• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
Document
Author
Full name
Cristel Ecaterin Vera Tapia
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2015
Supervisor
Committee
Rodriguez, Pablo Martin (President)
Coletti, Cristian Favio
Lebensztayn, Élcio
Title in Portuguese
Processos de ramificação com aplicações em biologia
Keywords in Portuguese
Processos de ramificação
Abstract in Portuguese
Estudamos a teoria de processos de ramicação de Galton-Watson a tempo discreto e as ferramentas probabilísticas necessárias para analisa-los. Na primeira etapa, demos um tratamento básico de processos de ramicação, isto e, assumimos que as partículas são iguais e que a distribuição do número de descendentes diretos de cada partícula e sempre a mesma. Também incluímos resultados sobre o comportamento limite para os casos subcrítico, crítico e supercrítico. Posteriormente, consideramos uma generalização das características assumidas na etapa anterior, baseada em processos de Galton-Watson em meios variáveis, onde a distribuição do número de descendentes diretos de uma partícula varia de geração em geração. Estudamos e provamos teoremas limite. Finalmente, discutimos dois modelos de processos de ramificação binária com aplicações em biologia.
Title in English
Branching processes with applications in biology
Keywords in English
Branching processes
Abstract in English
We study the theory of Galton-Watson branching processes at discrete time and the necessary probabilistic tools to analyze them. In the first stage, was given a basic treatment of the branching processes, that is, it was assumed that all the particles are equal and that the distribution of the number of offspring produced by a particle is always the same. Also were included some results about the asymptotic behavior for the subcritical, critical and supercritical cases. Afterwards, was considered a generalization of the characteristics assumed in the previous stage, based on Galton-Watson processes in varying environments, where the distribution of offspring produced by a particle varies from generation to generation. Were studied and proved limit theorems. Finally, were discussed two models of binary branching processes with applications in biology.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-08-13
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.