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Abstract

STOLL, Alex Braha. OAS DB: a shared infrastructure to support OpenAPI
research. 2022. 98 p. Dissertation (Master of Science) – School of Arts, Sciences and
Humanities, University of São Paulo, São Paulo, 2022.

It is common knowledge the great success achieved by the Web in the last decades. Together
with the rise of Web systems in general, it came the increase of the number of Web APIs.
There are many specifications used to describe an Web API. One of the most popular
ones is OpenAPI. This specification allows one to describe all the resources that can be
accessed and manipulated through a REST Web API. An OpenAPI specification can be
used to perform different kinds of analysis and verification of the service implementing the
described API. A common challenge faced by researchers, however, is the lack of shared
validation infrastructure or a standard benchmark. The main contribution of our research
is a software artifact — called OAS DB (OpenAPI Specifications Database) — that aims
to provide researchers and industry practitioners with a complete solution to streamline
the validation of new OpenAPI related techniques and tools. OAS DB is able to generate
complete OpenAPI specifications and their corresponding mock implementations. It is
also both capable of injecting faults and anti-patterns in these generated specification-
s/mock implementations and of indicating — through machine-readable files — which
issues and anti-patterns are present in the generated assets. We use OAS DB to assess
tools relying on both static and dynamic techniques to detect faults and anti-patterns in
OpenAPI specifications. Our results indicate that these tools fail to detect relevant faults
and anti-patterns in the synthetic APIs generated by OAS DB, indicating that there is
room to improve these tools and the ways in which they are applying static and dynamic
analysis techniques. The present work also has as contributions: a) a proof of concept
REST API anti-pattern detector (which we call Oasis) and b) the description of a novel
REST anti-pattern not described in the literature so far.

Keywords: REST API. OpenAPI. Anti-pattern. Software fault injection. Static analysis.
Code generation. Repository.



Resumo

STOLL, Alex Braha. OAS DB: uma infraestrutura compartilhada para apoiar a
pesquisa envolvendo OpenAPI. 2022. 98 f. Dissertação (Mestrado em Ciências) –
Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, 2022.

Já é senso comum o grande sucesso alcançado pela Web nas últimas décadas. Junto à
ascensão de sistemas Web em geral, veio também o aumento do número de APIs Web. Há
muitas especificaçōes usadas para descrever uma API Web. Uma das mais populares é a
OpenAPI. Essa especificação permite descrever todos os recursos que podem ser acessados
e manipulados por meio de uma API Web REST. Uma especificação OpenAPI pode ser
usada para diferentes tipos de análises e verificaçōes do serviço que implementa a API
descrita. Um desafio comum enfrentado por pesquisadores, no entanto, é a inexistência
de infra-estrutura compartilhada de validação ou de um benchmark padrão. A principal
contribuição de nossa pesquisa é um artefato de software — chamado OAS DB (OpenAPI
Specifications Database) — que tem por objetivo fornecer aos pesquisadores e profissionais
da indústria uma solução completa para tornar mais eficiente a validação de novas técnicas
e ferramentas relacionadas com OpenAPI. OAS DB consegue gerar especificaçōes OpenAPI
completas e as suas correspondentes implementaçōes mock. É também capaz de injetar
defeitos e anti-patterns nessas especificaçōes/implementaçōes mock geradas e também
de indicar — por meio de arquivos processáveis por software — quais defeitos e anti-
patterns estão presentes nesses arquivos gerados. Ferramentas que usam técnicas estáticas
e dinâmicas para identificar defeitos e anti-patterns em especificações OpenAPI foram
avaliadas usando o OAS DB. Os resultados indicam que essas ferramentas não detectam
alguns defeitos e anti-patterns relevantes em APIs sintéticas geradas pela OAS DB. Esses
resultados indicam que essas ferramentas e o modo como aplicam técnicas de análise
dinâmica e estática podem ser melhorados. Este trabalho também tem como contribuiçōes
a) uma prova de conceito de dectector de anti-patterns REST (chamado Oasis) e b) a
descrição de um novo anti-pattern REST ainda não documentado na literatura relevante.

Palavras-chaves: REST API. OpenAPI. Anti-pattern. Injeção de defeitos em software.
Análise estática. Geração de programas. Repositório.
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1 Introduction

1.1 Context

A popular choice when building Web systems and APIs is to use the REST

(Representational State Transfer) architectural style. Introduced in 2000 (FIELDING,

2000), it aims to improve the scalability, generality and independence of the components

of a software system.

The automatic verification of REST Web APIs is still not a common practice due to

the lack of a widely accepted set of best practices and also the absence of tools developed

from the ground up to be used with that particular architectural style, since many of

the available tools are adaptations of solutions created to handle older architectures

(ATLIDAKIS; GODEFROID; POLISHCHUK, 2019). Therefore, many checks that may

contribute to the quality and security of these APIs are being done manually and in an

inconsistent fashion or are not even being done due to the high cost of manual analyses.

A further challenge faced by the researchers exploring this area is the lack of a

standard repository with OpenAPI specification samples. The absence of such a database

forces researchers to diverge time from the main objectives of their work into building

datasets. Besides that, it also makes the comparison between different studies harder, since

the datasets used are generally different.

1.2 Motivations

It is common knowledge the great success achieved by the Web in the last decades.

More recently, an approach that gained popularity in the Web community is the usage of

IaaS (Infrastructure as a Service) solutions, such as Google Cloud Platform and Amazon

Web Services (ATLIDAKIS; GODEFROID; POLISHCHUK, 2019). These IaaS solutions

allow one to access hardware resources on demand, which is a great change from the recent

past when companies had to acquire hardware before even launching a Web software

product. This development reduced market entry barriers and, as a consequence, there

was a significant increase in companies launching Web products, including services offering

Web APIs.
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The increase in the use of REST Web APIs does not seem to have had a significant

impact on the practices used to check their quality. Automatic verification for compliance

with best practices is not yet widespread (ATLIDAKIS; GODEFROID; POLISHCHUK,

2019). As previously explained, the scarcity of tools developed from the ground up

specifically to be used with REST APIs may be the main cause for that (i.e., existing tools

are not considered good enough). One of the reasons contributing for a slower progress in

the research and development of new tools may be the lack of comprehensive and shared

datasets, which could be leveraged by researchers and practitioners while developing new

tools and techniques. Considering all the aforementioned facts, it appears to be important

to invest in the research and development of datasets, techniques and tools to be specifically

used with REST Web APIs and by its researchers.

1.3 Research gap

As mentioned in previous sections, companies and the Web community in general

are using specification languages — such as OpenAPI and RAML1 (RESTful API Modeling

Language) — to describe REST Web APIs. Despite the usage of these specifications, it is

not yet common to leverage all the details present in the specifications to automatically

check for compliance to REST best practices or to detect common pitfalls; nonetheless,

the relevant literature does provide compilations of these best practices and pitfalls (such

as Petrillo et al. (2016)). This is an underexplored opportunity for detecting potential

issues in these APIs. Besides that, one notices that researchers in this field are in general

using their own custom datasets. This is detrimental because it means time is diverted

from the main purposes of each research in order to build datasets and it also makes the

comparison between studies challenging.

OAS DB — our main contribution — aims to address this gap by generating

specifications and their corresponding mock implementations. These can have issues and

anti-patterns injected into them. The issues and anti-patterns that OAS DB is able to

introduce in these generated assets are supported by the relevant literature. Chapter 5

explores all these and other related topics in depth.

1 https://raml.org/

https://raml.org/
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1.4 Hypotheses

We put forward the hypothesis that a tool that can generate complete OpenAPI

specifications and their corresponding mock API implementations could be a useful resource

for researchers and practitioners in the REST API/OpenAPI realm. Since this is a novel

contribution in the OpenAPI realm, no direct comparison with existing solutions was

possible.

To validate that our main contribution (OAS DB) can generate useful specifica-

tion/implementation pairs, we ran three experiments showing that it is not only able

to generate assets with issues backed up by the literature but also that it is capable of

generating specification/implementation pairs with issues and anti-patterns not detected

by existing tools. Each experiment used a different tool. Chapter 7 explains and discuss

in-depth these experiments.

1.5 Objectives

This study had one main objective: to create a tool capable of generating synthetic

but realistic OpenAPI samples. Together with the sample, the tool is also able to generate

an annotation file and the corresponding mock API implementation.

The annotation file describes which anti-patterns/issues the specification/mock

API contain and the segment in the specification associated with the problem. The mock

API implementation can have issues that are not directly specifiable in the OpenAPI

sample and showed to be a resource of great value to test tools that use dynamic analysis

techniques.

1.6 Research contribution

We expect that OAS DB — and its pioneering approach — will help researchers in

the field. We expect as main benefits a) cost saving, b) the accelerated improvement of

datasets (since researchers from different teams are able to collaborate and help evolve

OAS DB) and c) easier comparison between different tools that use OAS DB for validation.
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Positive effects as such have already been demonstrated in other fields, as is shown for

example by Do, Elbaum and Rothermel (2005) and Just, Jalali and Ernst (2014).

In particular, our study resulted in the following products:

• A comprehensive solution (OAS DB) for generating OpenAPI specifications and

their corresponding mock API implementations and annotation files.

• A novel anti-pattern whose avoidance result in increased security of Web REST APIs

(and of the business data that they operate);

• A proof of concept tool for detection of REST anti-patterns (Oasis) on OpenAPI

specifications by means of static analysis.

1.7 Document structure

The remainder of this document is structured as follows: Chapter 2 presents all the

background knowledge considered sufficient for better understanding in which context this

research is immersed in; Chapter 3 explores and examines the most relevant related works;

Chapter 4 proposes novel REST anti-patterns; Chapter 5 introduces OAS DB, a tool

for generating OpenAPI samples containing known anti-patterns and issues; Chapter 6

presents Oasis, a proof of concept tool for detecting anti-patterns on OpenAPI specifications;

Chapter 7 goes through all the approaches and experiments used to validate the products

of our research; finally, Chapter 8 closes this document by summarizing the research results

and by briefly discussing some possibilities for future work.
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2 Background

This chapter presents the most important concepts and tools relevant to this work.

We will explore core Web technologies and architectures (such as HTTP and REST),

essencial concepts (such as what constitutes a REST anti-pattern) and also tools that are

used in our research (such as the IBM OpenAPI Validator).

2.1 HTTP

HTTP stands for Hypertext Transfer Protocol. It is an application level and a

stateless protocol (RFC 7231, 2014). It underpins the World Wide Web and is used every

time one accesses a website or interacts with a Web application.

Communication between a client and a server using the HTTP protocol happens

in the following fashion: the client constructs and issues a request; the server parses and

interprets the message and responds with one or more messages; finally, the client analyzes

the response and determines if the requested action was carried out successfully or not by

the server (RFC 7231, 2014). Figure 1 illustrates in a simplified form the HTTP messages

exchanged by a Web browser and a blog application when a user requests a given article.

HTTPS (Hypertext Transfer Protocol Secure) is the term used when HTTP is used

over TLS (Transport Layer Security), a secure communication protocol (RFC 2818, 2000).

TLS guarantees communication will have the following properties: authentication (at least

the server — and optionally the client as well — proves its identity), confidentiality (only

the peers communicating can view the data being exchanged) and integrity (data cannot

be modified by attackers without detection) (RFC 8446, 2018).
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Figure 1 – Interaction with an example REST Blog Application: the user requests (by
using the Web Browser) a specific article; the server responds the GET HTTP
request with the contents of the article in the HTML format (which will then
be rendered into a user interface by the Web Browser)

Source: Alex Braha Stoll, 2022

2.2 SOAP

SOAP (Simple Object Access Protocol) is a messaging protocol that allows com-

munication among different web services in a computer network. Messages are exchanged

in the XML (Extensible Markup Language) format. It relies on application level protocols,

most commonly on HTTP. However, since SOAP is application protocol agnostic, it is

possible to utilize SOAP over an ESB (Enterprise Service Bus) or even SMTP (Simple

Mail Transfer Protocol) (SOAP Specification, 2007).

Figure 2 shows an example SOAP message. Every SOAP message is contained within

an envelope element. The header piece can contain information useful to intermediaries

or even the final message destination. The priority field inside the header element, for

example, could be used by an intermediary when deciding which messages to relay first.

Finally, the body element contains the message payload (SOAP Specification, 2007).



21

Figure 2 – An example of SOAP message

Source: Alex Braha Stoll, 2022

The first draft of SOAP 1.2 (the latest available version) dates back to July of 2001

(SOAP Draft, 2001). Nowadays, it is a technology with declining popularity. It is still used

in some domains where high security, complex transactions and support for legacy systems

is of utmost importance, such as banking systems (Official Raygun Blog, 2020). In general,

however, other solutions for organizing and interacting with web services are now preferred

over SOAP, such as REST (Representational State Transfer), discussed in section 2.3.

2.3 REST

REST (Representational State Transfer) is an architecture style for Web services.

Its defining characteristic is allowing the manipulation of Web resources by the usage

of a set of predefined operations in an stateless manner. REST aims at improving the

scalability of interaction between components, their independent deployment, and the

generality of interfaces. REST also has the objective of allowing intermediary components

to reduce the latency of interactions, to enforce security constraints and to also be able to

encapsulate legacy systems (FIELDING, 2000).

To see many of these features in practice, let us go through possible interactions

with a fictitious Web service. Our example application is a blog that offers two operations:

to read and to write an article. Since our application follows the REST architecture, each

article is identified by an URI (Uniform Resource Identifier). The URI for an article is

https://example.com/articles/ARTICLE ID , in which ARTICLE ID is the non-
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sequential unique identifier of a given article (e.g., 03b4bd). As the article URI implies, our

service is powered by HTTPS (the secure version of the HTTP protocol). To return the

current state of a given resource, a REST compliant system must expect a GET request

to the URI of the resource (RFC 7231, 2014). To read a given article, then, we would

issue a GET HTTP request and — assuming we are doing so by using a Web Browser —

the server would respond with the desired Web resource (the article we intend to read)

represented in the HTML (Hypertext Markup Language) media type. Figure 1 illustrates

— in a simplified form — this very operation.

As explained in Section 2.1, HTTP is stateless. Adding this fact with the read-only

semantics of the HTTP GET verb (RFC 7231, 2014), the example illustrated in Figure 1

allows us to demonstrate many of the main positive characteristics of a REST system: its

client-server architecture, its statelessness, its cacheability and its potential for being a

layered system (FIELDING, 2000):

1. Client-server architecture: the server is responsible for responding with a repre-

sentation of the resource the client asked for; the client (Web Browser) is the one

responsible for rendering a user-interface from this representation. This separation

allows both parts of the system to evolve independently.

2. Statelessness: HTTP is stateless and an HTTP request therefore carries all the

information necessary for it to be processed by the server. As a consequence of

that, if we were to request the same article once again we would retrieve the exact

same response, even if the server was restarted between the two requests (of course

assuming no other request changed the state of the article itself).

3. Cacheability: because of what is stated by item 2, requests to read an article could

be cached and then to serve the client it would not be necessary to every time do

the same amount of processing that was done when the request was first made (as

long as the cache remains valid).

4. Layered system: since the client (Web Browser) is totally decoupled from the

server (as explained in item 1), the server-side component of our system can be

composed of multiple subsystems. To implement a cache for the articles resource (as

described in item 3), we could for example use an HTTP-level caching mechanism

such as Varnish1.

1 https://varnish-cache.org/
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2.4 Creating an article with REST

Let us now explore how our REST blog application implements the creation of

articles. REST allows an application to accept and respond with representations of a Web

resource in different media types (FIELDING, 2000). To show this is practice, let us assume

that our blog application has an API (Application Programming Interface) including an

operation to create new articles. Let us suppose that we have a mobile application that

empowers users to create articles on the go. When receiving a request for the creation of a

new article, this time our application will expect the Web resource (the article) represented

as JSON (JavaScript Object Notation), which is a lightweight data-interchange format

based on a subset of the JavaScript programming language2. The response will also be in

this same media type.

The action of creating a new article is one that causes side effects on the server

(the creation of a new record, the article itself) and therefore is not idempotent3. The

REST architecture requires HTTP verb semantics to be respected (FIELDING, 2000); the

verb that has a semantic compatible with this scenario is POST (RFC 7231, 2014). Figure

3 illustrates the interaction that happens between the mobile application and the blog

application for the creation of a new article.

2 https://www.json.org
3 The term idempotent is being used here as it is in the jargon of REST applications. An idempotent

operation is one that does not cause side effects on the server (e.g., the creation of a record would be
a side effect) and can be safely repeated and cached.
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Figure 3 – By using the mobile application to create a new article, a POST request with
the contents of the article represented as JSON is issued to the server. Note
that the server not only responds with a status code indicating success, but
also includes the URI of the newly created Web resource (the new article) in
the Location header

Source: Alex Braha Stoll, 2022

A final pillar of REST that this last example illustrates is the role of hypermedia

as the engine of the application state (FIELDING, 2000). Figure 3 shows that the server

includes in the HTTP Location header of the response the URI for the newly created

article. Note that this is the same URI — of course with a different article ID — that

appears when we were discussing the implementation of the feature of reading an article.

This role of hypermedia in REST applications is beneficial because it allows the

client-side (be it a mobile application, be it a browser-based UI etc) to explore resources

without (or at least with less) implementation overhead. That is the case because the

client-side of a REST compliant system can assume for every different resource creation

endpoint that the URI of the newly created object will be available in the HTTP Location

header of the server response. For applications that do not follow REST, that is probably

not the case and even the way in which one should access different resources may be

inconsistent across the API, probably resulting in greater implementation effort.

2.5 REST (anti) patterns

A REST pattern is a good practice that should be followed when developing a REST

API. On the other hand, an anti-pattern is a bad practice that should be avoided (BRABRA

et al., 2019). In the context of REST APIs, good practices are generally the result of
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following the recommendations of the REST architectural style. As a consequence, having

anti-patterns in an API can be detrimental to one or more software quality attributes

(e.g., an anti-pattern may cause a service to be harder to maintain over time). One can

find in the literature collections of REST patterns and anti-patterns created from surveys

of academic works and industry practices (e.g., see Brabra et al. (2019)).

In Section 2.3, we saw that the appropriate HTTP verb for reading an article is

GET. If a system that claims to abide by the REST architecture uses the POST verb

for such kinds of actions, this would be an example of a REST anti-pattern. POST is

to be used for actions that cause side effects (RFC 7231, 2014) and a consequence of

using it in idempotent actions is wrongfully preventing the caching of the interaction

(intermediary network nodes between the client and the server may use information such

as the HTTP verb used to decide if it is safe to cache an operation). REST anti-patterns

will be discussed in much more detail in Chapter 4.

2.6 API and OpenAPI

Application Programming Interface (API) is a specified set of operations for pro-

grammatically interacting with components of a software system. In particular, an Web

API is an interface that allows an web system to receive requests from other systems

(MAXIMILIEN; RANABAHU; GOMADAM, 2008).

OpenAPI4 is a specification to describe all the resources that can be accessed and

manipulated through a REST Web API. An OpenAPI specification offers a level of detail

sufficient for different use cases, such as generation of clients able to interact with the API

and generation of mock servers able to respond to real requests. Figure 4 shows a segment

of an OpenAPI specification. This snippet describes an operation that can be requested

through the /orders path (see line 2 of Figure 4), that expects the HTTP verb GET to

be used (line 3) and when successful that responds with a collection of orders (line 14).

4 https://www.openapis.org/
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Figure 4 – A segment of an OpenAPI specification documenting a particular operation
available in the API being described

Source: Alex Braha Stoll, 2022

2.7 IBM OpenAPI Validator

IBM OpenAPI Validator5 is an open-source command line tool that allows one to

check an OpenAPI specification (version 2 or higher) and look for violations of OpenAPI

good practices. An example of an offence would be not to fill a recommended field, as

shown in Figure 5.

Figure 5 – IBM OpenAPI Validator reporting an offence after linting an OpenAPI specifi-
cation

Source: Alex Braha Stoll, 2022

2.8 Sinatra

Sinatra6 is an open-source web framework for the Ruby programming language. By

using the framework, it is possible not only to create single-file, self-contained web systems

5 https://github.com/IBM/openapi-validator
6 https://www.sinatrarb.com
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and web APIs, but also much larger systems. The framework is very straightforward to use

and because of that it lends itself well for some special cases, like for example automatically

generating the code for a web system or API.

To see in practice how one would build a simple API with Sinatra, let us go through

an example. Let us say that we wanted to build a very simple service that received a GET

HTTP request at a /hi endpoint and returned a text/plain response with the string

“Hello, World!”. Below, Figure 6 shows all the code necessary to implement this trivial

API.

Figure 6 – A simple API implemented by using the Sinatra framework, available for the
Ruby programming language.

Source: Alex Braha Stoll, 2022

2.9 Docker

Docker7 is a toolchain powering containerized software. A container can be under-

stood as a unit of software isolated from the rest of the environment where it is running

on (Official Docker Website, 2020).

Programs — let us say a Web application — normally depend on other software

being available in the environment they are running on (for example, a Linux server). This

can cause issues if one needs to deploy a given program in a new environment and if by

mistake not all dependencies are installed and configured in this new target. If a container

is created including all the dependencies of a given program, it is safe to assume that the

software will work as expected even in a new environment (Official Docker Website, 2020).

Multiple containers can run in the same infrastructure sharing its kernel (let

us say multiple Web applications running on a Linux server), making it possible to

better utilize the same hardware in a safe manner (because as explained containers are

designed to be isolated from one another and cannot arbitrarily interfere in each other)

(Official Docker Website, 2020). Figure 7 illustrates these concepts.

7 https://www.docker.com
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Figure 7 – Multiple containerized applications, each with its own isolated environment
but still sharing the operating system kernel via Docker

Source: Official Docker Website (2020)

2.10 Final remarks

In this chapter, we presented the essential background knowledge upon which our

research rests. We covered protocols (HTTP and SOAP), architectural styles (REST) and

also concepts and specifications (API and OpenAPI, respectively). We also presented

technologies that are incorporated into the products of our research, such as the Web

framework Sinatra.
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3 Literature review

3.1 Literature review protocol and objectives

To get familiar with the state-of-the-art, we conducted a search through the main

databases relevant to our field. Then, after analyzing the title, abstract and keywords of

the papers that emerged, we selected only those that satisfied all of the inclusion criteria

(and, conversely, did not satisfy any of the exclusion criteria). The papers that were chosen

were read in full and the most important ones have dedicated subsections in this literature

review.

The review aims to answer to the following questions in particular: 1) Which

specifications — if any — are most commonly used by researchers when developing

techniques and tools for REST APIs?; 2) Are the issues commonly found in REST APIs

fully mapped by the research community?; and 3) Which datasets are used by researchers

in this field?

3.1.1 Selected scientific databases

The main databases relevant to our field of research — and those in which we

conducted a search — are the following:

• IEEE Xplore

• ACM Digital Library

• SCOPUS

3.1.2 Inclusion and exclusion criteria

To be selected, a paper must satisfy all of the inclusion criteria and it must not

satisfy any of the exclusion criteria. Both criteria are listed below.

Inclusion criteria

• The authors of this review must have access to the full version of the study;
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• Only studies published after 2010 were appraised. This year was chosen as the

starting point because it is the creation year of a popular REST API specification

language (OpenAPI);

• Only studies that propose techniques for evaluating the quality or security of an

API or introduce techniques for automatically generating tests for an API will be

considered;

• To be considered, studies must involve APIs that follow the REST architectural

style;

• Evaluation or test generation must be done by leveraging some type of specification

of the API;

• The study must be published in a journal, conference or symposium directly related

with Computer Science.

Exclusion criteria

• The authors of this review did not have access to the full version of the study;

• Studies published before 2010 were not considered;

• Works that do not propose techniques for evaluating the quality or security of an

API or introduce techniques for automatically generating tests for an API will not

be included;

• Studies that involve APIs that do not follow the REST architectural style will be

ignored;

• Studies that do not use some kind of API specification will not be considered;

• Works that are not published in a journal, conference or symposium directly related

to Computer Science will be ignored.

3.1.3 Search strings

Table 1 shows the search string used in each database and the date when the latest

search was performed. The search strings are all equivalent. Their variation is due to the

different search commands / interfaces supported by each database.
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Table 1 – Search strings and last search date per database

Database Search date Search String

ACM Digital
Library

May 2nd, 2022

Title:((“rest api” AND
spec) OR (“rest api” AND
specification) OR (“restful

api” AND spec) OR
(“restful api” AND
specification)) OR

Abstract:((“rest api” AND
spec) OR (“rest api” AND
specification) OR (“restful

api” AND spec) OR
(“restful api” AND
specification)) OR

Keyword:((“rest api” AND
spec) OR (“rest api” AND
specification) OR (“restful

api” AND spec) OR
(“restful api” AND

specification))

IEEE Xplore May 2nd, 2022

((“All Metadata”:“rest api”
AND spec) OR (“All

Metadata”:“rest api” AND
specification) OR (“All
Metadata”:“restful api”
AND spec) OR (“All

Metadata”:“restful api”
AND specification))

SCOPUS May 2nd, 2022

TITLE-ABS-KEY ( “rest
api” AND spec ) OR

TITLE-ABS-KEY ( “rest
api” AND specification )
OR TITLE-ABS-KEY (

“restful api” AND spec ) OR
TITLE-ABS-KEY ( “restful

api” AND specification )

Source: Alex Braha Stoll, 2022

3.1.4 Results

As a result of the review process described in previous sections, a total of 17 unique

works were selected (14 as a result of searching scientific databases and three already

known by the authors of this study). Across all selected scientific databases, a total of 147

studies were retrieved. For details on the results obtained for each database, see Table 2.
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Table 2 – Results per scientific database

Database Total retrieved Total selected
ACM Digital

Library
12 3

IEEE Xplore 37 7
SCOPUS 98 13

Source: Alex Braha Stoll, 2022

3.1.5 Structure of the remainder of this chapter

The rest of this chapter is dedicated to presenting summaries of the most relevant

among the papers that satisfied the inclusion criteria aforementioned. The summaries are

grouped by theme (e.g., Generating test cases from an OpenAPI specification). After that,

the chapter closes with a discussion on the findings and how they support the proposal

here being put forward.

3.2 Recommended good practices for the design of REST APIs

3.2.1 A study of the design quality of Cloud Computing REST APIs

Cloud Computing has transformed the Information Technology industry (PETRILLO

et al., 2016). Cloud Computing providers often also offer their services through APIs and,

although there are no widely accepted standard for developing these APIs, it is safe to

say that the REST architectural style is a de facto standard. Among these REST APIs,

however, there is a lot of differences. Therefore, it is difficult to assess the quality of each

API.

In order to help facilitate this task, it is proposed a catalog with 73 best practices

to be followed when designing an API to enhance its understandability and its reusability.

The catalog was built by surveying the literature on design best practices for REST

APIs. Besides the catalog, the second important contribution is an analysis of three

important APIs for Cloud Computing: Google Cloud Platform1, OpenStack2 and Open

Cloud Computing Interface (OCCI)3. These APIs were selected because each one of

1 https://cloud.google.com/
2 https://www.openstack.org/
3 http://occi-wg.org/

https://cloud.google.com/
https://www.openstack.org/
http://occi-wg.org/
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them represent, in order, a commercial offer, an open-source implementation and an open

standard (PETRILLO et al., 2016).

In addition to adherence to the cataloged best practices, it was also verified which

common categories of operations (in a cloud environment) were supported by the APIs (e.g.,

virtual machine management, container management, access control etc). All analyses were

done manually by the authors. Regarding adherence to REST API design best practices,

the three APIs follow an average of 44 out of the 73 proposed practices. Specifically, the

results are the following:

• Google Cloud Platform: 48 / 73 (66%)

• OpenStack: 45 / 73 (62%)

• OCCI: 41 / 73 (56%)

As part of the research questions proposed, the authors also identified the best

practices that are followed by all APIs and those that are followed by none. It may be

interesting to further investigate why that is the case and — concerning practices not

being followed by any of the analyzed APIs — to question if they really should belong to

a best practices catalog.

The authors conclude that the suggested catalog of best practices help when

assessing the design of REST APIs (concerning their understandability and reusability).

They also conclude that cloud computing APIs do reach an acceptable level of maturity

(again, taking into consideration understandability and reusability), since all of them honor

more than 50% of the best practices.

3.3 Automatic checking of adherence to REST good practices

3.3.1 Securing REST APIs through a specification

Iversen (2018) shows that it is possible to find security vulnerabilities in REST

APIs by leveraging the information contained in a specification. To detect possible security

issues, two strategies are employed: static analysis of specifications and generation of

tests to be run against APIs by using the information available in their corresponding

specifications. The study presents a couple of different detectable security issues, focusing

on vulnerabilities associated with the JSON Web Token (JWT) technology. JWT is an
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open standard that leverages digital signature algorithms (e.g., public-key cryptography)

to allow authentication and secure information sharing between parties across a network

(RFC 7519, 2015).

Iversen (2018) introduces a new API specification instead of leveraging one of the

specifications used in the industry (e.g., OpenAPI4). The decision not to use an established

specification is justified by two arguments: 1) by introducing a new specification, there is

no need to dedicate resources into dealing with irrelevant (to the purposes of the study)

implementation details of one of the industry used specifications; 2) being able to express

authorization constraints (i.e., user access levels).

The static analysis strategy uses two techniques. The first one is to employ dictio-

naries with patterns to be searched for in the specification. One example of a vulnerability

detectable by using this technique is having a mandatory parameter (e.g., a user identifi-

cation) to be present in the query string of an endpoint URI (Uniform Resource Identifier)

instead of being present as a URI parameter. The second technique utilized makes use of

algorithms that are able to do some kind of verification against available information in

order to produce a reliable result about the presence or absence of a given problem (e.g.,

specifying “none” as the hashing algorithm to be used when signing a JWT token). The

first technique may result in false positives (because not every detection of a dictionary

pattern necessarily means an issue), while the second cannot produce false positives (the

nature of the utilized algorithms always detect issues when they are present) (IVERSEN,

2018).

The dynamic analysis strategy leverages the API specification to make requests

against the API. By making real requests, it is shown that it is possible to detect a

different set of security vulnerabilities. The detected issues can be categorized as following:

1) comparison of response HTTP codes with expected codes; 2) verification of the returned

payload against the expected return fields (i.e., verifying if the API is possibly leaking

data); and 3) to check if it is possible to write to fields that are not supposed to be mutable

(for a given user access level). It is also proposed the combined usage of all the dynamic

techniques in stages, starting with the verification of HTTP codes and then proceeding to

the next techniques whenever the currently executing succeeds. It is also proposed that

checks should be executed for every user access level and endpoint.

4 https://www.openapis.org/

https://www.openapis.org/
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3.3.2 Detection of OCCI and REST patterns and anti-patterns

Brabra et al. (2019) stated that the pay-as-you-go and elasticity characteristics of

Cloud Computing are contributing to it becoming more and more attractive to software

teams. There are many different providers of this type of solution (e.g., Amazon Web

Services5 and Google Cloud Platform6), making interoperability a challenge since each

provider offers a different API. An initiative to facilitate interoperability among these

services is the Open Cloud Computing Interface (OCCI), an open standard that aims to

provide a meta-model for managing cloud resources (i.e., computing, storage and other

services available through a platform like Amazon Web Services). The OCCI standard

also specifies a REST API through which one can interact with the aforementioned cloud

resources.

There are tools to help developers check whether the APIs they are developing

conform to OCCI best principles and to REST best practices, however these tools have

shortcomings. As an example, there is an official OCCI tool7 that allows one to detect best

practices, however this utility does not show detailed descriptions of the practices that it

detected being followed, nor lists the practices that it did not detect as being honored.

Brabra et al. (2019) proposes an approach that not only automatically detect OCCI and

REST patterns and anti-patterns, but also offers a set of correction suggestions when

anti-patterns are identified. In order to do so, the proposed technique / proof of concept

tool relies on semantic models manually built from the documentation of a cloud provider

API.

To verify the proposed technique, the researchers decided to run a proof of concept

tool against five cloud APIs: OOi, COAPS8, OpenNebula9, Amazon S3 and Rackspace10.

Besides manually building semantic models for these APIs (as mentioned before), the APIs

were also manually analyzed to check compliance for the same set of REST and OCCI

patterns that are checked by the developed tool. Compliance (to REST or OCCI) was

defined as the percentage of patterns that each API operation conforms to in relation to

5 https://aws.amazon.com/
6 https://cloud.google.com/
7 OCCI Compliance Testing Tool
8 http://www-inf.int-evry.fr/SIMBAD/tools/COAPS1/
9 https://opennebula.org/
10 https://www.rackspace.com/cloud

https://aws.amazon.com/
https://cloud.google.com/
https://occi-wg.org/2011/01/18/occi-compliance-testing-tool/index.html
http://www-inf.int-evry.fr/SIMBAD/tools/COAPS1/
https://opennebula.org/
https://www.rackspace.com/cloud
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all the patterns that are applicable (i.e., it would not make sense to check if an operation

that expects the GET HTTP verb conforms to a good practice specific to the POST verb).

The results of these experiments showed that all the APIs aforementioned already

reached an acceptable REST compliance degree. The mean value for the studied APIs

was greater than 50%. Regarding compliance with OCCI best practices, the results were

inferior. No API reached a compliance greater than 58% and the least compliant API

(Amazon S3) scored a compliance measure of only 42%. This shows that although these

APIs have achieved good REST compliance, the developers of each solution are not yet

giving a lot of importance to following OCCI best principles.

3.3.3 UniDoSA: Unified Detection of Service Antipatterns

Palma, Moha and Guéhéneuc (2018) presents a tool (UniDoSa) capable of detecting

anti-patterns in three different web service technologies: Representational State Transfer

(REST), Service Component Architecture (SCA) and Simple Object Access Protocol

(SOAP). To accomplish that, the authors introduce: a) a meta-model in a higher level

of abstraction capable of representing and relating the concepts in the aforementioned

web service technologies; b) a Domain-specific language (DSL) for describing anti-patterns

in terms of static and dynamic properties observed in the services under analysis; and

c) a framework — called Service Oriented Framework for Antipatterns (SOFA) — that

supports the process of collection of metrics from the service under analysis (to be used to

determine if a given anti-pattern is present or not) and the process of automatic generation

of executable code for detection of anti-patterns (based on rule cards describing each

anti-pattern in the DSL aforementioned).

Part of the technology behind UniDoSa — the detection of REST anti-patterns

using static and dynamic techniques — is also available as a web tool called WebRestpad11.

The tool allows one to scan a REST API, being able to detect six REST anti-patterns

using static techniques and eight different ones when selecting the option to use dynamic

techniques.

To validate UniDoSA, an experiment was run to attempt to detect different service

anti-patterns selected from the literature in a collection of web services in the three

technologies supported by the tool. Specifically, a total of 12 different anti-patterns were

11 http://webrestpad.sofa.uqam.ca/

http://webrestpad.sofa.uqam.ca/
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searched for in 18 REST APIs, 2 SCA systems and 120 SOAP services (it is important to

mention that not all those 12 anti-patterns are relevant to all technologies). The detections

made by UniDoSA were then manually validated by the research team. In this experiment,

UniDoSA showed an average precision of 89.78% and a recall of 96.67%.

As future work, the authors intend to investigate the potentially negative impacts

the anti-patterns detected may cause in the systems under study. They also plan to work

in the correction of the detected anti-patterns by using semi-automated approaches.

3.4 Automatic generation of tests from specifications

3.4.1 Generating test cases from an OpenAPI specification

An OpenAPI specification allows one to describe the details of the interface of an

API following the REST architectural style. Different than other specifications, however,

the OpenAPI standard was designed specifically with the objective of describing REST

APIs. Other specifications, like the Web Application Description Language12, were proposed

to describe REST APIs, but failed due to its complexity and inadequacy in describing

this particular architectural style (ED-DOUIBI; IZQUIERDO; CABOT, 2018).

Regarding the automatic generation of test cases from a specification, many ap-

proaches have been proposed, but mostly for APIs using SOAP (Simple Object Access

Protocol). Although it is possible to design a REST API that uses the Simple Object

Access Protocol, APIs following REST generally use the Hypertext Transfer Protocol

(HTTP). There are also proposals and tools to generate test cases from REST compatible

specifications, but they generally require the developer to input data or do not provide

support for testing fault-based scenarios (ED-DOUIBI; IZQUIERDO; CABOT, 2018).

Besides that, some approaches introduce a custom specification for describing the API or

require one to have access to the source code (e.g., Iversen (2018)).

Ed-Douibi, Izquierdo and Cabot (2018) proposes a technique and a tool that is able

to generate test cases for REST APIs having as the sole requirement a valid OpenAPI

specification describing the API that one wants to test. A developer does not need to input

any other data and the tool is also able to test fault-based scenarios in which invalid data

is willingly sent to check if the service correctly responds with the expected error code.

12 https://www.w3.org/Submission/wadl/

https://www.w3.org/Submission/wadl/
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The technique for generating the test cases is composed of four steps. First, an OpenAPI

model is built from the specification. This is followed by the generation of input data.

Then, test suite models are created. Finally, in the fourth and final step, a program is

generated to be run against the API and do the actual testing.

The verification of the aforementioned tool was done by using it to scan 91 APIs

from an open repository of Open API specifications13. After generating and running

tests for these APIs, it was found that 40% had failed to pass at least one test from the

automatically built test suite. The developed proof of concept tool was able to detect

errors in many of the tested APIs. However, the authors themselves list some drawbacks

that they intend to address in the future. One example is the lack of support for scenarios

in which exists a dependency between requests to the API (i.e., some operation can only

be tested if another operation is executed previously to first create data or change the

state of the system under test). Another example is the lack of support for version 3 of

the OpenAPI specification (the tool only supports version 2).

3.5 Automatic detection of bugs in REST APIs

3.5.1 RESTler: a stateful REST API fuzzer

RESTler is the first stateful API fuzzer (ATLIDAKIS; GODEFROID; POL-

ISHCHUK, 2019). It is able to automatically generate code to fuzz a REST API by

analyzing its OpenAPI specification. RESTler has two distinguishing features: a) its ability

to infer dependencies among requests (e.g., request A creates a resource that is needed

in order to execute request B, therefore B depends on A); and b) RESTler analyzes the

response from each request and eliminates invalid sequences of requests (i.e., if the server

responds with certain types of error after a sequence A-B is executed, RESTler will no

longer attempt this same sequence in the future).

RESTler reads an OpenAPI specification and then generates Python code that

is able to make requests to the API. For requests that expect parameters, RESTler is

able to expand the original request into multiple ones by drawing different values for each

parameter from a dictionary (which can be enhanced by the user). By default, RESTler

uses a breadth-first search (BFS) strategy to explore the space of all possible requests

13 http://apis.guru

http://apis.guru
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(and sequences thereof). Other algorithms can be used and the authors show experiments

also using BFS-Fast and RandomWalk.

The authors ran three experiments with RESTler. One against a simple Blog API,

one against GitLab14 (a popular hosted Git open-source solution) and one against Azure15

and Office36516 services. They were able to provide evidence that RESTler capabilities

(infering dependencies and analyzing responses, as explained before) are relevant in

enhancing the efficacy of the tool and its ability to exercise more lines of code of the API

under test. They were also able to show that RESTler seems to be capable of finding

important bugs. In total, 22 were found in GitLab. The authors did not disclose the

number of bugs found in Azure and Office365 services, but reported that multiple were

found as well.

As future work, the authors propose a series of potential improvements to RESTler.

One is to support even richer user annotations on an OpenAPI specification to allow

one to specify complex service-specific types. Another possible area of research is how to

automatically generate an OpenAPI specification (by using machine learning and traffic

logs) for web services that do not offer one. The authors also mention the possibility of

adding to RESTler the ability of detecting server-side assertion violations by analyzing

back-end logs. The authors conclude the paper by emphasizing the importance of further

exploration in the area of automatic detection of bugs in REST APIs, since it is still not

completely clear the frequency and categories of issues generally found in these types of

web services.

3.5.2 RESTest: automated black-box testing of RESTful Web APIs

RESTest is a tool able to generate test cases for REST APIs from their corresponding

OpenAPI specification (MARTIN-LOPEZ; SEGURA; RUIZ-CORTÉS, 2021). It supports

the following testing techniques: fuzzing, adaptative random testing and constraint-based

testing.

RESTest’s workflow consists of the following steps:

14 https://about.gitlab.com/
15 https://azure.microsoft.com/
16 https://www.office.com/

https://about.gitlab.com/
https://azure.microsoft.com/
https://www.office.com/
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1. Test model generation: to generate abstract test cases, it uses the API’s OpenAPI

specification and a configurable YAML file. This configurable file can be edited to

include information such as an authentication token to interact with the API. It is

also possible to specify particular data generators to be used with each parameters

(and the generators themselves can be created by the user);

2. Abstract test case generation: Plataform-independent test cases are generated

from the models created in the preceding step;

3. Test case generation: The abstract test cases are instantiated into executable

tests in a particular language or framework. The user can also extend RESTest and

create its own test case generators.

4. Test case execution: Test cases can then be executed. The results are collected

and can be visualized in a dashboard.

5. Feedback collection: Some data generators can use as input the results of previous

test runs.

One of the experiments carried out to validate RESTest was to run it against

APIs of the following popular services: GitHub, Foursquare, Marvel, Stripe, Tumblr, Yelp

and YouTube (MARTIN-LOPEZ; SEGURA; RUIZ-CORTÉS, 2021). The authors of the

research generated more than 90K test cases. Of those, 30% failed (uncovering errors in

all APIs being tested). Many different types of issues and errors were found: server errors,

client errors (in response to valid inputs) and mismatches between the API documentation

and its actual implementation.

As future work, the authors intend to extend RESTest in many different ways. One

idea is to offer more test data generators and test case generation strategies. Another plan

is to support other specifications besides OpenAPI, even allowing RESTest to also be able

to generate and run non-functional test cases.

3.6 Competing OpenAPI repositories and collections

There does exist directories of APIs (e.g., RapidAPI17) and even collections of

OpenAPI specifications (e.g., APIs Guru18). However, these existing solutions are not a

good fit for researchers for two important reasons.

17 https://rapidapi.com
18 http://apis.guru

https://rapidapi.com
http://apis.guru
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The first one is the lack of annotations in the OpenAPI samples, making it challeng-

ing for a researcher to check the performance of a tool tested against these existing solutions.

Without annotated samples, it becomes labor intensive to produce metrics because one

has to manually analyze every specification touched by the tool under assessment (e.g.,

to confirm true positives). The second reason is the fact that the focus of these kinds of

repositories is simply on creating OpenAPI specifications for existing web services, without

a concentrated effort (such as in the case of OAS DB, presented in Chapter 5) in adding

new samples that actually increase the diversity of scenarios covered (both in terms of

anti-patterns contained in the repository and in terms of domains covered by its samples).

3.7 Final remarks

The literature review highlights some interesting facts. First, it appears to be a

tendency of creating novel models and specifications instead of using the ones that are

popular in industry. Iversen (2018) pinpoints the rationale behind this trend: by doing so,

researchers are able to focus on that which is most relevant to their research and do not

have to deal with the complexities of real world specifications (such as OpenAPI).

Regarding the issues commonly found in REST APIs, one can conclude that they

are not yet crystal clear. As shown by the results of this literature review, so far there are

not that many studies focusing on finding bugs and violations of REST API best practices.

The need of further investigating issues that plague REST APIs in general is indeed also

directly pointed out by some of the reviewed works (e.g., see Atlidakis, Godefroid and

Polishchuk (2019)).

To answer the third and final question formulated in Section 3.1, let us look at

the datasets used in the reviewed studies. With the exception of one study (which is

Ed-Douibi, Izquierdo and Cabot (2018)), all others use custom datasets created by their

own research team (at least when dealing with REST APIs in the case of studies concerned

with multiple architectures). The OpenAPI specifications repository APIs Guru (used

in Ed-Douibi, Izquierdo and Cabot (2018)) is not highly suited for research usage. In

Chapter 5, the reasons this repository is not a good fit are thoroughly explained. One

can argue that this lack of a standard dataset is detrimental to advancements in the field

for two main reasons: first, researchers spend valuable time building their own datasets;
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and, besides that, the usage of different data makes the comparison between studies more

challenging.

Regarding tools that aim to find issues in REST APIs, there are other relevant

works besides RESTler (ATLIDAKIS; GODEFROID; POLISHCHUK, 2019; GODEFROID;

HUANG; POLISHCHUK, 2020; GODEFROID; LEHMANN; POLISHCHUK, 2020) and

RESTest (MARTIN-LOPEZ; SEGURA; RUIZ-CORTÉS, 2021). Alonso et al. (2022)

introduces ARTE, a realistic test input generator that can be integrated with API test

generators. In the aforementioned work, ARTE is integrated with RESTest. ARTE is able

to generate realistic test inputs – e.g., a valid ISO 3166 country code for a country code

parameter in an API – by extracting semantic information from an API’s specification. In

the case of OpenAPI specifications, this information is extracted from a parameter’s name

and description. After doing so, ARTE is able to query semantic knowledge databases

during the process of input generation. By following the approach just described, ARTE

was able to detect confirmed bugs in the APIs of real-world services, such as Amadeus (a

hotel booking service) and DHL (a logistics company).

Banias, et al. (2021) introduces a tool capable of generating functional tests for a

REST API having as input its OpenAPI specification. The tool is also able to evaluate

the performance of the API by measuring the response times for each API endpoint. Test

cases can be generated using a set of different modes, ranging from totally automated to

requiring the user to give sample values for parameters without available examples in the

API’s specification. The approach described in Banias, et al. (2021) is validated by two

case studies: the first uses an API dedicated to American football data with 42 paths and

38 different parameters; the second, uses a collection of 30 different APIs extracted from

APIs Guru.

Corradini et al. (2022) presents RestTestGen, a new approach for automatically

generating tests for REST APIs from their corresponding OpenAPI specifications. RestTest-

Gen is able to generate both nominal and error test cases. The former class of tests respects

what is specified in the API’s specification, while the later purposefully creates tests that

violate the expectations given in the OpenAPI specification as a way to try to force

the API into error states. The tool also introduces the concept of operation dependency

graphs, which is a method for detecting dependencies between different parameters and

only running certain test cases when all mandatory dependencies are met. RestTestGen
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was validated against 116 real-world APIs and was able to uncover many different defects

in them.

Mirabella et al. (2021) introduces an approach for predicting the validity of generated

API test inputs using Artificial Intelligence techniques. It is very common for API endpoints

to include parameters that are interdependent (i.e., some combinations of values for them

produce invalid requests). Google Maps API, for instance, requires that requests that

inform a value for the location parameter also include the radius parameter as well

(MIRABELLA et al., 2021). As a consequence of these interdependencies, it becomes more

challenging to randomly generate valid test inputs. Mirabella et al. (2021) proposes to

train a deep learning model on previous API request / response pairs. This approach

results in a high level of accuracy when predicting if a generated input is valid (ranging

from 86% to 100% accuracy in some well known real-world REST APIs).

Karlsson, Causevic and Sundmark (2020) describes a proof of concept tool —

QuickREST — that uses a two-folded strategy for generating tests for REST APIs: it both

creates random tests and tests that conform to the corresponding OpenAPI specification.

By going beyond the verification of HTTP response codes and also checking a response’s

properties, QuickREST was able to detect issues in real world APIs. As its validation,

QuickREST is able to reproduce the same bugs found by another tool — RESTler

(ATLIDAKIS; GODEFROID; POLISHCHUK, 2019) — in the popular open source project

GitLab19.

There are some other initiatives that, although tangential to our specific area of

research and purpose, are worth mentioning. Kistowski et al. (2018) introduces TeaStore,

a reference micro-services application that can be used to benchmark micro-service deploy-

ment strategies and also as a model to researchers and industry practitioners working in

this field. Another example that serves a similar purpose is the Sock Shop demonstration

application20. It is important to stress that a) our research is specifically about REST

APIs and the OpenAPI specification, not micro-services and b) that both TeaStore and

Sock Shop were created with the purpose of being best practices reference models, not with

the aim of supporting researchers working with the detection of issues and anti-patterns

(which is precisely the purpose of our work).

19 https://gitlab.com/
20 Sock Shop Demo

https://gitlab.com/
https://microservices-demo.github.io/
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Efforts to build shared experimentation infrastructure seem to have yielded positive

effects in other research fields. Hyunsook Do et. al. (DO; ELBAUM; ROTHERMEL, 2005)

demonstrated many benefits of having shared infrastructure for experimentation, such

as cost saving and accelerated improvement of datasets (because different researchers

are able to provide feedback and collaborate). Another work that is worth mentioning is

the Defects4J repository. Containing hundreds of bugs from real-world Java programs, it

has been successfully shared and improved by different research teams (JUST; JALALI;

ERNST, 2014).
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4 REST anti-patterns

As discussed in the literature review in Chapter 3, there are already some studies

that catalog REST API anti-patterns (see in particular Petrillo et al. (2016)). We defend,

however, that there are relevant anti-patterns present in real world APIs that are not yet

documented in the literature.

In this chapter, we present a novel REST anti-pattern. We also explore in detail

another REST anti-pattern that is already cataloged in the literature. By studying these

two anti-patterns, we intend to give a good sense of the kinds of anti-patterns that will

be present in the specifications that are part of OAS DB, presented in Chapter 5. Both

anti-patterns explained in this chapter are already present in OAS DB.

4.1 Proposed new anti-patterns

4.1.1 Sequential integers as resource ID

It is common knowledge that most resources in a software system are distinguishable

by some kind of unique identifier given to them. For example, an order in an ecommerce

system may have the integer 198 as its ID. Using integers as IDs is a common practice

because of ease of implementation and human comprehensibility.

For a deeper understanding of the issue, let us continue with this example and

imagine that this same ecommerce system exposes a REST API. Let us suppose that there

is one endpoint that allows one to retrieve information about an order by providing its

integer ID.
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Figure 8 – A client requesting an order’s data by providing its integer ID

Source: Alex Braha Stoll, 2022

Sequential integer IDs are a problem because they are easily fabricated and they

leak information about system internals. Let us explore in more details each one of these

characteristics to understand how they are a bad practice both from a security standpoint

and from a business perspective.

Sequential integers IDs are detrimental from a security standpoint

If one can access information about resources by providing its ID — as we are

seeing in the ecommerce API example — this means that having IDs that are easily forged

(such as in the case of sequential integers) gives an attacker an obvious channel to try

to explore. Considering our example endpoint for retrieving orders, an attacker has two

paths to try to explore:

1. If the attacker is not authorized to have any access at all to the API, the attacker

can generate integer IDs (which are probably valid and correspond to real orders)

hoping to get data from orders due to a potential error in the implementation of the

authentication and authorization mechanism of the API;

2. If the attacker has authorization to access at least part of the orders, the attacker

can generate integer IDs to try to get a hold on data that it should not have access
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to. As an example, imagine a scenario in which a vendor can only access data from

orders that include items s/he sold, but tries to generate IDs to access data from

orders in which s/he is not participating in.

Both of these exploits rely on errors in the authentication / authorization mechanism

of the system under attack. However, those types of errors are not unheard of. There

are CVEs reporting cases in which the channel just described was successfully used to

compromise real world software (CVE-2015-8542, 2015).

Sequential integers IDs are detrimental from a business perspective

From a business perspective, we defend that the usage of sequential integer IDs

is also detrimental. Let us continue considering our fictional ecommerce system and its

API. Since the orders are identified by sequential integers, this means that we are leaking

information that could be used by a competitor to estimate the sales volume of the

company running the ecommerce. There are probably multiple ways of doing so, but here

are two feasible strategies:

1. The competitor makes a purchase from the ecommerce. A week later it makes a new

purchase. The delta between order numbers can be used as a rough estimate of the

weekly sales volume;

2. If the competitor knows a cooperating vendor that has access to the API or for some

reason has obtained access to the API itself, the fact that the orders are identified

by sequential integers may probably also allow them to devise a strategy to estimate

the sales volume of the ecommerce.

Scenarios in which it is appropriate to use sequential integers

It is important to note that there are scenarios in which the usage of sequential

integer identifiers is perfectly valid. It is the responsibility of the designers and of the

implementers of a given system to judge if using sequential integers in a specific context

may cause the type of security and business disadvantages discussed previously. Although

not an extensive list, here are some contexts in which using integers is appropriate:
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1. Internal systems used only by trusted parties;

2. Contexts in which performance requirements are extreme and the cost of generating

sequential integers has been verified to be considerably lower than that of using

UUIDs;

3. Systems that run in an environment in which no reliable UUID generator implemen-

tation is available.

4.2 Discussing an example of a cataloged REST anti-pattern

4.2.1 Sensitive information in the path or in the query string

Not all APIs — or all resources accessible through an API — are to be public.

When considering different mechanisms for authentication and authorization of an API

user, one possible strategy is to require a token to be sent together with the rest of the

data necessary to make a request to a given endpoint.

To illustrate this concept, let us consider again a fictitious ecommerce API. However,

this time let us imagine an endpoint that allows a vendor to access data on a given customer,

as long as the customer has bought at least one item from that vendor in the past. In order

for a vendor to access information on a customer, it needs to provide a customer token,

which is only obtainable if the requirement explained before is met. Such an endpoint

could be described by the following segment of OpenAPI specification:

Figure 9 – Sensitive information included in the path or in the query string, a cataloged
REST anti-pattern

Source: Alex Braha Stoll, 2022
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In the segment above, we see that the token is required as part of the path of the

endpoint. Another common strategy is to require some kind of token or secret as part of

the query string. We can find multiple examples of this kind of approach in specifications

found at the APIs Guru repository1.

The issue with this approach — as explained in Iversen (2018) — is that the URI

(which the path and the query string are parts of) is not encrypted as the request data

travels through the Internet, even when using a secure protocol like HTTPS.

How can this anti-pattern be avoided? In other words, how could one send a required

authentication token without taking the risk of exposing it? One possible solution is to

send the token as part of the header of the HTTP request, which is encrypted and thus

secure when a protocol like HTTPS is employed.

4.3 Final remarks

In this chapter, we did a deep dive on concrete types of REST anti-patterns. In

section 4.1 we presented a novel anti-pattern not yet documented in the literature. In

section 4.2.1, we then discussed with details one example of anti-pattern that is already

catalogued.

Now that we are familiar with REST anti-patterns, we are ready to start exploring

how to inject them into OpenAPI specifications and also mock implementation APIs. In

the next chapter, we will present OAS DB, the main product of our research. OAS DB is

capable of generating complete OpenAPI specifications and their corresponding mock API

implementations. During this synthetization process, OAS DB can inject into these assets

multiples types of REST anti-patterns and other kinds of issues and faults.

1 http://apis.guru

http://apis.guru
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5 OAS DB: A generator of annotated specifications and mock APIs to sup-
port OpenAPI research

OAS DB stands for OpenAPI Specifications Database. It is a tool capable of gener-

ating a collection of synthetic OpenAPI specifications and their mock API implementations,

together with annotation files describing both. OAS DB is openly available1 at GitHub. The

specifications, mock API implementations and annotation files are automatically created

from segments of OpenAPI specifications. These segments — which we call OpenAPI

specification seeds — are also one of the contributions of the present research.

Figure 10 – Overview of OAS DB

Source: Alex Braha Stoll, 2022

As illustrated in Figure 10, the OAS DB Enhancer Engine is the heart of OAS DB.

As the name suggests, this is the component responsible for transforming an OpenAPI

specification seed into the three final products offered by OAS DB: a complete OpenAPI

specification, an executable mock API implementation of the specification and finally an

annotation file describing which anti-patterns appear in the specification (if any) and

which issues and faults in the mock API (if any).

1 https://github.com/alexbrahastoll/oas-db

https://github.com/alexbrahastoll/oas-db
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The remainder of this chapter is organized in the following fashion: section 5.1

contains a quick refresher on the OpenAPI specification and also presents the concept of

OpenAPI specification seeds, the initial input needed by OAS DB. Section 5.2 discusses the

generation of specifications from seeds. Section 5.3 explores the generation of mock API

implementations. Section 5.4 discusses annotations files, responsible for indicating which

issues are to be found in corresponding specifications and mock API implementations.

Section 5.5 explains in details the information flow through the different components of

the tool and how one can use it to generate specifications, mock API implementations and

annotation files. Section 5.6 briefly instructs one on how to contribute to the development

of OAS DB. Finally, section 5.7 compares OAS DB with similar existing solutions.

5.1 OpenAPI specification seed

To recapitulate, OpenAPI2 is a format devised for describing all the resources that

can be accessed and manipulated through a REST Web API. An OpenAPI specification

seed is based on this format and is the raw material used by OAS DB to generate full-blown

OpenAPI specifications and their corresponding annotation files and executable mock API

implementations. This file type is not part of the OpenAPI standard and is a novel idea

that is part of the research herein presented.

When designing the OpenAPI specification seed file format, we aimed to identify

the parts of OpenAPI essential for generating a complete specification, together with a

mock API implementation. As a consequence, the format that we devised contains some

of the components that are part of a complete OpenAPI specification. In other words, an

OpenAPI specification seed is a subset of OpenAPI version 3.0.3. Although an OpenAPI

file can be represented in JSON (JavaScript Object Notation) or YAML (YAML Ain’t

Markup Language), a specification seed must be a JSON file.

Currently, a seed must only contain a single entity and it considers all its fields to

be mandatory for record creation. In the case of updating a record, it is assumed that at

least one of the expected fields must be present. Besides that, all the properties of the

main entity must be of one of the following types: integer, number, string and boolean. In

the future, we may expand what the format allows in order to be able to generate more

complex complete specifications and mock APIs. Figure 11 is an example of the current

2 https://www.openapis.org/

https://www.openapis.org/
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version of this file format. It shows a seed specifying a fictitious API to report and manage

incidents that happened in an online service (e.g. application downtime).

A valid seed must contain the following components:

1. the info object: it contains basic information about the API, such as its title,

description and version (OpenAPI. . . , 2020).

2. the schema object: it has the fields and data types of the main entity of the API.

3. the example key: it is one of the keys of the the schema object. It must hold a

valid instance of the entity being represented.

Figure 11 – An OpenAPI specification seed that describes the kernel of an incident report-
ing API.

Source: Alex Braha Stoll, 2022

5.2 OpenAPI specifications

OAS DB is capable of generating samples of OpenAPI specifications containing

known anti-patterns. Let us illustrate this feature with a short example. In REST APIs, it
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is a good practice not to allow sensitive information in the query string of a given endpoint

(IVERSEN, 2018). The reason for that is the lack of encryption of the URI (which the

query string is a part of), even when a secure protocol like HTTPS is used. Therefore, the

inclusion of sensitive data in the query string is an anti-pattern. In Figure 12, we observe

part of a generated OpenAPI sample that contains the anti-pattern just described.

Figure 12 – Sensitive information (the customer token) included in the query string, one
of the new anti-patterns we propose.

Source: Alex Braha Stoll, 2022

5.2.1 REST anti-patterns

Selection of REST anti-patterns

One of the main goals of OAS DB is to include a diverse and realistic set of

anti-patterns. Thefore, when implementing the components responsible for generating

specifications including anti-patterns, we selected anti-patterns that are shown to be

more present in real APIs (see Petrillo et al. (2016); Ed-Douibi, Izquierdo and Cabot

(2018); Brabra et al. (2019); Palma, Moha and Guéhéneuc (2018); and Atlidakis, Godefroid

and Polishchuk (2019)). Here is the list of anti-patterns OAS DB is currently capable of

injecting into an OpenAPI specification:

1. Crudy URI: Injects a HTTP action verb (or a synonym) into the resource’s path

(e.g., get payments);

2. Amorphous URI: Adds superfluous characters to the resource’s path (e.g., a file

type suffix such as .xml);
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3. Ignoring status code: Responses use inappropriate HTTP codes (e.g., an endpoint

returning 204 instead of 201 after a resource is created);

4. Inappropriate HTTP method: Requests expect inappropriate HTTP methods

(e.g., an endpoint for reading a resource expecting POST instead of GET);

5. Invalid examples: Generates request examples that do not comply to the related

objects’ schema;

6. Sensitive info in the path or query string: Sensitive info (e.g., a token) is

included in paths or query strings.

Categories

Each selected anti-pattern / issue was categorized as negatively affecting one or

more attributes of software quality, be it product quality attributes, be it quality in

use attributes, as defined by ISO 25010:2011. The list of anti-patterns / issues and the

corresponding affected attributes is shown in table 3.

Product quality attributes are the following: functional suitability, performance,

compatibility, usability, reliability, security and maintainability. Quality in use attributes

are: effectiveness, efficiency, satisfaction, freedom from risk and context coverage (ISO 25010,

2011).

Table 3 – Anti-patterns and the ISO 25010:2011 attributes affected

Name Negatively affects
Crudy URI Compatibility, efficiency
Amorphous URI Compatibility

Ignoring status code
Compatibility, effectiveness,

efficiency
Inappropriate HTTP method Compatibility, performance
Invalid examples Maintainability, efficiency
Sensitive info in the pqs Security
Invalid payload Reliability
Unexpected payload root node Reliability
Payload missing keys Reliability
Payload extra keys Reliability
Payload wrong data types Reliability

Broken record deletion
Functional suitability,

effectiveness

Source: Alex Braha Stoll, 2022
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5.3 Mock API implementations

5.3.1 Code generation

One of the products of processing an OpenAPI specification seed is a mock API

implementation. This is a self-contained file that, when executed, spins up a server that

is able to receive requests and generate responses, according to what the corresponding

OpenAPI specification file dictates. The generated API will have the four common record

manipulating operations: create, read, update and destroy.

Figure 13 – A segment of a mock API implementation. This excerpt shows a GET endpoint
that is able to retrieve a record when given its ID.

Source: Alex Braha Stoll, 2022

Figure 13 shows a fragment of a generated API implementation. At lines 4 — 7,

we try to retrieve the requested object by using the ID supplied as a parameter. If the ID

given does not correspond to an existing object, we halt the processing and respond with

the HTTP error code 404 (meaning record not found). Lines 9 — 12 handle the scenario

in which the supplied ID does correspond to an existing object. When that is the case,

we build the head and body of the response and return it with a 200 HTTP status code

(meaning success).

The executable API is a Ruby source file mocking what is specified in the cor-

responding OpenAPI specification: the API endpoints, success and error HTTP codes,

expected payloads and so on. Although the mock implements what is specified in the

associated OpenAPI specification, it is generated directly from the OpenAPI seed (as

is the case for both the generated specification and annotation files). As a consequence,

we have the power and flexibility of purposefully injecting bugs and other issues in the



56

generated code. This is valuable when testing a tool, since we are able to run it against

code that has known issues.

Having these mock API implementations makes OAS DB a complete solution

because they allow researchers to test tools that use dynamic analysis techniques (i.e.,

techniques that interact with a running system). One such tool is RESTler, presented in

Subsection 3.5.1.

The mock API implementation code leverages Sinatra3, an open-source web frame-

work for the Ruby programming language. By using the framework, it is possible not

only to create single-file, self-contained web systems and web APIs, but also much larger

systems. The framework is very straightforward to use and because of that it lends itself

well for some special cases, like for example automatically generating the code for a web

system or API. Section 2.8 discusses the framework with more details.

These self-contained mock implementations also include two features that may help

a researcher while using them to evaluate tools that need to interact with a running API:

a simple in-memory database and a field validation mechanism. Subsection 5.3.3 discusses

the former, while subsection 5.3.4 presents the latter.

5.3.2 Fault and issue injection

When generating mock API implementations using OAS DB, one has the ability to

have bugs and issues injected in the API code. These can be specified by providing the

generator with certain parameters, listed in detail in OAS DB’s documentation.

Figure 14 shows a snippet of API code generated including one of the issues

available to be injected. At line 1, we can see that this generated API include the

payload missing keys issue. As a consequence, the API will crash and return an HTTP

error code 500 every time a payload with missing required keys is sent to the server. Note

that an API generated without this injected issue will be able to gracefully handle this

error scenario. At lines 5 — 18, we have the method responsible for payload sanitization.

Note that in line 6, we check to see if the API was generated with the aforementioned

issue. When the API is free of this fault, the remaining of this method is responsible for

deleting keys that are not present in the object’s schema, defined in the corresponding

OpenAPI specification. Finally, lines 22 — 26 show the method responsible for crashing

3 https://www.sinatrarb.com

https://www.sinatrarb.com


57

Figure 14 – A segment of a mock API implementation. This excerpt shows a method
whose implementation includes injected issues.

Source: Alex Braha Stoll, 2022

APIs that include the payload\textunderscore missing\textunderscore keys issue

when payloads without all required keys are received. Note that this is the method that is

called at the previously explained line 6.

In general, an injected issue or bug forces a failure in a situation that is normally

gracefully handled (e.g., when the API receives a payload containing extra keys). OAS

DB currently allows the following issues and bugs to be injected into a generated API

implementation:

1. invalid payload: Forces the API to raise an unhandled exception (and respond

with HTTP code 500, internal server error(RFC 7231, 2014)) when an invalid JSON

payload is sent to the server while creating or updating a record.

2. unexpected payload root node: The API responds with HTTP code 500 when

a JSON payload whose root is not an object is sent to the server while attempting

to create or update a record.
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3. payload missing keys: Code 500 when a JSON payload does not include all the

required keys for creating a record.

4. payload extra keys: The API retuns 500 when a payload has extra, unexpected

keys. Applicable to the create and update operations.

5. payload wrong data types: The API responds with 500 when a payload is a

valid JSON and has the required keys, but has at least one key whose data type is

incorrect (e.g. an integer where a string is expected).

6. broken record deletion: The API responds with success (HTTP code 200) when

asked to delete a record, but the record is not actually destroyed.

7. invalid examples: Different from the other available issues, this is not injected in

the mock API implementation, but rather in its corresponding OpenAPI specification.

Invalid examples are included in the specification (e.g. the example for the create

operation has a payload missing required keys).

5.3.3 In-memory database

Every generated API includes a simple embedded key-value in-memory database

implementation, which allows them to keep state between different HTTP requests. This

feature is essential for detecting issues that are only manifested after a sequence of

interactions with the server.

As an example, let us consider a tool that is trying to detect whether there are

cases in which it is possible to use a resource after its destruction. One way of finding

such an issue would be to first create a record, then delete it and finally try to read it.

Without a database, we would not be able to persist the record in the first place, so the

generated API would be useless when employed in evaluating a tool trying to detect the

issue aforementioned.

Figure 15 shows the bulk of the code that implements the embedded key-value

store. At line 1, we have create obj, the method responsible for creating a new object. It

leverages the next id method, which keeps track of generated IDs and returns a new and

unique one every time it is called. Then, at the end of create obj, we store the new object

in the instance variable ds, which holds a Ruby Hash (i.e., a dictionary data structure). At

lines 8 and 13, we have read obj and update obj, respectively responsible for reading and
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updating a previously stored object from the dictionary held at the instance variable ds.

Both these methods implement mechanisms to check whether the object one is trying to

manipulate actually exists. Finally, at line 21 we have the delete obj method, responsible

for deleting an object. Note, at line 23, that this method is capable of purposefully failing

to remove the object when APIs include the broken record deletion err issue (refer to

Subsection 5.3.2 for explanation on injectable faults and issues).

Figure 15 – The bulk of the code implementing the embedded key-value store. The imple-
mentation leverages Ruby’s Hash data structure.

Source: Alex Braha Stoll, 2022

5.3.4 Field validation

The generated mock API implementations also include automatic field data type

validation. This is a mechanism that validates — when one is trying to create or update a

record — if the payload provided includes all the required fields, each having data of the
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expected type (e.g., a field specified as integer cannot be passed to the server holding a

string).

This feature is relevant for tools that attempt to verify if an API is actually honoring

its specification. An API may have a specification that defines the data types expected for

different fields, however due to a fault in implementation (or due to a wrong specification

in the first place) it may be possible to create records without honoring the expected data

types or not following an expected data type may cause the API to altogether crash.

OAS DB’s field data type validation is implemented by leveraging Ruby’s standard

data conversion methods. We generate code that maps OpenAPI data types to these Ruby

conversion methods, allowing us to check each field according to its declared data type.

Figure 16 – Part of the code implementing the data type validation mechanism.

Source: Alex Braha Stoll, 2022

Figure 16 shows part of the code responsible for the mechanism herein explained.

At line 1, we assign to the OAS RUBY DATA VALIDATION constant a dictionary to help with

data type validation. The dictionary keys are OpenAPI data types (e.g., string), while

the values are Ruby lambda functions. These are similar to what we call anonymous

functions in other programming languages. These constructs allow us to succinctly define

functions to convert string values sent by the client into the expected data type. At line 10,

we define the validate field method, responsible for validating each field passed by the

client when attempting an operation that requires a payload (e.g., creating a record). This

method internally uses the functions we have just discussed. At line 11, we see that in

order to know which data type conversion function to call, we refer to the corresponding
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OpenAPI specification. There, we can find the expected fields for an operation requiring a

payload and also the data type of each field.

5.4 Annotation files

Each OpenAPI specification present in OAS DB is accompanied by an annotation

file in the JSON format. Each annotation file describes all anti-patterns found in the

associated specification, including the segment and line in the OpenAPI file responsible for

each violation. Figure 17 shows an annotation file documenting the anti-patterns present

in the associated OpenAPI sample.

These annotations provide a way for researchers to automatically verify the effec-

tiveness of new techniques and tools. To make this point clearer, let us suppose a scenario

in which a researcher is using a repository without annotations to verify a tool that aims

to detect anti-patterns. Since it is not known a priori which anti-patterns are actually

present in this repository of samples, the researcher will have to analyze every sample

manually in order to determine the true and false positive and negative detections of the

tool being evaluated.

When using OAS DB in this same scenario, that effort will not be necessary because

each sample is accompanied by an annotation file that lists all the anti-patterns to be found.

Moreover, since the annotation files follow a defined structure, it is straightforward to

create a script to automatically compare the results obtained by the tool under evaluation

and the anti-patterns that are actually present in each specification. Such a script could

naturally be used repeated times (for the same or related tools), potentially saving a lot

of labor for the researcher / research team.

5.5 Using OAS DB: from seed to running mock API

To facilitate the usage of OAS DB, we distribute it packaged as a Docker container

(see Section 2.9 for a brief introduction on Docker). This strategy will allow researchers to

run it on their local machines or have it deployed and running on their cloud environment

of choice. The Docker container will contain not only OAS DB itself, but also all of its

dependencies. As a consequence, the process of generating and running mock APIs will
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Figure 17 – An annotation file documenting that the associated OpenAPI specification
has one anti-pattern

Source: Alex Braha Stoll, 2022

be facilitated: researchers will only need to be able to run the provided container either

locally or in their preferred cloud environment (there is extensive documentation on the

Docker website4 on how to run and interact with applications packaged as containers).

OAS DB will also be accompanied by documentation detailing on how to use it.

This documentation will be made available in the same GitHub repository5 hosting the

project. In summary, researchers and practitioners interested in using OAS DB in their

projects should probably advance in the following order: 1) to become familiarized with the

versions of OpenAPI supported by OAS DB; 2) to have a general idea of the features of the

tool; and 3) to get acquainted with the format of annotation files, since with the metadata

present in them it is even possible to create solutions for automatically determining the

accuracy of a tool under evaluation.

Now that we have gone through all components of OAS DB, we show an example

of how one could use the tool, discussing along the way how information flows between

the different components of OAS DB illustrated in figure 10.

5.5.1 CLI and configuration file

The first step is to have in hands a specification seed and a configuration file. In this

walk through, let us use as an example the seed contained in figure 11, in section 5.1. The

configuration file is a JSON specifying information such as which faults and issues are to be

4 https://docs.docker.com/
5 https://github.com/alexbrahastoll/oas-db

https://docs.docker.com/
https://github.com/alexbrahastoll/oas-db
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injected in the generated assets. Figure 18 shows a configuration file instructing OAS DB’s

Enhancer Engine to inject certain issues in the specification (the key spec issues in the

configuration) and mock API (key api issues) that will be created. The issues the tool

supports are the same listed and discussed in subsection 5.3.2. For detailed information on

the configuration options available, please refer to OAS DB’s documentation.

Figure 18 – An example of a configuration file expected by OAS DB’s CLI.

Source: Alex Braha Stoll, 2022

The CLI included in OAS DB then reads these configuration options and passes them

to the OAS DB Enhancer Engine, as shown in figure 10. Using the CLI is not mandatory,

but it is probably the most straightforward way of using the OAS DB Enhancer Engine. If

one is working in a Ruby project, however, one could directly import and use the OAS

DB Enhancer Engine. Figure 19 shows an example of how one would call the OAS DB

CLI passing the mandatory argument, which is the absolute path to a configuration file.

Figure 19 – An example of calling OAS DB’s CLI from a terminal.

Source: Alex Braha Stoll, 2022

5.5.2 OAS DB Enhancer Engine

The OAS DB Enhancer Engine receives a specification seed and configuration

options. As explained, part of what is given in the configurations is the set of faults and

issues to be injected. As shown above, the issues that affect the OpenAPI specification

to be generated are grouped as spec issues. The ones that impact the mock API are

specified as api issues.
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The engine has different subcomponents responsible for generating the OpenAPI

section representing each one of the main operations one can perform on an entity: create,

read, update and delete. These subcomponents, by default, will generate a specification

conforming to REST and OpenAPI best practices.

The subcomponent responsible for generating the segment that describes the

endpoint for the create operation, for example, will include an example of a valid payload,

illustrating how one could create a record in practice (as the reader may remember, this

example present in the generated OpenAPI specification comes from the seed). However,

the generation can be affected depending on the issues to be injected. Figure 18 — which

we are using as an example for this section — includes the issue invalid examples. In

this case, then, the aforementioned subcomponent would generate an invalid example

when generating the create operation in the OpenAPI complete specification. Figure 20

shows the function responsible for generating an invalid example if the invalid examples

was specified as one of the issues to be present in the generated OpenAPI file.

Figure 20 – Function that generates an invalid example by removing keys from the valid
example provided in the OpenAPI seed.

Source: Alex Braha Stoll, 2022

For the generation of the mock API implementation — a Ruby’s Sinatra self-

contained API, as discussed in section 5.3 — a similar architecture is followed. As is

the case in the creation of the OpenAPI complete specification, the code responsible for

generating each endpoint (again, for the create, read, update and delete basic operations)

checks whether issues and faults are to be injected or not. Figure 18, our example

configuration being used in this section, does include the broken record deletion fault.

As explained in subsection 5.3.2, this issue causes the delete endpoint to fail at deleting

the record but at the same time to respond as if the record was successfully deleted. Figure

21 shows that the function responsible for deleting a record does not actually destroy the

object if the broken record deletion issue was injected in the generated mock API.

As the OpenAPI specification and mock API are being generated, the OAS DB

Enhancer Engine keeps record of which issues were injected. This information will then
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Figure 21 – Function that purposefully fails to delete a record if this is one of the faults
the user wished to inject in the mock API.

Source: Alex Braha Stoll, 2022

be used to generate the annotation file, describing all the issues and faults present in the

specification and in the mock API.

5.5.3 File Generation

The OAS DB Enhancer Engine internally represents all the components being

generated — the full specification, the mock API and the annotation file — as Ruby data

structures. Finally, when the generation process ends, these data structures are rendered

to its respective file formats and saved to the disk.

Both the specification and the annotation are rendered as JSON. The API is

rendered as executable Ruby code. After this process finishes and the files are saved in

the disk, we have assets that are ready for usage. For example, one could execute the

generated API to run tests against it or one could feed the complete OpenAPI specification

to another OpenAPI related tool.

5.6 Contributing to OAS DB

OAS DB aims to be an open-source effort. Therefore, researchers and practitioners

can craft new OpenAPI seeds and suggest their addition to the repository. Furthermore,

interested parties can also contribute by enhancing the generation capabilities of OAS DB.

This process is open to everyone, however approval of the overseers of the repository is

fundamental. This is basically a manual peer-review done by the overseers of OAS DB to

check not only technical details but also if the new suggested contributions satisfy quality

requirements.



66

Besides this safeguard, deciding which new seeds to be created and added to OAS

DB is of utmost importance. The seed should ideally be a realistic representative of a

domain (e.g., ecommerce API) not yet present in OAS DB. If a seed belongs to a domain

that is already represented in the repository, it may be more interesting to at least check

if it is possible to enhance the existing seed somehow instead of creating a new one for the

same domain. The same is true for new feature suggestions and collaborations: they must

be aligned with OAS DB’s overall objectives.

5.7 Final remarks

Currently there are a few other repositories of OpenAPI samples. One that appears

in some studies (e.g., Ed-Douibi, Izquierdo and Cabot (2018)) is the APIs Guru repository6.

This repository, however, has some features that in our view make it not a great fit for

researchers.

The first one is the lack of annotations in the samples it contains, making it

challenging for a researcher to check the performance of a tool tested against this repository

(i.e., it is labor intensive to produce metrics because the samples are not annotated and

therefore one has to manually analyze every one touched by the tool under evaluation).

The second characteristic of APIs Guru that in our estimation makes it not the

best fit for researchers is the fact that the focus of the repository is simply on creating

OpenAPI specifications for existing web services, without a concentrated effort (such as

in the case of OAS DB) in adding new samples that actually increase the diversity of

scenarios covered (both in terms of anti-patterns contained in the repository and in terms

of domains covered by its samples).

In this chapter, we presented in details OAS DB. As we have shown, this novel

tool allows researchers and practitioners to generate annotated OpenAPI specifications

and their corresponding mock implementations. OAS DB is open-source and can evolve

over time with contributions from the technology community. In the next chapter, we will

explore Oasis, a proof of concept tool that detects anti-patterns in OpenAPI specifications

using static analysis techniques. As we explain in details in the next chapter, the main

motivation for creating Oasis was to help validate OAS DB itself.

6 http://apis.guru

http://apis.guru
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6 Oasis: a tool for detection of anti-patterns in REST APIs

While reviewing the literature, we found tools that use static analysis techniques to

detect issues on REST APIs (generally by analyzing an OpenAPI specification, but other

methods are also used). For validating OAS DB’s capability of generating specifications

with issues, our initial idea was to run an experiment with each one of these tools. By

doing so, our intention was both to evaluate each tool and to show that OAS DB is indeed

able to generate specifications containing the kind of anti-patterns and issues described in

the relevant literature.

When trying to use the aforementioned tools, however, we were not able to conduct

the experiments we planned for. UniDoSA (see subsection 3.3.3) has a web version (called

WebRestpad1) that is online but is not working properly (as of January 2nd, 2022). While

doing an initial exploration of the tool, we found that it was not able to fetch OpenAPI

specifications from a given public accessible URI and consequently it was not able to even

start any process of issue detection. We contacted the authors, who acknowledge the issue

but did not present any plans for addressing it. Another work that looked promising was

Brabra et al. (2019) (see subsection 3.3.2 for a summary of the article). While researching

about the proof of concept tool the authors mention in their paper, we found a blog post

discussing the work and offering a web version of the tool (SIMBAD Tool Blog Post,

2019). The link for the prototype of the aforementioned tool is broken and we did not get

any response back from the main author resposible for the research. Finally, we tried to

evaluate the tool introduced in Ed-Douibi, Izquierdo and Cabot (2018) (see subsection

3.4.1). This effort did not succeed as well. The tool has no documentation2 and the author,

in the comment section of a blog post about the research, comments that “the work on this

project is currently stalled and the codebase is obsolete” (Modelling Languages Blog Post,

2018).

Having no other options, we decided to implement ourselves a tool for detecting

some of the REST anti-patterns mentioned in the relevant literature. We did our best effort

to implement detection techniques based on what appears on the different papers mentioned

in chapter 3 (and to make reasonable inferences when details were not available). To this

proof of concept tool, we gave the name Oasis (an allusion to Open API Specification).

1 http://webrestpad.sofa.uqam.ca/
2 https://github.com/opendata-for-all/api-tester

http://webrestpad.sofa.uqam.ca/
https://github.com/opendata-for-all/api-tester
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6.1 Overview of Oasis

Oasis is a proof of concept tool capable of detecting a few REST anti-patterns, ac-

cording to implementation guidelines found in the relevant literature. Oasis is implemented

using the Ruby programming language3. Ruby was chosen for two main reasons: firstly,

because of the familiarity of the author of the present work with the technology, which

speeds up the implementation of the tool; secondly, because its dynamic and interpreted

nature allows for quick experimentation, which is ideal for a proof of concept project.

Oasis is a CLI tool. CLI stands for Command Line Interface, which means Oasis

does not have a GUI (Graphical User Interface), but can only be operated via text

commands. It is beneficial for projects like Oasis to expose a CLI because, unlike programs

that only have a GUI, a command line interface allows for easier integration into existing

software process pipelines. Consider, for example, a team that uses a script to run a series

of different checks as part of their QA (Quality Assurance) process. Since Oasis is a CLI,

it is convenient to modify the aforementioned script to run the checks made by Oasis

as part of this QA process. Figure 22 shows a simplified and high-level overview of the

components that compose Oasis.

Figure 22 – UML Component Diagram of Oasis

Source: Alex Braha Stoll, 2022

3 https://www.ruby-lang.org/en/

https://www.ruby-lang.org/en/


69

1. CLI: This module is responsible for parsing text commands and calling the appropri-

ate modules for the requested commands to be run (or for presenting error messages

in the case of invalid commands).

2. Linter: Module responsible for having a list of all modules representing strategies

for detecting anti-patterns. It is also responsible for calling the code which runs each

anti-pattern detection strategy.

3. Anti-pattern detection strategies: A series of components each implementing

an algorithm to check for the presence of a particular anti-pattern.

6.2 Static analysis

Oasis uses strategies that rely only on the analysis of the OpenAPI specification

describing the API under analysis. The usage of static analysis is beneficial for multiple

reasons. Firstly, it does not require one to have a deployed and running instance of the API

under assessment. Secondly, it does not oblige the team running the API to provide canned

responses for requests to the API (which is something fundamental when dynamic analysis

techniques are in place). As a consequence of the two reasons stated above, running Oasis

against an existing OpenAPI specification is a convenient way to check for REST API

anti-patterns (at least those supported by Oasis and that are detectable by static analysis

techniques).

6.3 Anti-patterns currently detectable

Our main purpose in creating Oasis was to validate OAS DB. Having this in mind,

Oasis currently is able to detect only a few anti-patterns. While implementing the detection

strategies, we made our best effort to stay as consistent as possible with the descriptions

and guidelines offered in the literature.
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6.3.1 Anti-pattern Amorphous URI

The Amorphous URI anti-pattern (from now on referred to as amorphous uri) is

described by Palma, Moha and Guéhéneuc (2018). It happens when an API’s path include

any characters besides lowercase alphabetic characters and the dash (—) character.

6.3.2 Anti-pattern Crudy URI

The Crudy URI anti-pattern (from now on referred to as crudy uri) is present when

an API‘s path includes one of the following verbs: create, read, update or delete. This

anti-pattern is defined by Brabra et al. (2019).

6.3.3 Anti-pattern Sensitive Information in the Path or Query String

The Sensitive Information in the Path or Query String (hereinafter sensitive info pqs)

is found on endpoints that include sensitive information (such as an authentication token)

directly in the path or in the query string. This anti-pattern is discussed in detail at

Iversen (2018).

6.4 Comparison with other tools

As previously explained, our main motivation in creating Oasis was the fact that

similar tools found in the literature were simply broken or no longer being maintained.

Nonetheless, let us make a quick comparison between these tools and Oasis.

Iversen (2018) introduces a tool that is able to detect issues and anti-patterns in

REST APIs. However, the approach requires the API under analysis to be described using

a custom description language introduced by the same study (instead of relying on a

popular language such as OpenAPI or RAML). Besides that, Iversen (2018) mainly focus

on security issues revolving around the usage of the JSON Web Token technology. By

contrast, our study is not limited to security vulnerabilities, also including anti-patterns

in other categories.
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Ed-Douibi, Izquierdo and Cabot (2018) presents a tool that has as its only input

requirement a valid OpenAPI specification. As stated in the study, however, the purpose

of the tool is to generate test cases for the API under test, not to detect anti-patterns.

There may be some overlap between these two different kinds of efforts, but in the end

they are not aiming at exactly the same objective.

Brabra et al. (2019) not only concerns itself with REST anti-patterns, but also with

the detection of violations of the OCCI standard. Adding to that, another considerable

distinction when comparing that research with Oasis is the fact that their tool relies on

models manually built after analysis of the documentation of each REST API. The tool

introduced at Brabra et al. (2019) does not support OpenAPI specifications and requires

this extra step of manually building a model from scratch for every new API that one

wants to assess.

Palma, Moha and Guéhéneuc (2018) presents a technology (UniDoSA) that is not

exclusively focused on REST APIs, also supporting SOAP (Simple Object Access Protocol)

and SCA (Service Component Architecture). Besides that, Palma, Moha and Guéhéneuc

(2018) explains that to use UniDoSA with REST services it is necessary to first perform

a semi-automatic convertion to the SCA technology. The Web prototype version of the

tool does accept OpenAPI specifications directly, however it is not properly working as we

already explained in the introduction of this chapter.

6.5 Final remarks

In this chapter, we presented Oasis, a proof of concept tool to detect anti-patterns

in OpenAPI specifications. Oasis relies on static analysis techniques and requires no other

input besides the specification of the API one wishes to analyze. As explained, our main

motivation in creating it was the validation of OAS DB. In the next chapter, we show all

the experiments that were carried out for the validation of our research.



72

7 Validation

Since our research resulted in contributions of different natures, we employed

multiple strategies for validating our work. Section 7.1 discusses the validation of Oasis

and of issues that OAS DB injects directly into generated OpenAPI specifications (these

are detectable by using static analysis techniques, such as the ones implemented by Oasis).

Section 7.2 presents the validation of OAS DB’s capability of injecting faults and issues in

the mock API implementations it generates. These require the usage of tools that perform

dynamic analysis on REST APIs. We devised and executed two experiments using the same

set of mock APIs generated by OAS DB. In the first experiment, RESTler (presented in

subsection 3.5.1) is used; for the second one, RESTest (summarized in subsection 3.5.2) is

employed. Section 7.3 explains the validation of the novel REST anti-patterns introduced

in chapter 4. Finally, section 7.4 presents and discusses threats to the validity of the

aforementioned validation strategies.

7.1 Validating OAS DB with tools employing static analysis

As explained in chapter 6, our main motivation for creating Oasis was the fact that

other similar tools mentioned in the literature were simply broken and could not be used

to validate OAS DB. Obviously, then, the experiment designed to validate OAS DB by

tools using static techniques relies on Oasis.

7.1.1 Experiment settings

For the experiment, we used OAS DB to generate one complete OpenAPI spec-

ification for each seed (see section 5.1 for further detail on OpenAPI seeds) for each

one of the anti-patterns detectable by Oasis (and that OAS DB is also able to inject

into a specification). The seeds included with OAS DB (and used in this experiment)

are: incident response.json (representing an incident reporting API), payment.json

(representing a payments API) and project management.json (representing a project

management API). A full listing of incident response.json is available at appendix A;
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payment.json can be examined at appendix B; finally, project management.json is

printed at appendix C. A total of nine unique OpenAPI specifications were generated.

Table 4 shows the number of instances of a given issue that were expected in a

generated sample and how many Oasis was actually able to detect.

Table 4 – Experimental Evaluation Results - Oasis

Sample name Issues Expected Detected

payment amorphous uri amorphous uri 4 4

project management sensitive info pqs sensitive info pqs 1 1

project management amorphous uri amorphous uri 4 4

incident response amorphous uri amorphous uri 4 4

payment crudy uri crudy uri 4 1

incident response crudy uri crudy uri 4 1

project management crudy uri crudy uri 4 1

payment sensitive info pqs sensitive info pqs 1 1

incident response sensitive info pqs sensitive info pqs 1 1

Source: Alex Braha Stoll, 2022

All the data produced during the experiment is available. It can be accessed at an

anonymous public GitHub repository1.

7.1.2 Experiment discussion

Oasis had a satisfactory performance. Out of the nine samples of the experiment,

it detected all instances of anti-patterns in six of them. In the three other samples, it

failed to detect some of the anti-pattern instances. These samples were the ones that

contained the Crudy URI anti-pattern: payment crudy uri, incident response crudy uri

and project management crudy uri.

For these aforementioned three samples, Oasis detected only the cases of URIs

having the delete verb in them (e.g., delete charges/{charge id}). It was not able to detect

three remaining instances of the same anti-pattern in each of these three samples. These

instances were the ones including a verb in the URI (and therefore being cases of the

Crudy URI anti-pattern), however the verb included was not part of the list present in the

rule that Oasis implements for the detection of this particular anti-pattern. Here, Oasis

follows the guidelines given at Brabra et al. (2019).

1 https://github.com/oasdb/oasis-experiment

https://github.com/oasdb/oasis-experiment


74

7.1.3 Experiment conclusion

Despite its limitations, this experiment shows both a) OAS DB’s capability of

generating OpenAPI specifications including some of the anti-patterns discussed in the

literature and b) Oasis satisfactory performance in detecting these same anti-patterns.

As shown and discussed in the previous section, OAS DB is able to generate

specifications with instances of anti-patterns that are not detectable by Oasis. This

indicates that the rules for detecting REST API anti-patterns presented in the relevant

literature, themselves guidelines which Oasis implements, can be extended and improved.

7.2 Validating OAS DB with tools employing dynamic analysis

As discussed in chapter 5, OAS DB is also able to generate mock API implementa-

tions with known issues and faults. To detect those, it is necessary to interact with these

running mock implementations. From the tools able to do so, we selected two that in our

judgement are the most relevant and mature: RESTler (presented in subsection 3.5.1) and

RESTest (discussed in subsection 3.5.2).

For both experiments, the same dataset was used. Using OAS DB’s command-line

interface (CLI), we generated one triad (specification, annotation file and mock API

implementation) for each issue (that requires detection by dynamic techniques) that OAS

DB is currently able to inject into synthesized assets (see subsection 5.3.2). This process

was repeated for the same three different specification seeds mentioned in the previous

section: incident response.json (representing an incident reporting API), payment.json

(representing a payments API) and project management.json (representing a project

management API). As a result, we ended up with 21 different generated triads.

As explained above, for this experiment we decided to generate assets containing

only one issue each. It is important to note, however, that this is not a limitation of OAS

DB itself. It is perfectly possible to feed to OAS DB’s CLI a configuration file that will

result in the generation of assets containing multiple of the issues currently supported by

the tool.
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7.2.1 RESTler

With the help of a custom Ruby script, we ran RESTler (version 7.3.0) for 15

minutes in its Fuzz mode for each of the mock API implementations generated by OAS

DB. The results for each run were collected by our script and then manually analyzed by

our team. These results are presented on table 5.

Table 5 – Experimental Evaluation Results - RESTler

Sample name Issues RESTler detected?

incident response payload missing keys payload missing keys yes

project management payload extra keys payload extra keys no

payment broken record deletion broken record deletion yes

project management invalid examples invalid examples no

incident response unexpected payload root node unexpected payload root node yes

incident response payload wrong data types payload wrong data types yes

payment unexpected payload root node unexpected payload root node yes

project management broken record deletion broken record deletion yes

payment invalid payload invalid payload no

incident response broken record deletion broken record deletion yes

incident response payload extra keys payload extra keys no

project management unexpected payload root node unexpected payload root node yes

project management payload missing keys payload missing keys yes

project management payload wrong data types payload wrong data types no

payment payload missing keys payload missing keys yes

payment payload wrong data types payload wrong data types yes

payment invalid examples invalid examples no

incident response invalid examples invalid examples no

project management invalid payload invalid payload no

payment payload extra keys payload extra keys no

incident response invalid payload invalid payload no

Source: Alex Braha Stoll, 2022

All the data produced during the experiment is available. It can be accessed at an

anonymous public GitHub repository2.

RESTler was able to detect 11 out of the 21 issues injected by OAS DB. Table 5

shows the detailed results for the aforementioned described experiment.

RESTler had a robust performance and was able to detect all broken record deletion

issues (see subsection 5.3.2 for the list and discussion of injectable faults and issues). The

tool was also able to detect most of the issues associated with an incorrect payload.

From the cases in which RESTler was not able to detect the issue present in the

specification / API (10 instances), it is important to note that three of them involve

2 https://github.com/oasdb/restler-experiment

https://github.com/oasdb/restler-experiment
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the ExamplesChecker. From our analysis, it seems that RESTler is altogether failing to

execute this checker. We believe this may be a bug in the tool.

The remaining seven cases that went undetected are all related to incorrect data pay-

loads being sent to the server. Of these, three are cases of APIs having the invalid payload

fault. The PayloadBodyChecker did not produce completely invalid JSON payloads (i.e.,

sending rubbish data that is not even a valid JSON) and therefore did not trigger this

fault. Three other scenarios that went undetected are from generated APIs that have the

payload extra keys issue. Since the PayloadBodyChecker did not generate payloads

with extra and unexpected keys, this fault was not triggered.

Of these seven cases that were not detected, the remaining one is curious. RESTler

failed to trigger the payload wrong data type only for the project management sample;

for the other two experiment samples (incident response and payment), it was able to

detect this same issue. Analyzing the logs, we noticed that RESTler did not attempt to

generate a payload passing data other than strings in the case of the project management

sample (the project management sample API expects a payload consisting exclusively of

two string fields). For the cases in which an expected key is of a type different than string

(e.g., an integer) — as it happens in the other mentioned samples — RESTler did generate

payloads which had a wrong data type in these non-string keys, thus triggering the fault

here being discussed. We believe this behavior may be a bug.

As a final note regarding the issues associated with incorrect data payloads, it

is important to reiterate that we ran the PayloadBodyChecker with its default settings.

Godefroid, Huang and Polishchuk (2020) discusses the workings and flexibility of this

checker at length. We believe that it may be possible to tweak its configurations to a

setting which would result in a better performance in the experiment herein discussed.

7.2.2 RESTest

With the aid of a script we wrote ourselves, we had RESTest (master branch at Git

commit c0440ad81aa0d12b87732fdf05a82ddcafa74f6c) generate and run 224 test cases in

its FT mode (fuzzing) for each of the mock API implementations generated by OAS DB.

RESTest took about 20 minutes to test each sample. The results for each run were collected

by our script and then manually analyzed by our team. These results are presented on
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table 6. All the data produced during the experiment is available. It can be accessed at an

anonymous public GitHub repository3.

Table 6 – Experimental Evaluation Results - RESTest

Sample name Issues RESTest detected?

incident response payload missing keys payload missing keys yes

project management payload extra keys payload extra keys no

payment broken record deletion broken record deletion no

project management invalid examples invalid examples no

incident response unexpected payload root node unexpected payload root node no

incident response payload wrong data types payload wrong data types yes

payment unexpected payload root node unexpected payload root node no

project management broken record deletion broken record deletion no

payment invalid payload invalid payload no

incident response broken record deletion broken record deletion no

incident response payload extra keys payload extra keys no

project management unexpected payload root node unexpected payload root node no

project management payload missing keys payload missing keys yes

project management payload wrong data types payload wrong data types yes

payment payload missing keys payload missing keys yes

payment payload wrong data types payload wrong data types yes

payment invalid examples invalid examples no

incident response invalid examples invalid examples no

project management invalid payload invalid payload no

payment payload extra keys payload extra keys no

incident response invalid payload invalid payload no

Source: Alex Braha Stoll, 2022

Out of 21 faults and issues, RESTest was able to detect six of them. Although its

performance was inferior to that of RESTler, we still consider RESTest to be a promising

tool.

RESTest failed to detect four types of issues: payload extra keys,

broken record deletion, invalid examples and unexpected payload root node.

We follow with our analysis on the reasons the tool failed to detect each one of these types

of faults.

To detect the payload extra keys issue, a tool must generate faulty payload that

include keys that are not part of what is described by the mock API’s corresponding

OpenAPI specification. RESTest generators do not create tests of this type and, as a

consequence, the tool is unable to trigger this error in the mock APIs.

To trigger the broken record deletion fault, the tool must be able to keep track

of its interactions with the API and execute requests in a specific sequence: it needs to create

a record, then to delete it at some point during the test suite and, finally, the tool needs

3 https://github.com/oasdb/restest-experiment

https://github.com/oasdb/restest-experiment
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to attempt to interact with the deleted object again (by trying to update or read it). From

our analysis of the generated test cases, RESTest does not keep track of the IDs of created

records, nor generates sequences of tests that engage in the interaction just described. As

a result, it fails to detect the broken record deletion issue. RESTest’s documentation4

mentions it also has stateful data generators, such as one they named BodyGenerator.

This generator in particular is not available in the fuzzing mode, but as an extra exercise

we did try to use it directly in a couple of ad hoc tests. Even when this specific generator

was employed, the tool was not able to detect issues of type broken record deletion.

To expose invalid examples issues, a tool needs to attempt to use the payload

examples provided as part of the OpenAPI specification when interacting with the mock

API. Since RESTest does not do that, it fails to detect this kind of fault.

Finally, to catch unexpected payload root node faults, a tool needs to send to

the mock API payloads that are completely malformed (e.g., an invalid JSON). RESTest

does not attempt to do that and consequently it is not able to detect the fault herein

discussed.

7.2.3 Experiment conclusion

By testing real-world tools against OAS DB generated mock APIs, we have shown

that our approach has potential. By using OAS DB capabilities, one is able to synthesize

a great number of varying scenarios, probably far greater than what would be feasible to

be manually put together.

We are confident that the results of the experiment support the case for OAS DB

and its approach. We were able to find two potential bugs in the current implementation

of RESTler. Besides that, we were able to uncover many different improvements both

RESTler and RESTest can incorporate to improve their capabilities and make the tools

even more apt in detecting faults and issues in REST APIs.

7.3 Novel REST anti-patterns

Since the contribution of new REST anti-patterns (see chapter 4) is a purely

theoretical one, validating every new REST anti-pattern proposed means justifying their

4 https://github.com/isa-group/RESTest/blob/master/README.md

https://github.com/isa-group/RESTest/blob/master/README.md
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relevance by showing that their presence in a REST API may negatively impact the system

in at least one dimension (e.g., security). Another source of validation is the connection

of the anti-pattern with previous studies and reliable industry reports. In the case of

anti-patterns that may result in vulnerabilities in the affected system, for example, linking

the anti-pattern to one or more CVEs (Common Vulnerabilities and Exposures) is a strong

indicator that our proposal in fact exposes a security issue already recognized by the

software community at large.

As one can check by exploring chapter 4, we already justified the relevance of each

proposed anti-pattern together with its definition and detailed explanation. Subsection

4.1.1 presents and validates the anti-pattern Sequential integers as resource ID ; subsection

4.2.1 discusses in depth the anti-pattern Sensitive information in the path or in the query

string (already catalogued in the literature) and offers a solution to APIs showing this

issue.

7.4 Threats to validity

7.4.1 External validity

The samples generated by OAS DB can be seen as proxies of real-world APIs, having

in mind the context of validation of tools that detect anti-patterns and faults in REST APIs.

This is the case because when building OAS DB — as discussed throughout our research —

we aimed at reproducing anti-patterns and faults that are already discussed and catalogued

in the relevant literature (which in turn is based upon, at least in part, observations of

real-world systems). The experiments that we ran corroborate this argument, since tools

that are capable of finding anti-patterns and faults in real-world APIs are also able to

detect these same problems in the assets generated by OAS DB.

7.4.2 Internal validity

We argue that both our experiments are internally valid and that they show a clear

cause and effect relationship. To guarantee that, for both experiments we conducted a

detailed analysis of the results.
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Through this analysis, we were able to explain why each tool (Oasis, RESTler and

RESTest) failed to detect a given expected anti-pattern or fault. When we were not able

to identify the cause of a failure of detection, we clearly indicated that and even in some

cases were able to come up with a hypothesis on why the failure happened (e.g. because

of a bug in the tool).

7.4.3 Conclusion validity

By testing real-world tools against OAS DB generated specifications and mock

APIs, we have shown that our approach has potential.

At least for the types of anti-patterns and issues that are part of the scope of the

present research and of the experiments in question, we can conclude that generating

specifications and mock API implementations can indeed help surface weaknesses of tools

aiming to test REST APIs. As a result of that, we were able to demonstrate that OAS DB

may prove useful to research in the field by helping to make these and other tools more

precise and capable.

7.5 Final remarks

In this chapter, we discussed all methods we used to validate all the fruits that the

present research bears. We also deliberated on the reasons why our chosen methods are

indeed valid.

We carefully examined all experiments made to validate OAS DB, using tools

that rely on static and dynamic analysis techniques. Additionally, we touched on the

validation of the novel anti-pattern we introduced, which is the only purely theoretical

contribution of our work. We believe that the tools and techniques validated in this chapter

can become an important resource in helping researchers in the field of REST API and

REST specifications.
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8 Conclusion

By reviewing the literature, we were able to notice that currently there are not

that many studies focusing on finding bugs and violations of REST API best practices.

The necessity of further investigating issues that are found in REST APIs is even directly

pointed out by some of the reviewed works (e.g., Atlidakis, Godefroid and Polishchuk

(2019)). Furthermore, we identified that there are no widely accepted benchmarks for

evaluating OpenAPI related tools. As a consequence, researchers have to spend time

creating their own datasets for validation purposes and the comparison between different

works becomes harder.

Having acquired in depth knowledge of the anti-patterns described in the literature,

we identified an opportunity to describe a new REST anti-pattern that — to the best

of our knowledge — is not yet documented. Chapter 4 describes the Sequential integers

as resource ID novel anti-pattern. In summary, it happens when the resources of an API

are identified by sequential integer numbers. As explained before, this may increase the

chances of an attacker being able to successfully exploit a system and may also lead to

undesirable business information leakage.

To address the lack of a widely accepted benchmark in the OpenAPI research

community, we created OAS DB. As shown in chapter 5, our approach and implementation

resulted in a tool capable of generating annotated OpenAPI specifications and their

corresponding mock API implementations. OAS DB is capable — during this generation

process — to inject a series of different anti-patterns and faults, both in the OpenAPI

specification and in its implementation itself.

To supplement the validation of OAS DB, we saw ourselves with no options but

to implement a proof of concept tool to detect anti-patterns in REST APIs by means of

static analysis of their OpenAPI specifications. Chapter 6 goes through the motivation for

creating Oasis and also explains in detail how the tool works.

Chapter 7 presents all the strategies and experiments done to validate our research.

For validating OAS DB, for example, we did three separate experiments, one using Oasis

and the other two using two mature dynamic tools, RESTler and RESTest. We were able

to show that OAS DB can be a useful resource to help support the evolution of OpenAPI

related tools.
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In the sections below, we enumerate and further discuss the contributions that are

the fruits of the present research. Then, we indicate some possibilities for continuing the

work we did and further improving OAS DB.

8.1 Contributions

8.1.1 Proposal of a new REST anti-pattern

As a consequence of studying the relevant literature in depth and combining the

acquired knowledge with our industry experience, we were able to identify an anti-pattern

that occurs in real-world APIs but is still not documented. Chapter 4 proposes the

Sequential integers as resource ID new REST anti-pattern. There, we described the anti-

pattern and all its negative consequences, ranging from leakage of important business data

to security vulnerabilities.

8.1.2 OAS DB

OAS DB is our main contribution. It is our take on how to address the challenge of

the lack of a standard repository of OpenAPI samples. Since there is no widely accepted

dataset, each tool developer comes up with its own. As a consequence, researchers have to

dedicate time they could spend improving the core of their work to building validation

datasets. This lack of a standard collection of samples also makes it very challenging to

compare different tools and to identify their strenghts and weaknesses.

As chapter 5 shows, OAS DB is much more than a dataset. It is actually a

generator of samples. Furthermore, OAS DB produces machine-readable files (which we

call annotation files) that indicate all issues to be found in a generated OpenAPI sample.

OAS DB is also able to synthesize mock implementations of the generated OpenAPI

samples. By having all these capabilities, OAS DB can be used by both researchers of tools

employing static and dynamic techniques. We believe OAS DB – and more broadly the

approach we pioneered by developing OAS DB – may prove of great value to the REST

API / OpenAPI research community.
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8.1.3 Oasis

As we make clear in chapter 6, our main motivation in creating Oasis was to also be

able to validate OAS DB with a tool employing static analysis techniques only. Nonetheless,

the result is a tool that already implements a few REST anti-patterns described in the

literature and that can be extended to be able to detect other anti-patterns and issues.

8.1.4 Future work

We argue that the most promising opportunities involve expanding OAS DB (or

a successor project leveraging the same approach). Here are some lines of research we

believe have potential:

1. To expand OAS DB, making it capable of injecting many more types of anti-patterns,

issues and faults, both into OpenAPI specifications and their corresponding mock

API implementations;

2. To explore the idea of creating OpenAPI specification seeds from existing real-world

OpenAPI specifications, by automatically simplifying them and extracting their

essentials. These seeds can then be fed to OAS DB as manually created ones are

today. This technique could produce more realistic seeds and allow one to generate

a vast number of seeds with virtually no manual effort;

3. To evolve the OpenAPI seed format, allowing one to express more complexity with

it and therefore making it possible to improve OAS DB so it can generate richer

OpenAPI specifications and even more interesting mock API implementations;

4. To conduct more experiments using both tools based on static analysis and on

dynamic analysis.
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APPENDIX A – incident response.json OpenAPI sample seed

{

"info": {

"title ": "Incident response API",

"description ": "API that allows one to report and manage

incidents that happen in an online service (e.g. an

ecommerce).",

"version ": "0.1"

},

"components ": {

"schemas ": {

"Incident ": {

"type": "object",

"description ": "An incident.",

"properties ": {

"title ": {

"description ": "A title to identify the incident

.",

"type": "string"

},

"service_id ": {

"description ": "The ID of the affected service.",

"type": "integer"

},

"assignee_id ": {

"description ": "The ID of the colaborator

assigned to deal with the issue.",

"type": "integer"

}

},

"example ": {
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"title ": "30 minutes outage due to someone tripping

on the server ’s power cable.",

"service_id ": 101,

"assignee_id ": 11

}

}

}

}

}
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APPENDIX B – payment.json OpenAPI sample seed

{

"info": {

"title ": "Payments Provider API.",

"description ": "API that allows one to charge customers

via credit card.",

"version ": "0.1"

},

"components ": {

"schemas ": {

"Charge ": {

"type": "object",

"description ": "A charge.",

"properties ": {

"amount ": {

"description ": "The amount to be charged.",

"type": "number"

},

"currency ": {

"description ": "Three -letter ISO currency code.",

"type": "string"

},

"credit_card_id ": {

"description ": "The credit card to be charged.",

"type": "integer"

}

},

"example ": {

"amount ": 20.50,

"currency ": "USD",

"credit_card_id ": 1
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}

}

}

}

}
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APPENDIX C – project management.json OpenAPI sample seed

{

"info": {

"title ": "Project management API",

"description ": "API that allows one to manage ongoing

projects in a company (e.g., create / read / update /

delete projects).",

"version ": "0.1"

},

"components ": {

"schemas ": {

"Project ": {

"type": "object",

"description ": "A project.",

"properties ": {

"name": {

"description ": "The name of the project.",

"type": "string"

},

"description ": {

"description ": "A meaningful description of the

project.",

"type": "string"

}

},

"example ": {

"name": "Client A",

"description ": "An awesome project for Client A."

}

}

}
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}

}
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APPENDIX D – Anti-patterns and issues that OAS DB is capable of
injecting during asset generation

Name Config. issue list Config. value Description

Crudy URI spec issues crudy uri
Injects a HTTP action verb
(or a synonym) in the URL

Amorphous URI spec issues amorphous uri
Adds superfluous characters
to the URL (e.g. a file type

suffix such as ‘.xml‘)

Ignoring status code spec issues ignoring status code
Responses use

inappropriate HTTP codes

Inappropriate HTTP method spec issues inappropriate http method
Requests expect

inappropriate HTTP
methods

Invalid examples spec issues invalid examples
Generates request examples
that do not comply to the

related objects’ schema

Sensitive info in the pqs spec issues sensitive info pqs
Sensitive info (e.g. a token)

is included in paths or
query strings

Invalid payload api issues invalid payload
API crashes (500 response)

if an invalid payload is
received

Unexpected payload root node api issues unexpected payload root node
API crashes if the root

node of the received
payload is not an object

Payload missing keys api issues payload missing keys
API crashes if the received
payload misses expected

keys

Payload extra keys api issues payload extra keys
API crashes if the received

payload has extra keys

Payload wrong data types api issues payload wrong data types

API crashes if the received
payload has fields with data
that does not comply to the

data types
specified in the object’s

schema inside the
correspondent OpenAPI

spec

Broken record deletion api issues broken record deletion

API responds as if an
object was successfully

deleted, but the object is
not actually destroyed

Source: Alex Braha Stoll, 2022
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