• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
Document
Author
Full name
Renata Soares da Costa
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2016
Supervisor
Committee
Tomazella, Vera Lucia Damasceno (President)
Calsavara, Vinícius Fernando
Perdoná, Gleici da Silva Castro
Title in Portuguese
Modelos multiestado com fragilidade
Keywords in Portuguese
Análise de sobrevivência
Modelos de fragilidade
Modelos Multiestado
Abstract in Portuguese
Frequentemente eventos intermediários fornecem informações mais detalhadas sobre o processo da doença ou recuperação, por exemplo, e permitem uma maior precisão na previsão do prognóstico de pacientes. Tais eventos não fatais durante o curso da doença podem ser vistos como transições de um estado para outro. A ideia básica dos modelos multiestado é que o indivíduo se move através de uma serie de estados em tempo contínuo, sendo possível estimar as probabilidades e intensidades de transição entre eles e o efeito das covariáveis associadas a cada transição. Muitos estudos incluem o agrupamento dos tempos de sobrevivência como, por exemplo, em estudos multicêntricos, e também é de interesse estudar a evolução dos pacientes ao longo do tempo, caracterizando assim dados multiestado agrupados. Devido ao fato de os dados virem de diferentes centros/grupos, os tempos de falha desses indivíduos estarem agrupados e a fatores de risco comuns não observados, é interessante considerar o uso de fragilidades para que possamos capturar a heterogeneidade entre os grupos no risco para os diferentes tipos de transição, além de considerar a estrutura de dependência entre transições dos indivíduos de um mesmo grupo. Neste trabalho apresentamos a metodologia dos modelos multiestado, dos modelos de fragilidade e, em seguida, a integração dos modelos multiestado com modelos de fragilidade, tratando do seu processo de estimação paramétrica e semiparamétrica. O estudo de simulação realizado mostrou a importância de considerarmos fragilidade sem modelos multiestado agrupados, pois sem considerá-las, as estimativas tornam-se viesadas. Além disso, verificamos as propriedades frequentistas dos estimadores do modelo multiestado com fragilidades aninhadas. Por fim, como um exemplo de aplicação a um conjunto de dados reais, utilizamos o processo de recuperação de transplante de medula óssea de pacientes tratados em quatro hospitais. Fizemos uma comparação de modelos por meio das medidas de qualidade do ajuste AIC e BIC, chegando à conclusão de que o modelo que considera dois efeitos aleatórios (uma para o hospital e outro para a interação transição-hospital) ajusta-se melhor aos dados. Além de considerar a heterogeneidade entre os hospitais, tal modelo também considera a heterogeneidade entre os hospitais em cada transição. Sendo assim, os valores das fragilidades estimadas da interação transição-hospital revelam o quão frágeis os pacientes de cada hospital são para experimentarem determinado tipo de evento/transição.
Title in English
Multistate models with frailty
Keywords in English
Frailty Models
Multistate Models
Survival Analysis
Abstract in English
Often intermediate events provide more detailed information about the disease process or recovery, for example, and allow greater accuracy in predicting the prognosis of patients. Such non-fatal events during the course of the disease can be seen as transitions from one state to another. The basic idea of a multistate models is that the person moves through a series of states in continuous time, it is possible to estimate the transition probabilities and intensities between them and the effect of covariates associated with each transition. Many studies include the grouping of survival times, for example, in multi-center studies, and is also of interest to study the evolution of patients over time,characterizing grouped multistate data. Because the data coming from different centers/groups, the failure times these individuals are grouped and the common risk factors not observed, it is interesting to consider the use of frailty so that we can capture the heterogeneity between the groups at risk for different types of transition, in addition to considering the dependence structure between transitions of individuals of the same group. In this work we present the methodology of multistate models, frailty models and then the integration of models with multi-state fragility models, dealing with the process of parametric and semi-parametric estimation. The conducted simulation study showed the importance of considering frailty in grouped multistate models, because without conside- ring them, the estimates become biased. Furthermore, we find the frequentist properties of estimators of multistate model with nested frailty. Finally, as an application example to a set of real data, we use the process of bone marrow transplantation recovery of patients in four hospitals. We did a comparison of models through quality measures setting AIC and BIC, coming to the conclusion that the model considers two random effects (one for the hospital and another for interaction transition-hospital) fits the data better. In addition to considering the heterogeneity between hospitals, such a model also considers the heterogeneity between hospitals in each transition. Thus,the values of the frailty estimated interaction transition-hospital reveal how fragile patients from each hospital are to experience certain type of event/transition.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-08-13
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.