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“Remember that all models are wrong; the practical question is

how wrong do they have to be to not be useful.”

(George Box)





ABSTRACT

VAZ, A. F. Improved quantification under dataset shift. 2018. 49 p. Dissertação (Mes-
trado em Estatística – Programa Interinstitucional de Pós-Graduação em Estatística) – Instituto
de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2018.

Several machine learning applications use classifiers as a way of quantifying the prevalence of
positive class labels in a target dataset, a task named quantification. For instance, a naive way of
determining what proportion of positive reviews about given product in the Facebook with no
labeled reviews is to (i) train a classifier based on Google Shopping reviews to predict whether a
user likes a product given its review, and then (ii) apply this classifier to Facebook posts about
that product. Unfortunately, it is well known that such a two-step approach, named Classify and
Count, fails because of data set shift, and thus several improvements have been recently proposed
under an assumption named prior shift. However, these methods only explore the relationship
between the covariates and the response via classifiers and none of them take advantage of the
fact that one often has access to a few labeled samples in the target set. Moreover, the literature
lacks in approaches that can handle a target population that varies with another covariate; for
instance: How to accurately estimate how the proportion of new posts or new webpages in
favor of a political candidate varies in time? We propose novel methods that fill these important
gaps and compare them using both real and artificial datasets. Finally, we provide a theoretical
analysis of the methods.

Keywords: Quantification, Data set shift, Prior shift, Machine Learning.





RESUMO

VAZ, A. F. Quantificação em problemas com mudança de domínio. 2018. 49 p. Disserta-
ção (Mestrado em Estatística – Programa Interinstitucional de Pós-Graduação em Estatística) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2018.

Muitas aplicações de aprendizado de máquina usam classificadores para determinar a prevalência
da classe positiva em um conjunto de dados de interesse, uma tarefa denominada quantificação.
Por exemplo, uma maneira ingênua de determinar qual a proporção de postagens positivas sobre
um determinado protuto no Facebook sem ter resenhas rotuladas é (i) treinar um classificador
baseado em resenhas do Google Shopping para prever se um usuário gosta de um produto
qualquer, e então (ii) aplicar esse classificador às postagens do Facebook relacionados ao
produtos de interesse. Infelizmente, é sabido que essa técnica de dois passos, denominada
classificar e contar, falha por não levar em conta a mudança de domínio. Assim, várias melhorias
vêm sendo feitas recentemente sob uma suposição denominada prior shift. Entretanto, estes
métodos exploram a relação entre as covariáveis apenas via classificadores e nenhum deles
aproveitam o fato de que, em algumas situações, podemos rotular algumas amostras do conjunto
de dados de interesse. Além disso, a literatura carece de abordagens que possam lidar com
uma população-alvo que varia com outra covariável; por exemplo: Como estimar precisamente
como a proporção de novas postagens ou páginas web a favor de um candidato político varia
com o tempo? Nós propomos novos métodos que preenchem essas lacunas importantes e os
comparamos utilizando conjuntos de dados reais e similados. Finalmente, nós fornecemos uma
análise teórica dos métodos propostos.

Palavras-chave: Quantificação, Mudança de domínio, Aprendizado de máquina.
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CHAPTER

1
INTRODUCTION

In several statistical learning applications, predicting the labels1 of individual observa-
tions per se, based on its features2, is less important than evaluating the proportion of each class
labels on an unlabeled dataset3. The latter task called is called quantification (FORMAN, 2008).
In the following we present an example which will be used throughout this work. Consider that
Company A is interested in evaluating the proportion of positive reviews in a social network
like Facebook about each of their products in order to improve its control system of customer
satisfaction. In order to achieve this, the company invests in a technology to automatically collect
Facebook reviews about its products. A possible strategy to analyze these data is read each
review and manually label it. Unfortunately, this process is very expansive and time consuming,
and hence unpractical. Therefore, this company needs to deploy a tool which yields an accurate
estimation of the proportion of positive reviews using the unlabeled data, i.e., without manually
labeling the dataset. That is, it needs a good quantification tool.

In this setting, is impossible use any algorithm of supervised leaning, once we do not have
labels. Because of this, a common strategy in quantification problems is to take a labeled dataset
which has similar properties to the dataset of interest, and then use it to learn something about
the relationship between labels and features. For example, consider again Company A’s problem.
Suppose that it is in a Benchmark4 program with the Company B which develop the same type of
product than A. After some meetings, Company A discovers that B has a large amount of labeled
reviews about its own products. Although they are different products, Company A decides to use
these labeled data to learn something about the reviews it is interested on.

In this setting, a common and intuitive approach to solve the quantification problem is

1 Essentially, a label is the value of a categorical variable. For example, if an e-mail is or is not a spam.
2 A feature is a vector of covariates related to the label. For example, the text of an e-mail.
3 An unlabeled dataset is a dataset in which we do not have access to labels, but only to features. For

example, a dataset in which we have the e-mail texts but we do not know which ones are spam or not.
4 Benchmark is a quality tool where two or more companies shares informations in order to improve its

products and process.
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to (i) adjust a classifier for the reviews evaluation based on labeled reviews from Company B,
and (ii) apply this classifier to the unlabeled dataset from Company A and use the proportion of
reviews which are classified as positive as an estimate of the quantity of interest. However, it is
known that this two-step approach, known as “classify and count" (FORMAN, 2008) may lead
to inconsistent results, especially when the proportion of positive reviews changes substantially
from Company A to B. This occurs because the basic assumption to apply standard classification
techniques is that the distribution of the labeled dataset is the same as the distribution of the
dataset in which the classifier will be applied to (i.e., the i.i.d. assumption) (FRIEDMAN;
HASTIE; TIBSHIRANI, 2001). In particular, in the quantification setting, this assumption is
almost never realistic. Consider our example: even if companies A and B have similar products,
these products are developed by different process. Therefore, it is natural the customer satisfaction
to be different and consequently the proportion of positive reviews will be different.

This difference between the probability distribution of labeled/unlabeled data is known
as dataset shift (or dataset drift, or domain shift) (FORMAN, 2006; TASCHE, 2016). In order
to be able to learn something about Company A reviews, some assumption about the relation-
ship between datasets A and B must be made. A common assumption used in quantification
problems which relaxes the i.i.d. assumption is the prior probability shift assumption. Several
quantification methods have been developed under such assumption (SAERENS; LATINNE;
DECAESTECKER, 2002; FORMAN, 2008; BELLA et al., 2010; BARRANQUERO; DÍEZ;
COZ, 2015), which states that although the proportion of positive labels can change over the
datasets, the label conditional distribution of the features are the same.

A particular estimator that successfully performs quantification under prior shift as-
sumption is the adjusted count (AC) estimator (GART; BUCK, 1966; SAERENS; LATINNE;
DECAESTECKER, 2002; FORMAN, 2008). Part of the success of the AC estimator is explained
in Tasche (2017), namely that it is Fisher consistent.

This work introduces and explores the properties of a generalization of the AC estimator,
which we call the ratio estimator. We derive convergence rates for the ratio estimator that lead to
further insights on why the AC estimator and also the method from Bella et al. (2010) yield good
results. These rates also suggest alternative procedures that have good performance, and show
how to build confidence intervals for the proportion of interest. To the best of our knowledge, the
latter task was still unsolved.

We also generalize our formulation of the prior probability shift problem to a more general
setting of the quantification problem which allows for additional covariates. This generalization
allows one to answer question such as “how does the proportion of people that like a given
product vary with age?” and “how does the proportion of positive tweets about Donald Trump
vary with time?” using unlabeled data. We show how a generalization of the ratio estimator is
able to answer these questions and can offer improved solutions than standard sentiment analyses
(WANG et al., 2012).
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CHAPTER

2
QUANTIFICATION UNDER PRIOR

PROBABILITY SHIFT

Let (X1,Y1,S1), . . . ,(Xn,Yn,Sn) be a sample such that Xi ∈ Rd are features, Yi ∈ {0,1}
is the label of interest and Si ∈ {0,1} is the indicator that the i-th sample unit is labeled. In a
quantification problem, one wishes to estimate θ := P(Y = 1|S = 0), that is, the prevalence of
positive labels among unlabeled samples. This prevalence is not assumed to be the same as the
one over labeled sets, P(Y = 1|S = 1). In the standard formulation of the prior probability shift
problem, {(Xi,Yi)}Si=0 is called the target population (since the labels are unavailable), and
{(Xi,Yi)}Si=1 is called the training population (TASCHE, 2017). For instance, in the example
introduced in Chapter 1 Si = 0 if the the i-th review comes from Company A and Si = 1 if the
the i-th review comes from Company B; Yi = 0 if the i-th review is negative and Yi = 1 if the
i-th review is positive; Xi is some vectorial representation of i-th text review; finally, θ is the
proportion of positive reviews about the product of Company A.

It is common for both populations to be i.i.d., that is,

Assumption 1.

∙ (S1,X1,Y1), . . . ,(Sn,Xn,Yn) are independent.

∙ For every s ∈ {0,1}, (X1,Y1)|S1 = s, . . . ,(Xn,Yn)|Sn = s are identically distributed.

Unless additional assumptions are made, it is not possible to learn about θ using solely
the observed data. One assumption that allows learning about θ is the prior probability shift,
which states that “the class-conditional feature distributions of the training and test sets are the
same" (FAWCETT; FLACH, 2005). Prior shift is formalized in Assumption 2.

Assumption 2. [Prior probability shift] For every (y1, . . . ,yn) ∈ {0,1}n (X1, . . . ,Xn) is inde-
pendent of (S1, . . . ,Sn) conditionally on (Y1, . . . ,Yn) = (y1, . . . ,yn).
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In our example, Assumption 1 means that the X|Y = i (i ∈ {0,1}) distribution is the
same on both S = 0 and S = 1. That is, given that a review is positive, the distribution of words
used on it is the same for Company A and B.

In the following analysis, some subsets of the data and their sizes are used several times.
Ak := {i ∈ {1, . . . ,n} : Si = k} is the set of indexes of the labeled (k = 1) or of the unlabeled
(k = 0) samples, nU := |A0|, and nL := |A1|. Also, Ak, j := {i ∈ {1, . . . ,n} : Si = k and Yi = j} is
the set of indexes of the labeled (k = 1) or unlabeled (k = 0) samples, and positive label ( j = 1)
or zero label ( j = 0), and n j := |A1, j|. Also, for every vector, Z, Z j

i := (Zi, . . . ,Z j).

2.1 The ratio estimator and its theoretical properties

In this section, we introduce our estimator which we call by Ratio estimator and is
motived by Lemma 1.

Lemma 1. For every function, g, under Assumption 3,

θ := P(Y = 1|S = 0) =
E[g(X)|S = 0]−E[g(X)|Y = 0,S = 1]

E[g(X)|Y = 1,S = 1]−E[g(X)|Y = 0,S = 1]

Proof. Let f (x) denote the density of X. Note that

g(x) f (x|S = 0) =
1

∑
j=0

g(x) f (x|Y = j,S = 0)P(Y = j|S = 0) Law of total prob.

E[g(X)|S = 0] =
1

∑
j=0

E[g(X)|Y = j,S = 0]P(Y = j|S = 0) Integration over x

=
1

∑
j=0

E[g(X)|Y = j,S = 1]P(Y = j|S = 0) Assumption 3 (2.1)

Isolating P(Y = 1|S = 0) in Equation 2.1 yields

θ := P(Y = 1|S = 0) =
E[g(X)|S = 0]−E[g(X)|Y = 0,S = 1]

E[g(X)|Y = 1,S = 1]−E[g(X)|Y = 0,S = 1]

In words Lemma 1 means that, given a real function of the covariates, the probability of
interested θ may be written as the ratio of expected values. Motived by this result, we propose
the Ratio estimator which is presented in Definition 1.

Definition 1 (Ratio estimator). Let g : Rd −→ R be an arbitrary function. The ratio estimator for
θ based on g, θ̂R, is such that
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θ̂R :=
Ê[g(X)|S = 0]− Ê[g(X)|Y = 0,S = 1]

Ê[g(X)|Y = 1,S = 1]− Ê[g(X)|Y = 0,S = 1]
, where

Ê[g(X)|S = 0] =
∑i∈A0 g(Xi)

nU
and Ê[g(X)|Y = j,S = 1] =

∑i∈A1, j g(Xi)

n j

Since θ ∈ [0,1], the trimmed ratio estimator, θ̂T R, is such that

θ̂T R = max(0,min(1, θ̂R))

The ratio estimator generalizes the adjusted count (AC) estimator (GART; BUCK,
1966; SAERENS; LATINNE; DECAESTECKER, 2002; FORMAN, 2008), which consists of a
particular case in which g(x) ∈ {0,1}, that is, g(x) is the output of a classifier for Y . Another
particular case of the ratio estimator is the estimator introduced by Bella et al. (2010), which
consists of taking g(x) = P̂(Y = 1|x). In this case, g(x) is a soft classifier for Y .

Remark 1. The ratio estimator can be generalized to the case in which Yi ∈ {0,1, . . . ,k}. In
this case, let g : Rd → Rk be a fixed function. By defining G as a k× (k+1) matrix such that
Gi, j = E[gi(X)|Y = j−1,S = 1], p ∈ Rk+1 such that pi = P(Y = j−1|S = 0), and g ∈ Rk such
that gi = E[gi(X)|S = 0], θ̂R, is obtained solving the linear systemĝ = Ĝ · θ̂R

1 = 1 · θ̂R

, where ĝi =
∑k∈A0 gi(Xk)

nU
and Ĝi, j =

∑k∈A1, j gi(Xk)

n j

Similarly to the AC estimator (TASCHE, 2017), the ratio estimator is Fisher consistent
under weak assumptions. They are described in Assumption 3.

Assumption 3. The function, g, is such that

1. E[g(Xi)|S = 0] and E[g(Xi)|Yi = j,Si = 1] are defined, for j ∈ {0,1}.

2. E[g(Xi)|Yi = 1,Si = 1]−E[g(Xi)|Yi = 0,Si = 1] ̸= 0

3. g(X)n
1 is independent of Sn

1 conditionally on Yn
1 = yn

1.

Assumption 3 requires 3 conditions of g(x). According to condition 1, the populational
versions of the expectations in Definition 1 are defined. Condition 2 states that the ratio estimator
calculated on these populational quantities is defined, that is, there is no division by 0. Condition
3 is a relaxed type of prior probability shift that is strictly weaker than Assumption 2. In the
following, Theorem 1 shows that these conditions guarantee the Fisher consistency of the ratio
and the trimmed ratio estimators.

Theorem 1. Under Assumptions 1 and 3, θ̂R and θ̂T R are Fisher consistent for θ .
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Assumption 1 also guarantees a finite population bound on the mean squared error of
θ̂T R. This result is described in Theorem 2.

Theorem 2. Under Assumptions 1 and 3,

E

[(
θ̂T R −θ

)2
∣∣∣∣Sn

1

]
= O(max(n−1

L ,n−1
U ))

Corollary 1. Under Assumptions 1 and 3, if nU
P→ ∞ and nL

P→ ∞, then θ̂T R is consistent for θ

in probability and in L2 norm.

It follows from Theorem 2 that, under Assumptions 1 and 3, if nU ≫ nL, then the
convergence of the mean squared error of the trimmed ratio estimator is the same as the one
that would have been obtained if one observed solely nL labels from the target population and
used the sample’s label proportions to estimate θ . The same type of result cannot generally be
obtained for the standard ratio estimator, since the trimming is necessary to guarantee that the
ratio of random variables does not have infinite variance.

Besides a finite sample bound on the MSE, it is also possible to use Assumptions 1 and 3
to obtain a central limit theorem for the trimmed ratio estimator. In order to obtain this result,
it is also necessary to require that g(X) has bounded variance conditionally on Y and that the
number of labeled samples goes to infinity. These conditions are described in Assumption 4. The
central limit theorem is presented in Theorem 3.
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Assumption 4.

1. V[g(Xi)|Yi = j]< ∞, for every j ∈ {0,1}.

2. There exists h(n)≥ 0 such that limn→∞
h(n)

n < 1, limn→∞ h(n) = ∞, and nL
h(n)

P→ 1.

Theorem 3. Define µ j := E[g(X1)|Y1 = j], σ2
j := V[g(X1)|Y1 = j], pL := limn→∞

h(n)
n , and

p j|L := P(Y = j|S = 1). Under Assumptions 1, 3 and 4,

1. If pL ̸= 0, then

√
n(θ̂T R −θ)

L→ N

0,

(1−θ)σ2
0+θσ2

1+(µ1−µ0)
2θ(1−θ)

1−pL
+

(1−θ)2σ2
0

pL p0|L
+

θ 2σ2
1

pL p1|L

(µ1 −µ0)2


2. If pL = 0, then

√
h(n)(θ̂T R −θ)

L→ N

0,

(1−θ)2σ2
0

p0|L
+

θ 2σ2
1

p1|L

(µ1 −µ0)2


It is possible to use Theorem 3 in order to obtain an approximate confidence interval for

θ . This interval is obtained by inverting the convergence results in Theorem 3, and substituting
θ for θ̂T R and the populational quantities, µ0, µ1, σ2

0 , σ2
1 , pL, p0|L and p1|L, by their respective

empirical averages.

Remark 2. This confidence interval may also be used to test hypothesis such as H0 : θ = θ0.

Theorem 3 also provides an approximation for the mean squared error of θ̂T R. This
approximation for the common case in which nU ≫ nL is presented in the following corollary.

Corollary 2. Under Assumptions 1, 3 and 4, if pL = 0 (nU ≫ nL), then

MSE(θ̂T R)≈
1

nL(µ1 −µ0)2

(
σ2

0 (1−θ)2

p0|L
+

σ2
1 θ 2

p1|L

)
(2.2)

Corollary 2 brings some insights on how g should be chosen in order for θ̂T R to be an
accurate estimator of θ . For instance, it shows that one should choose g such that |µ1 − µ0|
is large and both σ2

0 and σ2
1 are small. This implies that the distributions of g(X)|Y = 1 and

g(X)|Y = 0 should place most of their masses in regions that are far apart. This conclusion
explains the success of the methods in Forman (2008), in which g(x) is a classifier, and Bella et

al. (2010), in which g(x) is an estimate of P(Y = 1|x).

The approximation of the MSE in Corollary 2 can also be used explicitly in the choice of
the function, g, in θ̂T R. Such a procedure is discussed in the following subsection.



28 Chapter 2. Quantification under prior probability shift

2.2 Choosing g via approximate MSE minimization

One possible criterion for the choice of g is the minimization of MSE(θ̂T R), defined
in Corollary 2. However, the latter depends on unobservable quantities. An alternative is to
minimize an estimate of MSE(θ̂T R). This estimate is presented in Definition 2.

Definition 2. Let θ̂ be an estimator of θ and, for each i ∈ {0,1}, let

µ̂i = n−1
i ∑

A1,i

g(Xi) σ
2
i = n−1

i ∑
A1,i

(g(Xi)− µ̂i)
2 p̂i|L =

ni

n0 +n1

The empirical MSE of the trimmed ratio estimator induced by g, M̂SE(g) is such that

M̂SE(g)≈ 1
nL(µ̂1 − µ̂0)2

(
σ̂2

0 (1− θ̂)2

p̂0|L
+

σ̂2
1 θ̂ 2

p̂1|L

)

In order to avoid overfitting, we perform the minimization of M̂SE(g) on a Reproducing
Kernel Hilbert Space (RKHS; (WAHBA, 1990)). More precisely, if K is a Mercer kernel and
HK is the RKHS associated to K, then we choose g* as

g* := arg min
g∈HK

M̂SE(g)+λ ||g||2HK
(2.3)

In the following, Theorem 4 presents a characterization of the solution to Equation 2.3.

Theorem 4. Let K be a Mercer kernel and HK the corresponding RKHS. Also define

∙ K: the Gram matrix defined for (i, j) ∈ A2
1 and such that (K)i, j = K(xi,x j).

∙ mi: A vector of size |A1| and such that, for each k ∈ A1, mi,k =
∑ j∈A1,i

K(x j,xk)

ni
.

∙ M = (m1 −m0)(m1 −m0)
t .

∙ Σ̂i: a |A1|× |A1| matrix such that (Σ̂i)k,l is the sample covariance between (K(x j,xk)) j∈A1,i

and (K(x j,xl)) j∈A1,i .

∙ N: a |A1|× |A1| matrix such that N = θ̂ 2

p̂1|L
Σ̂1 +

(1−θ̂)2

p̂0|L
Σ̂0.

For every λ > 0, if

w* = arg min
w∈RnL

wtNw
wtMw

+λwtKw. (2.4)

then g*(x) = ∑i∈A1 w*
i K(x,xi) is such that

g* = arg min
g∈HK

M̂SE(g)+λ ||g||2HK
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Unfortunately, the minimization of Equation 2.4 is generally not trivial (ZHANG, 2013).
A simpler optimization problem is obtained when choosing λ = 0. In this case, finding w* in
Equation 2.4 is equivalent to finding the vector, w*, associated to the largest eigenvalue, λ *, of
the generalized eigenvalue problem, Mw* = λ *Nw*. If N is invertible, w* is the eigenvector
associated to the largest eigenvalue in absolute value of N−1M. Alternatively, if N is not invertible
one can substitute N in 2 by (N + γ1)−1, where 1 is the identity matrix and γ is a small number
that makes N + γ1 invertible.

2.3 Extension: combined estimator
In this section we take advantage the fact that sometimes a few S = 0 samples can be

labeled. For example, Company A may be starting to label its reviews, and hence wants to use
these labeled samples to improve the estimate the proportion of positive reviews. The key idea
is that we can obtain an estimate of θ using those samples and then combine it with the ratio
estimator presented in Equation 2.1. Here, let A*

0 ⊂ A0 be the subset of samples indexes which
were labeled and define the labeled estimator as

θ̂L :=
1

|A*
0|

∑
i∈A*

0

Yi

It follows that in order to better estimate θ , one can combine the labeled estimator θ̂L

with the ratio estimator estimator θ̂R. We do this by using a convex combination of both,

θ̂C = wθ̂R +(1−w)θ̂L, (2.5)

which we name the combined estimator. In order to choose the weight w , observe that, because
θ̂L and θ̂R are not correlated,

V[θ̂C] = w2V[θ̂R]+ (1−w)2V[θ̂L],

which implies that the minimum variance is obtained by taking w = V[θ̂L]/(V[θ̂L]+V[θ̂R]). We
therefore use the weight

ŵ = V̂[θ̂L]/(V̂[θ̂L]+ V̂[θ̂R]) (2.6)

Remark 3. We have V[θ̂L] = θ(1−θ)/|A*
0| and V[θ̂R] is given in Theorem 3. Therefore, we can

estimate theses quantities using the respective empirical averages.
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CHAPTER

3
EXTENSION: REGRESSION ESTIMATION

As a generalization of the quantification problem, one might be interested on how the
prevalence of Y among the unlabeled data (S = 0) varies according to a new set of covariates, Z.
For example, suppose that the Company A is implementing a program of continuous improvement
in one of its products. Therefore, in order to measure the effects of its action, it is interested in
how the proportion of positive reviews varies over time. Here, Z is the time which the review
was posted. This problem is called sentiment analysis (WANG et al., 2012) and is usually solved
using a classify and count approach. This approach can criticized using the same arguments as
the ones in Chapter 1.

Now we show how our framework allows the ratio estimator to be used in this regression
setting. We assume that our sample is given by (X1,Z1,Y1,S1), . . . ,(Xn,Zn,Yn,Sn). Again, not
all samples are labeled (i.e., have Y available), and Si indicates whether a sample is labeled or
not. Our goal is to estimate

θ(z) := P(Y = 1|S = 0,z),

the proportion of positive labels at Z = z on the unlabeled data (S = 0).

Besides making Assumptions 1 and 3, we will also make two additional assumptions on
how the covariates z related to the other quantities:

Assumption 5.

∙ X1, . . . ,Xn are independent conditionally on Z1, . . . ,Zn

∙ Let z ∈ Rdz . Then X1|Z1 = z, . . . ,Xn|Zn = z are identically distributed.

Assumption 6. [Conditional Covariate Independence] X is independent of Z conditionally
on Y and S.

In our example, Assumption 5 states that the texts of the reviews have the same distribu-
tion and are independents at a fix time z. Moreover, Assumption 6 states that, given that a review
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is positive (or negative) and belongs to Company A (or B), the texts distribution do not change
over the time.

3.1 The regression ratio estimator
We now show how the ratio estimator can be used in the regression context.

Using the same derivation of Section 2.1, one can show that, for every z ∈ Rdz ,

θ(z) := P(Y = 1|S = 0,z) =
E[g(X)|S = 0,z]−E[g(X)|Y = 0,S = 0,z]

E[g(X)|Y = 1,S = 0,z]−E[g(X)|Y = 0,S = 0,z]

It then follows from Assumption 6 that

θ(z) =
E[g(X)|S = 0,z]−E[g(X)|Y = 0,S = 0]

E[g(X)|Y = 1,S = 0]−E[g(X)|Y = 0,S = 0]
.

Moreover, from the prior probability shift assumption (Assumption 2), it holds that

θ(z) =
E[g(X)|S = 0,z]−E[g(X)|Y = 0,S = 1]

E[g(X)|Y = 1,S = 1]−E[g(X)|Y = 0,S = 1]

This motivates the estimator

θ̂(z) =
Ê[g(X)|S = 0,z]− Ê[g(X)|Y = 0,S = 1]

Ê[g(X)|Y = 1,S = 1]− Ê[g(X)|Y = 0,S = 1]
. (3.1)

The terms E[g(X)|Y = 1,S = 1] and E[g(X)|Y = 0,S = 1] may be estimated using the same
estimator presented in Definition 1. Moreover, E[g(X)|S = 0,z] can be estimated using a non-
parametric regression method. For instance, if Z is a continuous random vector, one may use a
Nadaraya-Watson kernel estimator:

Ê[g(X)|s = 0,z] =
n

∑
i=1

wi(z)g(Xi), (3.2)

where wi(z) = K(zi,z)/∑
n
k=1 K(zk,z) and K is a kernel smoother.

Remark 4. The method above does not require the labeled data to have the same z distribution
as the unlabeled data.
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CHAPTER

4
EXPERIMENTS

In order to evaluate and compare the methods presented in the previous sections, some
experiments were performed. In this section we present the results found by these experiments.

4.1 Ratio Estimator

First, we compare the ratio estimator using various g’s functions. We also evaluate
the classify and count estimator when g is a classifier. We use five datasets: Candles Dataset
(IZBICKI; STERN, 2013; FREEMAN et al., 2013), Bank Marketing (MORO; LAUREANO;
CORTEZ, 2011), SPAM e-mail Database (BLAKE, 1998), Wisconsin Breast Cancer Database
(MANGASARIAN, 1990) and Blocks Classification (MALERBA; ESPOSITO; SEMERARO,
1996). For the all datasets we considered nL = 300, n0 = 150 and n1 = 150; that is P(Y = 1|S =

1) = 0.5. The size of unlabeled sample for each dataset is presented in Table 1.

Dataset Unlabeled size
1 cancer 100
2 candles 300
3 block 800
4 spam 2000
5 bank 10000

Table 1 – Size of the unlabeled sample for each data set.

For all datasets we consider θ ∈ {0.1;0.2;0.3;0.4;0.5}, performing 100 repetitions for
each one of 11 methods presented in Table 2.

Results are shown in Figure 1 and Table 3. In figure, we show the average of the squared
error (horizontal and red bar) and its respective confidence interval (vertical and blue bar).
Moreover, the average of the squared error of each method and their standard deviations are
shown in the table.
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Estimator type Prior shift estimator g(x) estimator
CC Classify and count (CC) Logistic regression (LR), k-NN, random forest (RF).
Ratio Forman Logistic regression (LR), k-NN, random forest (RF).
Ratio Bella Logistic regression (LR), k-NN, random forest (RF).
Ratio RKHS Linear Kernel (Linear), Gaussian Kernel (Gauss).

Table 2 – Methods compared in the experiments.
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Figure 1 – Average and standard deviation of the mean squared error in each setting.

In summary, we can observe that:

∙ The ratio estimator lead to good results when compared with classify and count approach.
Note that this does not occur in the setting where θ ≈ 0.5. In these cases, P(Y = 1|S =

0)≈ P(Y = 1|S = 1), that is, there is no prior shift.

∙ The function g proposed by Bella et al. (2010) had a better performance than g proposed
by Forman (2008) in essentially all settings. This means that, in these settings, it is better
to use a probability instead of a hard-classification.

∙ The RKHS approach for choosing g is a competitive method. It had good results using a
Gaussian Kernel particularly in the Block dataset.
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Table 3 – Average and standard deviation (SD) of the mean squared error in each setting. Bold values
indicate the best method in each setting.
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We also investigate the coverage of the confidence interval presented in Equation 2.1.
The results are shown in Figure 2. Here, we consider all methods together. We can observe that
the coverage is close to 0.95. Moreover, in general, the observed coverage is greater than the
theoretical confidence level. That is, generally we overestimate the estimator variance making
our interval more conservative.
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Figure 2 – Empirical coverage of the confidence interval.

4.2 Combined estimator
In order to evaluate the combined estimator developed in Section 2.3, we performed an

experiment under the same settings as that of Section 4.1. For each repetition we to label 10, 20,
30 and 50 samples. Figure 3 presents the squared errors for each setting. We consider all the θ ’s
values (θ ∈ {0.1;0.2;0.3;0.4;0.5}) together. We can notice that the combined estimator lead to
good results when compare to labeled and ratio estimators. Even when one of these methods
is much better than the other, the combined estimator essentially assumes the same behavior
as it. This fact may be observed in the block dataset when the g(x) is based on random forest
method (RF). These results also indicate that labeling some samples is a good way to improve
the quantification results.
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Figure 3 – Empirical error for each setting and each size of labeled sample.

Figure 4 shows the behavior of the weight w under each setting. We can observe that w

decreases as the labeled size increases (as expected). Moreover, when θ = 0.1, w decreases more
fast. This behavior may be related to the fact that in this setting the labeled estimator has less
variance. The opposite can be seen as theta approximate to 0.5. In almost all cases, w is greater
than 0.5. This means that the estimated variability of the ratio estimator is less than the estimated
variability of the labeled estimator.
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Figure 4 – Empirical weight for each setting and each size of labeled sample.

4.3 Regression Estimation

Now, we evaluate the regression ratio estimator against the classify and count method. In
order to do so, an artificial dataset was generate under the following settings:

∙ Z ∼U(0,1)

∙ Y = 1|S = 1 ∼ Ber(1/2) independent of Z

∙ θ(z) = P(Y = 1|S = 0,Z = z) = (sin(2zkπ)+1)/2 for k ∈ {1,2}

∙ X |Y = 0 ∼ N(µ,1) and X |Y = 0 ∼ N(−µ,1) for µ ∈ {0.5,1,1.5,2}

∙ nL = nU = 1000

∙ g(X) = I(X > 0) (i.e., the Bayes classifier)
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For each combination of the parameters k and µ were generate 400 samples. In Figure
5 we evaluate the boxplot of the error in each setting. Moreover, in Figure 6 we evaluate the
average regression of the 400 samples. In both Figures, we can observe that the performance of
the ratio estimator is aways better than the classify and count method. In Figure 5 we see that
the errors of the ratio estimator tend to be smaller than those of the classify and count estimator,
especially when µ is small. This may be associated to fact that the classification problem is
harder in these case. Note that both classify and count and the ratio estimator improve their
performance as the problem becomes easier (i.e., as µ gets larger), but the ratio estimator always
lead to better results. Moreover, both estimators appear to have the same sensitivity to the lack of
smoothness of θ(z), since both increase their errors when we go from k = 1 to k = 2. Finally, in
Figure 6 we can observe that the average regression obtained by the ratio estimator fits better the
real curve in all settings. In general, the classify and count underestimates θ(z) when θ(z)> 1/2
and overestimates it when θ(z)< 1/2.
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Figure 5 – Boxplot of the error in each setting.



40 Chapter 4. Experiments

mu=0.5 mu=1 mu=1.5 mu=2

k=
1

k=
2

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

z

θ(
z)

method
CC

Ratio

True

Figure 6 – Averege of the fitted regression in each setting.
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CHAPTER

5
FINAL DISCUSSION

In this work, we have shown that the ratio estimator is a promising method to solve
the quantification problem under the prior probability shift assumption once we proved it is
consistent and show how one can build confidence intervals based on it (the coverage of these
intervals was satisfactory). We have also developed a novel way to construct the function g based
on RKHS which led to good results. We extend these estimator of two different way: combining
it with a estimator based on a few labeled observation from target population and associating
it with another covariate in order to solve regression problems. In all of these points, the ratio
estimator lead to good results when compared to the classify and count (usual) approach. In the
future works, novels methods to construct g’s function may be propose. Moreover, still not clear
under what settings each g function work better. Because of this, intensives study of simulations
can be performed.
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APPENDIX

A
PROOFS AND ADDITIONAL LEMMAS

Theorem 1. Follows directly from the definition of θ̂R and θ̂T R, and Lemma 1.

Lemma 2. Let Z1 and Z2 be random variables such that E[Z2] ̸= 0 and E[Z1]
E[Z2]

∈ [0,1]. Define

T = max
(

0,min
(

1, Z1
Z2

))
. For every random variable, S, and ε1,ε2 ∈ (0,1)

E

[(
T − E[Z1|S]

E[Z2|S]

)2 ∣∣∣∣S
]
≤ 4(|E[Z1|S]|+ ε1)max(V[Z1|S],V[Z2|S])

min(1,(1− ε2)4E[Z2|S]4)
+ ε

−2
1 V[Z1|S]+ (ε2E[Z2|S])−2V[Z2|S].

Proof. It follows from Taylor’s expansion of Z1
Z2

that there exists Z1,* bounded between E[Z1|S]
and Z1, and Z2,* between E[Z2|S] and Z2 such that

Z1

Z2
=

E[Z1|S]
E[Z2|S]

+
1

Z2,*
(Z1 −E[Z1|S])−

Z1,*
Z2

2,*
(Z2 −E[Z2|S])

Therefore, by letting A = {|Z1 −E[Z1|S]| ≤ ε1, |Z2 −E[Z2|S]| ≤ ε2E[Z2|S]}, obtain

E

[(
Z1

Z2
− E[Z1|S]

E[Z2|S]

)2 ∣∣∣∣A,S
]

P(A|S)

=E

( 1
Z2,*

(Z1 −E[Z1|S])−
Z1,*
Z2

2,*
(Z2 −E[Z2|S])

)2 ∣∣∣∣A,S
P(A|S)

≤4max

(
E

[
1

Z2
2,*

(Z1 −E[Z1|S])2
∣∣∣∣A,S

]
,E

[
Z2

1,*
Z4

2,*
(Z2 −E[Z2|S])2

∣∣∣∣A,S
])

P(A|S)

≤
4(|E[Z1|S]|+ ε1)max

(
E
[
(Z1 −E[Z1|S])2

∣∣A,S] ,E [(Z2 −E[Z2|S])2
∣∣∣∣A,S])P(A|S)

min(1,(1− ε2)4E[Z2|S]4)

≤4(|E[Z1|S]|+ ε1)max(V[Z1|S],V[Z2|S])
min(1,(1− ε2)4E[Z2|S]4)

(A.1)
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Finally, obtain that

E

[(
T − E[Z1|S]

E[Z2|S]

)2 ∣∣∣∣S
]
= E

[
E

[(
T − E[Z1|S]

E[Z2|S]

)2 ∣∣∣∣IA,S

]∣∣∣∣S
]

≤ E

[(
Z1

Z2
− E[Z1|S]

E[Z2|S]

)2 ∣∣∣∣A,S
]

P(A|S)+P(Ac|S) T,
E[Z1]

E[Z2]
∈ [0,1]

≤ 4(|E[Z1|S]|+ ε1)max(V[Z1|S],V[Z2|S])
min(1,(1− ε2)4E[Z2|S]4)

+P(Ac|S) eq. A.1

The result follows from applying the union bound and Chebyshev’s inequality to obtain

P(Ac|S)≤ P(|Z1 −E[Z1|S]|> ε1|S)+P(|Z2 −E[Z2|S]|> ε2E[Z2|S]|S)

≤ ε
−2
1 V[Z1|S]+ (ε2E[Z2|S])−2V[Z2|S]

Theorem 2. Define Z1 = Ê[g(X)|S = 0]− Ê[g(X)|Y = 0,S = 1] and also Z2 = Ê[g(X)|Y = 1,S =

1]− Ê[g(X)|Y = 0,S = 1] (Definition 1). Note that

E[Ê[g(X)|S = 0]|Sn
1] = E

[
∑i∈A0 g(Xi)

|A0|

∣∣∣∣Sn
1

]
= E[g(X)|S = 0]

E[Ê[g(X)|Y = j,S = 1]|Sn
1] = E

[
∑i∈A1, j g(Xi)

|A1, j|

∣∣∣∣Sn
1

]
= E[g(X)|Y = j,S = 1]

It follows from Lemma ?? that θ =
E[Z1|Sn

1]
E[Z2|Sn

1]
. With T := θ̂T R = max

(
0,min

(
1, Z1

Z2

))
, obtain

E

[(
θ̂T R −θ

)2
∣∣∣∣Sn

1

]
= E

[(
T −

E[Z1|Sn
1]

E[Z2|Sn
1]

)2 ∣∣∣∣Sn
1

]

≤
4(|E[Z1|Sn

1]|+ ε1)max
(
V[Z1|Sn

1],V[Z2|Sn
1]
)

min(1,(1− ε2)4E[Z2|Sn
1]

4)

+ ε
−2
1 V[Z1|Sn

1]+ (ε2E[Z2|Sn
1])

−2V[Z2|Sn
1] Lemma 2

The result follows from observing that E[Z1|Sn
1] and E[Z2|Sn

1] are constants Sn
1, which includes

nL and nU , V[Z1|Sn
1] = O(max(n−1

L ,n−1
U )), and V[Z2|Sn

1] = O(n−1
L ).

Theorem 3. Define µU := E[g(Xi)|Si = 0], σ2
U = V[g(Xi)|Si = 0], and

∙ ZU,n :=
√

nU
σU

(Ê[g(X)|S = 0]−µU) =
√

nU
σU

(
∑

n
i=1 g(Xi)I(Si=0)

nU
−µU

)
,

∙ Z0,n :=
√

n0
σ0

(
Ê[g(X)|S = 1,Y = 0]−µ0

)
=

√
n0

σ0

(
∑

n
i=1 g(Xi)I(Si=0,Yi=0)

n0
−µ0

)
,

∙ Z1,n :=
√

n1
σ1

(
Ê[g(X)|S = 1,Y = 1]−µ1

)
=

√
n1

σ1

(
∑

n
i=1 g(Xi)I(Si=0,Yi=1)

n1
−µ1

)
,

∙ Fi = I(Si = 1)(Yi +1), AU = {F1 = 0}, A0 = {F1 = 1}, and A1 = {F1 = 2}.
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lim
n→∞

φZU,n,Z0,n,Z1,n(tU , t0, t1) = lim
n→∞

E

[
E

[
exp

(
∑

j∈{U,0,1}
it jZ j,n

)∣∣∣∣F1, . . . ,Fn

]]

= lim
n→∞

E

[
∏

j∈{U,0,1}
E

[
exp
(
it jZ j,n

)∣∣∣∣F1, . . . ,Fn

]]

= lim
n→∞

E

[
∏

j∈{U,0,1}

(
φ g(X1)−µ j

σ j

∣∣A j
(t jn−0.5

j )

)n j
]

(A.2)

It follows from the Central Limit Theorem for i.i.d. random variables that, for every j ∈ {U,0,1},
φ g(X1)−µ j

σ j

∣∣A j
(t jn−0.5

j )→ exp(−0.5t2
j ) as n j → ∞. Since n j

a.s.→ ∞, conclude from eq. A.2 and the

dominated convergence theorem that

lim
n→∞

φZU,n,Z0,n,Z1,n(tU , t0, t1) = ∏
j∈{U,0,1}

exp(−0.5t2
j )

and

(ZU,n,Z0,n,Z1,n)
L→ N(0, I) (A.3)

Assume that pL ̸= 0. In this case, since nL
n

P→ pL, it follows from eq. A.3 that
√

n
(

Ê[g(X)|S = 0]−µU , Ê[g(X)|S = 1,Y = 0]−µ0, Ê[g(X)|S = 1,Y = 1]−µ1

)
converges in distribution to N

(
0,diag

(
σ2

U
1−pL

,
σ2

0
pL p0|L

,
σ2

1
pL p1|L

))
. Since θ = µU−µ0

µ1−µ0
(Lemma ??) and

θ̂R = Ê[g(X)|S=0]−Ê[g(X)|S=1,Y=0]
Ê[g(X)|S=1,Y=1]−Ê[g(X)|S=1,Y=0]

, it follows from the delta method (CASELLA; BERGER,
2002) that

√
n(θ̂R −θ)

L→ N

(
0,

σ2
U(1− pL)

−1

(µ1 −µ0)2 +
(µU −µ1)

2σ2
0 (pL p0|L)

−1

(µ1 −µ0)4 +
(µU −µ0)

2σ2
1 (pL p1|L)

−1

(µ1 −µ0)4

)
Since µU = (1−θ)µ0 +θ µ1 and σ2

U = (1−θ)σ2
0 +θσ2

1 +(µ1 −µ0)
2θ(1−θ) obtain that

√
n(θ̂R −θ)

L→ N

0,

(1−θ)σ2
0+θσ2

1+(µ1−µ0)
2θ(1−θ)

1−pL
+

(1−θ)2σ2
0

pL p0|L
+

θ 2σ2
1

pL p1|L

(µ1 −µ0)2


Next, assume that pL = 0. Obtain that

√
h(n)(ZU,n −µU)

P→ 0 and√
h(n)

(√p0|L

σ0
(Z0,n −µ0),

√p1|L

σ1
(Z1,n −µ1)

)
L→ N(0, I)

It follows from the delta method and Slutsky’s theorem that

√
h(n)(θ̂R −θ)

L→ N

0,

(1−θ)2σ2
0

p0|L
+

θ 2σ2
1

p1|L

(µ1 −µ0)2


The same convergence results hold for θ̂T R since the derivative of the trimming function

is 1 around θ .
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Theorem 4. It follows from the Representer Theorem (WAHBA, 1990) that, for every g ∈ HK ,
g(x) = ∑k∈A1 wkK(x,xk). Using this fact, for every i ∈ {0,1},

µ̂i =
∑ j∈A1,i g(x j)

ni
=

∑k∈A1 wk ∑ j∈A1,i K(x j,xk)

ni
= wtmi

σ̂
2
i =

∑ j∈A1,i(g(x j)− µ̂i)
2

ni
= wt

Σ̂iw

Therefore, for every g ∈ HK ,

M̂SE(g)+λ ||g||HK =
wtNw
wtMw

+λwtKw.
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ANNEX

A
R CODES

<https://github.com/afonsofvaz/PriorShiftQuantification> R codes used in the experiments.

https://github.com/afonsofvaz/PriorShiftQuantification
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