]==k)

mupostnew<-mupost

lambdapostnew<-lambdapost

alfapostnew<-alfapost

betapostnew<-betapost

ykmeannew<-ykmean

yksumsquarnew<-yksumsquar

if (nk[Sj[i]]>0){

param<-postparamvarunyis(Y[-c(which(Sj!=Sj[i]),i),],mu0,lambda0,alfa0,

beta0,nk[Sj[i]])

mupostnew[,Sj[i]]<-param[[1]]

lambdapostnew[,Sj[i]]<-param[[2]]

alfapostnew[,Sj[i]]<-param[[3]]

betapostnew[,Sj[i]]<-param[[4]]

ykmeannew[,Sj[i]]<-param[[5]]

yksumsquarnew[,Sj[i]]<-param[[6]]}

prob<-numeric(K)

for (k in 1:K){

ni<-2*alfapostnew[,k]

mu<-mupostnew[,k]

desvio<-sqrt((2*betapostnew[,k]*(1+lambdapostnew[,k]))/(ni*
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lambdapostnew[,k]))

prob[k]<-nk[k]*prod(dstudentt(Y[i,],ni,mu,desvio))}

prob<-c(prob,alpha*prod(dstudentt(Y[i,],ni0,mu0,desvio0)))

Snew<-rDiscreta(prob/sum(prob))

#

if (Snew != Sj[i] & Snew <= K){

Sj[i]<-Snew

nk[Sj[i]]<-nk[Sj[i]]+1

mupost<-mupostnew

lambdapost<-lambdapostnew

alfapost<-alfapostnew

betapost<-betapostnew

ykmean<-ykmeannew

yksumsquar<-yksumsquarnew

param<-postparamvarunyis(Y[which(Sj==Sj[i]),],mu0,lambda0,alfa0,

beta0,nk[Sj[i]])

mupost[,Sj[i]]<-param[[1]]

lambdapost[,Sj[i]]<-param[[2]]

alfapost[,Sj[i]]<-param[[3]]

betapost[,Sj[i]]<-param[[4]]

ykmean[,Sj[i]]<-param[[5]]

yksumsquar[,Sj[i]]<-param[[6]]}

if (Snew != Sj[i] & Snew > K){

Sj[i]<-Snew

nk<-c(nk,1)

mupost<-mupostnew

lambdapost<-lambdapostnew

alfapost<-alfapostnew

betapost<-betapostnew

ykmean<-ykmeannew

yksumsquar<-yksumsquarnew

param<-postparamvarunyis(Y[which(Sj==Sj[i]),],mu0,lambda0,alfa0,beta0,

nk[Sj[i]])

mupost<-cbind(mupost,param[[1]])

lambdapost<-cbind(lambdapost,param[[2]])

alfapost<-cbind(alfapost,param[[3]])

betapost<-cbind(betapost,param[[4]])

ykmean<-cbind(ykmean,param[[5]])
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yksumsquar<-cbind(yksumsquar,param[[6]])}

while (length(table(Sj))<max(Sj)){ # exclude empty clusters

categr<-as.numeric(as.character(data.frame(table(Sj))[,1]))

categd<-seq(1:length(table(Sj)))

dif<-which(categr!=categd)

Sj[which(Sj>dif[1])]<-Sj[which(Sj>dif[1])]-1

mupost<-matrix(c(mupost[,-dif[1]]),nrow=Dim)

lambdapost<-matrix(c(lambdapost[,-dif[1]]),nrow=Dim)

alfapost<-matrix(c(alfapost[,-dif[1]]),nrow=Dim)

betapost<-matrix(c(betapost[,-dif[1]]),nrow=Dim)

ykmean<-matrix(c(ykmean[,-dif[1]]),nrow=Dim)

yksumsquar<-matrix(c(yksumsquar[,-dif[1]]),nrow=Dim)

K<-ncol(mupost)}

if (length(table(Sj))<K){

mupost<-matrix(c(mupost[,-K]),nrow=Dim)

lambdapost<-matrix(c(lambdapost[,-K]),nrow=Dim)

alfapost<-matrix(c(alfapost[,-K]),nrow=Dim)

betapost<-matrix(c(betapost[,-K]),nrow=Dim)

ykmean<-matrix(c(ykmean[,-K]),nrow=Dim)

yksumsquar<-matrix(c(yksumsquar[,-K]),nrow=Dim)

K<-ncol(mupost)}

K<-ncol(mupost)}

if (int>burnin & int%%saltos==0) cat(’’,Sj,file=paste(caminho,"Sj_batch",

b,".txt",sep=""),append=T)}}

#

############

# Define final local cluster for each batch

############

local_clust<-function(caminho,arqu,Nt,thresh){

Sj<-scan(file=paste(caminho,arqu,sep=""))

Sj<-matrix(Sj,ncol=Nt,byrow=TRUE)

#

Sj.j<-Sj

prob.eq<-matrix(0,nrow=ncol(Sj.j),ncol=ncol(Sj.j))

for (i in 1:ncol(Sj.j)){

for (j in 1:ncol(Sj.j)){

prob.eq[i,j]<-round(sum(Sj.j[,i]==Sj.j[,j])/length(Sj.j[,i]),4)*100}}

clust<-c(1,rep(0,(ncol(Sj.j)-1)))
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for (i in 2:ncol(Sj.j)){

if (max(prob.eq[i,1:(i-1)])>thresh) clust[i]<-clust[which(prob.eq[i,1:(i-1)]

==max(prob.eq[i,1:(i-1)]))[1]] else clust[i]<-max(clust[1:(i-1)]+1)}

thesing<-0.3

singl<-which(clust %in% which(table(clust)==1))

if (length(singl)>1){

prob.eq.sin<-prob.eq[singl,]

for (i in 1:nrow(prob.eq.sin)){

prob.eq.sin[i,singl[i]]<-0

if (max(prob.eq.sin[i,])>thesing) clust[singl[i]]<-clust[which(prob.eq.sin[i,]

==max(prob.eq.sin[i,]))[1]]}

while (length(table(clust))<max(clust)){ # exclude empty clusters

categr<-as.numeric(as.character(data.frame(table(clust))[,1]))

categd<-seq(1:length(table(clust)))

dif<-which(categr!=categd)

clust[which(clust>dif[1])]<-clust[which(clust>dif[1])]-1}}

return(clust)}

#

############

# Gibbs to identify global clusters

############

Gibbs_global<-function(batches,name_Yb,name_clustb,Zj,burnin,amostrasfin,

saltos,alpha,mu0,lambda0,alfa0,beta0){

AmostrasTotal<-burnin+amostrasfin*saltos

Klocal<-numeric()

for (b in 1:batches) Klocal<-c(Klocal,length(table(get(paste(name_clustb,

b,sep="")))))

nk<-numeric(sum(Klocal))

Dim<-ncol(get(paste(name_Yb,b,sep="")))

ykmean<-matrix(0,nrow=Dim,ncol=sum(Klocal))

yksumsquar<-matrix(0,nrow=Dim,ncol=sum(Klocal))

clus<-1

for (b in 1:batches){

for (k in 1:Klocal[b]){

nk[clus]<-length(which(get(paste(name_clustb,b,sep=""))==k))

if (nk[clus]>1){

ykmean[,clus]<-apply(get(paste(name_Yb,b,sep=""))[which(get(paste(

name_clustb,b,sep=""))==k),],2,mean)
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yksumsquar[,clus]<-apply(get(paste(name_Yb,b,sep=""))[which(get(

paste(name_clustb,b,sep=""))==k),]**2,2,sum)}

if (nk[clus]==1){

ykmean[,clus]<-get(paste(name_Yb,b,sep=""))[which(get(paste(

name_clustb,b,sep=""))==k),]

yksumsquar[,clus]<-get(paste(name_Yb,b,sep=""))[which(get(paste(

name_clustb,b,sep=""))==k),]**2}

clus<-clus+1}}

#

Ynk<-nk

Ymean<-ykmean

Ysum<-matrix(0,ncol=ncol(Ymean),nrow=nrow(Ymean))

for (i in 1:length(Ynk)) Ysum[,i]<-Ymean[,i]*Ynk[i]

Ysumsquar<-yksumsquar

Nt<-ncol(Ymean)

#

K<-length(table(Zj))

nk<-numeric(K)

for (k in 1:K) nk[k]<-sum(Ynk[which(Zj==k)])

yksum<-matrix(0,ncol=K,nrow=nrow(Ymean))

ykmean<-matrix(0,ncol=K,nrow=nrow(Ymean))

yksumsquar<-matrix(0,ncol=K,nrow=nrow(Ymean))

for (k in 1:K){

if (length(which(Zj==k))>1){

yksum[,k]<-apply(Ysum[,which(Zj==k)],1,sum)

yksumsquar[,k]<-apply(Ysumsquar[,which(Zj==k)],1,sum)}

if (length(which(Zj==k))==1){

yksum[,k]<-Ysum[,which(Zj==k)]

yksumsquar[,k]<-Ysumsquar[,which(Zj==k)] }

ykmean[,k]<-yksum[,k]/nk[k]}

mupost<-matrix(0,nrow=Dim,ncol=K)

lambdapost<-matrix(0,nrow=Dim,ncol=K)

alfapost<-matrix(0,nrow=Dim,ncol=K)

betapost<-matrix(0,nrow=Dim,ncol=K)

for (k in 1:K){

mupost[,k]<-(ykmean[,k]*nk[k]+lambda0*mu0)/(lambda0+nk[k])

lambdapost[,k]<-lambda0+nk[k]

alfapost[,k]<-alfa0+(nk[k]/2)
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s2<-yksumsquar[,k]-(nk[k]*ykmean[,k]**2)

betapost[,k]<-beta0+(s2+((nk[k]*lambda0*(ykmean[,k]-mu0)**2)/

(lambda0+nk[k])))/2}

#

for (int in 1:AmostrasTotal){

cat(’\n’, int)

for (i in 1:Nt){

nk<-numeric(K)

for (k in 1:K) nk[k]<-sum(Ynk[-c(which(Zj!=k),i)])

mupostnew<-mupost

lambdapostnew<-lambdapost

alfapostnew<-alfapost

betapostnew<-betapost

yksumnew<-yksum

ykmeannew<-ykmean

yksumsquarnew<-yksumsquar

if (nk[Zj[i]]>0){

yksumnew[,Zj[i]]<-yksum[,Zj[i]]-Ysum[,i]

ykmeannew[,Zj[i]]<-yksumnew[,Zj[i]]/(nk[Zj[i]])

yksumsquarnew[,Zj[i]]<-yksumsquar[,Zj[i]]-Ysumsquar[,i]

mupostnew[,Zj[i]]<-(ykmeannew[,Zj[i]]*nk[Zj[i]]+lambda0*mu0)/(lambda0+nk[Zj[i]])

lambdapostnew[,Zj[i]]<-lambda0+nk[Zj[i]]

alfapostnew[,Zj[i]]<-alfa0+(nk[Zj[i]]/2)

s2<-yksumsquarnew[,Zj[i]]-(nk[Zj[i]]*ykmeannew[,Zj[i]]**2)

betapostnew[,Zj[i]]<-beta0+(s2+((nk[Zj[i]]*lambda0*(ykmeannew[,Zj[i]]-mu0)**2)/

(lambda0+nk[Zj[i]])))/2}

prob<-numeric(K)

varia<-Ysumsquar[,i]-(Ynk[i]*Ymean[,i]**2)

for (k in 1:K) prob[k]<-sum(dmarglikeli(Ynk[i],Ymean[,i],varia,

lambdapostnew[,k],alfapostnew[,k],betapostnew[,k],mupostnew[,k]))

prob<-c(prob,sum(dmarglikeli(Ynk[i],Ymean[,i],varia,lambda0,alfa0,beta0,mu0)))

mk<-nk

if (nk[Zj[i]]==0) mk[Zj[i]]<-1

mk<-c(lgamma(mk+Ynk[i])-lgamma(mk),(log(alpha)+lgamma(Ynk[i])))

prob<-mk+prob

prob<-exp(prob-max(prob))

if (nk[Zj[i]]==0) prob[Zj[i]]<-0

Snew<-rDiscreta(prob/sum(prob))
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#

if (Snew != Zj[i] & Snew <= K){

Zj[i]<-Snew

nk[Zj[i]]<-nk[Zj[i]]+Ynk[i]

mupost<-mupostnew

lambdapost<-lambdapostnew

alfapost<-alfapostnew

betapost<-betapostnew

yksum<-yksumnew

ykmean<-ykmeannew

yksumsquar<-yksumsquarnew

yksum[,Zj[i]]<-yksum[,Zj[i]]+Ysum[,i]

ykmean[,Zj[i]]<-yksum[,Zj[i]]/nk[Zj[i]]

yksumsquar[,Zj[i]]<-yksumsquar[,Zj[i]]+Ysumsquar[,i]

mupost[,Zj[i]]<-(ykmean[,Zj[i]]*nk[Zj[i]]+lambda0*mu0)/(lambda0+nk[Zj[i]])

lambdapost[,Zj[i]]<-lambda0+nk[Zj[i]]

alfapost[,Zj[i]]<-alfa0+(nk[Zj[i]]/2)

s2<-yksumsquar[,Zj[i]]-(nk[Zj[i]]*ykmean[,Zj[i]]**2)

betapost[,Zj[i]]<-beta0+(s2+((nk[Zj[i]]*lambda0*(ykmean[,Zj[i]]-mu0)**2)/

(lambda0+nk[Zj[i]])))/2}

if (Snew != Zj[i] & Snew > K){

Zj[i]<-Snew

nk<-c(nk,Ynk[i])

yksum<-cbind(yksumnew,Ysum[,i])

ykmean<-cbind(ykmeannew,Ymean[,i])

yksumsquar<-cbind(yksumsquarnew,Ysumsquar[,i])

mupost<-cbind(mupostnew,(ykmean[,Zj[i]]*nk[Zj[i]]+lambda0*mu0)/

(lambda0+nk[Zj[i]]))

lambdapost<-cbind(lambdapostnew,lambda0+nk[Zj[i]])

alfapost<-cbind(alfapostnew,alfa0+(nk[Zj[i]]/2))

s2<-yksumsquar[,Zj[i]]-(nk[Zj[i]]*ykmean[,Zj[i]]**2)

betapost<-cbind(betapostnew,beta0+(s2+((nk[Zj[i]]*lambda0*

(ykmean[,Zj[i]]-mu0)**2)/(lambda0+nk[Zj[i]])))/2)}

while (length(table(Zj))<max(Zj)){ # exclude empty clusters

categr<-as.numeric(as.character(data.frame(table(Zj))[,1]))

categd<-seq(1:length(table(Zj)))

dif<-which(categr!=categd)

Zj[which(Zj>dif[1])]<-Zj[which(Zj>dif[1])]-1
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mupost<-matrix(c(mupost[,-dif[1]]),nrow=Dim)

lambdapost<-matrix(c(lambdapost[,-dif[1]]),nrow=Dim)

alfapost<-matrix(c(alfapost[,-dif[1]]),nrow=Dim)

betapost<-matrix(c(betapost[,-dif[1]]),nrow=Dim)

yksum<-matrix(c(yksum[,-dif[1]]),nrow=Dim)

ykmean<-matrix(c(ykmean[,-dif[1]]),nrow=Dim)

yksumsquar<-matrix(c(yksumsquar[,-dif[1]]),nrow=Dim)

K<-ncol(mupost)}

if (length(table(Zj))<K){

mupost<-matrix(c(mupost[,-K]),nrow=Dim)

lambdapost<-matrix(c(lambdapost[,-K]),nrow=Dim)

alfapost<-matrix(c(alfapost[,-K]),nrow=Dim)

betapost<-matrix(c(betapost[,-K]),nrow=Dim)

yksum<-matrix(c(yksum[,-K]),nrow=Dim)

ykmean<-matrix(c(ykmean[,-K]),nrow=Dim)

yksumsquar<-matrix(c(yksumsquar[,-K]),nrow=Dim)

K<-ncol(mupost)}

K<-ncol(mupost)}

if (int>burnin & int%%saltos==0) cat(’’,Zj,file=paste(caminho,

"Global_cluster.txt",sep=""),append=T)}}

#

#########################

# data set

#########################

#

set.seed(100)

muvec<-matrix(c(0,0.5,1.1,-11.6,-8,1.7,3.1,1.9,-0.5,1.2,1.7,-11.7,-6.3,0.1,

2.3,2.4,0.5,-1.2,2.7,-11.6,-7,0.7,2.6,2.2,1,1.2,3.7,-11.6,-7.7,1.2,2.9,2.1),

nrow=4,byrow=TRUE)

sigmavec<-matrix(c(0.002140429, 0.001531872, 0.225287998, 0.053739488,

0.126138910, 0.112735647, 0.133862779, 0.002140429, 0.001798247, 0.006215775,

0.315767179, 0.231431127, 0.472012711, 0.129508527, 1.008442513, 0.001798247,

0.002172256, 0.015160350, 2.142055552, 0.885205346, 0.549862208, 3.155843303,

0.887398965, 0.002172256,0.004303235, 0.011570390, 1.311111853, 1.026574670,

1.325584473, 0.319953786, 1.874197742, 0.004303235),nrow=4,byrow=TRUE)

Nt<-5000

compon<-numeric(Nt)

Y<-matrix(0,ncol=ncol(muvec),nrow=Nt)
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for (i in 1:Nt){

compon[i]<-rDiscreta(rep(1/nrow(muvec),nrow(muvec)))

Y[i,]<-rnorm(ncol(muvec),muvec[compon[i],],sqrt(sigmavec[compon[i],]))}

dados<-transfdata(Y)

#

batches<-5 # number of shards

amostra<-1:nrow(dados)

for (b in 1:batches){

assign(paste("b",b,sep=""),sort(sample(amostra,nrow(dados)/batches)))

assign(paste("Yb",b,sep=""),dados[get(paste("b",b,sep="")),])

assign(paste("componb",b,sep=""),compon[get(paste("b",b,sep=""))])

amostra<-amostra[-which(amostra %in% get(paste("b",b,sep="")))]}

#

caminho<-"/XXXX/XXX/" # this is the location of the results’ files.

#

#########################

# Local clusters

#########################

#

library(compiler)

enableJIT(3)

#

for (b in 1:batches){ # can be parallelized

Y<-get(paste("Yb",b,sep=""))

Nt<-nrow(Y)

Dim<-ncol(Y)

#

# Initialize Sj and hyperparameters

#

Sj<-rep(1,nrow(Y)) # local cluster’s membership indicator starting point

amostrasfin<-5000 # sample size after burnin and jumps

burnin<-5000 # burnin size

saltos<-5 # jumps size

set.seed(100)

alpha<-1 # total mass parameter of DP

mu0<-matrix(0,ncol=1,nrow=Dim) # G0

lambda0<-matrix(0.1,nrow=Dim,ncol=1) # G0

alfa0<-matrix(5,nrow=Dim,ncol=1) # G0

211



7.7 Appendices

beta0<-matrix(3,nrow=Dim,ncol=1) # G0

#

# run Gibbs to estimate local cluster

#

Gibbs_local(Y,Sj,burnin,amostrasfin,saltos,alpha,mu0,lambda0,alfa0,beta0)}

#

# Determine final local clusters

#

batches<-5

Nt<-c(rep(1000,batches)) # number of observations in each batch

thresh<-0.5*100

#

library(compiler)

enableJIT(3)

for (b in 1:batches) assign(paste("clust",b,sep=""),local_clust(caminho,

paste("Sj_batch",b,".txt",sep=""),Nt[b],thresh))

#

#########################

# Global clusters

#########################

#

library(compiler)

enableJIT(3)

#

# Initialize Zj and posterior parameters

#

set.seed(100)

alpha<-1

mu0<-matrix(0,ncol=1,nrow=Dim) # G0

lambda0<-matrix(0.1,nrow=Dim,ncol=1) # G0

alfa0<-matrix(5,nrow=Dim,ncol=1) # G0

beta0<-matrix(3,nrow=Dim,ncol=1) # G0

#

Klocal<-numeric()

for (b in 1:batches) Klocal<-c(Klocal,length(table(get(paste(

"clust",b,sep="")))))

Zj<-seq(1:sum(Klocal)) # global cluster’s membership indicator starting point

amostrasfin<-5000 # sample size after burnin and jumps
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burnin<-5000 # burnin size

saltos<-5 # jumps size

#

# Run Gibbs sampler to find global clustes

#

Gibbs_global(batches,"Yb","clust",Zj,burnin,amostrasfin,saltos,alpha,mu0,

lambda0,alfa0,beta0)

#

# Determine final global clusters

#

Nt<-sum(Klocal)

thresh<-0.5*100

clust_f<-local_clust(caminho,paste("Global_cluster.txt",sep=""),Nt,thresh)

#

# Allocate all observation in the final global clusters

#

clust_local<-get(paste("clust",1,sep=""))

for (b in 2:batches) clust_local<-c(clust_local,get(paste(

"clust",b,sep=""))+max(clust_local))

for (i in 1:length(clust_local)) clust_local[i]<-clust_f[clust_local[i]]
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8

Conclusions

We describe a generalization of the dependence structure of a mixture model and propose

data-driven Bayesian procedure to estimate models with unknown dependence relationship and

number of components. Some important and useful models in Genetics and Molecular Biology:

HMM and QTL mapping are special cases.

The proposed methodology for QTL mapping in pedigree data also estimates missing parents

genotype and considers the correlation between close loci on the same chromosome to estimate

nonfounder genotype, simplify likelihood definition and improve the Mendelian probability of

inheritance.

These methods present a good performance under tested situations and applications to

simulated and real data illustrate situations where the proposed models are usually more

suitable than the conventional models. The proposed methods improve the mixing of the

MCMC, implying in faster convergence. This permits to work with shorter sequences in the

simulation process which is a consequence of better proposals in transdimensional moves. We

also discuss some Bayesian diagnostic measures and suggest applying them in QTL mapping

model checking.

For clustering genes, we propose three nonparametric Bayesian model-based algorithm:

the marginal NDP scheme, the PRC algorithm and the SNOB method. The first method

is able to cluster distributions and the two latter algorithms cluster big data. The PRC is an

approximate method which requires a single cycle of simple deterministic calculations for each

observation under study. The SNOB is an exact method that finds global clusters in a parallel

and distributed algorithm.

All proposed clustering methods show good performance to classify simulated and real data

sets. Compared with traditional clustering algorithms including k-means, DBSCAN, SUGS and
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the EM algorithm, proposed algorithms have favorable misclassification rates and the clusters

that are reported under proposed methods have clear distinct features.
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