• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.100.2018.tde-20042016-121243
Document
Author
Full name
Paulo Yun Cha
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2016
Supervisor
Committee
Pereira, Carlos de Brito (President)
Vicente, Renato
Vicentini, Claudia Regina Garcia
Title in Portuguese
Estratégias de preço na difusão de inovação: simulação baseada em agentes aplicado ao mercado brasileiro de carros elétricos
Keywords in Portuguese
Carros elétricos
Difusão de inovação
Modelagem por agentes
Preços-técnicas
Sistemas complexos
Sistemas dinâmicos
Abstract in Portuguese
No contexto dos sistemas complexos, o presente trabalho investiga 3 estratégias de precificação:(1)desnatação,(2) penetração e (3)aprendizado, na difusão de carros elétricos em diferentes contextos.Por meio da modelagem baseada em agentes com 100.000 entidades autônomas, o primeiro modelo testa três situações relacionados à demanda energética:(1)desabastecimento,(2)estabilidade e (3)crescimento moderado da demanda.A forte escassez de energia estimulou a rápida migração dos agentes aos carros elétricos. As três estratégias de precificação exibiram resultados similares em termos de faturamento e % na participação do mercado, no entanto a estratégia de penetração foi capaz de capturar uma parcela maior do mercado em menor tempo.No segundo modelo,3 diferentes comportamentos sociais são aplicadas aos agentes: (1)conservador,(2)racional e (3) social,em diferentes proporções afim de avaliar a influência da composição social na dinâmica difusora.No que concerne ao faturamento e % na participação do mercado, o segundo modelo detectou diferenças estatisticamente significativas para cada estratégia de precificação.Em sociedades proeminentemente conservadoras, as três estratégias não apresentaram indícios de diferença significativa no tocante relação ao faturamento,% na participação final do mercado e taxa de adoção média.Sociedades compostas majoritariamente por agentes racionais, apresentaram a mais rápida convergência aos carros elétricos,sendo este, o veículo mais caro.Isto se deve à percepção positiva do custo/benefício ao longo prazo.O maior faturamento é proveniente das sociedades compostas preponderantemente por agentes com atitudes sociais dado à compra e troca mais recorrente entre diferentes veículos no decorrer das interações.A estratégia de desnatação demonstrou maior versatilidade ao exibir performance superior com maior regularidade no que tange em faturamento em todas as composições sociais testadas.A estratégia de penetração exibiu índices maiores em taxa de adoção e faturamento em redes compostas integralmente por agentes com comportamentos sociais iguais,mas não foi possível detectar este padrão em redes parciais. Por fim, a estratégia de aprendizado apresentou o menor faturamento em todos os cenários, no entanto, sua taxa de adoção similar à estratégia de penetração, pode ser a estratégia de precificação mais crível e eficiente para empresas iniciantes
Title in English
Pricing strategies at innovation diffusion process: Agent-based model simulation applied to Brazilians market of electric car
Keywords in English
Agent-based model
Complex systems
Diffusion of innovation
Dynamic systems
Electric cars
Pricing-techniques
Abstract in English
In the context of complex systems,the following research investigated 3 pricing strategies:(1)skimming,(2)penetration and (3)learning, at electric car diffusion in several different scenarios. Through the agent-based modelling with 100.000 autonomous entities, the first model tested 3 situations related to energy demand:(1)severe shortage,(2)stability and (3)moderate growing of demand. The strong shortage of energy forced an fast-paced migration of agents towards the electric cars. The 3 strategies showed up similar results in terms revenues and market share, however the penetration strategy was able to capture a large part of the market faster than others. At the second model, 3 different social behaviors were implemented in each agent:(1)conservative,(2)rational and (3)social,in different proportions in order to assess social composition and its influence in the innovation diffusion process. Revenue and market share as concerned,the second model detected significant statistic difference for each pricing strategy. For societies predominantly conservative, all strategies did not show significant differences evidences regarding to revenue,market share and average adoption rate. Societies comprised mostly of rational agents presented the quickest convergence to electric cars, which it is the most expensive car. This is because a positive perception of benefits over cost in the long term.The largest revenue were derived from societies primarily composed of agents with social behaviors due to recurrent purchase and exchange between different vehicles over the interactions. Skimming strategy demonstrated greater versatility by displaying superior performance more regularly in terms of revenue in every social composition simulated. Penetration strategy exhibited highest rates of adoption and revenue in social networks composed entirely of agents with same social behavior, but it was not possible to detect such pattern at partial social networks. Finally, the learning strategy reported the lowest revenues at every scenario, none the less, its rate of adoption was equivalent to penetrations strategy rates, this strategy could be the most feasible and efficient to startups and small companies
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-03-22
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.