• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
Document
Author
Full name
Marcelo Henrique Casagrande
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2016
Supervisor
Committee
Diniz, Carlos Alberto Ribeiro (President)
Azevedo, Caio Lucidius Naberezny
Colosimo, Enrico Antônio
Title in Portuguese
Comparação de métodos de estimação para problemas com colinearidade e/ou alta dimensionalidade (p > n )
Keywords in Portuguese
Alta dimensionalidade
LASSO
Mínimos quadrados parciais
Regressão por componentes principais
Regressão ridge
Abstract in Portuguese
Este trabalho apresenta um estudo comparativo do poder de predição de quatro métodos de regressão adequados para situações nas quais os dados, dispostos na matriz de planejamento, apresentam sérios problemas de multicolinearidade e/ou de alta dimensionalidade, em que o número de covariáveis é maior do que o número de observações. No presente trabalho, os métodos abordados são: regressão por componentes principais, regressão por mínimos quadrados parciais, regressão ridge e LASSO. O trabalho engloba simulações, em que o poder preditivo de cada uma das técnicas é avaliado para diferentes cenários definidos por número de covariáveis, tamanho de amostra e quantidade e intensidade de coeficientes (efeitos) significativos, destacando as principais diferenças entre os métodos e possibilitando a criação de um guia para que o usuário possa escolher qual metodologia usar com base em algum conhecimento prévio que o mesmo possa ter. Uma aplicação em dados reais (não simulados) também é abordada.
Title in English
Comparison of estimation methods for problems with collinear and/or high dimensionality (p > n)
Keywords in English
Highdimensionality
LASSO
Partial least squares
Principal component regression
Ridge regression
Abstract in English
This paper presents a comparative study of the predictive power of four suitable regression methods for situations in which data, arranged in the planning matrix, are very poorly multicolinearity and / or highdimensionality, wherein the number of covariatesis greater the number of observations. In this study, the methods discussed are: principal component regression,partial least squares regression,ridge regression and LASSO. The work includes simulations, where in the predictive power of each of the techniques is evaluated for different scenarios defined by the number of covariates, sample size and quantity and intensity ratios (effects) significant, high lighting the main dffierences between the methods and allowing for the creating a guide for the user to choose which method to use based on some prior knowledge that it may have. An applicationon real data (not simulated) is also addressed.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-08-13
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.