• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.104.2018.tde-13112018-160231
Documento
Autor
Nome completo
Ian Meneghel Danilevicz
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2018
Orientador
Banca examinadora
Ehlers, Ricardo Sandes (Presidente)
Leandro, Roseli Aparecida
Prates, Marcos Oliveira
Título em inglês
Detecting Influential observations in spatial models using Bregman divergence
Palavras-chave em inglês
Bayesian inference
Bregman divergence
Hamiltonian Monte Carlo
Heteroscedasticity
Influential points
spatial models
Resumo em inglês
How to evaluate if a spatial model is well ajusted to a problem? How to know if it is the best model between the class of conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models, including homoscedasticity and heteroscedasticity cases? To answer these questions inside Bayesian framework, we propose new ways to apply Bregman divergence, as well as recent information criteria as widely applicable information criterion (WAIC) and leave-one-out cross-validation (LOO). The functional Bregman divergence is a generalized form of the well known Kullback-Leiber (KL) divergence. There is many special cases of it which might be used to identify influential points. All the posterior distributions displayed in this text were estimate by Hamiltonian Monte Carlo (HMC), a optimized version of Metropolis-Hasting algorithm. All ideas showed here were evaluate by both: simulation and real data.
Título em português
Detecção de observações influentes em modelos espaciais usando divergência de Bregman
Palavras-chave em português
Divergência de Bregman
Heteroscedasticidade
Inferência Bayesiana
Modelos espaciais
Monte Carlo Hamiltoniano
Pontos influentes
Resumo em português
Como avaliar se um modelo espacial está bem ajustado? Como escolher o melhor modelo entre muitos da classe autorregressivo condicional (CAR) e autorregressivo simultâneo (SAR), homoscedásticos e heteroscedásticos? Para responder essas perguntas dentro do paradigma bayesiano, propomos novas formas de aplicar a divergência de Bregman, assim como critérios de informação bastante recentes na literatura, são eles o widely applicable information criterion (WAIC) e validação cruzada leave-one-out (LOO). O funcional de Bregman é uma generalização da famosa divergência de Kullback-Leiber (KL). Há diversos casos particulares dela que podem ser usados para identificar pontos influentes. Todas as distribuições a posteriori apresentadas nesta dissertação foram estimadas usando Monte Carlo Hamiltoniano (HMC), uma versão otimizada do algoritmo Metropolis-Hastings. Todas as ideias apresentadas neste texto foram submetidas a simulações e aplicadas em dados reais.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-11-13
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.